JP2002316876A - Silicon nitride based composite powder and production method therefor - Google Patents

Silicon nitride based composite powder and production method therefor

Info

Publication number
JP2002316876A
JP2002316876A JP2001121905A JP2001121905A JP2002316876A JP 2002316876 A JP2002316876 A JP 2002316876A JP 2001121905 A JP2001121905 A JP 2001121905A JP 2001121905 A JP2001121905 A JP 2001121905A JP 2002316876 A JP2002316876 A JP 2002316876A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
composite powder
based composite
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001121905A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001121905A priority Critical patent/JP2002316876A/en
Priority to PCT/JP2002/003864 priority patent/WO2002085812A1/en
Priority to US10/311,604 priority patent/US6844282B2/en
Priority to EP02718611A priority patent/EP1298106A4/en
Priority to CNB028013255A priority patent/CN100480214C/en
Publication of JP2002316876A publication Critical patent/JP2002316876A/en
Priority to US11/031,994 priority patent/US7008893B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the raw powder of a silicon nitride based sintered compact, which has excellent mechanical properties in the ranges from room temperature to modelate low temperature, further has a low friction coefficient, and has excellent wear resistance, and to provide a production method therefor. SOLUTION: Silicon nitride powder, boron nitride powder and metal titanium powder are mixed at a room temperature to 250 deg.C at an acceleration of 10 to 300 G, so that silicon nitride based composite powder consisting of silicon nitride, titanium nitride, boron nitride and titanium boride in which each average particle size is <=20 nm, and phases at least containing amorphous ones covering the surfaces of the above particles, and having the average particle size of >=0.3 μm is obtained. Desirably, the pressure of a nitrogen atmosphere is 0.05 to 1.0 MPa, the amount of metal titanium powder is 5 to 60 wt.%, the amount of boron nitride powder to be added is 2 to 40 wt.%, and the mixing time is 0.5 to 50 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品や耐摩
耗工具等に使用される高耐摩耗・低摩擦の構造用セラミ
ックス材料として、室温から中低温域で優れた機械的特
性を有する窒化ケイ素系焼結体の原料粉末及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a silicon nitride having excellent mechanical properties from room temperature to low temperature as a high wear-resistant and low-friction structural ceramic material used for automobile parts and wear-resistant tools. The present invention relates to a raw material powder for a sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si)は強度、靭
性、耐食性、耐酸化性、耐熱衝撃性において優れた材料
であるために、切削工具や、ガスタービン、軸受け等に
幅広く使用されている。更に最近では、エンジン部品な
どの自動車用の構造材料としても検討が進められてい
る。
BACKGROUND ART Silicon nitride (Si 3 N 4) strength, toughness, corrosion resistance, oxidation resistance, because of an excellent material in thermal shock resistance, and cutting tools, gas turbines, is widely used in bearings such I have. More recently, studies have been made on structural materials for automobiles such as engine parts.

【0003】このような窒化ケイ素材料においては、そ
の特性をより一層向上させるために様々な研究が行われ
ている。例えば、特開平11−139882号公報に
は、窒化ケイ素粉末と金属チタン粉末を窒素雰囲気中に
て高加速度で混合することにより、微細な窒化ケイ素粒
子と窒化チタン粒子からなる複合粉末が得られることが
開示されている。この複合粉末を用いることにより、窒
化チタン粒子が窒化ケイ素の粒成長を抑制し、微細な結
晶構造で高強度の窒化ケイ素焼結体を製造できることが
報告されている。
[0003] Various studies have been made on such silicon nitride materials in order to further improve their properties. For example, Japanese Patent Application Laid-Open No. 11-139882 discloses that a composite powder composed of fine silicon nitride particles and titanium nitride particles can be obtained by mixing silicon nitride powder and metal titanium powder at high acceleration in a nitrogen atmosphere. Is disclosed. It has been reported that by using this composite powder, titanium nitride particles can suppress the growth of silicon nitride grains and produce a high-strength silicon nitride sintered body having a fine crystal structure.

【0004】[0004]

【発明が解決しようとする課題】上記特開平11−13
9882号公報に記載の窒化ケイ素複合粉末では、焼結
時に窒化チタン粒子が窒化ケイ素の粒成長を抑制するた
め、微細な結晶構造で高強度の窒化ケイ素焼結体を製造
できる。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 11-13 / 1999
In the silicon nitride composite powder described in Japanese Patent No. 9882, titanium nitride particles suppress the growth of silicon nitride particles during sintering, so that a high-strength silicon nitride sintered body having a fine crystal structure can be manufactured.

【0005】しかしながら、この窒化ケイ素焼結体は高
強度を示すものの、機械構造用材料としての摩擦に関す
る特性、特に現在の省エネルギー化の傾向に関して最も
期待されている無潤滑下での摩擦を低下させることにつ
いては、未だ研究されていなかった。
[0005] However, although the silicon nitride sintered body exhibits high strength, it reduces friction-related properties as a material for machine structure, particularly friction under non-lubrication, which is expected most with respect to the current trend of energy saving. This has not been studied yet.

【0006】低摩擦係数を有するセラミック材料を作製
するために一般的に行われる手法としては、窒化ホウ
素、硫化モリブデン、グラファイト等の固体潤滑材を材
料中に分散させる手法がよく知られている。しかし、こ
れら固体潤滑材の第2相はサブミクロン程度の大きさで
しか分散させることができず、そのため摩擦係数の低下
には限界があった。
[0006] As a method generally used for producing a ceramic material having a low coefficient of friction, a method of dispersing a solid lubricant such as boron nitride, molybdenum sulfide, and graphite in the material is well known. However, the second phase of these solid lubricants can only be dispersed in a size of the order of submicron, and therefore, the reduction of the friction coefficient is limited.

【0007】本発明は、このような従来の事情に鑑み、
室温から中低温域で優れた機械的特性を有すると共に、
低い摩擦係数を有し、耐摩耗性に優れた窒化ケイ素系焼
結体の原料粉末、及びその製造方法を提供することを目
的とする。
The present invention has been made in view of such a conventional situation,
While having excellent mechanical properties from room temperature to low temperature,
An object of the present invention is to provide a raw material powder of a silicon nitride-based sintered body having a low coefficient of friction and excellent wear resistance, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、平均粒径がいずれも20nm以下の窒化
ケイ素、窒化チタン、窒化ホウ素、ホウ化チタンと、こ
れらの粒子の表面を覆っている少なくともアモルファス
を含む相とからなり、平均粒径が0.3μm以上である
窒化ケイ素系複合粉末を提供するものである。
In order to achieve the above-mentioned object, the present invention relates to a method for producing silicon nitride, titanium nitride, boron nitride and titanium boride having an average particle diameter of not more than 20 nm, and a method for forming the surface of these particles. An object of the present invention is to provide a silicon nitride-based composite powder comprising an overlying amorphous phase and having an average particle size of 0.3 μm or more.

【0009】また、本発明における窒化ケイ素系複合粉
末の製造方法は、窒化ケイ素粉末と窒化ホウ素粉末及び
金属チタン粉末を、窒素雰囲気中において室温〜250
℃の温度にて、10〜300Gの加速度で混合すること
を特徴とする。
The method for producing a silicon nitride-based composite powder according to the present invention comprises the steps of: mixing silicon nitride powder, boron nitride powder and metal titanium powder in a nitrogen atmosphere at room temperature to 250
It is characterized by mixing at a temperature of ° C. and an acceleration of 10 to 300 G.

【0010】上記本発明の窒化ケイ素系複合粉末の製造
方法においては、窒素雰囲気の圧力が0.05〜1.0M
Paであること、金属チタン粉末の添加量が5〜60重
量%であること、窒化ホウ素粉末の添加量が2〜40重
量%であること、及び混合時間が0.5〜50時間であ
ることが望ましい。
In the method for producing a silicon nitride-based composite powder according to the present invention, the pressure in the nitrogen atmosphere is 0.05 to 1.0M.
Pa, the addition amount of the metal titanium powder is 5 to 60% by weight, the addition amount of the boron nitride powder is 2 to 40% by weight, and the mixing time is 0.5 to 50 hours. Is desirable.

【0011】[0011]

【発明の実施の形態】本発明の窒化ケイ素系複合粉末に
おいては、平均粒径20nm以下の微細な窒化ケイ素
(Si)粒子と、分散粒子として窒化チタン(T
iN)、窒化ホウ素(BN)、ホウ化チタン(Ti
)の微細な各粒子が分散されているために、焼結中
におこるSiの粒成長並びにその分散粒子自身の
粒成長を抑制することができる。しかも、この窒化ケイ
素系複合粉末には窒化ホウ素が極めて微細且つ均一に分
散しているため、摩擦係数が低く、耐摩耗性に優れた窒
化ケイ素系焼結体を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the silicon nitride composite powder of the present invention, fine silicon nitride (Si 3 N 4 ) particles having an average particle diameter of 20 nm or less and titanium nitride (T
iN), boron nitride (BN), titanium boride (Ti
Since the fine particles of B 2 ) are dispersed, it is possible to suppress the grain growth of Si 3 N 4 and the grain growth of the dispersed particles themselves during sintering. Moreover, since boron nitride is extremely finely and uniformly dispersed in the silicon nitride-based composite powder, a silicon nitride-based sintered body having a low friction coefficient and excellent wear resistance can be obtained.

【0012】また、平均粒径20nm以下の微細な窒化
ケイ素、窒化チタン、窒化ホウ素、ホウ化チタンの各粒
子は、互いに凝集して複合粉末を形成しているほか、そ
の表面が主にケイ素及び/又はチタンのアモルファス金
属で覆われているために、通常の非酸化物系のナノ粉末
よりも表面酸化が抑制され、簡便に取り扱うことができ
る。また、その凝集体である複合粉末の平均粒径は0.
3〜1.0μm程度であるため、従来の市販粉末と同様
に取り扱うことができる。
The fine particles of silicon nitride, titanium nitride, boron nitride, and titanium boride having an average particle diameter of 20 nm or less are aggregated with each other to form a composite powder, and the surface is mainly composed of silicon and titanium. Since it is covered with the amorphous metal of titanium, the surface oxidation is suppressed more than in the case of ordinary non-oxide nanopowder, so that it can be handled easily. The average particle size of the composite powder, which is the aggregate, is 0.1.
Since it is about 3 to 1.0 μm, it can be handled in the same manner as a conventional commercially available powder.

【0013】上記の窒化ケイ素系複合粉末の製造方法と
しては、市販の窒化ケイ素粉末に、窒化ホウ素粉末と金
属チタン粉末を添加して、窒素雰囲気中にて室温〜25
0℃の温度で、10〜300Gの高加速度で混合する。
尚、混合手段としては、粉砕を伴うボールミルやアトラ
イターを用いることが好ましい。
As a method for producing the above silicon nitride-based composite powder, boron nitride powder and metal titanium powder are added to commercially available silicon nitride powder, and the mixture is added at room temperature to 25% in a nitrogen atmosphere.
Mix at a temperature of 0 <0> C with a high acceleration of 10-300G.
In addition, as a mixing means, it is preferable to use a ball mill or an attritor with pulverization.

【0014】かかる高加速度での混合により、金属チタ
ンが下記化学式1の各反応を起こして窒化ホウ素と窒化
ケイ素を微細化していくものと考えられる。ここで加速
度を10〜300Gに限定する理由は、10G未満では
均一な粉末の微細化が起こり難く、最終的な焼結体の結
晶粒径が不均一になってしまうためである。また、混合
時の加速度が300Gを超えると、ポットやボールが摩
耗することにより不純物が混入されるためである。
It is considered that the mixing at such a high acceleration causes the titanium metal to cause each reaction represented by the following chemical formula 1 to refine boron nitride and silicon nitride. Here, the reason why the acceleration is limited to 10 to 300 G is that if the acceleration is less than 10 G, uniform powder refinement is unlikely to occur, and the crystal grain size of the final sintered body becomes non-uniform. Further, when the acceleration during mixing exceeds 300 G, impurities are mixed in due to wear of the pot and the ball.

【0015】[0015]

【化1】2BN+Ti→TiB+N Si+4Ti→4TiN+3Si 2Ti+N→2TiNEmbedded image 2BN + Ti → TiB2+ N2  Si3N4+ 4Ti → 4TiN + 3Si 2Ti + N2→ 2TiN

【0016】この高加速度混合する際の温度としては、
室温〜250℃、好ましくは50℃〜200℃である。
この温度領域において上記反応が促進され、短時間で目
的とする複合粉末を得ることができる。混合時間につい
ては、0.5時間未満では反応に伴う微細化が進行せ
ず、50時間を超えると不純物が混入するため、0.5
〜50時間とすることが望ましい。尚、混合の際の加速
度、温度、混合時間は、その作製したい粉末の条件によ
り適宜制御することが必要である。
The temperature at the time of the high acceleration mixing is as follows:
Room temperature to 250 ° C, preferably 50 ° C to 200 ° C.
In this temperature range, the above reaction is promoted, and the desired composite powder can be obtained in a short time. With respect to the mixing time, if the mixing time is less than 0.5 hour, the fineness accompanying the reaction does not progress, and if the mixing time is more than 50 hours, impurities are mixed.
It is desirable to set it to 50 hours. In addition, it is necessary to appropriately control the acceleration, temperature and mixing time during mixing depending on the conditions of the powder to be produced.

【0017】また、上記の反応を起こすためには窒素雰
囲気が必要であり、その窒素雰囲気の圧力は0.05〜
1.0MPaの範囲が好ましく、0.08〜0.15MP
aの範囲が更に好ましい。窒素雰囲気の圧力が0.05
MPa未満では制御が困難であり、また1.0MPaを
超えると耐圧容器等の特殊な容器が必要となるので好ま
しくない。
In order to cause the above reaction, a nitrogen atmosphere is required.
The range of 1.0 MPa is preferable, and 0.08 to 0.15 MPa
The range of a is more preferable. Nitrogen atmosphere pressure is 0.05
If it is less than MPa, it is difficult to control, and if it exceeds 1.0 MPa, a special container such as a pressure-resistant container is required, which is not preferable.

【0018】金属チタン粉末の添加量は、特に制限はな
いが、5重量%未満の場合には反応するTiの量が少な
過ぎるために、窒化ホウ素及び窒化ケイ素を微細化する
ことができない。また、添加量が60重量%を超える
と、反応するTiの量が多くなり、焼結体の色ムラ等が
発生するために好ましくない。従って、金属チタン粉末
の添加量は、5〜60重量%の範囲が好ましい。
The amount of the metal titanium powder added is not particularly limited, but if it is less than 5% by weight, the amount of reactive Ti is too small, so that boron nitride and silicon nitride cannot be miniaturized. On the other hand, if the addition amount exceeds 60% by weight, the amount of Ti to react with increases, and color unevenness of the sintered body occurs, which is not preferable. Therefore, the addition amount of the metal titanium powder is preferably in the range of 5 to 60% by weight.

【0019】また、窒化ホウ素粉末の添加量について
も、特に制限はないものの、十分な低摩擦特性を得るた
めには2重量%以上の窒化ホウ素が必要であり、また材
料の優れた機械的特性を維持するためには40重量%以
下が適当であることから、2〜40重量%の範囲が好ま
しい。
The amount of boron nitride powder to be added is not particularly limited, but boron nitride of 2% by weight or more is required to obtain a sufficiently low friction property. Is preferably 40% by weight or less in order to maintain the above, the range of 2 to 40% by weight is preferable.

【0020】かかる本発明の窒化ケイ素系複合粉末を用
いて製造される窒化ケイ素系複合焼結体は、Si
、TiN、TiB、BNが微細な粒径で制御さ
れた結晶構造を持っており、室温から中低温域で高強度
であると同時に、窒化ホウ素が極めて微細且つ均一に分
散しているため、摩擦係数が低く、優れた高耐摩耗性を
備えている。
The silicon nitride composite sintered body produced using the silicon nitride composite powder of the present invention is Si
3 N 4 , TiN, TiB 2 , and BN have a controlled crystal structure with a fine grain size, and have high strength in a temperature range from room temperature to medium to low temperature, and boron nitride is extremely finely and uniformly dispersed. Therefore, it has a low coefficient of friction and excellent high wear resistance.

【0021】[0021]

【実施例】実施例1 市販の平均粒径0.5μmのSi粉末に、焼結助
剤として2.5wt%のY粉末と1wt%のAl
粉末を加え、更に平均粒径10μmの金属Ti粉
末を40wt%、平均粒径5μmのBN粉末を10wt
%添加して、0.1MPaの窒素雰囲気中において50
℃の温度条件で、Si製ボールを用いた遊星ボー
ルミルにより加速度150Gで16時間混合した。
【Example】Example 1  Commercially available Si having an average particle size of 0.5 μm3N4Sintering aid for powder
2.5 wt% Y as an agent2O3Powder and 1 wt% Al
2O3Add powder, and further add metal Ti powder with an average particle size of 10 μm
40 wt% powder, 10 wt% BN powder with an average particle size of 5 μm
% In a nitrogen atmosphere of 0.1 MPa.
Under the temperature condition of ℃, Si3N4Planetary bow using ball made of
The mixture was mixed for 16 hours at 150 G by a mill.

【0022】得られた粉末をXRDにて定性分析を行っ
たところ、Si、TiN、TiB、及びBNの
各ピークを確認することができた。また、この複合粉末
を透過電子顕微鏡で観察した結果、Si、Ti
N、TiB、及びBNの各粒子の平均粒径はいずれも
20nm以下であり、それらの粒子はアモルファスのT
iとSiに覆われている構造であることが分かった。
尚、得られた複合粉末の平均粒径は0.5μmであっ
た。
When the obtained powder was subjected to qualitative analysis by XRD, peaks of Si 3 N 4 , TiN, TiB 2 and BN could be confirmed. Also, as a result of observing this composite powder with a transmission electron microscope, it was found that Si 3 N 4 , Ti
Each of the particles of N, TiB 2 , and BN has an average particle diameter of 20 nm or less, and the particles have an amorphous T
It was found that the structure was covered with i and Si.
The average particle size of the obtained composite powder was 0.5 μm.

【0023】この複合粉末をカーボンダイスに充填した
後、放電プラズマ焼結機(SPS)を用いて1300℃
で焼結した。得られた焼結体について、研削、ラッピン
グ処理した後、ボールオンディスク試験機で耐摩耗特性
を評価した。その結果、得られた焼結体は摩擦係数0.
2と低摩擦係数であり、比摩耗量が2.0×10−8
/Nという高い耐摩耗性を示した。また、この焼結
体を研磨した後、Arイオンエッチングで薄膜試験片を
作製し、透過電子顕微鏡を用いてSi、TiN、
BN、TiBの粒径を評価した結果、各々の粒子は5
0nm以下と非常に微細であった。
After the composite powder is filled in a carbon die, it is heated to 1300 ° C. using a discharge plasma sintering machine (SPS).
Sintered. After the obtained sintered body was subjected to grinding and lapping treatment, the wear resistance was evaluated using a ball-on-disk tester. As a result, the obtained sintered body had a coefficient of friction of 0.1.
2 and a low coefficient of friction, and the specific wear amount is 2.0 × 10 −8 m
It exhibited high abrasion resistance of m 2 / N. Further, after polishing this sintered body, a thin film test piece was prepared by Ar ion etching, and Si 3 N 4 , TiN,
BN, a result of evaluating the particle size of the TiB 2, each of the particles 5
It was very fine, 0 nm or less.

【0024】比較のために、遊星ボールミルに代えて、
原料粉末を超音波混合した以外は上記の実施例1と同様
にして複合粉末を作製し、その複合粉末を用いて同様に
焼結した。得られた比較例の焼結体中には数μmの大き
さのTiN粒子やBN粒子が観察され、その摩擦係数も
0.5程度と高く、比摩耗量は7.0×10−7mm
Nであった。
For comparison, instead of a planetary ball mill,
A composite powder was prepared in the same manner as in Example 1 except that the raw material powder was subjected to ultrasonic mixing, and sintered similarly using the composite powder. TiN particles and BN particles having a size of several μm were observed in the obtained sintered body of the comparative example, the friction coefficient was as high as about 0.5, and the specific wear amount was 7.0 × 10 −7 mm. 2 /
N.

【0025】実施例2 市販の平均粒径0.5μmのSi粉末に、実施例
1と同じ焼結助剤を加え、更に平均粒径10μmの金属
Ti粉末と平均粒径5μmのBN粉末をそれぞれ下記表
1に示す添加量で加えた。
[0025]Example 2  Commercially available Si having an average particle size of 0.5 μm3N4Example on powder
Add the same sintering aid as in 1 and add a metal
The following table shows the Ti powder and the BN powder having an average particle size of 5 μm, respectively.
1 was added.

【0026】[0026]

【表1】 [Table 1]

【0027】上記表1における各試料の原料粉末を、雰
囲気、圧力、温度、加速度、混合時間の各混合条件につ
いて下記表2に示す条件A〜Hにより、実施例1と同様
に遊星ボールミルを用いて混合した。
The raw material powder of each sample in Table 1 was mixed with a planetary ball mill in the same manner as in Example 1 under the conditions A to H shown in Table 2 below for each mixing condition of atmosphere, pressure, temperature, acceleration, and mixing time. And mixed.

【0028】[0028]

【表2】 [Table 2]

【0029】得られた各複合粉末について、実施例1と
同様にして、Si、TiN、BN、TiBの各
粒子の平均粒径を求めた。その結果を下記表3に示す。
With respect to each of the obtained composite powders, the average particle diameter of each of Si 3 N 4 , TiN, BN, and TiB 2 particles was determined in the same manner as in Example 1. The results are shown in Table 3 below.

【0030】[0030]

【表3】 [Table 3]

【0031】上記の結果から、金属Ti粉末とBN粉末
の添加量、並びに雰囲気、圧力、温度、加速度、混合時
間の各混合条件について、本発明の範囲内で適切に選択
することによって、微細な粒子からなる複合粉末が得ら
れることが分かる。また、遊星ボールミル以外の混合装
置、アトライター等を用いた場合でも、10〜300G
の加速度で混合すれば、ほぼ同様な結果を得ることがで
きた。
From the above results, fine selection of the addition amounts of the metal Ti powder and the BN powder and the respective mixing conditions of the atmosphere, pressure, temperature, acceleration, and mixing time within the scope of the present invention can provide finer powder. It can be seen that a composite powder composed of particles is obtained. In addition, even when a mixing device other than a planetary ball mill, an attritor, or the like is used, 10 to 300 G
Almost the same result could be obtained by mixing at an acceleration of.

【0032】[0032]

【発明の効果】本発明によれば、窒化ケイ素系焼結体の
原料粉末として、生産が比較的容易であって、焼結時に
おける粒成長を抑制することが可能で、微細な粒子から
なる窒化ケイ素系複合粉末を提供することができる。
According to the present invention, as a raw material powder for a silicon nitride-based sintered body, it is relatively easy to produce, can suppress grain growth during sintering, and is composed of fine particles. A silicon nitride-based composite powder can be provided.

【0033】また、本発明の窒化ケイ素系複合粉末を用
いることにより、室温から中低温域で優れた機械的特性
を有すると共に、低い摩擦係数を有し、耐摩耗性に優れ
た窒化ケイ素系焼結体を得ることができる。
Further, by using the silicon nitride-based composite powder of the present invention, the silicon nitride-based composite powder having excellent mechanical properties from room temperature to medium to low temperature, a low friction coefficient, and excellent wear resistance. You can get union.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径がいずれも20nm以下の窒化
ケイ素、窒化チタン、窒化ホウ素、ホウ化チタンと、こ
れらの粒子の表面を覆っている少なくともアモルファス
を含む相とからなり、平均粒径が0.3μm以上である
窒化ケイ素系複合粉末。
Claims: 1. A silicon nitride, titanium nitride, boron nitride or titanium boride having an average particle diameter of 20 nm or less, and a phase containing at least an amorphous phase covering the surface of these particles. A silicon nitride-based composite powder having a size of 0.3 μm or more.
【請求項2】 窒化ケイ素粉末と窒化ホウ素粉末及び金
属チタン粉末を、窒素雰囲気中において室温〜250℃
の温度にて、10〜300Gの加速度で混合することを
特徴とする窒化ケイ素系複合粉末の製造方法。
2. A method for preparing a silicon nitride powder, a boron nitride powder, and a metal titanium powder in a nitrogen atmosphere at room temperature to 250 ° C.
A method for producing a silicon nitride-based composite powder, wherein mixing is carried out at a temperature of 10 to 300 G.
【請求項3】 窒素雰囲気の圧力が0.05〜1.0MP
aであることを特徴とする、請求項2に記載の窒化ケイ
素系複合粉末の製造方法。
3. The pressure of a nitrogen atmosphere is 0.05 to 1.0 MPa.
3. The method for producing a silicon nitride-based composite powder according to claim 2, wherein a.
【請求項4】 金属チタン粉末の添加量が5〜60重量
%であることを特徴とする、請求項2又は3に記載の窒
化ケイ素系複合粉末の製造方法。
4. The method for producing a silicon nitride-based composite powder according to claim 2, wherein the amount of the metal titanium powder added is 5 to 60% by weight.
【請求項5】 窒化ホウ素粉末の添加量が2〜40重量
%であることを特徴とする、請求項2〜4のいずれかに
記載の窒化ケイ素系複合粉末の製造方法。
5. The method for producing a silicon nitride-based composite powder according to claim 2, wherein the addition amount of the boron nitride powder is 2 to 40% by weight.
【請求項6】 混合時間が0.5〜50時間であること
を特徴とする、請求項2〜5のいずれかに記載の窒化ケ
イ素系複合粉末の製造方法。
6. The method for producing a silicon nitride-based composite powder according to claim 2, wherein the mixing time is 0.5 to 50 hours.
JP2001121905A 2001-04-20 2001-04-20 Silicon nitride based composite powder and production method therefor Pending JP2002316876A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001121905A JP2002316876A (en) 2001-04-20 2001-04-20 Silicon nitride based composite powder and production method therefor
PCT/JP2002/003864 WO2002085812A1 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
US10/311,604 US6844282B2 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
EP02718611A EP1298106A4 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
CNB028013255A CN100480214C (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and production method thereof
US11/031,994 US7008893B2 (en) 2001-04-20 2005-01-11 Silicon nitride-based composite sintered body and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121905A JP2002316876A (en) 2001-04-20 2001-04-20 Silicon nitride based composite powder and production method therefor

Publications (1)

Publication Number Publication Date
JP2002316876A true JP2002316876A (en) 2002-10-31

Family

ID=18971691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121905A Pending JP2002316876A (en) 2001-04-20 2001-04-20 Silicon nitride based composite powder and production method therefor

Country Status (1)

Country Link
JP (1) JP2002316876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714978B1 (en) 2005-08-03 2007-05-04 한국과학기술연구원 The method for fabricatiing ultrafine crystalline TiN/TiB2 composite cermet
CN113054178A (en) * 2021-03-24 2021-06-29 浙江锂宸新材料科技有限公司 Polo honey-like silicon-carbon shell-core structure composite negative electrode material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139813A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Amorphous silicon nitride powder and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139813A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Amorphous silicon nitride powder and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714978B1 (en) 2005-08-03 2007-05-04 한국과학기술연구원 The method for fabricatiing ultrafine crystalline TiN/TiB2 composite cermet
CN113054178A (en) * 2021-03-24 2021-06-29 浙江锂宸新材料科技有限公司 Polo honey-like silicon-carbon shell-core structure composite negative electrode material and preparation method and application thereof
CN113054178B (en) * 2021-03-24 2022-01-11 浙江锂宸新材料科技有限公司 Polo honey-like silicon-carbon shell-core structure composite negative electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7008893B2 (en) Silicon nitride-based composite sintered body and producing method thereof
US10703679B2 (en) Polycrystalline abrasive constructions
JP2005281084A (en) Sintered compact and manufacturing method therefor
US8426330B2 (en) Boron suboxide composite material
EP2049452A1 (en) Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof
WO2018168735A1 (en) Hard sintered body
JPH04223808A (en) Silicon nitride sintered body tool
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
US5286684A (en) Aluminum oxide-based sintered object and process for producing the same
US5858899A (en) Aluminum oxide based sintered body
JPH11139882A (en) Composite silicon nitride powder and its production
JP2002338365A (en) Aluminum nitride-base composite powder and method of manufacturing for the same
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JP2003034584A (en) Silicon nitride-based composite powder and method for producing the same
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP2003034579A (en) Silicon-nitride-based composite sintered body and method for producing the same
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH11139874A (en) Silicon nitride-base ceramics and its production
JP2958731B2 (en) Aluminum oxide based sintered body and method for producing the same
JP2003034578A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2003034580A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2007126325A (en) Method for producing powdery mixture and method for producing ceramic sintered compact
JPH09249456A (en) Boride complex ceramic and its production
JPH09111390A (en) Titanium-carbonitride-base alloy
Yang et al. Mechanical alloying of Mo and Si powders and their sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215