JPH09227236A - Silicon nitride-base sintered compact and its production - Google Patents

Silicon nitride-base sintered compact and its production

Info

Publication number
JPH09227236A
JPH09227236A JP8060234A JP6023496A JPH09227236A JP H09227236 A JPH09227236 A JP H09227236A JP 8060234 A JP8060234 A JP 8060234A JP 6023496 A JP6023496 A JP 6023496A JP H09227236 A JPH09227236 A JP H09227236A
Authority
JP
Japan
Prior art keywords
strength
silicon nitride
sintered body
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8060234A
Other languages
Japanese (ja)
Other versions
JP3995284B2 (en
Inventor
Tetsuo Nose
哲郎 野瀬
Nobutada Kosugi
展正 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06023496A priority Critical patent/JP3995284B2/en
Publication of JPH09227236A publication Critical patent/JPH09227236A/en
Application granted granted Critical
Publication of JP3995284B2 publication Critical patent/JP3995284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact having slight unevenness in mechanical strength, a cumulative breaking probability of 1/100,000 and high guaranteed strength and excellent in reliability by incorporating a specified amt. of a specified compd. SOLUTION: This sintered compact contains 0.5-9vol.% FeSi particles of 5-30μm average particle diameter. It is obtd. by compacting a powdery mixture consisting of 1-8wt.% one or more kinds of oxides of rare earth elements, 1-8wt.% Mg(OH)2 , 0.5-10wt.% Fe, 0.1-3wt.% TiSi2 and the balance Si3 N4 with inevitably contained SiO2 and sintering the resultant compact at 1,550-1,650 deg.C in an atmosphere contg. gaseous N2 . The Si3 N4 in the mixture is Si3 N4 powder having α- and/or β-crystal structure, preferably fine particles of <=5μm average particle diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械的強度のばら
つきが小さく信頼性に優れた窒化珪素質焼結体およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having a small variation in mechanical strength and excellent reliability, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素は共有結合性が強く、耐熱性、
強度、耐食性、耐摩耗性に優れ、かつ熱膨張率が小さく
耐熱衝撃性にも優れることから、機械的強度特性の要求
される機械部品を中心に適用が進みつつある。
2. Description of the Related Art Silicon nitride has a strong covalent bond, heat resistance,
Since it has excellent strength, corrosion resistance, and abrasion resistance, and has a small coefficient of thermal expansion and excellent thermal shock resistance, it is being applied mainly to mechanical parts that require mechanical strength characteristics.

【0003】この様な窒化珪素の優れた特性をより高め
る目的で窒化珪素をマトリックスとした複合化が検討さ
れている。
For the purpose of further enhancing such excellent characteristics of silicon nitride, compounding using silicon nitride as a matrix has been studied.

【0004】特開昭56―32377号公報では、Ti
の炭化物、窒化物、炭窒化物を含有する窒化珪素焼結材
料が試みられており、耐熱衝撃性、高温強度に加え、耐
摩耗性の向上が知られており、特開昭57―51175
号公報では、MgO+SiO2の焼結助剤に加えて、T
i、V、Cr、Zr等の炭化物、窒化物を添加した系が
試みられており、耐摩耗性の向上が報告されている。
In Japanese Patent Application Laid-Open No. 56-32377, Ti is
The silicon nitride sintered material containing the above-mentioned carbide, nitride and carbonitride has been tried, and it is known that the wear resistance is improved in addition to the thermal shock resistance and the high temperature strength.
In the publication, in addition to the sintering aid of MgO + SiO 2 ,
Attempts have been made to add carbides and nitrides of i, V, Cr, Zr, etc., and improvements in wear resistance have been reported.

【0005】さらに、特開平3―199166号公報で
は、IVa、Va、VIa族元素の窒化物、炭化物、珪
化物、硼化物に示される硬質化合物粒子をその焼結体中
に分散させた窒化珪素質焼結体で靭性の向上が報告さ
れ、特開平3―290369号公報ではW、Moの炭化
物、酸化物、珪化物の添加により、強度の向上が報告さ
れている。
Further, in Japanese Unexamined Patent Publication No. 3-199166, silicon nitride in which hard compound particles represented by nitrides, carbides, silicides and borides of IVa, Va and VIa group elements are dispersed in the sintered body. It has been reported that the toughness of the high quality sintered body is improved, and JP-A-3-290369 discloses that the strength is improved by adding carbides, oxides and silicides of W and Mo.

【0006】そして、特開平7―267734号公報で
は、Cr2N粒子を分散させた窒化珪素質焼結体におい
て、強度、靭性の両方の向上が報告されている。
In Japanese Patent Laid-Open No. 7-267734, it has been reported that both the strength and the toughness of a silicon nitride sintered body in which Cr 2 N particles are dispersed are improved.

【0007】また、特開平2―157162号公報で
は、希土類酸化物+MgOに珪化チタンまたは/および
珪化ジルコニウムを加えた系が試みられており、高い強
度と靭性が得られることが知られている。
Further, in Japanese Patent Laid-Open No. 2-157162, a system in which titanium silicide or / and zirconium silicide is added to rare earth oxide + MgO has been tried, and it is known that high strength and toughness can be obtained.

【0008】一方、特開平3―174364号公報で
は、原料中の鉄の含有が強度特性に与える影響について
検討されており、鉄含有量を50ppm以下とした窒化
珪素質焼結体において高い強度および靭性が得られるこ
とを開示している。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 3-174364 examines the effect of the iron content in the raw material on the strength characteristics. In a silicon nitride sintered body having an iron content of 50 ppm or less, high strength and It discloses that toughness is obtained.

【0009】[0009]

【発明が解決しようとする課題】ところが、これらの技
術では平均強度は高いものが得られるものの、強度のば
らつきは大きく、例えば累積破壊確率が10万分の1と
なる強度を部材の保証強度とした場合(すなわち、その
保証強度以下で部材が破壊する確率が10万分の1の場
合)、その保証強度は平均強度に比べて著しく低く、結
果として構造材料としての信頼性に欠ける問題があっ
た。
However, with these techniques, although high average strength can be obtained, there is a large variation in strength, and for example, the strength at which the cumulative fracture probability is 1 / 100,000 is the guaranteed strength of the member. In this case (that is, when the probability that the member will be destroyed below the guaranteed strength is 1 / 100,000), the guaranteed strength is significantly lower than the average strength, resulting in a problem that the structural material lacks reliability.

【0010】平均強度の高い材料と低い材料を比べた場
合、前者の強度のばらつきが後者のばらつきに比べて大
きい場合には、上述の保証強度は、平均強度の低い材料
の方が高くなる場合も有り得る。従って、強度特性のば
らつかない保証強度の高い材料が望まれる。
When a material having a high average strength is compared with a material having a low average strength, and the variation in the strength of the former is larger than the variation of the latter, the above-mentioned guarantee strength is higher in the material having a lower average strength. It is also possible. Therefore, a material with high guaranteed strength that does not vary in strength characteristics is desired.

【0011】本発明は上記の如き課題を解決するために
行われたものである。本発明の目的は、機械的強度のば
らつきが小さく、累積破壊確率が10万分の1となる保
証強度が高く、信頼性に優れる窒化珪素質焼結体、及び
その製造方法を提供することにある。
The present invention has been made to solve the above problems. It is an object of the present invention to provide a silicon nitride sintered body having a small variation in mechanical strength, a high guaranteed strength with a cumulative fracture probability of 1 / 100,000, and excellent reliability, and a method for manufacturing the same. .

【0012】[0012]

【課題を解決するための手段】本発明の窒化珪素質焼結
体は、平均粒径の範囲が5〜30μmである珪化鉄(F
eSi)粒子が、0.5〜9体積%含まれることを特徴
とするものである。
The silicon nitride-based sintered body of the present invention has an average particle size range of 5 to 30 μm.
eSi) particles are contained in an amount of 0.5 to 9% by volume.

【0013】本発明の焼結体にはFeSi粒子が含まれ
るが、FeSi粒子は、焼結体中に単結晶もしくは多結
晶体からなる球状分散粒子として存在し、そのFeSi
の低強度の性質から焼結体中にて疑似欠陥として振る舞
う。
The sintered body of the present invention contains FeSi particles, and the FeSi particles are present in the sintered body as spherical dispersed particles composed of a single crystal or a polycrystalline body.
Due to its low strength property, it behaves as a pseudo defect in the sintered body.

【0014】FeSi粒子を焼結体中に均一に分散させ
ると、焼結体の破壊は、FeSi粒の存在しない場合の
モノリシック材料としての本来の組織的欠陥からは起こ
らず、分散したFeSi粒そのものが破壊の起点となる
ため、実質的に焼結体中に均一かつ寸法の制御された欠
陥を分散させた効果を持つこととなり、強度のばらつき
を著しく低くする作用をもつ。
When the FeSi particles are uniformly dispersed in the sintered body, the destruction of the sintered body does not occur from the original structural defect as a monolithic material in the absence of FeSi particles, and the dispersed FeSi particles themselves. Serves as a starting point of fracture, and thus has an effect of substantially uniformly dispersing defects of which size is controlled in the sintered body, and has an effect of significantly reducing variation in strength.

【0015】本発明の焼結体では、FeSi粒子の平均
粒径の範囲が5〜30μmであるが、5μmより小さい
と平均強度は高くなるものの強度のばらつきが大きくな
り、また、30μmを越えると平均強度の低下を招く。
In the sintered body of the present invention, the range of the average particle size of the FeSi particles is 5 to 30 μm. If the average particle size is less than 5 μm, the average strength increases, but the variation in strength increases, and if it exceeds 30 μm. This causes a decrease in average strength.

【0016】また、その体積分率は0.5〜9体積%の
範囲が好ましい。0.5体積%より少ないと、粒子近傍
の強度と粒子の存在しない領域の強度差が大きくなり結
果的に強度のばらつきが大きくなり、また、9体積%を
越えると靭性の低下を招く。
The volume fraction thereof is preferably in the range of 0.5-9% by volume. If it is less than 0.5% by volume, the difference between the strength in the vicinity of the particles and the strength in the region where no particles are present becomes large, resulting in a large variation in strength, and if it exceeds 9% by volume, the toughness deteriorates.

【0017】本発明のFeSi粒には、Fe原料中もし
くは焼結体中に不可避的に存在するCr、Ni、C、な
どの元素が若干量含めれていてもかまわない。
The FeSi grains of the present invention may contain a small amount of elements such as Cr, Ni and C which are inevitably present in the Fe raw material or in the sintered body.

【0018】本発明の窒化珪素質焼結体の製造方法は、
1種類以上の希土類酸化物1〜8重量%、水酸化マグネ
シウム(Mg(OH)2)1〜8重量%、鉄(Fe)
0.5〜10重量%、珪化チタン(TiSi2)0.1
〜3重量%、及び、残部が窒化珪素(Si34)とSi
34中に不可避的に含まれる酸化珪素(SiO2)から
なる混合粉末を成形し、該成形体を窒素ガスを含む雰囲
気中1550〜1650℃の温度範囲で焼結するもので
ある。
The method for producing a silicon nitride sintered body of the present invention is as follows:
1-8% by weight of one or more kinds of rare earth oxides, 1-8% by weight of magnesium hydroxide (Mg (OH) 2 ), iron (Fe)
0.5 to 10% by weight, titanium silicide (TiSi 2 ) 0.1
Up to 3% by weight and the balance silicon nitride (Si 3 N 4 ) and Si
A mixed powder of silicon oxide (SiO 2 ) inevitably contained in 3 N 4 is molded, and the molded body is sintered in a temperature range of 1550 to 1650 ° C. in an atmosphere containing nitrogen gas.

【0019】本発明の焼結体の製造に用いる希土類酸化
物としては、例えば、酸化イットリウム(Y23)、酸
化セリウム(CeO2)、酸化ネオジウム(Nd23
等が挙げられる。
Examples of the rare earth oxide used for producing the sintered body of the present invention include yttrium oxide (Y 2 O 3 ), cerium oxide (CeO 2 ), neodymium oxide (Nd 2 O 3 ).
And the like.

【0020】希土類元素の酸化物は窒化珪素の焼結時に
α相からβ相への結晶相転移をその融液中で促進させる
機能を持ち、更に窒化珪素の柱状相を生成させることに
より強度靭性を向上させる。
The oxide of a rare earth element has a function of promoting the crystal phase transition from the α phase to the β phase in the melt during the sintering of silicon nitride, and further, by forming the columnar phase of silicon nitride, the strength and toughness are improved. Improve.

【0021】これらの成分の合計が、8重量%を超える
と得られた焼結体の高温での機械的強度が低下するの
で、8重量%以下であることが好ましい。また1重量%
より少ないと融液が不十分で十分な緻密化がなされない
ため好ましくない。従ってその添加量としては1〜8重
量%の範囲であることが望ましい。
If the total content of these components exceeds 8% by weight, the mechanical strength of the obtained sintered body at high temperature decreases, so the content is preferably 8% by weight or less. 1% by weight
If it is less than the above range, the melt is insufficient and sufficient densification cannot be achieved, which is not preferable. Therefore, it is desirable that the amount added be in the range of 1 to 8% by weight.

【0022】Mg(OH)2は焼結昇温過程の400℃
前後でH2Oを放出しMgOとなり、MgOは上記希土
類酸化物と共に焼結時にMg含有ガラス質複合酸化物を
形成するが、その融点を希土類酸化物単味の場合に比べ
て低下させる効果を持ち緻密化を助長する作用を持つ。
Mg (OH) 2 is 400 ° C. during the sintering temperature rising process.
Before and after, H 2 O is released to become MgO, and MgO forms a Mg-containing glassy composite oxide at the time of sintering together with the above rare earth oxide. It has the effect of promoting densification.

【0023】また、Mg(OH)2を添加すると結晶粒
径が大きくなる性質を有するため靭性の向上が図られ
る。
Further, addition of Mg (OH) 2 has the property of increasing the crystal grain size, so that the toughness can be improved.

【0024】本発明の焼結体の製造には、1〜8重量%
のMg(OH)2を用いるが、8重量%より多いと組織
の均質性が損なわれ、また1重量%より少ないと十分な
緻密化が得られない。
For the production of the sintered body of the present invention, 1 to 8% by weight is used.
Mg (OH) 2 is used, but if it is more than 8% by weight, the homogeneity of the structure is impaired, and if it is less than 1% by weight, sufficient densification cannot be obtained.

【0025】Feは焼結過程に置いてFe粒の周囲のS
34相と反応し、FeSi単結晶粒もしくは多結晶粒
を形成し、焼結体中にて黒色の安定な化合物として存在
する。
Fe is added to the S around the Fe particles during the sintering process.
It reacts with the i 3 N 4 phase to form FeSi single crystal grains or polycrystalline grains, and exists as a black stable compound in the sintered body.

【0026】FeSi粒はSi34の焼結性を阻害する
ことはない。FeSi粒生成の原料として鉄粉を用いる
場合は、カルボニル鉄粉、アトマイズ粉、プラズマ気相
合成粉などを用いることができる。
FeSi grains do not interfere with the sinterability of Si 3 N 4 . When iron powder is used as a raw material for producing FeSi particles, carbonyl iron powder, atomized powder, plasma vapor-phase synthetic powder and the like can be used.

【0027】さらに、Si34粉を製造もしくは焼結助
剤との混合の際に鉄製の粉砕機器を用い、ポットや粉砕
用ボールから混入粉として添加してもかまわない。
Further, when the Si 3 N 4 powder is manufactured or mixed with the sintering aid, an iron crushing machine may be used and added as a mixed powder from a pot or a crushing ball.

【0028】本発明では、Feの原料粉末としては30
μmより小さな微粉であることが好ましい。本発明で
は、0.5〜10重量%のFeを用いるが、0.5重量
%より少ないと強度のばらつきが大きくなり、また、1
0重量%を越えると靭性の低下を招く。
In the present invention, the raw material powder of Fe is 30
A fine powder smaller than μm is preferable. In the present invention, 0.5 to 10% by weight of Fe is used, but if it is less than 0.5% by weight, the variation in strength becomes large.
If it exceeds 0% by weight, toughness is deteriorated.

【0029】TiSi2は、焼結時に上記希土類とMg
を含有する複合酸化物ガラス相融液中で窒化珪素粒がα
相からβ相へ転移する際の核として作用すると考えら
れ、相転移を促進すると共に、組織の均質化にも寄与
し、特に大型の焼結体を焼成する場合に安定して均質な
焼結体が得られる。また、Ti元素は焼結体を黒色化す
る作用を併せ持つ。
TiSi 2 has the above-mentioned rare earth and Mg content during sintering.
In the compound oxide glass phase melt containing
It is thought that it acts as a nucleus when the phase transitions to the β phase, promotes the phase transition and contributes to homogenization of the structure, and particularly when firing a large sintered body, stable and homogeneous sintering is possible. The body is obtained. Further, the Ti element also has a function of blackening the sintered body.

【0030】本発明の焼結体の製造では、TiSi2
0.1〜3重量%用いるが、3重量%より多く添加する
と強度が低下し、また0.1重量%より少ないと組織の
均質化に寄与が認められない。
In the production of the sintered body of the present invention, TiSi 2 is used in an amount of 0.1 to 3% by weight, but if it is added in an amount of more than 3% by weight, the strength is lowered, and if it is less than 0.1% by weight, the structure is homogeneous. No contribution to the realization.

【0031】本発明において使用される窒化珪素粉末
は、α型もしくは/およびβ型の結晶構造をもつ窒化珪
素粉末で、焼結時に十分に高い嵩密度とするためには、
平均粒径5μm以下の微粒子であることが望ましい。
The silicon nitride powder used in the present invention is a silicon nitride powder having an α-type and / or β-type crystal structure, and in order to obtain a sufficiently high bulk density during sintering,
Fine particles having an average particle size of 5 μm or less are desirable.

【0032】窒化珪素原料中には、不可避的に存在する
SiO2が若干量含まれていてもかまわない。
The silicon nitride raw material may contain a small amount of SiO 2 which is unavoidably present.

【0033】焼結助剤として添加する希土類酸化物、M
g(OH)2、およびTiSi2も均質かつ高密度の焼結
体を得るためには平均粒径が2μm以下の微粒子である
ことが好ましい。
Rare earth oxide, M added as a sintering aid
In order to obtain a homogeneous and high density sintered body, g (OH) 2 and TiSi 2 are also preferably fine particles having an average particle size of 2 μm or less.

【0034】本発明方法においては、これらの各成分の
混合は、水、もしくは有機溶媒を用い、アトライターも
しくはボールミル等の混合機で行なう。
In the method of the present invention, each of these components is mixed with water or an organic solvent using a mixer such as an attritor or a ball mill.

【0035】また、成形性、成形体強度を向上させるた
めに、焼結助剤に加えて有機系バインダー等を添加して
もかまわない。このように調整された混合粉末を加圧成
形し所定の形状の成形体とする。
In addition to the sintering aid, an organic binder or the like may be added in order to improve the moldability and the strength of the molded body. The mixed powder thus adjusted is pressure-molded to obtain a molded product having a predetermined shape.

【0036】成形法としては、金型プレス、ラバープレ
ス、鋳込成形、射出成形などの公知の成形法により行な
う。例えば、板状体であればラバープレス圧100〜7
00MPaで成形する。
As the molding method, a known molding method such as a die press, a rubber press, a cast molding, an injection molding or the like is used. For example, in the case of a plate, the rubber press pressure is 100 to 7
Mold at 00 MPa.

【0037】この成形体を1550〜1650℃で加熱
焼結し、焼結体を得る。焼結方法としては、窒素ガスを
含む雰囲気にて、常圧焼結法、ガス圧焼結法、熱間静水
圧プレス焼結法、ホットプレス焼結法の何れの方法も用
いることが可能であり、更に一種もしくは複数の焼結法
を組み合わせることも可能である。
This compact is heated and sintered at 1550 to 1650 ° C. to obtain a sintered body. As a sintering method, any of an atmospheric pressure sintering method, a gas pressure sintering method, a hot isostatic press sintering method, and a hot press sintering method can be used in an atmosphere containing nitrogen gas. It is also possible to combine one or more sintering methods.

【0038】窒素ガスを含む雰囲気で焼結するのは、焼
結中でのSi34の分解を抑制するためである。155
0℃未満では充分高い密度が得られない。また、165
0℃より高い温度では、FeSi粒子が焼結体の粒界相
として存在するガラス相と反応し、Feを含む複合酸窒
化物融液を形成していまい、得られる焼結体中に粒子と
して存在することがなくなり、所期の疑似欠陥としての
目的が果たせない。
Sintering in an atmosphere containing nitrogen gas is to suppress decomposition of Si 3 N 4 during sintering. 155
If the temperature is lower than 0 ° C, a sufficiently high density cannot be obtained. Also, 165
At a temperature higher than 0 ° C., FeSi particles react with the glass phase existing as the grain boundary phase of the sintered body to form a composite oxynitride melt containing Fe, and as a particle in the obtained sintered body. It no longer exists and cannot serve its intended purpose as a pseudo defect.

【0039】[0039]

【作用】本発明の窒化珪素質焼結体は、Si34粒と粒
界相とからなる母相に、ある程度粗大で焼結体中にて疑
似欠陥として振る舞うFeSi粒子が分散した組織から
なり、強度のばらつきの指針を示すワイブル係数が22
以上と著しくばらつきの少ない強度特性を示し、かつ累
積破壊確率が10万分の1の場合の保証強度が320M
Pa以上と構造材料としての信頼性が高い。
The silicon nitride sintered body of the present invention has a structure in which FeSi particles, which are somewhat coarse and behave as pseudo defects in the sintered body, are dispersed in a mother phase composed of Si 3 N 4 grains and a grain boundary phase. Therefore, the Weibull coefficient, which is a guideline for variations in strength, is 22
As shown above, the strength characteristics show very little variation, and the guaranteed strength is 320M when the cumulative failure probability is 1 / 100,000.
Higher reliability as a structural material with Pa or more.

【0040】次に本発明の実施例を比較例と共に説明す
る。
Next, examples of the present invention will be described together with comparative examples.

【0041】[0041]

【実施例】α型Si34粉末(平均粒径0.5μm、α
化率97%)もしくはβ型Si34粉末(平均粒径5μ
m、β化率95%)に希土類酸化物粉末、Mg(OH)
2粉末(平均粒径0.5μm)、TiSi2粉末(平均粒
径2μm)および、Fe粉末(平均粒径1〜44μm)
を第1表に示す所定量(重量%)添加し、PVA系のバ
インダーを5重量%加えて、溶媒として水、粉砕ボール
として窒化珪素製ボールを用いてアトライターで4時間
混練し、スプレードライヤーにより造粒粉を得た。
EXAMPLES α-type Si 3 N 4 powder (average particle size 0.5 μm, α
Conversion rate of 97%) or β-type Si 3 N 4 powder (average particle size 5μ
m, β conversion rate 95%), rare earth oxide powder, Mg (OH)
2 powder (average particle size 0.5 μm), TiSi 2 powder (average particle size 2 μm) and Fe powder (average particle size 1 to 44 μm)
Was added in a predetermined amount (% by weight) shown in Table 1, 5% by weight of a PVA-based binder was added, and the mixture was kneaded for 4 hours with an attritor using water as a solvent and silicon nitride balls as grinding balls, and then spray dryer To obtain granulated powder.

【0042】なお、用いた希土類酸化物粉末は、Y23
粉末(平均粒径1μm)、CeO2粉末(平均粒径0.
8μm)、Nd23粉末(平均粒径1.0μm)であ
る。
The rare earth oxide powder used was Y 2 O 3
Powder (average particle size 1 μm), CeO 2 powder (average particle size 0.
8 μm) and Nd 2 O 3 powder (average particle size 1.0 μm).

【0043】次いで得られた造粒粉を、成形後焼結し
た。成形条件としては冷間静水圧による加圧150MP
aとし、150mm×150mm×15mmの板状体を
得た。焼結は、窒素ガス雰囲気中にて、第1表中に示す
温度で4時間保持の常圧焼結とした。
Next, the obtained granulated powder was sintered after molding. As molding conditions, pressurization by cold isostatic pressure 150MP
As a, a plate-like body having a size of 150 mm × 150 mm × 15 mm was obtained. The sintering was atmospheric pressure sintering in a nitrogen gas atmosphere at a temperature shown in Table 1 for 4 hours.

【0044】本発明により得られた各焼結体の強度、ワ
イブル係数、保証強度を焼結助剤の添加量、焼結条件、
焼結体中のFeSi粒子の体積分率、平均粒径と共に第
1表に示す。
The strength, Weibull coefficient, and guaranteed strength of each sintered body obtained according to the present invention are determined by the addition amount of the sintering aid, the sintering conditions,
Table 1 shows the volume fraction of FeSi particles in the sintered body and the average particle diameter.

【0045】なお、FeSi粒子の粒子径および体積分
率は、焼結体の鏡面研磨面を撮影した光学顕微鏡像(拡
大率400倍)より30個以上の黒色粒子の径および撮
影面中の黒色粒面積分率として測定し、その平均値とし
て表した。また、FeSi粒の存在は、X線回折法を用
いてJCPDSカード38―1397により確認した。
The particle diameter and volume fraction of the FeSi particles are 30 or more black particles and the black in the photographed surface from the optical microscope image (magnification of 400 times) of the mirror-polished surface of the sintered body. It was measured as a grain area fraction and expressed as an average value. The presence of FeSi grains was confirmed by JCPDS card 38-1397 using an X-ray diffraction method.

【0046】機械的強度については、JIS R160
1に準拠し室温にてそれぞれ30本の試験片を用いて4
点曲げ試験を行い坑折強さを測定した。
Regarding mechanical strength, JIS R160
4 according to 1 using 30 test pieces at room temperature
A point bending test was performed to measure the fold strength.

【0047】平均強度の尺度は、測定された4点曲げ抗
折強さの分布が単一モード・2母数ワイブル分布に従う
と仮定し、累積破壊確率が63.21%となる強度、す
なわち2母数ワイブル分布の尺度母数として最尤法によ
り求めた。
As a measure of the average strength, it is assumed that the distribution of the measured 4-point bending strength is in accordance with the single mode / two-parameter Weibull distribution, and the cumulative failure probability is 63.21%, that is, 2 Parameter Weibull distribution was calculated by the maximum likelihood method.

【0048】強度のばらつきの程度を表すワイブル係数
mは、同様にワイブル分布関数に最尤法を適用すること
により推定した。なお、ワイブル係数が大きいと強度の
ばらつきが小さいことになる。
The Weibull coefficient m representing the degree of intensity variation was similarly estimated by applying the maximum likelihood method to the Weibull distribution function. If the Weibull coefficient is large, the variation in strength is small.

【0049】また、保証強度としては、累積破壊確率が
10万分の1となる強度を部材の保証強度とし、上述の
ワイブル分布関数に、求めた尺度母数とワイブル係数の
推定値をそれぞれ代入することにより計算した。靭性に
ついてはJIS R1607のSEPB法により破壊靭
性値KICを測定した。
As the guaranteed strength, the strength at which the cumulative failure probability is 1 / 100,000 is the guaranteed strength of the member, and the obtained scale parameter and the estimated value of the Weibull coefficient are substituted into the above-mentioned Weibull distribution function. Calculated by Regarding toughness, the fracture toughness value K IC was measured by the SEPB method of JIS R1607.

【0050】第1表に示すように、本発明の実施例によ
るものはワイブル係数が22以上と大きく、かつ累積破
壊確率が10万分の1となる保証強度が320MPa以
上と、比較例に該当する試料に比べて優れていることが
確認された。
As shown in Table 1, the examples according to the present invention have a large Weibull coefficient of 22 or more and a guaranteed strength of 320 MPa or more at which the cumulative failure probability is 1 / 100,000, which corresponds to the comparative example. It was confirmed that it was superior to the sample.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】本発明によれば、窒化珪素質焼結体にお
いて、強度のばらつきを著しく小さくし、累積破壊確率
が10万分の1の場合の保証強度を320MPa以上と
することが可能となった。このことにより信頼性の非常
に優れた窒化珪素質焼結体の作製が可能となり、その工
業的有用性は非常に大きい。
According to the present invention, in a silicon nitride sintered body, it is possible to significantly reduce variations in strength and to obtain a guaranteed strength of 320 MPa or more when the cumulative fracture probability is 1 / 100,000. It was This makes it possible to produce a silicon nitride-based sintered body having extremely excellent reliability, and its industrial utility is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径の範囲が5〜30μmである珪
化鉄(FeSi)粒子が、0.5〜9体積%含まれるこ
とを特徴とする窒化珪素質焼結体。
1. A silicon nitride-based sintered body, characterized in that iron silicide (FeSi) particles having an average particle size range of 5 to 30 μm are contained in an amount of 0.5 to 9% by volume.
【請求項2】 1種類以上の希土類酸化物1〜8重量
%、水酸化マグネシウム(Mg(OH)2)1〜8重量
%、鉄(Fe)0.5〜10重量%、珪化チタン(Ti
Si2)0.1〜3重量%、及び、残部が窒化珪素(S
34)とSi34中に不可避的に含まれる酸化珪素
(SiO2)からなる混合粉末を成形し、該成形体を窒
素ガスを含む雰囲気中1550〜1650℃の温度範囲
で焼結することを特徴とする窒化珪素質焼結体の製造方
法。
2. One or more rare earth oxides 1 to 8% by weight, magnesium hydroxide (Mg (OH) 2 ) 1 to 8% by weight, iron (Fe) 0.5 to 10% by weight, titanium silicide (Ti).
Si 2 ) 0.1 to 3% by weight, and the balance silicon nitride (S
i 3 N 4 ) and Si 3 N 4 inevitably contained silicon oxide (SiO 2 ) mixed powder, and the compact is fired in a temperature range of 1550 to 1650 ° C. in an atmosphere containing nitrogen gas. A method for manufacturing a silicon nitride-based sintered body, comprising:
JP06023496A 1996-02-23 1996-02-23 Silicon nitride-based sintered body and method for producing the same Expired - Fee Related JP3995284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06023496A JP3995284B2 (en) 1996-02-23 1996-02-23 Silicon nitride-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06023496A JP3995284B2 (en) 1996-02-23 1996-02-23 Silicon nitride-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09227236A true JPH09227236A (en) 1997-09-02
JP3995284B2 JP3995284B2 (en) 2007-10-24

Family

ID=13136289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06023496A Expired - Fee Related JP3995284B2 (en) 1996-02-23 1996-02-23 Silicon nitride-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3995284B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132070A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Thermal shock resistant silicon nitride sintered compact and method for producing the same
WO2014192149A1 (en) 2013-05-31 2014-12-04 京セラ株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
CN108126413A (en) * 2017-12-29 2018-06-08 西安石油大学 A kind of Ti-Ti5Si3The preparation method of complex gradient porous filtering piece
CN108188403A (en) * 2017-12-29 2018-06-22 西安石油大学 A kind of Ti-Ti5Si3The preparation method of complex gradient porous membrane tube
CN110218836A (en) * 2019-05-14 2019-09-10 鞍钢股份有限公司 A kind of ferrosilicon dealuminzation method of purification

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132070A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Thermal shock resistant silicon nitride sintered compact and method for producing the same
WO2014192149A1 (en) 2013-05-31 2014-12-04 京セラ株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
CN108126413A (en) * 2017-12-29 2018-06-08 西安石油大学 A kind of Ti-Ti5Si3The preparation method of complex gradient porous filtering piece
CN108188403A (en) * 2017-12-29 2018-06-22 西安石油大学 A kind of Ti-Ti5Si3The preparation method of complex gradient porous membrane tube
CN108188403B (en) * 2017-12-29 2019-08-06 西安石油大学 A kind of Ti-Ti5Si3The preparation method of complex gradient porous membrane tube
CN108126413B (en) * 2017-12-29 2020-03-17 西安石油大学 Ti-Ti5Si3Preparation method of composite gradient porous filter sheet
CN110218836A (en) * 2019-05-14 2019-09-10 鞍钢股份有限公司 A kind of ferrosilicon dealuminzation method of purification

Also Published As

Publication number Publication date
JP3995284B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
US5767028A (en) Aluminum nitride sintered body and method for manufacturing the same
US5508240A (en) Aluminum nitride sintered body and method for manufacturing the same
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JPH06219840A (en) Silicon nitride sintered compact and its production
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP3662628B2 (en) Silicon nitride-based sintered body and method for producing the same
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JP2012180234A (en) Method for producing silicon nitride-based ceramic
JPH09165264A (en) Silicon nitride sintetred product and its production
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3152558B2 (en) Particle-dispersed silicon nitride sintered body and method for producing the same
Fang et al. Bimodal Microstructure in Silicon Nitride–Barium Aluminum Silicate Ceramic‐Matrix Composites by Pressureless Sintering
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP3221479B2 (en) Sc-MgO composite ceramic sintered body and method of manufacturing the same
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP3667145B2 (en) Silicon nitride sintered body
JP2742621B2 (en) High toughness silicon nitride sintered body
JPH07101777A (en) Silicon nitride sintered compact and its production
JPH04104944A (en) Al2o3-sic-zro2 composite sinter
JP3207065B2 (en) Silicon nitride sintered body
JP2002293638A (en) Silicon nitride sintered compact
JP2687633B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees