JPH11139882A - Composite silicon nitride powder and its production - Google Patents

Composite silicon nitride powder and its production

Info

Publication number
JPH11139882A
JPH11139882A JP9303853A JP30385397A JPH11139882A JP H11139882 A JPH11139882 A JP H11139882A JP 9303853 A JP9303853 A JP 9303853A JP 30385397 A JP30385397 A JP 30385397A JP H11139882 A JPH11139882 A JP H11139882A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
particles
sintered body
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9303853A
Other languages
Japanese (ja)
Other versions
JP4061678B2 (en
Inventor
Takashi Matsuura
尚 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30385397A priority Critical patent/JP4061678B2/en
Publication of JPH11139882A publication Critical patent/JPH11139882A/en
Application granted granted Critical
Publication of JP4061678B2 publication Critical patent/JP4061678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a composite Si3 N4 powder consisting of particulates relatively easy in production and capable of suppressing the growth of crystal particle as a source powder of a Si3 N4 sintered compact. SOLUTION: The powder is constituted of Si3 N4 particles and TiN particles each having <=100 nm average particle size, and has >=1 μm average diameter. The composite Si3 N4 powder is produced by mixing Si3 N4 powder and metal Ti powder in a nitrogen atmosphere at an acceleration of 10-200 G. An addition of the metal Ti powder is 10-50 wt.% of a whole, and mixing time is preferably 0.1-10 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品や耐摩
耗工具等に使用される構造用セラミックス材料として、
室温から1100℃の中低温域で強度等の優れた機械的
性質を有する窒化ケイ素焼結体の原料粉末、及びその製
造方法に関するものである。
The present invention relates to a structural ceramic material used for automobile parts, wear-resistant tools and the like.
The present invention relates to a raw material powder of a silicon nitride sintered body having excellent mechanical properties such as strength in a medium to low temperature range from room temperature to 1100 ° C., and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si34)は、強度、破壊
靭性値、耐食性、耐摩耗性、耐熱衝撃性、耐酸化性等に
おいてバランスの取れた材料であるため、切削工具から
エンジン部品等の広い範囲で利用されている。特に最近
では、自動車エンジンやガスタービン等の構造用材料と
して注目を集めている。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) is a material that is balanced in strength, fracture toughness, corrosion resistance, abrasion resistance, thermal shock resistance, oxidation resistance, and the like. Etc. are used in a wide range. In particular, recently, it has attracted attention as a structural material for automobile engines and gas turbines.

【0003】この様な窒化ケイ素の強度を向上させる方
法として、従来から微細な窒化ケイ素の粒子からなる焼
結体の作製が試みられている。例えば、特開平6−27
1358号公報には、窒化ケイ素の平均粒径を0.3μ
m程度まで微細化することにより、3点曲げ強度が17
0kg/mm2以上の窒化ケイ素焼結体が得られると記
載されている。しかしながら、同公報記載の実施例でも
明らかなように、市販のSi34原料粉末の平均粒径は
0.7μm程度であるから、上記のごとく微細な窒化ケ
イ素焼結体を得るためには、この市販の原料粉末の平均
粒径を更に微細にする必要がある。
[0003] As a method for improving the strength of such silicon nitride, the production of a sintered body composed of fine silicon nitride particles has been conventionally attempted. For example, JP-A-6-27
No. 1358 discloses that the average particle size of silicon nitride is 0.3 μm.
m, the three-point bending strength is 17
It is described that a silicon nitride sintered body of 0 kg / mm 2 or more can be obtained. However, as is clear from the examples described in the publication, the average particle size of the commercially available Si 3 N 4 raw material powder is about 0.7 μm. It is necessary to further reduce the average particle size of this commercially available raw material powder.

【0004】微細な粉末を得る方法としては、従来から
CVD法が用いられており、例えばCeramic M
aterials & Components for E
ngines のP.70、table II に示されてい
るように、平均粒径が20nm程度窒化ケイ素粉末が得
られている。しかしながら、CVD法は気相法による合
成法のため、製造コストが高く、また量産性に乏しいと
いう欠点がある。しかも、粉末の粒径が小さくなるにつ
れて表面積が増加するため、表面酸化により窒化ケイ素
粉末としての特性が損なわれたり、また粉末同士の凝集
が激しくなり、成形性が極端に低下するなどの問題点が
あった。
[0004] As a method for obtaining fine powder, a CVD method has been conventionally used. For example, Ceramic M
materials & Components for E
As shown in P.70, table II of Nines, a silicon nitride powder having an average particle size of about 20 nm was obtained. However, the CVD method is disadvantageous in that the production cost is high and the mass productivity is poor because it is a synthesis method by a gas phase method. Moreover, since the surface area increases as the particle size of the powder becomes smaller, the properties of the silicon nitride powder are impaired due to surface oxidation, and the powders become more agglomerated, resulting in extremely low moldability. was there.

【0005】一方、量産性に優れた微細粉末の合成方法
として、粉砕法がある。例えば、窒化ケイ素と金属チタ
ンを高加速度で混合することにより、窒化ケイ素とチタ
ンのナノ複合粉末を合成する方法が知られている。しか
しながら、このようなナノ複合粉末を用いても、焼結時
の加熱により結晶粒が粗大化する現象が避けられず、微
細な窒化ケイ素焼結体を得ることは困難であった。
On the other hand, there is a pulverization method as a method for synthesizing a fine powder excellent in mass productivity. For example, a method of synthesizing a nanocomposite powder of silicon nitride and titanium by mixing silicon nitride and titanium metal at high acceleration is known. However, even when such a nanocomposite powder is used, a phenomenon that crystal grains become coarse due to heating during sintering is inevitable, and it has been difficult to obtain a fine silicon nitride sintered body.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、中低温域で強度等の優れた特性を有
する窒化ケイ素焼結体の原料粉末として、生産が比較的
容易で、焼結時における結晶粒成長を抑制することがで
きる微細粒子からなる窒化ケイ素粉末、及びその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention is relatively easy to produce as a raw material powder of a silicon nitride sintered body having excellent properties such as strength in a low temperature range. It is another object of the present invention to provide a silicon nitride powder composed of fine particles capable of suppressing crystal grain growth during sintering, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、平均粒径が100nm以下の窒化ケイ素
粒子と窒化チタン粒子とから構成された平均直径が1μ
m以上である窒化ケイ素複合粉末を提供するものであ
る。
In order to achieve the above-mentioned object, the present invention relates to a method for producing a silicon nitride particle having an average particle diameter of 100 nm or less and a titanium nitride particle having an average diameter of 1 μm.
m or more.

【0008】また、本発明における上記窒化ケイ素複合
粉末の製造方法は、窒素雰囲気中において窒化ケイ素粉
末と金属チタン粉末とを10〜200Gの加速度で混合
することを特徴とする。また、この本発明方法において
は、金属チタン粉末の添加量を全体の10〜50重量%
とすること、及び混合時間を0.1時間〜10時間とす
ることが好ましい。
The method for producing a silicon nitride composite powder according to the present invention is characterized in that the silicon nitride powder and the metal titanium powder are mixed at an acceleration of 10 to 200 G in a nitrogen atmosphere. In the method of the present invention, the addition amount of the metallic titanium powder is 10 to 50% by weight of the whole.
And the mixing time is preferably from 0.1 hour to 10 hours.

【0009】[0009]

【発明の実施の形態】本発明の窒化ケイ素複合粉末で
は、平均粒径100nm以下の微細なSi34粒子の界
面にTiN粒子が配置されているため、焼結中にTiN
粒子が微細なSi34粒子をピン止めしてSi34の粒
成長を抑制することができ、微細な結晶構造で高強度の
窒化ケイ素焼結体を得ることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the silicon nitride composite powder of the present invention, TiN particles are arranged at the interface of fine Si 3 N 4 particles having an average particle diameter of 100 nm or less.
The fine particles of Si 3 N 4 can be pinned to suppress the growth of Si 3 N 4 grains, and a high-strength silicon nitride sintered body having a fine crystal structure can be obtained.

【0010】また、微細なSi34粒子とTiN粒子が
互いに接して複合粉末を形成しているので、Si34
子が微細であるにも拘らず表面酸化が抑制される。しか
も、この窒化ケイ素複合粉末の平均直径は1μm以上と
比較的大きいので、粉末同士の凝集が抑制され、粉末の
成形性にも優れている。
[0010] Further, since the fine Si 3 N 4 particles and the TiN particles are in contact with each other to form a composite powder, the surface oxidation is suppressed despite the fine Si 3 N 4 particles. In addition, since the average diameter of the silicon nitride composite powder is relatively large, 1 μm or more, aggregation of the powders is suppressed, and the powder has excellent moldability.

【0011】上記本発明の窒化ケイ素複合粉末は、Si
34粉末と金属Ti粉末とを窒素雰囲気中にて10〜2
00Gの高加速度で混合することにより、製造すること
ができる。かかる方法によって微粒な窒化ケイ素粒子と
TiN粒子の複合粉末が生成する理由は明らかではない
が、混合中に金属Tiが雰囲気ガスの窒素と反応して窒
化チタンが生成し、このTiN粒子が粉砕されたSi3
4粒子の界面に分散するためと考えられる。
[0011] The silicon nitride composite powder of the present invention comprises Si
3 N 4 powder and metal Ti powder are mixed in a nitrogen atmosphere for 10 to 2
It can be manufactured by mixing at a high acceleration of 00G. It is not clear why such a method produces a composite powder of fine silicon nitride particles and TiN particles, but during mixing, metal Ti reacts with nitrogen in the atmosphere gas to produce titanium nitride, and the TiN particles are pulverized. Si 3
This is considered to be due to dispersion at the interface of N 4 particles.

【0012】Si34粉末と金属Ti粉末の混合時の加
速度を10〜200Gの範囲に限定する理由は、加速度
が10G未満ではTiと窒素ガスの反応が起こらず、T
iN粒子が生成せずに金属Tiが残留ため、また逆に加
速度が200Gを越えるとSi34とTiとが反応を開
始し、TiSi2やTi5Si3等のTiとSiの化合物
が生成するため、いずれの場合も得られるSi34焼結
体の強度が劣化するからである。
The reason why the acceleration when mixing the Si 3 N 4 powder and the metal Ti powder is limited to the range of 10 to 200 G is that if the acceleration is less than 10 G, the reaction between Ti and nitrogen gas does not occur,
Since metal Ti remains without generating iN particles, and conversely, when the acceleration exceeds 200 G, a reaction between Si 3 N 4 and Ti starts, and a compound of Ti and Si such as TiSi 2 or Ti 5 Si 3 is formed. This is because, in each case, the strength of the obtained Si 3 N 4 sintered body is deteriorated.

【0013】添加する金属Ti粉末の量については特に
制限はないが、Si34粉末に対して10重量%未満で
は生成するTiNの量が少なくなり、焼結時にSi34
の粒成長が発生しやすい。また、50重量%を越える
と、雰囲気の窒素と反応せず残留するTiの量が多くな
る。その結果、いずれの場合もSi34焼結体の強度等
の特性の劣化を招くので、金属Ti粉末の添加量は10
〜50重量%の範囲が好ましい。
The amount of the metal Ti powder to be added is not particularly limited, but if it is less than 10% by weight with respect to the Si 3 N 4 powder, the amount of generated TiN will be small, and the Si 3 N 4 during sintering will be reduced.
Grains easily grow. If it exceeds 50% by weight, the amount of Ti remaining without reacting with nitrogen in the atmosphere increases. As a result, in any case, the properties such as the strength of the Si 3 N 4 sintered body are deteriorated.
The range of 5050% by weight is preferred.

【0014】また、Si34粉末と金属Ti粉末の混合
時間については特に制限は無い。しかし、混合時間が
0.1時間未満ではTiと雰囲気の窒素との反応が少な
く、また10時間を越えると粉砕メディア及びポット内
壁からの不純物の混入が顕著になるため、0.1〜10
時間程度とすることが望ましい。
The mixing time of the Si 3 N 4 powder and the metal Ti powder is not particularly limited. However, if the mixing time is less than 0.1 hour, the reaction between Ti and nitrogen in the atmosphere is small, and if the mixing time is more than 10 hours, impurities from the pulverizing media and the inner wall of the pot become conspicuous.
It is desirable to set it to about time.

【0015】本発明の窒化ケイ素複合粉末を用いて製造
した窒化ケイ素焼結体は、Si34の粒成長が抑制され
て微細な結晶構造を有しており、結晶室温から1100
℃までの中低温域での強度に優れている。
The silicon nitride sintered body produced by using the silicon nitride composite powder of the present invention has a fine crystal structure in which grain growth of Si 3 N 4 is suppressed,
Excellent strength in middle to low temperature range up to ° C.

【0016】[0016]

【実施例】実施例1 市販の平均粒径0.5μmのSi34粉末に、焼結助剤
としてAl23を2重量%、MgOを1重量%、及びY
23を5重量%加え、更に平均粒径5μmの金属Ti粉
末を全体の30重量%添加して、SUS304製ボール
とポットを用いた遊星ボールミルにより、窒素雰囲気中
にて150Gの加速度で4時間の混合を実施した。
EXAMPLE 1 Commercially available Si 3 N 4 powder having an average particle size of 0.5 μm was mixed with 2% by weight of Al 2 O 3 , 1% by weight of MgO, and Y as a sintering aid.
5% by weight of 2 O 3 and 30% by weight of a metal Ti powder having an average particle size of 5 μm were added. Time mixing was performed.

【0017】得られた粉末はSi34粒子とTiN粒子
の複合粉末であり、その内部をTEMで観察した結果、
Si34粒子及び助剤の平均粒径は共に20nmまで、
TiN粒子の平均粒径は10nmまでそれぞれ微粒化し
ていた。次に、この複合粉末を室温で200kg/mm
2の条件で大気中にてプレス成形を行った。その成形体
を、窒素1気圧下において1500℃で1時間の焼結を
行いSi34焼結体を得た。
The obtained powder is a composite powder of Si 3 N 4 particles and TiN particles.
The average particle size of both the Si 3 N 4 particles and the auxiliary is up to 20 nm,
The average particle size of the TiN particles was reduced to 10 nm. Next, this composite powder was added at room temperature to 200 kg / mm.
Press molding was performed in the atmosphere under the conditions of 2 . The compact was sintered at 1500 ° C. for 1 hour under 1 atm of nitrogen to obtain a Si 3 N 4 sintered body.

【0018】得られたSi34焼結体を3×4×40m
m相当の抗析試験片に切り出し、#800ダイヤモンド
砥石により切削加工仕上げをした後、JIS R160
1に準拠して15本の試験片について3点曲げ強度を測
定した。また、このSi34焼結体を研磨した後、Ar
イオンエッチングで薄膜試験片を作製し、透過型電子顕
微鏡を用いて母相のSi34粒子及び分散粒子であるT
iNの粒径をそれぞれ評価した。その結果、Si34
子の平均粒径は50nm及びTiN粒子の平均粒径は3
0nmと非常に微細であり、また焼結体の平均強度は2
GPaと非常に高強度であった。
The obtained Si 3 N 4 sintered body is 3 × 4 × 40 m
m, which is cut out into an eutectoid test specimen equivalent to m, and cut and finished with a # 800 diamond grindstone.
The three-point bending strength of 15 test pieces was measured according to 1. After polishing the Si 3 N 4 sintered body, Ar 3
A thin film test piece was prepared by ion etching, and the matrix Si 3 N 4 particles and the dispersed particles T
Each particle size of iN was evaluated. As a result, the average particle diameter of the Si 3 N 4 particles was 50 nm and the average particle diameter of the TiN particles was 3 nm.
0 nm, and the average strength of the sintered body is 2
GPa and very high strength.

【0019】一方、比較例として、金属Ti粉末を加え
ない以外は上記と同様にして、12時間の混合を行い、
平均粒径20nmのSi34粒子と助剤のみからなる複
合粉末を作製した。この複合粉末を上記と同一条件で成
形及び焼結したところ、得られたSi34焼結体中のS
34粒子は200nmまで粒成長し、また焼結体の強
度は100kg/mm2と低強度であった。
On the other hand, as a comparative example, mixing was performed for 12 hours in the same manner as above except that no metal Ti powder was added.
A composite powder comprising only Si 3 N 4 particles having an average particle diameter of 20 nm and an auxiliary agent was prepared. When this composite powder was molded and sintered under the same conditions as above, the S 3 N 4
The i 3 N 4 particles grew to 200 nm, and the strength of the sintered body was as low as 100 kg / mm 2 .

【0020】実施例2 平均粒径0.5μmのSi34粉末に、実施例1と同一
の焼結助剤を加え、更に平均粒径5μmの金属Ti粉末
を全体の5〜60重量%添加して、ZrO2製ボールと
SUS製ポットを用いた遊星ボールミルにより、窒素雰
囲気中において5〜250Gの加速度で混合した。下記
表1に、金属Ti粉末の添加量、混合時の雰囲気、加速
度、及び混合時間をまとめて示した。
Example 2 The same sintering aid as in Example 1 was added to Si 3 N 4 powder having an average particle size of 0.5 μm, and a metal Ti powder having an average particle size of 5 μm was 5 to 60% by weight of the whole. The mixture was added and mixed by a planetary ball mill using a ZrO 2 ball and a SUS pot at an acceleration of 5 to 250 G in a nitrogen atmosphere. Table 1 below summarizes the amount of metal Ti powder added, the atmosphere during mixing, the acceleration, and the mixing time.

【0021】[0021]

【表1】 (注)表中の*を付した試料は比較例である。[Table 1] (Note) Samples marked with * in the table are comparative examples.

【0022】得られた各複合粉末について、実施例1と
同様にSi34粒子の平均粒径を求めると共に、粉末中
に含まれる不純物のZrO2濃度及び及び残留Ti量を
ICP法により測定し、それぞれ下記表2に示した。ま
た、各複合粉末を用いて実施例1と同様に製造したSi
34焼結体について、実施例1と同様に測定した焼結体
の強度を表2に併せて示した。
For each of the obtained composite powders, the average particle diameter of Si 3 N 4 particles was determined in the same manner as in Example 1, and the ZrO 2 concentration of impurities contained in the powder and the residual Ti amount were measured by the ICP method. The results are shown in Table 2 below. In addition, Si was manufactured in the same manner as in Example 1 using each composite powder.
Table 2 also shows the strength of the 3 N 4 sintered body measured in the same manner as in Example 1.

【0023】[0023]

【表2】 (注)表中の*を付した試料は比較例である。[Table 2] (Note) Samples marked with * in the table are comparative examples.

【0024】上記の結果から分かるように、アルゴン雰
囲気中で混合した試料1、及び低加速度で混合した試料
3は共に、窒素と反応せずに複合粉末中に残留したTi
濃度が非常に大きいため、焼結体強度が著しく低下して
いる。また、試料6は混合加速度が大き過ぎるため、ボ
ールに由来する不純物のZrO2濃度が高くなると共
に、混合中にSi34と金属Tiが反応してTiSi2
が生成し、焼結体強度が非常に低くなっている。
As can be seen from the above results, both the sample 1 mixed in an argon atmosphere and the sample 3 mixed at a low acceleration did not react with nitrogen and remained in the composite powder.
Since the concentration is very large, the strength of the sintered body is significantly reduced. In sample 6, since the mixing acceleration is too large, the ZrO 2 concentration of the impurities derived from the ball becomes high, and Si 3 N 4 reacts with metal Ti during mixing to make TiSi 2.
Are generated, and the strength of the sintered body is very low.

【0025】一方、その他の本発明の各試料では、複合
粉末中のSi34粒子の平均粒径が小さく、且つ残留T
i濃度及びZrO2濃度も低く、その結果非常に高い強
度のSi34焼結体が得られることが分かる。ただし、
試料7は添加Ti量が少ないため、複合粉末中のTiN
量が少なくなり、焼結時の粒成長が大きくなり、焼結体
強度が若干低下している。試料9は添加Ti量が多いた
め、及び試料10は混合時間が短いため、それぞれ複合
粉末中にTiが残留し、焼結体の強度が若干低下してい
る。また、試料12は混合時間が長いため、不純物のZ
rO2が増え、焼結体の強度が若干低下している。
On the other hand, in each of the other samples of the present invention, the average particle size of the Si 3 N 4 particles in the composite powder is small, and the residual T
It is understood that the i concentration and the ZrO 2 concentration are also low, and as a result, a Si 3 N 4 sintered body having extremely high strength can be obtained. However,
In Sample 7, the amount of Ti added was small, so that TiN
The amount is small, the grain growth during sintering is large, and the strength of the sintered body is slightly reduced. Sample 9 has a large amount of added Ti, and sample 10 has a short mixing time, so that Ti remains in the composite powder and the strength of the sintered body is slightly reduced. Since the mixing time of the sample 12 is long, the impurity Z
rO 2 is increased, and the strength of the sintered body is slightly reduced.

【0026】[0026]

【発明の効果】本発明によれば、窒化ケイ素焼結体の原
料粉末として、生産が比較的容易で、焼結時における結
晶粒成長を抑制することが可能な、微細粒子からなる窒
化ケイ素粉末、及びその製造方法を提供することができ
る。
According to the present invention, as a raw material powder for a silicon nitride sintered body, silicon nitride powder composed of fine particles, which is relatively easy to produce and can suppress crystal grain growth during sintering, , And a method for producing the same.

【0027】本発明の窒化ケイ素複合粉末を用いること
によって、室温から1100℃の中低温域で強度等の機
械的特性に優れ、高い信頼性が要求される自動車エンジ
ン部材をはじめ、耐摩工具等の構造用セラミックス材料
として極めて有用な窒化ケイ素焼結体を製造することが
できる。
By using the silicon nitride composite powder of the present invention, it is excellent in mechanical properties such as strength in a medium to low temperature range of from room temperature to 1100 ° C., and is required for high-reliability automobile engine parts, wear-resistant tools and the like. A silicon nitride sintered body that is extremely useful as a structural ceramic material can be manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が100nm以下の窒化ケイ素
粒子と窒化チタン粒子とから構成された平均直径が1μ
m以上である窒化ケイ素複合粉末。
An average diameter of 1 μm composed of silicon nitride particles and titanium nitride particles having an average particle diameter of 100 nm or less.
m or more.
【請求項2】 窒素雰囲気中において窒化ケイ素粉末と
金属チタン粉末とを10〜200Gの加速度で混合する
ことを特徴とする窒化ケイ素複合粉末の製造方法。
2. A method for producing a silicon nitride composite powder, comprising mixing a silicon nitride powder and a metal titanium powder at a rate of 10 to 200 G in a nitrogen atmosphere.
【請求項3】 金属チタン粉末の添加量が全体の10〜
50重量%であることを特徴とする、請求項2に記載の
窒化ケイ素複合粉末の製造方法。
3. The addition amount of the metal titanium powder is 10 to 10
The method for producing a silicon nitride composite powder according to claim 2, wherein the content is 50% by weight.
【請求項4】 混合時間が0.1時間〜10時間である
ことを特徴とする、請求項2又は3に記載の窒化ケイ素
複合粉末の製造方法。
4. The method for producing a silicon nitride composite powder according to claim 2, wherein the mixing time is from 0.1 hour to 10 hours.
JP30385397A 1997-11-06 1997-11-06 Method for producing silicon nitride composite powder Expired - Fee Related JP4061678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30385397A JP4061678B2 (en) 1997-11-06 1997-11-06 Method for producing silicon nitride composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30385397A JP4061678B2 (en) 1997-11-06 1997-11-06 Method for producing silicon nitride composite powder

Publications (2)

Publication Number Publication Date
JPH11139882A true JPH11139882A (en) 1999-05-25
JP4061678B2 JP4061678B2 (en) 2008-03-19

Family

ID=17926092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30385397A Expired - Fee Related JP4061678B2 (en) 1997-11-06 1997-11-06 Method for producing silicon nitride composite powder

Country Status (1)

Country Link
JP (1) JP4061678B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139380A (en) * 1999-11-09 2001-05-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite material and method for manufacturing the same
WO2002057197A1 (en) * 2001-01-22 2002-07-25 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
JP2002338365A (en) * 2001-05-14 2002-11-27 Sumitomo Electric Ind Ltd Aluminum nitride-base composite powder and method of manufacturing for the same
EP1332816A2 (en) * 2002-01-30 2003-08-06 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
JP2009215150A (en) * 2008-03-07 2009-09-24 Korea Inst Of Science & Technology Method for preparation of titanium nitride powder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139380A (en) * 1999-11-09 2001-05-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite material and method for manufacturing the same
WO2002057197A1 (en) * 2001-01-22 2002-07-25 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
US7132061B2 (en) 2001-01-22 2006-11-07 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
EP1361202A1 (en) * 2001-01-22 2003-11-12 Sumitomo Electric Industries, Ltd. Electroconductive silicon nitride based composite sintered body and method for preparation thereof
EP1361202A4 (en) * 2001-01-22 2004-07-28 Sumitomo Electric Industries Electroconductive silicon nitride based composite sintered body and method for preparation thereof
US7008893B2 (en) 2001-04-20 2006-03-07 Sumitomo Electric Industries, Ltd. Silicon nitride-based composite sintered body and producing method thereof
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US6844282B2 (en) 2001-04-20 2005-01-18 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
JP2002338365A (en) * 2001-05-14 2002-11-27 Sumitomo Electric Ind Ltd Aluminum nitride-base composite powder and method of manufacturing for the same
EP1332816A3 (en) * 2002-01-30 2004-06-30 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
US6911162B2 (en) 2002-01-30 2005-06-28 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
EP1332816A2 (en) * 2002-01-30 2003-08-06 Sumitomo Electric Industries, Ltd. Conductive silicon nitride composite sintered body and a process for the production thereof
JP2009215150A (en) * 2008-03-07 2009-09-24 Korea Inst Of Science & Technology Method for preparation of titanium nitride powder
JP4695173B2 (en) * 2008-03-07 2011-06-08 コリア インスティテュート オブ サイエンス アンド テクノロジー Method for preparing titanium nitride powder

Also Published As

Publication number Publication date
JP4061678B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
WO1995017356A1 (en) Low temperature, pressureless sintering of silicon nitride
JPH05506205A (en) Polishing compact of cubic boron nitride and its manufacturing method
Mitra et al. Processing—microstructure—property relationships in reaction hot-pressed MoSi2 and MoSi2/SiCp composites
JP2539712B2 (en) Nitride powder
US5023214A (en) Silicon nitride ceramics containing a metal silicide phase
JPS6374972A (en) Manufacture of self-supporting ceramic mass
JPH11139882A (en) Composite silicon nitride powder and its production
JP4940239B2 (en) Boron oxide composite material
JP3266200B2 (en) Silicon nitride based sintered body
JPH0797266A (en) Silicon nitride-based sintered material and its production
JP2001019411A5 (en)
JP2502322B2 (en) High toughness cermet
JPH11139874A (en) Silicon nitride-base ceramics and its production
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JPH11139813A (en) Amorphous silicon nitride powder and its production
JPH06340941A (en) Nano-phase composite hard material and its production
JP2796011B2 (en) Whisker reinforced cemented carbide
KR20130125649A (en) Cermet with ni3al binder phase and method of manufacturing the same
JP2723170B2 (en) Superplastic silicon nitride sintered body
JPH10338576A (en) Silicon nitride sintered compact and its production
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JP2001152203A (en) Planar crystal tungsten carbide-containing powder and producing method therefor
JPH09208324A (en) Silicon nitride composite powder and its production
JPS61295271A (en) Titanium compound base high hardness sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees