JPH11139813A - Amorphous silicon nitride powder and its production - Google Patents

Amorphous silicon nitride powder and its production

Info

Publication number
JPH11139813A
JPH11139813A JP9303855A JP30385597A JPH11139813A JP H11139813 A JPH11139813 A JP H11139813A JP 9303855 A JP9303855 A JP 9303855A JP 30385597 A JP30385597 A JP 30385597A JP H11139813 A JPH11139813 A JP H11139813A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
metal
amorphous silicon
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9303855A
Other languages
Japanese (ja)
Inventor
Takashi Matsuura
尚 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9303855A priority Critical patent/JPH11139813A/en
Publication of JPH11139813A publication Critical patent/JPH11139813A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide amorphous Si3 N4 powder and its production for relatively easily producing the amorphous Si3 N4 powder in which finely graining proceeds at the time of sintering as a powdery starting material for an Si3 N4 sintered compact having superior characteristics such as strength in a medium to low temp. range. SOLUTION: A metal such as Ti or B forming nitride under Si3 N4 sintering conditions in the atmosphere of nitrogen forms a solid soln. in amorphous Si3 N4 powder. This amorphous Si3 N4 powder is produced by mixing the amorphous Si3 N4 powder with metal powder at 10-200 G acceleration. The added amt. of the metal powder is preferably 10-50 wt.% of the total amt. and the mixing time is preferably 0.1-10 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品や耐摩
工具等に使用される構造用セラミックス材料として有用
な、室温から1100℃の中低温域で優れた機械的性質
を有する窒化ケイ素焼結体の原料粉末、及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent mechanical properties from room temperature to 1100.degree. C., which is useful as a structural ceramic material used for automobile parts and wear-resistant tools. Raw material powder and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si34)は、強度、破壊
靭性値、耐食性、耐摩耗性、耐熱衝撃性、耐酸化性等に
おいてバランスの取れた材料であるため、切削工具から
エンジン部品等の広い範囲で利用されている。特に最近
では、自動車エンジンやガスタービン等の構造用材料と
して注目を集めている。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) is a material that is balanced in strength, fracture toughness, corrosion resistance, abrasion resistance, thermal shock resistance, oxidation resistance, and the like. Etc. are used in a wide range. In particular, recently, it has attracted attention as a structural material for automobile engines and gas turbines.

【0003】この様な窒化ケイ素の強度を向上させる方
法として、従来から微細な窒化ケイ素の粒子からなる焼
結体の作製が試みられている。例えば、特開平6−27
1358号公報には、窒化ケイ素の平均粒径を0.3μ
m程度まで微細化することにより、3点曲げ強度が17
0kg/mm2以上の窒化ケイ素焼結体が得られると記
載されている。しかしながら、同公報記載の実施例でも
明らかなように、市販のSi34原料粉末の平均粒径は
0.7μm程度であるから、上記のごとく微細な窒化ケ
イ素焼結体を得るためには、この市販の原料粉末の平均
粒径を更に微細にする必要がある。
[0003] As a method for improving the strength of such silicon nitride, the production of a sintered body composed of fine silicon nitride particles has been conventionally attempted. For example, JP-A-6-27
No. 1358 discloses that the average particle size of silicon nitride is 0.3 μm.
m, the three-point bending strength is 17
It is described that a silicon nitride sintered body of 0 kg / mm 2 or more can be obtained. However, as is clear from the examples described in the publication, the average particle size of the commercially available Si 3 N 4 raw material powder is about 0.7 μm. It is necessary to further reduce the average particle size of this commercially available raw material powder.

【0004】微細な粉末を得る方法としては、従来から
CVD法が用いられており、例えばCeramic M
aterials & Components for E
ngines のP.70、table II に示されてい
るように、平均粒径が20nm程度窒化ケイ素粉末が得
られている。しかしながら、CVD法は気相法による合
成法のため、製造コストが高く、また量産性に乏しいと
いう欠点がある。しかも、粉末の粒径が小さくなるにつ
れて表面積が増加するため、表面酸化により窒化ケイ素
粉末としての特性が損なわれたり、また粉末同士の凝集
が激しくなり、成形性が極端に低下するなどの問題点が
あった。
[0004] As a method for obtaining fine powder, a CVD method has been conventionally used. For example, Ceramic M
materials & Components for E
As shown in P.70, table II of Nines, a silicon nitride powder having an average particle size of about 20 nm was obtained. However, the CVD method is disadvantageous in that the production cost is high and the mass productivity is poor because it is a synthesis method by a gas phase method. Moreover, since the surface area increases as the particle size of the powder becomes smaller, the properties of the silicon nitride powder are impaired due to surface oxidation, and the powders become more agglomerated, resulting in extremely low moldability. was there.

【0005】一方、量産性に優れた微細粉末の合成方法
として、粉砕法がある。例えば、窒化ケイ素と金属チタ
ンを高加速度で混合することにより、窒化ケイ素とチタ
ンのナノ複合粉末を合成する方法が知られている。しか
しながら、このようなナノ複合粉末を用いても、焼結時
の加熱により結晶粒が粗大化する現象が避けられず、微
細な窒化ケイ素焼結体を得ることは困難であった。
On the other hand, there is a pulverization method as a method for synthesizing a fine powder excellent in mass productivity. For example, a method of synthesizing a nanocomposite powder of silicon nitride and titanium by mixing silicon nitride and titanium metal at high acceleration is known. However, even when such a nanocomposite powder is used, a phenomenon that crystal grains become coarse due to heating during sintering is inevitable, and it has been difficult to obtain a fine silicon nitride sintered body.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、中低温域で強度等の優れた特性を有
する窒化ケイ素焼結体の原料粉末として、生産が比較的
容易で、焼結時に微粒化が進行する窒化ケイ素粉末、及
びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention is relatively easy to produce as a raw material powder of a silicon nitride sintered body having excellent properties such as strength in a low temperature range. It is an object of the present invention to provide a silicon nitride powder in which atomization proceeds during sintering, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する窒化ケイ素粉末は、非晶質窒化ケ
イ素中に、窒素雰囲気中での窒化ケイ素焼結条件下で窒
化物を生成する金属が固溶していることを特徴とする非
晶質窒化ケイ素粉末である。この非晶質窒化ケイ素中に
固溶する金属としてはチタン又はホウ素が好ましく、ま
たその固溶量は10〜50重量%の範囲が好ましい。
Means for Solving the Problems In order to achieve the above object, the present invention provides a silicon nitride powder which forms nitride in amorphous silicon nitride under a silicon nitride sintering condition in a nitrogen atmosphere. Amorphous silicon nitride powder characterized in that the metal to be dissolved is in solid solution. As the metal which forms a solid solution in the amorphous silicon nitride, titanium or boron is preferable, and the amount of the solid solution is preferably in the range of 10 to 50% by weight.

【0008】また、本発明による非晶質窒化ケイ素粉末
の製造方法は、非晶質窒化ケイ素粉末と、窒素雰囲気中
での窒化ケイ素焼結条件下で窒化物を生成する金属の粉
末とを、10〜200Gの加速度で混合することによ
り、非晶質窒化ケイ素中に金属を固溶させることを特徴
とする。金属粉末の添加量は全体の10〜50重量%が
好ましく、混合時間は0.1〜10時間とすることが好
ましい。
Further, the method for producing an amorphous silicon nitride powder according to the present invention comprises the steps of: providing an amorphous silicon nitride powder and a metal powder which forms a nitride under silicon nitride sintering conditions in a nitrogen atmosphere; It is characterized in that a metal is dissolved in amorphous silicon nitride by mixing at an acceleration of 10 to 200 G. The addition amount of the metal powder is preferably 10 to 50% by weight of the whole, and the mixing time is preferably 0.1 to 10 hours.

【0009】[0009]

【発明の実施の形態】本発明の非晶質窒化ケイ素粉末に
は、窒素雰囲気中で窒化ケイ素粉末を焼結する通常の条
件下で窒化物を形成する金属が固溶している。この固溶
した金属が焼結と同時に結晶核となって微細なSi34
粒子が析出すると共に、微細な金属の窒化物として窒化
ケイ素粒子の回りに析出するため、焼結過程での粒成長
が抑制され、微細な窒化ケイ素焼結体を得ることが可能
となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the amorphous silicon nitride powder of the present invention, a metal that forms a nitride under a normal condition for sintering a silicon nitride powder in a nitrogen atmosphere is dissolved. The solid solution metal becomes a crystal nucleus at the same time as sintering and becomes fine Si 3 N 4
Since the particles are precipitated and are precipitated around the silicon nitride particles as fine metal nitrides, grain growth during the sintering process is suppressed, and a fine silicon nitride sintered body can be obtained.

【0010】固溶させる金属に関しては、上記した金属
及びその窒化物の作用からして、窒素雰囲気中での窒化
ケイ素の焼結条件下で窒化物を生成する金属であること
が必要であり、また生成した窒化物が高温で安定である
という条件等を考慮すると、チタン又はホウ素が好まし
い。また、金属の固溶量は、窒化ケイ素に対して10重
量%未満では焼結時に微細結晶粒としては析出せず、従
って上記作用が得られず、また50重量%を越えて固溶
させることは難しいので、10〜50重量%の範囲とす
ることが好ましい。
With respect to the metal to be solid-dissolved, it is necessary that the metal be a metal that forms a nitride under the sintering condition of silicon nitride in a nitrogen atmosphere due to the action of the metal and its nitride. Titanium or boron is preferable in consideration of the condition that the generated nitride is stable at a high temperature. If the amount of the solid solution of the metal is less than 10% by weight with respect to silicon nitride, it does not precipitate as fine crystal grains at the time of sintering, so that the above-mentioned effects cannot be obtained. Is difficult, the content is preferably in the range of 10 to 50% by weight.

【0011】かかる本発明の非晶質窒化ケイ素粉末の製
造は、窒化ケイ素粉末と金属粉末を10〜200Gの高
加速度で混合する方法により、非晶質窒化ケイ素中に金
属を固溶させる。混合加速度を10〜200Gの範囲と
するのは、10G未満では非晶質窒化ケイ素内への金属
の固溶が発生せず、また200Gを越えると窒化ケイ素
と金属が反応して金属ケイ化物等が生成し、得られる焼
結体の強度が劣化するためである。
In the production of the amorphous silicon nitride powder of the present invention, the metal is dissolved in the amorphous silicon nitride by a method of mixing the silicon nitride powder and the metal powder at a high acceleration of 10 to 200 G. The reason why the mixing acceleration is in the range of 10 to 200 G is that if the mixing acceleration is less than 10 G, solid solution of the metal in the amorphous silicon nitride does not occur, and if it exceeds 200 G, the metal reacts with the silicon nitride and the metal silicide or the like. Is generated, and the strength of the obtained sintered body is deteriorated.

【0012】窒化ケイ素粉末に添加する金属粉末の量に
ついては、粉末全体に対して10重量%未満では生成す
る金属固溶量が少なすぎるため、後の焼結化時に微細結
晶粒として析出せず、また50重量%を越えると固溶し
ない余剰の金属が残存するため、粉末全体に対して10
〜50重量%の範囲が望ましい。
When the amount of the metal powder added to the silicon nitride powder is less than 10% by weight based on the whole powder, the amount of the formed metal solid solution is too small, so that it does not precipitate as fine crystal grains during the subsequent sintering. If the content exceeds 50% by weight, excess metal which does not form a solid solution remains, so that 10
A range of about 50% by weight is desirable.

【0013】また、混合時間については特に制限は無い
が、0.1時間未満の混合時間では混合加速度や金属粉
末の添加量に拘らず固溶する金属の量が少なくなり、逆
に10時間を越えると粉砕メディア及びポット内壁から
粉末中への不純物の混入が顕著になるため、0.1〜1
0時間程度とすることが望ましい。
Although there is no particular limitation on the mixing time, if the mixing time is less than 0.1 hour, the amount of the solid solution metal decreases irrespective of the mixing acceleration and the amount of the metal powder added. If it exceeds, the impurities are remarkably mixed into the powder from the grinding media and the inner wall of the pot.
Desirably, the time is about 0 hours.

【0014】[0014]

【実施例】実施例1 平均粒径0.5μmの非晶質Si34素粉末に、焼結助
剤として2重量%のAl23粉末、1重量%のMgO粉
末、5重量%のY23粉末を添加し、更にこの粉末全体
に対して30重量%の平均粒径5μmの金属Ti粉末を
添加した。これをSUS304製ボールとポットを用い
た遊星ボールミルにより、150Gの加速度で4時間混
合した。得られた非晶質Si34粉末を硫酸に溶かして
Si34中に固溶していない金属Tiの量を求めたが、
固溶していない金属Tiは認められず、全てのTiが非
晶質Si34中に固溶していることが判った。
EXAMPLE 1 2% by weight of Al 2 O 3 powder, 1% by weight of MgO powder and 5% by weight of amorphous Si 3 N 4 powder having an average particle size of 0.5 μm as a sintering aid of Y 2 O 3 powder were added, and further adding a metal Ti powder having an average particle size of 5μm to 30% by weight relative to the entire powder. This was mixed at an acceleration of 150 G for 4 hours by a planetary ball mill using a SUS304 ball and a pot. The obtained amorphous Si 3 N 4 powder was dissolved in sulfuric acid to determine the amount of metal Ti not dissolved in Si 3 N 4 .
No undissolved metallic Ti was found, indicating that all Ti was dissolved in the amorphous Si 3 N 4 .

【0015】次に、上記のごとくTiを固溶させた非晶
質Si34粉末を、500℃に加熱した状態で、200
kg/mm2で大気中でプレス成形した。その成形体
を、1気圧の窒素雰囲気中にて1500℃×1時間の条
件で焼結した。得られたSi34焼結体を研磨した後、
Arイオンエッチングで薄膜試片を作製し、透過型電子
顕微鏡を用いて評価したところ、母相のSi34粒子と
分散粒子のTiN粒子で主に構成され、Si34粒子の
平均粒径は50nm及びTiN粒子の平均粒径は30n
mと非常に微細であった。
Next, the amorphous Si 3 N 4 powder in which Ti is dissolved as described above is heated to 500 ° C. for 200 hours.
Press molding was performed in the air at kg / mm 2 . The compact was sintered in a nitrogen atmosphere at 1 atm under conditions of 1500 ° C. × 1 hour. After polishing the obtained Si 3 N 4 sintered body,
When a thin film specimen was prepared by Ar ion etching and evaluated using a transmission electron microscope, it was mainly composed of matrix Si 3 N 4 particles and dispersed TiN particles, and the average particle size of Si 3 N 4 particles The diameter is 50 nm and the average particle diameter of the TiN particles is 30 n.
m and very fine.

【0016】また、得られたSi34焼結体を、3×4
×40mm相当の抗析試験片に切り出し、#800ダイ
ヤモンド砥石により切削加工仕上げを行った後、その試
験片15本についてJIS R1601に準拠して3点
曲げ強度を確認したところ、平均強度は2GPaと極め
て高強度であった。
Also, the obtained Si 3 N 4 sintered body is 3 × 4
The specimen was cut out into an eutectoid specimen having a size of × 40 mm, cut and finished with a # 800 diamond grindstone, and the three-point bending strength of 15 test specimens was confirmed in accordance with JIS R1601, and the average strength was 2 GPa. The strength was extremely high.

【0017】一方、比較例として、金属Ti粉末を添加
せず、12時間混合した以外は上記と同様にして非晶質
Si34粉末を製造し、この粉末を上記と同様な条件で
成形及び焼結したところ、得られたSi34焼結体中の
Si34粒子は1μmと大きく粒成長しており、また上
記と同様に評価した焼結体強度は100kg/mm2
低強度であった。
On the other hand, as a comparative example, an amorphous Si 3 N 4 powder was produced in the same manner as above except that the metal Ti powder was not added and mixed for 12 hours, and this powder was molded under the same conditions as above. After sintering, the Si 3 N 4 particles in the obtained Si 3 N 4 sintered body had a large grain growth of 1 μm, and the sintered body strength evaluated in the same manner as above was 100 kg / mm 2 . The strength was low.

【0018】実施例2 平均粒径0.5μmの非晶質Si34粉末に、実施例1
と同じ焼結助剤、及び平均粒径5μmの金属B粉末を粉
末全体に対して5〜60重量%加え、ZrO2製ボール
とSUS製ポットを用いた遊星ボールミルにより、5〜
250Gの加速度で0.05〜12時間の混合を行っ
た。尚、ボールミルの自転回転数は500rpm、公転
回転数は200rpmであった。
Example 2 Example 1 was applied to amorphous Si 3 N 4 powder having an average particle size of 0.5 μm.
The same sintering aid, and the metal B powder having an average particle diameter of 5μm was added 5 to 60 weight percent of the total powder, a planetary ball mill using ZrO 2 balls and the SUS pot and, 5
Mixing was performed at an acceleration of 250 G for 0.05 to 12 hours. In addition, the rotation speed of the ball mill was 500 rpm, and the revolution speed was 200 rpm.

【0019】得られた各非晶質Si34粉末について、
固溶しているB濃度及び不純物であるZrO2濃度をI
CP法により求め、粉末製造時のB添加量、混合加速度
及び混合時間と共に、下記表1に示した。また、各非晶
質Si34粉末を実施例1と同じ方法で成形及び焼結
し、得られた各Si34焼結体について実施例1と同様
にSi34粒子の平均粒径及び強度を測定し、その結果
を下記表1に示した。
For each of the obtained amorphous Si 3 N 4 powders,
The concentration of solid solution B and the concentration of impurity ZrO 2
It was determined by the CP method and is shown in Table 1 below together with the amount of B added, the mixing acceleration and the mixing time during the production of the powder. Further, each amorphous Si 3 N 4 powder was molded and sintered in the same manner as in Example 1, and the average of Si 3 N 4 particles was obtained for each of the obtained Si 3 N 4 sintered bodies in the same manner as in Example 1. The particle size and strength were measured, and the results are shown in Table 1 below.

【0020】[0020]

【表1】 混合条件 Si3N4粉末の特性 焼結体の特性 B添加量 加速度 時間 ZrO2濃度 B濃度 Si3N4粒径 強 度試料 (wt%) (G) (hr) (wt%) (wt%) (nm) (MPa) 1* − 150 2 0.2 − 1000 800 2 20 150 2 0.2 20 10 1500 3* 20 5 2 0.2 − 30 700 4 20 15 2 0.5 20 20 1600 5 20 180 2 0.7 20 10 2000 6* 20 250 2 2.5 − 1000 800 7 5 150 2 1.0 5 50 1200 8 40 150 2 1.5 40 15 1600 9 60 150 2 2.0 50 10 1200 10 20 150 0.05 0.1 10 80 1200 11 20 150 7 2.0 20 40 1800 12 20 150 12 6.0 20 20 1400 (注)表中の*を付した試料は比較例である。[Table 1] Mixing conditions Characteristics of Si 3 N 4 powder Characteristic B addition amount of sintered body Acceleration time ZrO 2 concentration B concentration Si 3 N 4 particle size Strength sample (wt%) (G) (hr) (wt% ) (wt%) (nm) (MPa) 1 * − 150 2 0.2 − 1000 800 2 20 150 2 0.2 20 10 1500 3 * 20 5 2 0.2 − 30 700 4 20 15 2 0.5 20 20 1600 5 20 180 2 0.7 20 10 2000 6 * 20 250 2 2.5 − 1000 800 7 5 150 2 1.0 5 50 1200 8 40 150 2 1.5 40 15 1600 9 60 150 2 2.0 50 10 1200 10 20 150 0.05 0.1 10 80 1200 11 20 150 7 2.0 20 40 1800 12 20 150 12 6.0 20 20 1400 (Note) Samples marked with * in the table are comparative examples.

【0021】上記表1の結果から分かるように、金属B
粉末を添加せずに混合した比較例の試料1、低加速度で
混合した比較例の試料3では、粉末中にBが固溶してい
ないため、焼結時にBNが微細結晶粒として析出せず、
焼結体強度が非常に低くなっっている。また、比較例の
試料6は混合加速度が大きく、混合時にBが粉末中に固
溶する前にSi34と反応してBNが生成するため、S
34が微細結晶粒化せず、焼結体の強度が非常に低く
なった。
As can be seen from the results shown in Table 1, metal B
In sample 1 of the comparative example mixed without adding the powder and in sample 3 of the comparative example mixed at a low acceleration, BN did not precipitate as fine crystal grains during sintering because B was not dissolved in the powder. ,
The strength of the sintered body is very low. Sample 6 of the comparative example has a large mixing acceleration, and reacts with Si 3 N 4 to form BN before B forms a solid solution in the powder during mixing.
i 3 N 4 did not form fine grains, and the strength of the sintered body was extremely low.

【0022】一方、実施例の各試料では、いずれも焼結
体中のSi34が微細結晶粒子化しており、極めて高い
焼結体強度が得られた。しかし、試料7はB添加量が少
ないため、Bの固溶量が少なくなり、焼結体中のSi3
4の微粒化の度合が小さく、強度も若干低下した。試
料9では逆にB添加量が多いため、固溶しないBが残留
して、焼結体強度が若干低下した。また、試料10は混
合時間が短いため、粉末に固溶するB量が少なくなり、
微細結晶化の度合いが小さいので焼結体強度も若干低下
した。試料12は混合時間が長いため、粉砕メディアの
ZrO2の混入量が多くなり、やはり焼結体強度が若干
低下した。
On the other hand, in each of the samples of the examples, Si 3 N 4 in the sintered body was formed into fine crystal grains, and extremely high strength of the sintered body was obtained. However, since the amount of B added in Sample 7 was small, the amount of B solid solution was small, and the amount of Si 3 in the sintered body was small.
The degree of atomization of N 4 was small, and the strength was slightly reduced. On the contrary, in Sample 9, since the amount of B added was large, B that did not form a solid solution remained, and the strength of the sintered body was slightly reduced. Further, since the mixing time of the sample 10 is short, the amount of B dissolved in the powder becomes small,
Since the degree of fine crystallization was small, the strength of the sintered body was slightly reduced. In Sample 12, since the mixing time was long, the amount of ZrO 2 mixed in the pulverized media was large, and the strength of the sintered body was also slightly reduced.

【0023】[0023]

【発明の効果】本発明によれば、窒化ケイ素焼結体の原
料粉末として、生産が比較的容易で、焼結時に結晶粒の
微粒化を進行させることができる非晶質窒化ケイ素粉末
を提供することができる。この非晶質窒化ケイ素粉末を
用いることにより、室温から1100℃の中低温域で強
度及び破壊靭性が共に優れた窒化ケイ素焼結体を製造す
ることができ、高い信頼性が要求される自動車エンジン
部材をはじめ、耐摩工具等の構造用セラミックス材料の
原料粉末として極めて有用である。
According to the present invention, there is provided, as a raw material powder for a silicon nitride sintered body, an amorphous silicon nitride powder which is relatively easy to produce and which can promote the refinement of crystal grains during sintering. can do. By using this amorphous silicon nitride powder, a silicon nitride sintered body excellent in both strength and fracture toughness can be manufactured in a medium to low temperature range from room temperature to 1100 ° C., and an automobile engine requiring high reliability It is extremely useful as a raw material powder for structural ceramic materials such as members and wear-resistant tools.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非晶質窒化ケイ素中に、窒素雰囲気中で
の窒化ケイ素焼結条件下で窒化物を生成する金属が固溶
していることを特徴とする非晶質窒化ケイ素粉末。
1. An amorphous silicon nitride powder characterized in that a metal that forms a nitride under a silicon nitride sintering condition in a nitrogen atmosphere is dissolved in the amorphous silicon nitride.
【請求項2】 前記非晶質窒化ケイ素中の金属の固溶量
が10〜50重量%であることを特徴とする、請求項1
に記載の非晶質窒化ケイ素粉末。
2. The method according to claim 1, wherein the amount of the solid solution of the metal in the amorphous silicon nitride is 10 to 50% by weight.
Amorphous silicon nitride powder described in 1.
【請求項3】 前記金属がチタン又はホウ素であること
を特徴とする、請求項1又は2に記載の非晶質窒化ケイ
素粉末。
3. The amorphous silicon nitride powder according to claim 1, wherein the metal is titanium or boron.
【請求項4】 非晶質窒化ケイ素粉末と、窒素雰囲気中
での窒化ケイ素焼結条件下で窒化物を生成する金属の粉
末を、10〜200Gの加速度で混合することにより、
非晶質窒化ケイ素中に金属を固溶させることを特徴とす
る非晶質窒化ケイ素粉末の製造方法。
4. An amorphous silicon nitride powder and a metal powder that forms a nitride under silicon nitride sintering conditions in a nitrogen atmosphere are mixed at an acceleration of 10 to 200 G,
A method for producing an amorphous silicon nitride powder, comprising dissolving a metal in amorphous silicon nitride.
【請求項5】 前記金属粉末の添加量が全体の10〜5
0重量%であることを特徴とする、請求項4に記載の非
晶質窒化ケイ素粉末の製造方法。
5. The addition amount of said metal powder is 10 to 5 in total.
The method for producing an amorphous silicon nitride powder according to claim 4, wherein the amount is 0% by weight.
【請求項6】 前記混合時間が0.1〜10時間である
ことを特徴とする、請求項4又は5に記載の非晶質窒化
ケイ素粉末の製造方法。
6. The method for producing an amorphous silicon nitride powder according to claim 4, wherein the mixing time is 0.1 to 10 hours.
JP9303855A 1997-11-06 1997-11-06 Amorphous silicon nitride powder and its production Pending JPH11139813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9303855A JPH11139813A (en) 1997-11-06 1997-11-06 Amorphous silicon nitride powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9303855A JPH11139813A (en) 1997-11-06 1997-11-06 Amorphous silicon nitride powder and its production

Publications (1)

Publication Number Publication Date
JPH11139813A true JPH11139813A (en) 1999-05-25

Family

ID=17926113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9303855A Pending JPH11139813A (en) 1997-11-06 1997-11-06 Amorphous silicon nitride powder and its production

Country Status (1)

Country Link
JP (1) JPH11139813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316876A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Silicon nitride based composite powder and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316876A (en) * 2001-04-20 2002-10-31 Sumitomo Electric Ind Ltd Silicon nitride based composite powder and production method therefor

Similar Documents

Publication Publication Date Title
JP2651332B2 (en) Zirconia-based composite ceramic sintered body and method for producing the same
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JP2539712B2 (en) Nitride powder
US5981416A (en) Titanium nitride aluminum based sintered material and its production method
JP4061678B2 (en) Method for producing silicon nitride composite powder
US5622905A (en) Silicon nitride based sintered body
US20100184582A1 (en) Mixed powder and sintered body, mixed cermet powder and cermet, and fabrication methods thereof
JPH11139813A (en) Amorphous silicon nitride powder and its production
JP3617076B2 (en) Silicon nitride sintered body and method for producing the same
JP2001311474A (en) Butterfly valve and method of manufacturing same
JPH11139874A (en) Silicon nitride-base ceramics and its production
JP2000154064A (en) Electrically conductive silicon nitride-base sintered compact and its production
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JPH10338576A (en) Silicon nitride sintered compact and its production
US5698156A (en) Method of producing a silicon nitride based sintered body
JPH01131062A (en) Complex compact calcined under ordinary pressure
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JP2951447B2 (en) Method for producing composite sintered body of boron nitride and silicon nitride
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JP2732408B2 (en) Conductive silicon carbide sintered body and method for producing the same
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH09208324A (en) Silicon nitride composite powder and its production
JPH0687655A (en) Tantalum carbide-based sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612