JP2002338365A - Aluminum nitride-base composite powder and method of manufacturing for the same - Google Patents

Aluminum nitride-base composite powder and method of manufacturing for the same

Info

Publication number
JP2002338365A
JP2002338365A JP2001142856A JP2001142856A JP2002338365A JP 2002338365 A JP2002338365 A JP 2002338365A JP 2001142856 A JP2001142856 A JP 2001142856A JP 2001142856 A JP2001142856 A JP 2001142856A JP 2002338365 A JP2002338365 A JP 2002338365A
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
nitride
composite powder
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001142856A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001142856A priority Critical patent/JP2002338365A/en
Publication of JP2002338365A publication Critical patent/JP2002338365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide raw material powder of a sintered compact of an aluminum nitride system having high thermal conductivity, a low coefficient of friction and excellent wear resistance and a method of manufacturing for the same. SOLUTION: Aluminum nitride powder, boron nitride powder and metallic titanium powder are mixed at an acceleration of 5 to 200 G at room temperature to 250 deg.C in a nitrogen atmosphere, by which the aluminum nitride-base composite powder consisting of the aluminum nitride, titanium nitride, boron nitride and titanium boride all having an average grain size of <=30 nm and at least the phase having amorphous covering their particle surfaces and having the average grain size of <=0.3 μm is obtained. The pressure of the nitrogen atmosphere is preferably 0.05 to 1.0 MPa, the amount of the metal titanium powder to be added 5 to 50 wt.%, the amount of the boron nitride powder to be added 2 to 40 wt.% and the mixing time 0.5 to 50 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性が必要な
自動車部品や機械部品、半導体製造用治具等に使用され
る高熱伝導・高耐摩耗・低摩擦の構造用セラミックス材
料として、優れた特性を有する窒化アルミニウム系焼結
体の原料粉末及びその製造方法に関するものである。
TECHNICAL FIELD The present invention is excellent as a ceramic material for structural use having high heat conductivity, high wear resistance and low friction used for automobile parts and machine parts requiring heat conductivity, jigs for semiconductor production and the like. The present invention relates to a raw material powder of an aluminum nitride-based sintered body having excellent characteristics and a method for producing the same.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)は軽量で熱
伝導性、耐食性、耐熱衝撃性に優れた材料であるため
に、半導体製造用治具や放熱基板、ヒーター等に幅広く
使用されている。
2. Description of the Related Art Aluminum nitride (AlN) is widely used in jigs for manufacturing semiconductors, heat-radiating substrates, heaters, and the like because it is lightweight and has excellent thermal conductivity, corrosion resistance, and thermal shock resistance.

【0003】このような優れた特性を持つ窒化アルミニ
ウム材料の用途を広げるためには、窒化アルミニウムに
新規な機械的特性を付与することが重要である。その一
つの試みとして、窒化アルミニウムの高い熱伝導性を利
用した摺動部品等への応用が考えられる。
In order to expand the applications of aluminum nitride materials having such excellent properties, it is important to impart new mechanical properties to aluminum nitride. As one of the attempts, application to sliding parts utilizing the high thermal conductivity of aluminum nitride can be considered.

【0004】窒化アルミニウムを摺動部品等の用途に適
用するためには、機械的特性の他、高耐摩耗性及び低摩
擦係数を持つことが必要であるが、このような特性を持
つ窒化アルミニウム材料については未だ研究されていな
い。
In order to apply aluminum nitride to applications such as sliding parts, it is necessary to have high wear resistance and low coefficient of friction in addition to mechanical properties. Materials have not yet been studied.

【0005】[0005]

【発明が解決しようとする課題】低摩擦係数を有するセ
ラミック材料を作製するために一般的に行われる手法と
しては、窒化ホウ素、硫化モリブデン、グラファイト等
の固体潤滑材を材料中に分散させる手法がよく知られて
いる。
As a general method for producing a ceramic material having a low coefficient of friction, a method of dispersing a solid lubricant such as boron nitride, molybdenum sulfide, and graphite in the material is known. well known.

【0006】しかしながら、これら固体潤滑材の第2相
はサブミクロン程度の大きさでしか分散させることがで
きず、組織的にバラツキが生じるため、セラミック材料
における摩擦係数の低下は困難であった。
[0006] However, the second phase of these solid lubricants can be dispersed only in a size of about a submicron, and there is a systematic variation, so that it has been difficult to reduce the friction coefficient of the ceramic material.

【0007】本発明は、このような従来の事情に鑑み、
優れた熱伝導性を有すると共に、低い摩擦係数と高い耐
摩耗性を備えた窒化アルミニウム系焼結体の原料粉末、
及びその製造方法を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
Raw material powder of aluminum nitride sintered body with excellent thermal conductivity, low coefficient of friction and high wear resistance,
And a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、平均粒径がいずれも30nm以下の窒化
アルミニウム、窒化チタン、窒化ホウ素、ホウ化チタン
と、これらの粒子の表面を覆っている少なくともアモル
ファスを含む相とからなり、平均粒径が0.3μm以上
である窒化アルミニウム系複合粉末を提供するものであ
る。
In order to achieve the above object, the present invention provides an aluminum nitride, a titanium nitride, a boron nitride, a titanium boride having an average particle diameter of 30 nm or less, and the surface of these particles. An object of the present invention is to provide an aluminum nitride-based composite powder having a covering phase containing at least an amorphous phase and having an average particle size of 0.3 μm or more.

【0009】また、本発明における窒化アルミニウム系
複合粉末の製造方法は、窒化アルミニウム粉末と窒化ホ
ウ素粉末及び金属チタン粉末を、窒素雰囲気中において
室温〜250℃の温度にて、5〜200Gの加速度で混
合することを特徴とする。
The method for producing an aluminum nitride-based composite powder according to the present invention is characterized in that the aluminum nitride powder, the boron nitride powder and the metal titanium powder are mixed at a temperature of room temperature to 250 ° C. in a nitrogen atmosphere at an acceleration of 5 to 200 G. It is characterized by mixing.

【0010】上記本発明の窒化アルミニウム系複合粉末
の製造方法においては、窒素雰囲気の圧力が0.05〜
1.0MPaであること、金属チタン粉末の添加量が5
〜50重量%であること、窒化ホウ素粉末の添加量が2
〜40重量%であること、及び混合時間が0.5〜50
時間であることが望ましい。
In the method for producing an aluminum nitride-based composite powder according to the present invention, the pressure of the nitrogen atmosphere is 0.05 to 5%.
1.0 MPa, and the addition amount of metallic titanium powder is 5
To 50% by weight, and the amount of boron nitride powder added is 2
-40% by weight, and the mixing time is 0.5-50
Desirably time.

【0011】[0011]

【発明の実施の形態】本発明の窒化アルミニウム系複合
粉末においては、平均粒径30nm以下の微細な窒化ア
ルミニウム(AlN)粒子と、窒化チタン(TiN)、
窒化ホウ素(BN)、ホウ化チタン(TiB)の微細
な各粒子が分散しているために、焼結中におこるAlN
の粒成長並びにその分散粒子自身の粒成長を抑制するこ
とができる。従って、この窒化アルミニウム系複合粉末
を用いることにより、窒化ホウ素が極めて微細且つ均一
に分散した、低摩擦係数、高耐摩耗性を持つ、ナノ構造
の窒化アルミニウム系焼結体を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the aluminum nitride-based composite powder of the present invention, fine aluminum nitride (AlN) particles having an average particle size of 30 nm or less, titanium nitride (TiN),
Since fine particles of boron nitride (BN) and titanium boride (TiB 2 ) are dispersed, AlN occurs during sintering.
And the grain growth of the dispersed particles themselves can be suppressed. Therefore, by using this aluminum nitride-based composite powder, it is possible to obtain a nanostructured aluminum nitride-based sintered body in which boron nitride is extremely finely and uniformly dispersed, which has a low friction coefficient and high wear resistance.

【0012】また、平均粒径30nm以下の微細な窒化
アルミニウム、窒化チタン、窒化ホウ素、ホウ化チタン
の各粒子は、互いに凝集して複合粉末を形成しているほ
か、その周りを主にアモルファスからなる金属チタン及
び/又はアルミニウム又はその化合物で覆われているた
めに、通常の非酸化物系のナノ粉末よりも簡便に取り扱
うことができる。また、その凝集体である複合粉末の平
均粒径は0.3〜1.0μm程度であるため、従来の市販
粉末と同様に取り扱うことができる。
In addition, fine aluminum nitride, titanium nitride, boron nitride, and titanium boride particles having an average particle diameter of 30 nm or less are aggregated with each other to form a composite powder, and the surroundings are mainly amorphous. Can be handled more easily than ordinary non-oxide nanopowder because it is covered with metallic titanium and / or aluminum or its compound. Further, since the average particle size of the composite powder, which is the aggregate, is about 0.3 to 1.0 μm, it can be handled in the same manner as a conventional commercial powder.

【0013】上記の窒化アルミニウム系複合粉末の製造
方法としては、市販の窒化アルミニウム粉末に、窒化ホ
ウ素粉末と金属チタン粉末を添加して、窒素雰囲気中に
て室温〜250℃の温度で、5〜200Gの高加速度で
混合する。尚、混合手段としては、粉砕を伴うボールミ
ルやアトライターを用いることが好ましい。
As a method for producing the above-mentioned aluminum nitride-based composite powder, boron nitride powder and metal titanium powder are added to commercially available aluminum nitride powder, and the resulting mixture is heated to room temperature to 250 ° C. in a nitrogen atmosphere at a temperature of 5 to 250 ° C. Mix at a high acceleration of 200G. In addition, as a mixing means, it is preferable to use a ball mill or an attritor with pulverization.

【0014】かかる高加速度での混合により、金属チタ
ンが下記化学式1の各反応を起こして窒化ホウ素と窒化
アルミニウムを微細化していくものと考えられる。ここ
で加速度を5〜200Gに限定する理由は、5G未満で
は均一な粉末の微細化が起こり難く、最終的な焼結体の
結晶粒径が不均一になってしまうためである。また、混
合時の加速度が200Gを超えると、ポットやボールが
摩耗するため不純物が混入され、熱伝導率が低下するた
めである。
It is considered that the mixing at such a high acceleration causes the titanium metal to cause each reaction of the following chemical formula 1 to make boron nitride and aluminum nitride finer. Here, the reason why the acceleration is limited to 5 to 200 G is that if the acceleration is less than 5 G, uniform powder refinement is unlikely to occur, and the crystal grain size of the final sintered body becomes non-uniform. On the other hand, if the acceleration during mixing exceeds 200 G, the pots and balls will be worn, so that impurities are mixed in and the thermal conductivity decreases.

【0015】[0015]

【化1】2BN+Ti→TiB+N AlN+Ti→TiN+Al 2Ti+N→2TiN 2Al+N→2AlNEmbedded image 2BN + Ti → TiB2+ N2  AlN + Ti → TiN + Al 2Ti + N2→ 2TiN 2Al + N2→ 2AlN

【0016】この高加速度混合する際の温度としては、
室温〜250℃、好ましくは50℃〜200℃である。
この温度領域において上記反応が促進され、短時間で目
的とする複合粉末を得ることができる。混合時間につい
ては、0.5時間未満では反応に伴う微細化が進行せ
ず、50時間を超えると不純物が混入するため、0.5
〜50時間とすることが望ましい。尚、混合の際の加速
度、温度、混合時間は、その作製したい複合粉末の条件
により適宜制御することが必要である。
The temperature at the time of the high acceleration mixing is as follows:
Room temperature to 250 ° C, preferably 50 ° C to 200 ° C.
In this temperature range, the above reaction is promoted, and the desired composite powder can be obtained in a short time. With respect to the mixing time, if the mixing time is less than 0.5 hour, the fineness accompanying the reaction does not progress, and if the mixing time is more than 50 hours, impurities are mixed.
It is desirable to set it to 50 hours. In addition, it is necessary to appropriately control the acceleration, temperature and mixing time during mixing depending on the conditions of the composite powder to be produced.

【0017】また、上記の反応を起こすためには窒素雰
囲気が必要であり、その窒素雰囲気の圧力は0.05〜
1.0MPaの範囲が好ましく、0.08〜0.15MP
aの範囲が更に好ましい。窒素雰囲気の圧力が0.05
MPa未満では制御が困難であり、また1.0MPaを
超えると耐圧容器等の特殊な容器が必要となるので好ま
しくない。
In order to cause the above reaction, a nitrogen atmosphere is required.
The range of 1.0 MPa is preferable, and 0.08 to 0.15 MPa
The range of a is more preferable. Nitrogen atmosphere pressure is 0.05
If it is less than MPa, it is difficult to control, and if it exceeds 1.0 MPa, a special container such as a pressure-resistant container is required, which is not preferable.

【0018】金属チタン粉末の添加量は、特に制限はな
いが、5重量%未満の場合には反応するTiの量が少な
過ぎるために、窒化ホウ素及び窒化アルミニウムを微細
化することができない。また、その添加量が50重量%
を超えると、反応するTiの量が多くなり、焼結体の色
ムラ等が発生するために好ましくない。従って、金属チ
タン粉末の添加量は、5〜50重量%の範囲が好まし
い。
The amount of the metal titanium powder added is not particularly limited. However, if it is less than 5% by weight, the amount of reactive Ti is too small, so that boron nitride and aluminum nitride cannot be miniaturized. In addition, the addition amount is 50% by weight.
Exceeding the range is undesirable because the amount of reactive Ti increases and uneven color of the sintered body occurs. Therefore, the addition amount of the metal titanium powder is preferably in the range of 5 to 50% by weight.

【0019】また、窒化ホウ素粉末の添加量について
も、特に制限はないが、十分な低摩擦特性を得るために
は2重量%以上の窒化ホウ素が必要であり、また材料の
優れた機械的特性を維持するためには40重量%以下が
適当であることから、2〜40重量%の範囲が好まし
い。
The amount of boron nitride powder to be added is not particularly limited, but boron nitride must be contained in an amount of 2% by weight or more in order to obtain sufficient low friction characteristics. Is preferably 40% by weight or less in order to maintain the above, the range of 2 to 40% by weight is preferable.

【0020】かかる本発明の窒化アルミニウム系複合粉
末を用いて製造される窒化アルミニウム系複合焼結体
は、AlN、TiN、TiB、BNが微細な粒径で制
御された結晶構造を持っており、高い熱伝導性を有する
と共に、窒化ホウ素が極めて微細且つ均一に分散してい
るため、摩擦係数が低く、しかも優れた耐摩耗性を備え
ている。
The aluminum nitride-based composite sintered body manufactured using the aluminum nitride-based composite powder of the present invention has a crystal structure in which AlN, TiN, TiB 2 , and BN are controlled with a fine particle size. In addition to having high thermal conductivity, boron nitride is extremely finely and uniformly dispersed, so that it has a low friction coefficient and excellent wear resistance.

【0021】[0021]

【実施例】実施例1 市販の平均粒径0.6μmのAlN粉末に、焼結助剤と
して2.5wt%のY粉末を加え、更に平均粒径
10μmの金属Ti粉末を20wt%、平均粒径5μm
のBN粉末を10wt%添加して、0.1MPaの窒素
雰囲気中において50℃の温度条件で、遊星ボールミル
を用いて100Gの加速度で8時間混合した。
【Example】Example 1  A commercially available AlN powder having an average particle size of 0.6 μm was mixed with a sintering aid.
And 2.5 wt% Y2O3Add powder and average particle size
20 wt% of 10 μm metal Ti powder, average particle size 5 μm
10wt% of BN powder of 0.1MPa nitrogen
Planetary ball mill at 50 ° C in atmosphere
Was mixed at an acceleration of 100 G for 8 hours.

【0022】得られた複合粉末をXRDにて定性分析を
行ったところ、AlN、TiN、TiB、及びBNの
各ピークを確認することができた。また、この複合粉末
を透過電子顕微鏡で観察した結果、AlN、TiN、T
iB、及びBNの各粒子の平均粒径はいずれも30n
m以下であり、それらの粒子は主にアモルファスのTi
/Al及びその化合物で覆われている構造であることが
分かった。尚、得られた複合粉末の平均粒径は0.8μ
mであった。
When the obtained composite powder was subjected to qualitative analysis by XRD, peaks of AlN, TiN, TiB 2 and BN could be confirmed. Further, as a result of observing this composite powder with a transmission electron microscope, AlN, TiN, TN
The average particle size of each of iB 2 and BN particles is 30 n.
m, and those particles are mainly amorphous Ti
/ Al and its structure. The average particle size of the obtained composite powder was 0.8 μm.
m.

【0023】この複合粉末をカーボンダイスに充填した
後、放電プラズマ焼結機(SPS)を用いて1400℃
で焼結した。得られた焼結体について、研削、ラッピン
グ処理した後、ボールオンディスク試験機で耐摩耗特性
を評価した。その結果、得られた焼結体は摩擦係数0.
3と低摩擦係数であり、比摩耗量が3.0×10−7
/Nという高い耐摩耗性を示した。また、得られた
焼結体は40W/m・Kの熱伝導率を持っていた。
After the composite powder is filled in a carbon die, it is heated to 1400 ° C. using a discharge plasma sintering machine (SPS).
Sintered. After the obtained sintered body was subjected to grinding and lapping treatment, the wear resistance was evaluated using a ball-on-disk tester. As a result, the obtained sintered body had a coefficient of friction of 0.1.
3 and a low coefficient of friction with a specific wear of 3.0 × 10 −7 m
It exhibited high abrasion resistance of m 2 / N. Further, the obtained sintered body had a thermal conductivity of 40 W / m · K.

【0024】また、この焼結体を研磨した後、Arイオ
ンエッチングで薄膜試験片を作製し、透過電子顕微鏡を
用いてAlN、TiN、BN、TiBの各粒径を評価
した結果、各々の粒子は200nm以下と非常に微細で
あった。
Further, after polishing the sintered body, and a thin film specimen in Ar ion etching, using a transmission electron microscope AlN, TiN, BN, results of evaluation of the particle size of the TiB 2, each of the The particles were very fine, less than 200 nm.

【0025】比較のために、遊星ボールミルに代えて、
同じ原料粉末を超音波混合した以外は上記の実施例1と
同様にして複合粉末を作製し、その複合粉末を上記と同
様に焼結した。得られた比較例の焼結体中には数μmの
大きさのTiN粒子やBN粒子が観察され、その摩擦係
数も0.7程度と高く、比摩耗量は6.0×10−5mm
/Nであった。
For comparison, instead of a planetary ball mill,
A composite powder was prepared in the same manner as in Example 1 except that the same raw material powder was ultrasonically mixed, and the composite powder was sintered as described above. TiN particles and BN particles having a size of several μm were observed in the obtained sintered body of Comparative Example, the coefficient of friction was as high as about 0.7, and the specific wear amount was 6.0 × 10 −5 mm.
2 / N.

【0026】実施例2 市販の平均粒径0.6μmのAlN粉末に、実施例1と
同じ焼結助剤を加え、更に平均粒径10μmの金属Ti
粉末と平均粒径5μmのBN粉末をそれぞれ下記表1に
示す添加量で加えた。
[0026]Example 2  Example 1 was added to a commercially available AlN powder having an average particle size of 0.6 μm.
The same sintering aid is added, and a metal Ti having an average particle size of 10 μm is further added.
The powder and the BN powder having an average particle size of 5 μm are shown in Table 1 below, respectively.
It was added in the indicated amount.

【0027】[0027]

【表1】 [Table 1]

【0028】上記表1における各試料の原料粉末を、雰
囲気、圧力、温度、加速度、混合時間の各混合条件につ
いて下記表2に示す条件A〜Hにより、実施例1と同様
に遊星ボールミルを用いて混合した。
The raw material powder of each sample in Table 1 was mixed with an atmosphere, pressure, temperature, acceleration, and mixing time by using a planetary ball mill in the same manner as in Example 1 under the conditions A to H shown in Table 2 below. And mixed.

【0029】[0029]

【表2】 [Table 2]

【0030】得られた各複合粉末について、実施例1と
同様にして、AlN、TiN、BN、TiBの各粒子
の平均粒径を求めた。その結果を下記表3に示す。
[0030] For each composite powder obtained in the same manner as in Example 1, AlN, TiN, BN, an average particle size of each particle of TiB 2 was obtained. The results are shown in Table 3 below.

【0031】[0031]

【表3】 [Table 3]

【0032】上記の結果から、金属Ti粉末とBN粉末
の添加量、並びに雰囲気、圧力、温度、加速度、混合時
間の各混合条件について、本発明の範囲内で適切に選択
することによって、微細な粒子からなる複合粉末が得ら
れることが分かる。また、遊星ボールミル以外の混合装
置、アトライター等を用いた場合でも、5〜200Gの
加速度で混合すれば、ほぼ同様な結果を得ることができ
た。
From the above results, fine selection of the addition amounts of the metal Ti powder and the BN powder and the respective mixing conditions of the atmosphere, pressure, temperature, acceleration, and mixing time within the scope of the present invention can provide finer powder. It can be seen that a composite powder composed of particles is obtained. Even when a mixing device other than a planetary ball mill, an attritor, or the like was used, almost the same results could be obtained by mixing at an acceleration of 5 to 200 G.

【0033】[0033]

【発明の効果】本発明によれば、窒化アルミニウム系焼
結体の原料粉末として、生産が比較的容易であり、低温
での焼結が可能であって、焼結時における粒成長を抑制
することができる、微細な粒子からなる窒化アルミニウ
ム系複合粉末を提供することができる。
According to the present invention, as a raw material powder for an aluminum nitride-based sintered body, production is relatively easy, sintering at a low temperature is possible, and grain growth during sintering is suppressed. And an aluminum nitride-based composite powder comprising fine particles.

【0034】また、本発明の窒化アルミニウム系複合粉
末を用いることにより、高い熱伝導性を有すると共に、
低い摩擦係数を有し、耐摩耗性に優れた窒化アルミニウ
ム系焼結体を得ることができる。
Further, by using the aluminum nitride-based composite powder of the present invention, not only has high thermal conductivity,
An aluminum nitride-based sintered body having a low coefficient of friction and excellent wear resistance can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径がいずれも30nm以下の窒化
アルミニウム、窒化チタン、窒化ホウ素、ホウ化チタン
と、これらの粒子の表面を覆っている少なくともアモル
ファスを含む相とからなり、平均粒径が0.3μm以上
である窒化アルミニウム系複合粉末。
Claims: 1. An aluminum nitride, titanium nitride, boron nitride, or titanium boride having an average particle diameter of 30 nm or less, and a phase containing at least an amorphous phase covering the surface of these particles. An aluminum nitride-based composite powder having a size of 0.3 μm or more.
【請求項2】 窒化アルミニウム粉末と窒化ホウ素粉末
及び金属チタン粉末を、窒素雰囲気中において室温〜2
50℃の温度にて、5〜200Gの加速度で混合するこ
とを特徴とする窒化アルミニウム系複合粉末の製造方
法。
2. An aluminum nitride powder, a boron nitride powder and a metal titanium powder are mixed at room temperature to 2
A method for producing an aluminum nitride-based composite powder, comprising mixing at a temperature of 50C at an acceleration of 5 to 200 G.
【請求項3】 窒素雰囲気の圧力が0.05〜1.0MP
aであることを特徴とする、請求項2に記載の窒化アル
ミニウム系複合粉末の製造方法。
3. The pressure of a nitrogen atmosphere is 0.05 to 1.0 MPa.
3. The method for producing an aluminum nitride-based composite powder according to claim 2, wherein the method is a.
【請求項4】 金属チタン粉末の添加量が5〜50重量
%であることを特徴とする、請求項2又は3に記載の窒
化アルミニウム系複合粉末の製造方法。
4. The method for producing an aluminum nitride-based composite powder according to claim 2, wherein the addition amount of the metal titanium powder is 5 to 50% by weight.
【請求項5】 窒化ホウ素粉末の添加量が2〜40重量
%であることを特徴とする、請求項2〜4のいずれかに
記載の窒化アルミニウム系複合粉末の製造方法。
5. The method for producing an aluminum nitride-based composite powder according to claim 2, wherein the addition amount of the boron nitride powder is 2 to 40% by weight.
【請求項6】 混合時間が0.5〜50時間であること
を特徴とする、請求項2〜5のいずれかに記載の窒化ア
ルミニウム系複合粉末の製造方法。
6. The method for producing an aluminum nitride-based composite powder according to claim 2, wherein the mixing time is 0.5 to 50 hours.
JP2001142856A 2001-05-14 2001-05-14 Aluminum nitride-base composite powder and method of manufacturing for the same Pending JP2002338365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142856A JP2002338365A (en) 2001-05-14 2001-05-14 Aluminum nitride-base composite powder and method of manufacturing for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142856A JP2002338365A (en) 2001-05-14 2001-05-14 Aluminum nitride-base composite powder and method of manufacturing for the same

Publications (1)

Publication Number Publication Date
JP2002338365A true JP2002338365A (en) 2002-11-27

Family

ID=18989085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142856A Pending JP2002338365A (en) 2001-05-14 2001-05-14 Aluminum nitride-base composite powder and method of manufacturing for the same

Country Status (1)

Country Link
JP (1) JP2002338365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344286A (en) * 2010-07-27 2012-02-08 台盐实业股份有限公司 Aluminum nitride ceramic radiating fin and manufacturing method thereof
JP7055811B2 (en) 2018-03-26 2022-04-18 日本碍子株式会社 Wafer support

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55453B2 (en) * 1973-02-15 1980-01-08
JPH11139875A (en) * 1997-11-06 1999-05-25 Isuzu Ceramics Res Inst Co Ltd Silicon nitride-boron nitride composite sintered compact
JPH11139882A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Composite silicon nitride powder and its production
JP2000297301A (en) * 1999-04-15 2000-10-24 Sumitomo Electric Ind Ltd Silicon carbide based composite material, its powder, and their manufacture
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55453B2 (en) * 1973-02-15 1980-01-08
JPH11139875A (en) * 1997-11-06 1999-05-25 Isuzu Ceramics Res Inst Co Ltd Silicon nitride-boron nitride composite sintered compact
JPH11139882A (en) * 1997-11-06 1999-05-25 Sumitomo Electric Ind Ltd Composite silicon nitride powder and its production
JP2000297301A (en) * 1999-04-15 2000-10-24 Sumitomo Electric Ind Ltd Silicon carbide based composite material, its powder, and their manufacture
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344286A (en) * 2010-07-27 2012-02-08 台盐实业股份有限公司 Aluminum nitride ceramic radiating fin and manufacturing method thereof
JP7055811B2 (en) 2018-03-26 2022-04-18 日本碍子株式会社 Wafer support
US11574822B2 (en) 2018-03-26 2023-02-07 Ngk Insulators, Ltd. Wafer support table with ceramic substrate including core and surface layer

Similar Documents

Publication Publication Date Title
US9808911B2 (en) Polycrystalline abrasive compacts
JP3624219B2 (en) Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same
RU2404021C2 (en) Polycrystalline abrasive materials and method of their fabrication
WO2006106873A1 (en) Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
JP4312293B2 (en) Silicon carbide ceramic composite material and manufacturing method thereof
JP6523478B2 (en) Polycrystalline abrasive construction
US10541064B2 (en) SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same
JP2010524839A (en) Materials based on boron suboxide
JP2002338365A (en) Aluminum nitride-base composite powder and method of manufacturing for the same
JPH04223808A (en) Silicon nitride sintered body tool
JPH1095670A (en) Production of silicon carbide composite ceramic
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JP2958731B2 (en) Aluminum oxide based sintered body and method for producing the same
KR20170044485A (en) A SiC Slurry and Manufacturing method of the same
JPH09100165A (en) Boride ceramic and its production
JP2007126325A (en) Method for producing powdery mixture and method for producing ceramic sintered compact
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2003034579A (en) Silicon-nitride-based composite sintered body and method for producing the same
KR20210052609A (en) Cubic boron nitride particle and manufacturing method thereof
JPH09249456A (en) Boride complex ceramic and its production
Yang et al. Mechanical alloying of Mo and Si powders and their sintering
JPH08319107A (en) Carbon-carbide ceramic spherical composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315