JP2001139380A - Silicon nitride-based composite material and method for manufacturing the same - Google Patents

Silicon nitride-based composite material and method for manufacturing the same

Info

Publication number
JP2001139380A
JP2001139380A JP31851099A JP31851099A JP2001139380A JP 2001139380 A JP2001139380 A JP 2001139380A JP 31851099 A JP31851099 A JP 31851099A JP 31851099 A JP31851099 A JP 31851099A JP 2001139380 A JP2001139380 A JP 2001139380A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
particles
nitride
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31851099A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP31851099A priority Critical patent/JP2001139380A/en
Publication of JP2001139380A publication Critical patent/JP2001139380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Sliding-Contact Bearings (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wear resistant material which is a silicon nitride-based composite material formed by dispersing dispersion particles essentially consisting of nitrides of metals into a matrix essentially consisting of Si3N4, is manufactured by using the Si3N4 raw material having an oxygen quantity of an ordinary level and is practically problem-free in spite of a wide variation in the oxygen quantity of the material to an ordinary level. SOLUTION: The silicon nitride-base composite material which is formed by dispersing the particles essentially consisting of the metal nitride of <=200 nm in an average grain size at 10 to 50 vol.% as the dispersion particles into the matrix consisting of silicon nitride particles of <=200 nm in an average grain size and grain boundary phase and in which the total oxygen quantity in the sintered compact is large within a range from the total oxygen quantity in the raw material powder up to maximum 3 wt.%. The material is obtained by pulverizing and mixing the sintering assistant powder and the metals and/or their nitride powder in such a manner that the average grain size over the entire part attains <=100 nm and the increased oxygen quantity in the powder attains a range of 0.5 to 3 wt.% and sintering the moldings thereof under a nonoxidizing atmosphere containing nitrogen at 1,000 to 1,600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種機構部材や切
削工具・摺動部材のような耐摩耗部材として有用な高い
耐摩耗性を持つ窒化珪素系複合材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based composite material having high wear resistance useful as wear-resistant members such as various mechanical members and cutting tools and sliding members.

【0002】[0002]

【従来の技術】窒化珪素は、硬度、機械的強度、耐熱性
に優れ、化学的にも安定であることから、自動車のエン
ジン部品に代表される各種機構部材や切削工具材料およ
び軸受等の耐摩・摺動部材に広く用いられてきた。近年
これらいずれの分野においても、材料に課せられる性能
レベルが過酷になりつつある。耐摩耗性能を要求される
分野においても同様である。
2. Description of the Related Art Silicon nitride is excellent in hardness, mechanical strength and heat resistance and is chemically stable, so that it is used for various mechanical members represented by automobile engine parts, cutting tool materials and bearings. -Widely used for sliding members. In recent years, the performance levels imposed on materials in all these fields have become severe. The same applies to fields requiring abrasion resistance.

【0003】例えば高い耐摩耗性が要求されている特定
の自動車部品や塑性加工用の工具に窒化珪素系複合材料
を用いる場合には、超硬合金(WCからなる硬質粒子と
Co等の結合相とからなるサーメット材料)やハイスの
ような従来の材料に比べ顕著に高い耐摩耗性が、要求さ
れている。しかしながら窒化珪素系の複合材料は、これ
らの材料に比べ高価であるとともに、耐摩耗性は、その
価格レベルに見合うだけの満足したレベルにはないのが
現状である。なお本発明で「窒化珪素系」とは、主結晶
相として窒化珪素(Si34)および/またはサイアロ
ンを含むセラミックスを指す。また「窒化珪素系の複合
材料」とは、このようなセラミックスを主結晶相とする
マトリックス中に、それとは異なった成分を分散複合化
させた材料を指す。
For example, when a silicon nitride-based composite material is used for specific automobile parts or plastic working tools requiring high wear resistance, a cemented carbide (hard particles composed of WC and a binder phase such as Co) are used. Cermet materials) and remarkably higher wear resistance than conventional materials such as high-speed steel. However, at present, silicon nitride-based composite materials are more expensive than these materials, and the abrasion resistance is not at a satisfactory level corresponding to the price level. In the present invention, “silicon nitride-based” refers to a ceramic containing silicon nitride (Si 3 N 4 ) and / or sialon as a main crystal phase. The "silicon nitride-based composite material" refers to a material in which a different component is dispersed and composited in a matrix having such a ceramic as a main crystal phase.

【0004】このような耐摩耗性の材料として、特開平
10−338576号公報に、平均粒径が200nm以
下の窒化珪素系粒子と粒界相とからなるマトリックス中
に、平均粒径が200nm以下の窒化チタン(TiN)
粒子を分散させた窒化珪素系複合材料が、開示されてい
る。この材料は、室温から900℃の中低温域で高い機
械的強度を示す。
Japanese Unexamined Patent Publication No. Hei 10-338576 discloses such a wear-resistant material in a matrix composed of silicon nitride-based particles having an average particle diameter of 200 nm or less and a grain boundary phase. Titanium nitride (TiN)
A silicon nitride-based composite material in which particles are dispersed is disclosed. This material exhibits high mechanical strength in the middle to low temperature range from room temperature to 900 ° C.

【0005】同公報によれば、この材料は、窒化珪素
(Si34)粉末、焼結助剤粉末および金属Ti粉末を
混合した混合粉末の成形体を、窒素雰囲気中1000〜
1400℃で焼結することによって得られる。この場合
混合された金属Ti粉末には、それ自体の塑性変形能に
よって、Si34とそれ自体の双方の粒子を微細化する
働きがあり、これによっていずれの粒子も、その平均粒
径が200nm以下に微細化される。なお好ましい混合
方法は、高速粉砕効果をともなうメカニカルアロイング
法である。さらに焼結時には、金属Ti粒子は、窒化さ
れてTiNになるが、それとともにSi34粒子の粒成
長が抑えられて、上記のように微細な粒子からなる焼結
体が得られる。同公報の実施例によれば、1.3〜2.
5GPaの高い曲げ強度のものが紹介されている。
According to the publication, this material is used to form a compact of a mixed powder obtained by mixing a silicon nitride (Si 3 N 4 ) powder, a sintering aid powder and a metal Ti powder in a nitrogen atmosphere at 1000 to 1000 μm.
It is obtained by sintering at 1400 ° C. In this case, the mixed metal Ti powder has a function of miniaturizing both the Si 3 N 4 and the particles themselves due to its own plastic deformability, and thereby, each of the particles has an average particle diameter. The size is reduced to 200 nm or less. A preferable mixing method is a mechanical alloying method having a high-speed pulverizing effect. Further, at the time of sintering, the metal Ti particles are nitrided to become TiN, and at the same time, the grain growth of the Si 3 N 4 particles is suppressed, and a sintered body composed of fine particles as described above is obtained. According to the embodiment of the publication, 1.3 to 2 ..
Those having a high bending strength of 5 GPa are introduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら本発明者
のその後の研究によると、この方法にしたがって材料の
耐摩耗性能のばらつきを抑え、実用上問題の無いレベル
に維持するためには、原料から焼結に至るまでの酸素増
加量を、1.5重量%未満に抑える必要のあることが分
かった。またそのためには、使用するSi34原料粉末
中の酸素量を1重量%未満に抑える必要があることも分
かった。すなわち特開平10−338576号公報に示
された手順に沿って、同公報記載の耐摩耗性能を安定に
得るためには、含有酸素量の少ない特殊な粉末を選ぶ
か、または通常の市販粉末を予め脱酸素処理したり、特
殊な条件下で焼結しつつ酸素を除く必要があり、コスト
アップが避けられないと言う問題があった。また同公報
の方法によって得られる複合材料は、このような原料中
の酸素量のコントロールを行わないと、耐摩耗性能レベ
ルの低いものが生じ易くなり、その製造のばらつきが大
きくなることも分かった。
However, according to a subsequent study by the present inventor, in order to suppress the variation in the abrasion resistance of the material according to this method and to maintain it at a practically acceptable level, the raw material must be sintered. It was found that the amount of increase in oxygen up to the conclusion had to be suppressed to less than 1.5% by weight. It has also been found that for this purpose, the amount of oxygen in the used Si 3 N 4 raw material powder must be suppressed to less than 1% by weight. That is, in order to stably obtain the abrasion resistance described in JP-A-10-338576, a special powder having a small oxygen content is selected, or a normal commercial powder is used. It is necessary to remove oxygen while performing a deoxidizing treatment in advance or sintering under special conditions, which raises a problem that a cost increase cannot be avoided. Further, it was also found that the composite material obtained by the method of the same publication tends to have a low wear resistance performance level unless the oxygen content in the raw material is controlled, and that the production variability increases. .

【0007】[0007]

【課題を解決するための手段】本発明は、上記のような
課題を解決するためになされたものであり、安定した高
い耐摩耗性を示すより安価な同系材料の提供を目的とし
たものである。本発明の複合材料は、平均粒径が200
nm以下の窒化珪素質粒子と粒界相とからなるマトリッ
クス中に、分散粒子として、平均粒径が200nm以下
の金属窒化物を主成分とした粒子が10〜50体積%分
散されており、焼結体中の全酸素量が、原料粉末中の全
酸素量より最大3重量%までの範囲内で多い窒化珪素系
複合材料である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide a less expensive material of the same type showing stable and high wear resistance. is there. The composite material of the present invention has an average particle size of 200
In a matrix composed of silicon nitride-based particles having a particle size of 200 nm or less and particles containing metal nitride having a mean particle size of 200 nm or less as a main component, 10 to 50% by volume is dispersed as a dispersed particle. This is a silicon nitride-based composite material in which the total oxygen content in the compact is larger than the total oxygen content in the raw material powder by up to 3% by weight.

【0008】本発明の材料は、窒化珪素粉末と、焼結助
剤粉末と、金属および/またはそれの窒化物粉末とを準
備する工程と、これらの粉末を全体の平均粒径が100
nm以下、粉末中の増加酸素量が0.5〜3重量%の範
囲となるように粉砕混合し混合粉末とする工程と、同混
合粉末を成形し成形体とする工程と、同成形体を100
0〜1600℃、窒素を含む非酸化性雰囲気下にて焼結
し、焼結体とする工程とを含む方法によって得られる。
[0008] The material of the present invention comprises a step of preparing a silicon nitride powder, a sintering aid powder, and a metal and / or a nitride powder thereof.
nm or less, a step of pulverizing and mixing to obtain a mixed powder so that the increased oxygen amount in the powder is in the range of 0.5 to 3% by weight, a step of molding the mixed powder to form a molded body, 100
And sintering in a non-oxidizing atmosphere containing nitrogen at 0 to 1600 ° C. to form a sintered body.

【0009】[0009]

【発明の実施の形態】本発明の複合材料について、その
製造方法も絡めて以下詳述する。本発明の複合材料のS
34粒子と分散粒子の平均粒径は、200nm以下で
ある。さらに原料時点より酸素量の増加を3重量%以下
に抑えることによって、その含有酸素量が制御されてい
る。したがってこの範囲内の平均粒径と適切な酸素量に
よる相乗効果によって、高い耐摩耗性能を示す。両粒子
の平均粒径と酸素量の増加分が、この上限を越えると耐
摩耗性が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite material of the present invention will be described in detail below, including its manufacturing method. S of the composite material of the present invention
The average particle size of the i 3 N 4 particles and the dispersed particles is 200 nm or less. Further, the amount of oxygen contained is controlled by suppressing the increase in the amount of oxygen to 3% by weight or less from the time of the raw material. Therefore, high wear resistance is exhibited by the synergistic effect of the average particle diameter in this range and an appropriate amount of oxygen. If the increase in the average particle size and the amount of oxygen of both particles exceeds these upper limits, the abrasion resistance decreases.

【0010】この原因については明確ではないが、概ね
以下のように考えられる。大気中でアブレッシブ摩耗し
たSi34粒子や同粒子からなるマトリックス内に生成
した若干量の酸窒化珪素粒子および同マトリックス中に
分散された分散粒子が、いずれも極めて細かいために容
易に酸化して、微細緻密な平滑面を形成するからであ
る。この場合おそらく酸素増加量制御によって、この酸
窒化珪素の量が適切に制御され、これがこの平滑面の形
成を促すとともに、結晶粒子の脱落防止にも関与してい
るものと推察される。なお主結晶相粒子が、例え脱落し
たとしても、微細であるために同粒子の材料表面への攻
撃性が弱められ、材料表面の粗化が顕著に進まないこと
も関係しているものと推察される。
Although the cause is not clear, it is generally considered as follows. Si 3 N 4 particles abraded in the air and some silicon oxynitride particles formed in a matrix composed of the same particles and dispersed particles dispersed in the matrix are easily oxidized because they are extremely fine. This is because a fine dense smooth surface is formed. In this case, it is presumed that the amount of the silicon oxynitride is appropriately controlled, probably by controlling the amount of increase in oxygen, which promotes the formation of the smooth surface and also contributes to the prevention of the crystal grains from falling off. Even if the main crystal phase particles fall off, it is presumed that the fineness of these particles weakens the aggressiveness of the particles on the material surface and that the roughening of the material surface does not progress significantly. Is done.

【0011】分散粒子の分散量は、10〜50体積%と
する。10体積%未満では、マトリックスを構成する窒
化珪素系の粒子と、酸窒化珪素粒子の粒成長を抑えるこ
とができず、特にSi34粒子の平均粒径を200nm
以下に制御できなくなる。他方50体積%を越えると、
分散粒子同士が凝集して焼結中に合体し粒成長が起こ易
くなり、その平均粒径を200nm以下に制御できなく
なる。その量は、10〜40体積%とするのが望まし
い。
The amount of the dispersed particles is 10 to 50% by volume. If the content is less than 10% by volume, it is impossible to suppress the growth of silicon nitride-based particles and silicon oxynitride particles constituting the matrix, and in particular, the average particle size of Si 3 N 4 particles is 200 nm.
You will not be able to control below. On the other hand, if it exceeds 50% by volume,
The dispersed particles agglomerate and coalesce during sintering, which tends to cause grain growth, and the average particle size cannot be controlled to 200 nm or less. The amount is desirably 10 to 40% by volume.

【0012】分散粒子中の窒化物は、遷移金属の窒化物
でよいが、本発明の目的とする効果を十分達成するため
には、周期律表のIVa族元素(Ti、ZrおよびH
f)、Va族元素(V、NbおよびTa)およびVIa
族元素(Cr、MoおよびW)の窒化物、中でも特にT
iおよびTaの窒化物が望ましい。分散粒子中の金属窒
化物中には、若干の炭素や酸素を含んでもよい。例えば
部分的に炭素および/または酸素が窒素とともに化合し
た形態、さらには炭素および/または酸素が単独に存在
していてもよい。また複数の金属元素を含む窒化物(複
合窒化物)が共存していてもよい。このように複数種の
金属元素の窒化物を共存させるためには、複数種の金属
元素の窒化物粉末および/または同金属の粉末を予め混
合する。または金属間化合物や複合窒化物のような形態
で添加してもよい。なおこのように二種以上の金属元素
を含む形態で添加することによって、添加された異種金
属元素を含む分散粒子同士は、お互いに凝集し、それに
よって粒成長し難いため、分散粒子の分散平均粒径が、
さらに細かくなって、一層材料の耐摩耗性が向上する。
The nitride in the dispersed particles may be a transition metal nitride, but in order to sufficiently achieve the desired effects of the present invention, elements of Group IVa of the periodic table (Ti, Zr and H) are required.
f), Group Va elements (V, Nb and Ta) and VIa
Of group III elements (Cr, Mo and W), especially T
i and Ta nitrides are preferred. The metal nitride in the dispersed particles may contain some carbon or oxygen. For example, carbon and / or oxygen may be partially combined with nitrogen, or carbon and / or oxygen may be present alone. Further, a nitride containing a plurality of metal elements (composite nitride) may coexist. In order to coexist nitrides of a plurality of metal elements in this way, nitride powders of a plurality of metal elements and / or powders of the same metal are mixed in advance. Alternatively, it may be added in a form such as an intermetallic compound or a composite nitride. In this way, by adding in a form containing two or more kinds of metal elements, the dispersed particles containing the added dissimilar metal elements agglomerate with each other, thereby making it difficult for the particles to grow, so that the dispersion average of the dispersed particles is Particle size is
It becomes finer, and the wear resistance of the material is further improved.

【0013】また本発明の材料は、その全酸素量が、原
料粉末中の全酸素量より最大3重量%まで多くなるよう
に調製される。ここで言う「焼結体中の全酸素量」と
は、それが化学的に結合しているか否かは問わず、焼結
体中に存在する全ての酸素の量である。また「原料粉末
中の全酸素量」とは、それが化学的に結合しているか否
かは問わず、原料粉末中に存在する全ての酸素の量であ
る。なお焼結助剤に酸化物を用いる場合が多いため、こ
の酸素の内の多くは焼結体の粒界相に存在する。この両
者の量差、すなわち概ね製造工程中での酸素の増加量を
3重量%以下に制御する。この量差が無いかまたは酸素
が製造工程を経て減少すると、材料に空孔が生じ易くな
り材料表面の開気孔量が増える。その結果耐摩耗性が低
下する。なお耐摩耗性向上のためには開気孔の量は、
0.5%以下に抑えるのが望ましい。他方この量差が3
重量%を越えると、原料中に存在する酸素やその後の製
造工程中に外部から取り込まれる酸素の多くは、粒界相
に集まるため、粒界相を形成するガラス相が多くなる。
また焼結途上でのマトリックスや分散粒子の異常な粒成
長が生じ易くなり、上述の範囲内での平均粒径の制御が
できなくなる。この酸素量差は、1.5〜2重量%であ
るのが好ましい。なおこれらの酸素の一部は、酸窒化珪
素として焼結体のマトリックス中に析出する。
The material of the present invention is prepared so that the total oxygen content is up to 3% by weight than the total oxygen content in the raw material powder. The term “total oxygen content in the sintered body” as used herein refers to the total amount of oxygen present in the sintered body regardless of whether or not it is chemically bonded. The “total amount of oxygen in the raw material powder” is the total amount of oxygen present in the raw material powder regardless of whether or not it is chemically bonded. Since an oxide is often used as a sintering aid, most of the oxygen exists in the grain boundary phase of the sintered body. The difference between the two, that is, the amount of increase in oxygen during the manufacturing process is generally controlled to 3% by weight or less. If there is no difference in this amount or if oxygen decreases through the manufacturing process, vacancies are likely to be formed in the material, and the amount of open pores on the surface of the material increases. As a result, wear resistance is reduced. In order to improve wear resistance, the amount of open pores is
It is desirable to keep it to 0.5% or less. On the other hand, this amount difference is 3
If the content is more than 10% by weight, much of the oxygen present in the raw material and oxygen taken in from the outside during the subsequent manufacturing process will be collected in the grain boundary phase, so that the glass phase forming the grain boundary phase will increase.
In addition, abnormal grain growth of the matrix and the dispersed particles during sintering is likely to occur, and it becomes impossible to control the average particle diameter within the above range. This difference in the amount of oxygen is preferably 1.5 to 2% by weight. Some of these oxygens precipitate as silicon oxynitride in the matrix of the sintered body.

【0014】また本発明の材料は、窒化珪素粉末と、焼
結助剤粉末と、金属および/またはそれらの窒化物粉末
とを準備する工程と、これらの粉末を全体の平均粒径が
100nm以下、粉末中の増加酸素量が0.5〜3重量
%の範囲となるように粉砕混合し混合粉末とする工程
と、同混合粉末を成形し成形体とする工程と、同成形体
を1000〜1600℃、窒素を含む非酸化性雰囲気中
にて焼結し、焼結体とする工程とを含む方法によって得
られる。
Further, the material of the present invention comprises a step of preparing a silicon nitride powder, a sintering aid powder, and a metal and / or a nitride powder thereof; A step of pulverizing and mixing the mixed powder so that the amount of oxygen in the powder is in the range of 0.5 to 3% by weight to form a mixed powder; a step of molding the mixed powder to form a molded body; Sintering in a non-oxidizing atmosphere containing nitrogen at 1600 ° C. to form a sintered body.

【0015】原料粉末としては、いずれも市販のもので
よいが、Si34粉末は、酸素量が1〜2重量%のもの
を用いるのが望ましい。酸素量が1重量%未満または2
重量%を越えると、粒成長が生じ易く、主結晶相粒子の
サイズコントロールが難しくくなることがあり、耐摩耗
性能も低下し易い。またその結晶型は、α型、β型のい
ずれでもよい。Si34粉末、焼結助剤粉末とも、粒径
制御のし易さと耐摩耗性向上のため、その平均粒径は小
さいほど望ましいが、5μm以下、さらには2μm以下
のものがより望ましい。分散粒子として添加される金属
粉末やその窒化物の粉末の平均粒径は、小さいほど望ま
しいが、概ね10μm以下、さらには5μm以下とする
のが好ましい。
As the raw material powder, any of commercially available powders may be used, but it is preferable to use Si 3 N 4 powder having an oxygen content of 1 to 2% by weight. Oxygen content is less than 1% by weight or 2
If the content is more than 10% by weight, grain growth is likely to occur, and it may be difficult to control the size of the main crystal phase particles, and the abrasion resistance tends to decrease. The crystal form may be either α-type or β-type. For both the Si 3 N 4 powder and the sintering aid powder, the average particle diameter is desirably small as it is easy to control the particle diameter and the abrasion resistance is improved, but the particle diameter is preferably 5 μm or less, more preferably 2 μm or less. The smaller the average particle size of the metal powder or the nitride powder added as the dispersed particles, the better, but it is preferably about 10 μm or less, more preferably 5 μm or less.

【0016】これらの粉末を全体の平均粒径が100n
m以下、粉末中の増加酸素量が0.5〜3重量%の範囲
となるように粉砕混合し混合粉末とする。粉砕後の平均
粒径が100nmを越すと、焼結後の主結晶相粒子およ
び分散粒子の平均粒径が200nm以下にならない。混
合は粉砕を伴うボールミルやアトライターのような方法
によって行うのが望ましい。例えば前述の特開平10−
338576号公報に記載されているように、この種の
混合装置を用いてメカニカルアロイングを行う。この方
法によれば、前述のように分散粒子源として添加した金
属粉末の塑性変形能によって、平均粒径100nm以下
の微細な混合粉末が得られる。粉砕の加速度、粉末と粉
砕媒体とのチャージ量比率、粉砕時間等の条件は、当初
の原料粉末の平均粒径レベルによって適宜選択する。ま
た粉砕後の粉末の酸素量を上述のような範囲内に制御す
るためには、粉砕時の雰囲気を窒素ガスのような不活性
ガス雰囲気に調整するのが望ましい。Si34粉末、焼
結助剤の粉末ならびに分散粒子となる金属窒化物の粉末
は、予め金属やその有機塩・無機塩から化学的または物
理的な手段によって、極めて微細な粒子を製出させても
よい。このような手段としては、例えば金属の有機塩か
ら共沈物を得る方法、例えばSi−Ti−N系のような
無機質の複合化合物から熱処理によって、製出する方法
等々の方法がある。また粉砕手段には、上記の他に振動
式の粉砕方式等々がある。
These powders have a total average particle size of 100 n.
m or less, and pulverized and mixed so that the increased oxygen amount in the powder is in the range of 0.5 to 3% by weight to obtain a mixed powder. If the average particle size after pulverization exceeds 100 nm, the average particle size of the main crystal phase particles and the dispersed particles after sintering does not become 200 nm or less. Mixing is desirably performed by a method such as a ball mill or an attritor that involves grinding. For example, Japanese Patent Application Laid-Open No.
As described in JP-A-338576, mechanical alloying is performed using this type of mixing apparatus. According to this method, a fine mixed powder having an average particle diameter of 100 nm or less can be obtained due to the plastic deformation ability of the metal powder added as a dispersed particle source as described above. Conditions such as the acceleration of the pulverization, the charge amount ratio between the powder and the pulverizing medium, and the pulverization time are appropriately selected according to the initial average particle size level of the raw material powder. Further, in order to control the oxygen content of the powder after pulverization within the above range, it is desirable to adjust the pulverization atmosphere to an inert gas atmosphere such as nitrogen gas. The Si 3 N 4 powder, the sintering aid powder, and the metal nitride powder to be dispersed particles produce extremely fine particles from a metal or an organic or inorganic salt thereof by chemical or physical means in advance. May be. Examples of such means include a method of obtaining a coprecipitate from an organic salt of a metal, a method of producing a coprecipitate from an inorganic composite compound such as a Si—Ti—N system by heat treatment, and the like. In addition to the above-mentioned grinding means, there is a vibration-type grinding method and the like.

【0017】以上のように調製された混合粉末は、通常
の乾式プレス成形法、押し出し成形法、ドクターブレー
ド成形法および射出成形法のような公知の成形法を用い
ることができ、所望する形状に合わせて品質上・生産上
最も望ましい成形方法を選べばよい。なお成形に先立ち
粉砕混合後の混合粉末を顆粒状に造粒し、予めその嵩密
度を高め、成形性を高めることもできる。
The mixed powder prepared as described above can be formed by a known molding method such as a conventional dry press molding method, an extrusion molding method, a doctor blade molding method, and an injection molding method. In addition, the most desirable molding method in terms of quality and production may be selected. Prior to molding, the mixed powder after pulverization and mixing may be granulated to increase its bulk density in advance to enhance moldability.

【0018】成形体は、窒素を含む非酸化性雰囲気中、
1000〜1600℃の温度範囲で焼結する。また雰囲
気ガスの組成や圧力は、上記した粉砕混合された混合粉
末の酸素量ならびに分散粒子となる粉末中の金属の含有
量によって調整する。例えば前者が比較的3重量%に近
い場合や後者が50重量%以上の場合には、窒素ガスの
みかまたはその分圧を高めにしたり、さらに高圧の窒素
ガスを用いる。なお焼結の加熱手段としては、通常の常
圧焼結でもよいが、成形体を短時間で昇温・均一加熱で
きるパルス放電焼結法や高周波誘導加熱式の焼結法のよ
うな手段が望ましい。なお焼結時に雰囲気ガスによって
加圧するか、または機械的に外圧を加えて、加圧下で焼
結してもよい。
The compact is placed in a non-oxidizing atmosphere containing nitrogen.
Sintering is performed in a temperature range of 1000 to 1600 ° C. The composition and pressure of the atmosphere gas are adjusted according to the oxygen content of the above-mentioned pulverized mixed powder and the content of metal in the powder to be dispersed particles. For example, when the former is relatively close to 3% by weight or the latter is 50% by weight or more, only nitrogen gas or its partial pressure is increased, or nitrogen gas of higher pressure is used. As the heating means for sintering, ordinary normal pressure sintering may be used, but a means such as a pulse discharge sintering method or a high frequency induction heating type sintering method capable of heating and uniformly heating the compact in a short time is used. desirable. The sintering may be performed by pressurizing with an atmospheric gas or by applying an external pressure mechanically and applying pressure.

【0019】[0019]

【実施例】実施例1 表1に記載のSi34粉末と焼結助剤粉末、金属または
金属窒化物からなる分散粒子源粉末を準備した。いずれ
の粉末も市販のものである。なおY23およびAl23
粉末はいずれもその平均粒径が1μmのものとした。表
中のSi34粉末と焼結助剤粉末の量は、分散粒子源粉
末を含めず、両者の総量中の重量%で表示してある。こ
れらのマトリックスとなる原料粉末と分散粒子源粉末と
を、後者が表の体積%、残部前者の体積%となるように
混合した。例えば試料1では、Si34粉末と焼結助剤
粉末とが表の重量比率で構成されるマトリックスとなる
粉末が70体積%、金属Ti粉末と金属Ta粉末がそれ
ぞれ10体積%、TiN粉末が10体積%となるように
混合した。なお秤量時の重量値への換算は、それぞれの
理論密度を用いて行った。以下の実施例も同様である。
例えば本実施例の場合の同密度値は、Si34、Y
23、Al23、Ti、TaおよびTiNの順に、g/
cm3単位で、それぞれ3.40、5.03、3.9
8、4.60、7.70および5.40とした。
Example 1 A dispersed particle source powder composed of a Si 3 N 4 powder, a sintering aid powder, and a metal or metal nitride described in Table 1 was prepared. Both powders are commercially available. Note that Y 2 O 3 and Al 2 O 3
Each of the powders had an average particle size of 1 μm. In the table, the amounts of the Si 3 N 4 powder and the sintering aid powder are indicated by weight% of the total amount of both, not including the dispersed particle source powder. The raw material powder to be the matrix and the dispersed particle source powder were mixed such that the latter was the volume% in the table and the remainder was the volume% of the former. For example, in sample 1, 70% by volume of a matrix powder composed of Si 3 N 4 powder and sintering aid powder in the weight ratios shown in the table, 10% by volume of metallic Ti powder and 10% by volume of metallic Ta powder, and TiN powder Was 10% by volume. The conversion into the weight value at the time of weighing was performed using the respective theoretical densities. The same applies to the following embodiments.
For example, in the case of this embodiment, the same density value is Si 3 N 4 , Y
G / g in the order of 2 O 3 , Al 2 O 3 , Ti, Ta and TiN.
3.40, 5.03, 3.9 in cm 3 units
8, 4.60, 7.70 and 5.40.

【0020】[0020]

【表1】 [Table 1]

【0021】なお原料粉末全体の混合前の酸素量は、表
2の「全酸素量」欄に記載されたレベルであった。なお
この酸素量Xは、各原料粉末の化学分析値を用いて、そ
の総和とした。
The oxygen content of the whole raw material powder before mixing was at the level described in the column "Total oxygen content" in Table 2. In addition, this oxygen amount X was made into the total sum using the chemical analysis value of each raw material powder.

【0022】[0022]

【表2】 [Table 2]

【0023】秤取した各試料の原料粉末を、容器、ボー
ル(粉砕媒体)が窒化珪素製の遊星ボールミルを用い
て、粉砕混合した。なおボールは、嵩で粉末の2倍加え
た。粉末とボールを投入した後、窒素ガスを流しなが
ら、150Gの加速度にて、5時間混合粉砕した。混合
粉末の平均粒径は、早稲田、松原共著「X線構造解析」
の第119〜126頁(1998年4月10日、内田老
鶴圃刊)に記載されたホールの式を用い、試料のX線回
折データから算出した。また酸素増加量ΔXは、化学分
析によって全酸素量を求め、この量から当初の量Xを差
し引いて求めた。以上の結果も合わせて表2に示した。
The weighed raw material powders of each sample were pulverized and mixed using a planetary ball mill whose container and balls (pulverizing medium) were made of silicon nitride. The ball was added twice as much as the powder in bulk. After charging the powder and the ball, the mixture was pulverized for 5 hours at an acceleration of 150 G while flowing nitrogen gas. The average particle size of the mixed powder is calculated using the "X-ray structural analysis" written by Waseda and Matsubara.
Pp. 119-126 (April 10, 1998, published by Uchida Rokaku Toho) and calculated from the X-ray diffraction data of the sample. Further, the oxygen increase amount ΔX was obtained by obtaining the total oxygen amount by chemical analysis, and subtracting the initial amount X from this amount. Table 2 also shows the above results.

【0024】混合粉末は、バインダーとしてパラフィン
を3重量%添加した後、型押し造粒して顆粒状にし、こ
れらの造粒粉末を、焼結した後にJIS R1601に
規定された四点曲げ強度試験片の採れるサイズに成形
し、同成形体を高周波誘導加熱式の炉に配置して、0.
1MPaの窒素中にて昇温し、1400℃で15分間保
持して焼結体を作製した。得られた各焼結体を表3に記
載の各項目について評価し、同表にその結果をまとめ
た。なおいずれの試料もほぼ理論密度の99%以上に緻
密化していた。またビッカース硬度は、いずれも14〜
17GPa間であった。
The mixed powder is added with 3% by weight of paraffin as a binder, and then subjected to embossing and granulation to obtain granules. After sintering these granulated powders, a four-point bending strength test specified in JIS R1601 is performed. It is molded into a size that can take a piece, and the molded body is placed in a high-frequency induction heating type furnace.
The temperature was raised in 1 MPa of nitrogen, and kept at 1400 ° C. for 15 minutes to produce a sintered body. Each of the obtained sintered bodies was evaluated for each item described in Table 3, and the results were summarized in the same table. All the samples were densified to almost 99% or more of the theoretical density. Vickers hardness is 14 ~
It was between 17 GPa.

【0025】[0025]

【表3】 [Table 3]

【0026】なお表中の主結晶相の結晶型および分散粒
子の生成相については、X線回折によって確認した。な
お主結晶相の結晶型は、表3に記載のように全てα型S
34(表にはαと表示)とα型サイアロン(表には
α′と表示)の混晶であった。なお以下の実施例も同じ
であるが、酸窒化珪素も確認された。粒界相を含めたマ
トリックスの成分比率は、化学分析の結果原料配合時の
同比率をほぼ維持していた。また主結晶相の粒子ならび
に分散粒子の平均粒径は、試料の研磨面を50000倍
の電子顕微鏡の画像を撮り、その視野内で線分分割法に
よって統計処理して確認した。分散粒子の体積比率(表
3の分散粒子の全量と表示の値)は、同じ電子顕微鏡の
視野内にて面積比率を確認し、これを体積比率とした。
なお全酸素量Yの確認は、化学分析によって行った。酸
素量差は、このYから前記のXを差し引いて求めた。ま
た四点曲げ強度は、JIS R1601に規定された強
度試験片形状に仕上げ、同規定に基づいて確認した。開
気孔率は、JIS R1634の手順により確認した。
The crystal form of the main crystal phase and the formation phase of the dispersed particles in the table were confirmed by X-ray diffraction. As shown in Table 3, the crystal forms of the main crystal phases were all α-type S
It was a mixed crystal of i 3 N 4 (shown as α in the table) and α-sialon (shown as α ′ in the table). The same applies to the following examples, but silicon oxynitride was also confirmed. As a result of chemical analysis, the component ratio of the matrix including the grain boundary phase was almost maintained at the same ratio when the raw materials were blended. The average particle size of the main crystal phase particles and the dispersed particles was confirmed by taking an image of the polished surface of the sample by an electron microscope at a magnification of 50,000 and performing statistical processing by a line segmentation method in the visual field. The volume ratio of the dispersed particles (the total amount of the dispersed particles in Table 3 and the indicated value) was determined by checking the area ratio in the same visual field of the electron microscope, and this was defined as the volume ratio.
The total amount of oxygen Y was confirmed by chemical analysis. The oxygen amount difference was obtained by subtracting the above X from this Y. In addition, the four-point bending strength was determined based on the finished strength test piece specified in JIS R1601. The open porosity was confirmed by the procedure of JIS R1634.

【0027】[0027]

【表4】 [Table 4]

【0028】次いで以上の各焼結体について、切削試験
および摺動試験による耐摩耗性の評価を行った。その結
果を表4に示す。切削試験による摩耗量の評価は、以下
のようにして行った。各焼結体試料をSNMG1240
8の切削工具チップ形状に仕上げ加工し、これを鋼製の
シャンクに固定し、S45C鋼材を被削材として、周速
200m/分、送り0.5mm/回転、切り込み量2m
mの条件で5分間の試験切削を行った。切削後の各チッ
プ試料の逃げ面の摩耗量Vbを確認した。一方摺動試験
による摩耗量については、各試料から外径が5mmのボ
ールを切り出し、同ボールに10N(ニュートン)の荷
重を加えつつ、温度25℃、湿度60%の大気中でピン
オンデスク法によって行った。この場合の比摩耗量は、
摩耗体積(mm3)を荷重(N)および総走行距離(m
m)で割って算定した。なお表中の摩耗量の単位は、[
10-8mm/N]である。
Next, the wear resistance of each of the above sintered bodies was evaluated by a cutting test and a sliding test. Table 4 shows the results. Evaluation of the wear amount by the cutting test was performed as follows. Each sintered body sample was prepared as SNMG1240
8 and fixed to a steel shank, using S45C steel as the work material, peripheral speed 200 m / min, feed 0.5 mm / rotation, cutting depth 2 m
The test cutting was performed for 5 minutes under the condition of m. The wear amount Vb of the flank of each chip sample after cutting was confirmed. On the other hand, the amount of wear in the sliding test was determined by cutting a ball having an outer diameter of 5 mm from each sample, applying a load of 10 N (Newton) to the ball, and applying a pin-on-desk method in an atmosphere at a temperature of 25 ° C. and a humidity of 60%. Made by. The specific wear in this case is
The wear volume (mm 3 ) is measured by the load (N) and the total mileage (m)
m). The unit of the wear amount in the table is [
10 −8 mm / N].

【0029】以上の結果から以下のことが分かる。
(1)原料Si34の平均粒径が5μm越えるか、また
はその酸素量が2重量%を越えると、主結晶相の平均粒
径が大きくなり、耐摩耗性が低下する傾向にある。しか
し平均粒径、酸素量がそれぞれこの値を越えても、混合
後の酸素量の増加分ΔXを0.5〜3重量%にコントロ
ールすれば、耐摩耗性の低下は実用上問題とならない程
度である。(2)マトリックスの主結晶相を形成するS
34の量(配合量)は、マトリックスの90重量%以
上であるのが、機械的強度・耐摩耗性の点で望ましい。
(3)分散粒子源粉末の平均粒径は、10μm以下とす
るのが機械的強度・耐摩耗性の点で望ましい。(4)分
散粒子の量が、10体積%未満または50体積%を越す
と、耐摩耗性が低下する。
The following can be understood from the above results.
(1) When the average particle size of the raw material Si 3 N 4 exceeds 5 μm or the oxygen content exceeds 2% by weight, the average particle size of the main crystal phase tends to increase and the wear resistance tends to decrease. However, even if the average particle size and the oxygen content exceed these values, if the increase ΔX in the oxygen content after mixing is controlled to 0.5 to 3% by weight, the reduction in wear resistance does not pose a practical problem. It is. (2) S forming the main crystal phase of the matrix
The amount of i 3 N 4 (blended amount) is preferably at least 90% by weight of the matrix in view of mechanical strength and abrasion resistance.
(3) The average particle size of the dispersed particle source powder is desirably 10 μm or less in terms of mechanical strength and abrasion resistance. (4) If the amount of the dispersed particles is less than 10% by volume or exceeds 50% by volume, the abrasion resistance decreases.

【0030】実施例2 実施例1の試料3の原料組成にて、混合粉砕時、特に実
施例1とは粉砕時間のみを変え種々の平均粒径、増加酸
素量の試料粉末を調製した。これらの粉末を実施例1の
試料3と同様にして成形・焼結した。焼結体は、実施例
1と同様にその物性値ならびに耐摩耗性を評価した。焼
結体の特性および摩耗試験の結果をそれぞれ表6と表7
に示す。なおいずれの焼結体も理論密度の99%以上に
緻密化し、それらのビッカース硬度は、14〜17GP
aの間であった。
Example 2 With the raw material composition of Sample 3 of Example 1, sample powders having various average particle diameters and increasing amounts of oxygen were prepared during mixing and pulverization, in particular, only the pulverization time was different from that of Example 1. These powders were molded and sintered in the same manner as in Sample 3 of Example 1. The physical properties and abrasion resistance of the sintered body were evaluated in the same manner as in Example 1. Table 6 and Table 7 show the characteristics of the sintered body and the results of the wear test, respectively.
Shown in Each sintered body was densified to 99% or more of the theoretical density, and their Vickers hardness was 14 to 17 GP.
a.

【0031】以上の結果から、(1)混合粉砕後の混合
粉末の平均粒径が、100nmを越えると、焼結体中の
主結晶粒子・分散粒子双方の平均粒径が200nmを越
えるため、顕著に機械的強度ならびに耐摩耗性が低下す
ること、また(2)混合粉砕後酸素が増えすぎると、特
に耐摩耗性が低下することが分かる。
From the above results, (1) If the average particle size of the mixed powder after the mixing and pulverization exceeds 100 nm, the average particle size of both the main crystal particles and the dispersed particles in the sintered body exceeds 200 nm. It can be seen that the mechanical strength and abrasion resistance are remarkably reduced, and that (2) the abrasion resistance is particularly reduced if the amount of oxygen after mixing and pulverization is too large.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】[0034]

【表7】 [Table 7]

【0035】実施例3 実施例1の試料3のマトリックス組成にて、表8のよう
に分散粒子源を変えて、表9に記載の混合粉末を作製
し、これらを試料3と同様にして焼結し、各種の焼結体
を調製した。
Example 3 Using the matrix composition of Sample 3 of Example 1 and changing the source of the dispersed particles as shown in Table 8, mixed powders as shown in Table 9 were prepared. Then, various sintered bodies were prepared.

【0036】[0036]

【表8】 [Table 8]

【0037】[0037]

【表9】 [Table 9]

【0038】これらの各焼結体を実施例1と同様にして
まずその焼結体特性を評価した。その結果を表10に示
す。さらに実施例1と同様にして摩耗試験を行い、その
結果を表11に示す。いずれの焼結体もほぼ理論密度の
99%以上に緻密化されており、それらのビッカース硬
度は、14〜17GPaの範囲内であった。
Each of these sintered bodies was first evaluated for its properties in the same manner as in Example 1. Table 10 shows the results. Further, a wear test was performed in the same manner as in Example 1, and the results are shown in Table 11. Each sintered body was densified to almost 99% or more of the theoretical density, and their Vickers hardness was in the range of 14 to 17 GPa.

【0039】以上の結果から(1)分散粒子源の成分を
変えても、実施例1と同様の結果が得られること、
(2)分散粒子に一種類の金属のみを添加(窒化物は無
添加)した場合には、複数種類分散させた場合に比べ、
混合粉砕後の平均粒径が大きくなる。その結果複数種分
散させた場合に比べ、特に耐摩耗性が低下することが分
かることが分かった。
From the above results, (1) the same results as in Example 1 can be obtained even if the components of the dispersed particle source are changed;
(2) When only one kind of metal is added to the dispersed particles (no nitride is added), compared to the case where a plurality of kinds of metals are dispersed,
The average particle size after mixing and grinding increases. As a result, it was found that the abrasion resistance was particularly reduced as compared with the case where a plurality of kinds were dispersed.

【0040】[0040]

【表10】 [Table 10]

【0041】[0041]

【表11】 [Table 11]

【0042】実施例4 実施例1の試料3の混合粉末を用い、同試料と同じ高周
波誘導加熱方式の炉内に配置し、表12に記載の各種焼
結条件にて焼結体を調製した。これらの焼結体を実施例
1と同様に評価し、その結果を表13と14に示す。な
お試料38は、理論密度の97%程度の密度であり、ビ
ッカース硬度も12GPa程度と低いレベルであった。
一方焼結温度の高い試料43は、主結晶粒子・分散粒子
ともにその平均粒径が200nmを越えた。したがって
両試料とも機械的強度・耐摩耗性ともに低レベルとなっ
た。他の試料はほぼ理論密度の99%以上に緻密化し、
ビッカース硬度も14〜17GPaの範囲内であった。
なお別途短時間加熱方式の別の試みとして、パルス放電
加熱方式での加熱による焼結も試みたが、本結果とほぼ
同様の結果が確認された。また同じ組成にてSi34
料粉末として結晶型がβ型のものを用いて同様の手順に
て作製した試料は、結晶相がβ(β型Si34)とβ′
(β型サイアロン)であったが、性能上は表に記載のも
のとほぼ同じ結果が得られた。
Example 4 Using the mixed powder of Sample 3 of Example 1 and placing it in the same high-frequency induction heating furnace as that of the sample, sintered bodies were prepared under various sintering conditions shown in Table 12. . These sintered bodies were evaluated in the same manner as in Example 1, and the results are shown in Tables 13 and 14. The sample 38 had a density of about 97% of the theoretical density, and had a Vickers hardness as low as about 12 GPa.
On the other hand, in the sample 43 having a high sintering temperature, the average particle diameter of both the main crystal particles and the dispersed particles exceeded 200 nm. Therefore, both samples had low mechanical strength and abrasion resistance. Other samples densified to almost 99% or more of theoretical density,
Vickers hardness was also in the range of 14-17 GPa.
In addition, as another attempt of the short-time heating method, sintering by heating in the pulse discharge heating method was also attempted, but almost the same result as this result was confirmed. A sample prepared by the same procedure using a Si 3 N 4 raw material powder having the same composition and a β-type crystal as the raw material powder has a crystal phase of β (β-type Si 3 N 4 ) and β ′
(Β-sialon), but the performance was almost the same as that shown in the table.

【0043】[0043]

【表12】 [Table 12]

【0044】[0044]

【表13】 [Table 13]

【0045】[0045]

【表14】 [Table 14]

【0046】[0046]

【発明の効果】本発明によれば、Si34を主成分とす
る微細なマトリックス中に、金属の窒化物を主成分とす
る微細な分散粒子を分散させ、その製造過程での原料お
よびその混合粉砕方法を工夫し、酸素増加量を制御する
ことによって、原料の酸素量や平均粒径にばらつきがあ
っても、実用上ほぼ問題が無い優れた耐摩耗性を有する
窒化珪素系複合材料を、従来になく安価に提供すること
ができる。
According to the present invention, fine dispersed particles mainly composed of a metal nitride are dispersed in a fine matrix mainly composed of Si 3 N 4 , and the raw material and the raw material during the production process are dispersed. By devising the mixing and pulverizing method and controlling the amount of increase in oxygen, even if the amount of oxygen and the average particle diameter of the raw materials vary, there is practically no problem with the silicon nitride composite material having excellent wear resistance. Can be provided at a lower cost than ever before.

フロントページの続き Fターム(参考) 3C046 FF33 FF43 FF47 FF55 3J011 SB20 SD03 SE10 4G001 BA03 BA09 BA32 BA37 BA38 BA53 BA57 BA61 BA73 BB03 BB09 BB32 BB37 BB38 BB51 BB52 BB53 BB57 BB73 BC13 BC17 BC45 BC52 BC54 BD12 BD14 BE02 BE14 BE21 Continued on the front page F-term (reference) 3C046 FF33 FF43 FF47 FF55 3J011 SB20 SD03 SE10 4G001 BA03 BA09 BA32 BA37 BA38 BA53 BA57 BA61 BA73 BB03 BB09 BB32 BB37 BB38 BB51 BB52 BB53 BB57 BB73 BC13 BC14 BE14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が200nm以下の窒化珪素系粒
子と粒界相とからなるマトリックス中に、分散粒子とし
て、平均粒径が200nm以下の金属窒化物を主成分と
した粒子が10〜50体積%分散され、焼結体中の全酸
素量が、原料粉末中の全酸素量より最大3重量%までの
範囲内で多い窒化珪素系複合材料。
In a matrix comprising silicon nitride-based particles having an average particle size of 200 nm or less and a grain boundary phase, 10 to 10 particles as a dispersed particle are mainly composed of a metal nitride having an average particle size of 200 nm or less. A silicon nitride-based composite material that is dispersed by 50% by volume and has a total oxygen content in the sintered body that is larger than the total oxygen content in the raw material powder by up to 3% by weight.
【請求項2】前記分散粒子の主成分が、IVa、Vaお
よびVIa族元素の窒化物の少なくとも1種である請求
項1に記載の窒化珪素系複合材料。
2. The silicon nitride-based composite material according to claim 1, wherein a main component of the dispersed particles is at least one kind of a nitride of a group IVa, Va, or VIa element.
【請求項3】窒化珪素粉末と、焼結助剤粉末と、金属の
粉末および/またはその窒化物の粉末とを準備する工程
と、これらの粉末を全体の平均粒径が100nm以下、
粉末中の増加酸素量が0.5〜3重量%の範囲となるよ
うに粉砕混合し混合粉末とする工程と、該混合粉末を成
形し成形体とする工程と、該成形体を1000〜160
0℃、窒素を含む非酸化性雰囲気中にて焼結し、焼結体
とする工程とを含む窒化珪素系複合材料の製造方法。
3. A step of preparing a silicon nitride powder, a sintering aid powder, and a metal powder and / or a nitride powder thereof, wherein the powder has a total average particle size of 100 nm or less;
A step of pulverizing and mixing to obtain a mixed powder so that the amount of oxygen in the powder is in the range of 0.5 to 3% by weight; a step of molding the mixed powder to form a molded body;
Sintering in a non-oxidizing atmosphere containing nitrogen at 0 ° C. to form a sintered body.
【請求項4】前記金属が、IVa、VaおよびVIa族
元素の少なくとも1種である請求項3に記載の窒化珪素
系複合材料の製造方法。
4. The method for producing a silicon nitride-based composite material according to claim 3, wherein the metal is at least one of group IVa, Va and VIa elements.
JP31851099A 1999-11-09 1999-11-09 Silicon nitride-based composite material and method for manufacturing the same Pending JP2001139380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31851099A JP2001139380A (en) 1999-11-09 1999-11-09 Silicon nitride-based composite material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31851099A JP2001139380A (en) 1999-11-09 1999-11-09 Silicon nitride-based composite material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001139380A true JP2001139380A (en) 2001-05-22

Family

ID=18099929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31851099A Pending JP2001139380A (en) 1999-11-09 1999-11-09 Silicon nitride-based composite material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001139380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203553A (en) * 2017-05-31 2018-12-27 日本特殊陶業株式会社 Silicon nitride-based compound sintered compact, cutting tool, and tool for friction agitation joining

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132771A (en) * 1985-12-04 1987-06-16 住友電気工業株式会社 High density and high strength silicon nitride base sinteredbody and manufacture
JPS62235260A (en) * 1986-04-04 1987-10-15 株式会社神戸製鋼所 Si3n4 base composite material
JPH10338576A (en) * 1997-06-05 1998-12-22 Sumitomo Electric Ind Ltd Silicon nitride sintered compact and its production
JPH11139876A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Silicon nitride-base cutting tool and its production
JPH11139882A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Composite silicon nitride powder and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132771A (en) * 1985-12-04 1987-06-16 住友電気工業株式会社 High density and high strength silicon nitride base sinteredbody and manufacture
JPS62235260A (en) * 1986-04-04 1987-10-15 株式会社神戸製鋼所 Si3n4 base composite material
JPH10338576A (en) * 1997-06-05 1998-12-22 Sumitomo Electric Ind Ltd Silicon nitride sintered compact and its production
JPH11139876A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Silicon nitride-base cutting tool and its production
JPH11139882A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Composite silicon nitride powder and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203553A (en) * 2017-05-31 2018-12-27 日本特殊陶業株式会社 Silicon nitride-based compound sintered compact, cutting tool, and tool for friction agitation joining

Similar Documents

Publication Publication Date Title
KR100231267B1 (en) Hard alloy and production thereof
EP2297371B1 (en) Cubic boron nitride compact
WO2007089261A2 (en) Nanostructured titanium monoboride monolithic material and associated methods
JP3310138B2 (en) Sintered hard material
EP0035777A1 (en) Abrasion resistant silicon nitride based articles
JP2005281084A (en) Sintered compact and manufacturing method therefor
US4433979A (en) Abrasion resistant silicon nitride based articles
EP2049452A1 (en) Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof
JP4351453B2 (en) Cemented carbide and drill using the same
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JPH05230588A (en) Hard alloy
JP2006111947A (en) Ultra-fine particle of cermet
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2001139380A (en) Silicon nitride-based composite material and method for manufacturing the same
JP2004256863A (en) Cemented carbide, production method therefor, and rotary tool using the same
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2796011B2 (en) Whisker reinforced cemented carbide
JP4540791B2 (en) Cermet for cutting tools
JP3051603B2 (en) Titanium compound sintered body
JP2006063416A (en) Chromium-containing hard metal and coated hard metal thereof
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
EP0043583A1 (en) Abrasion resistant articles based on silicon nitride
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406