JPH09100165A - Boride ceramic and its production - Google Patents

Boride ceramic and its production

Info

Publication number
JPH09100165A
JPH09100165A JP7256210A JP25621095A JPH09100165A JP H09100165 A JPH09100165 A JP H09100165A JP 7256210 A JP7256210 A JP 7256210A JP 25621095 A JP25621095 A JP 25621095A JP H09100165 A JPH09100165 A JP H09100165A
Authority
JP
Japan
Prior art keywords
boride
group
matrix
particles
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7256210A
Other languages
Japanese (ja)
Inventor
Koichi Takayama
孝一 高山
Takeyoshi Takenouchi
武義 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7256210A priority Critical patent/JPH09100165A/en
Publication of JPH09100165A publication Critical patent/JPH09100165A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a boride cramic material useful for abrasion-resistant members, tool materials, jigs for hot-extruding metals, members for melting metals, etc., and having high hardness, high toughness, high strength and high thermal impact resistance. SOLUTION: The boride ceramic material in which 3-30vol.% of SiC, TiC, TiN, B4 C, LaB6 or CeB6 having particle diameters of <=500nm is dispersed in matrix crystal particles having an average particle diameter of 0.3-5μm and comprising TiB2 , ZrB2 or HfB2 and/or in the boundaries of the matrix crystal- particles is provided. The boride and the dispersing particles are mixed, molded, and subsequently sintered in vacuo or in an inert gas atmosphere at 1700 deg.C. Thus, the produced boride ceramic material has a special tissue structure wherein the dispersed particles having nona sizes are contained in the crystal particles of the matrix boride and/or in the boundaries of the crystal partiecles, and the matrix boride and the dispersed particles have the strongly formed boundary surfaces. The boride ceramic material has highly improved mechanical characteristics such as fracture toughness and hardness, has the high hardness and the high strength also at high temperatures, and can thereby be applied to abrasion-resistant members, cutting tools, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特殊構造の硼化物
セラミックス及びその製造方法に係り、詳しくは、耐摩
耗部材、工具用材料、金属の熱間押出治具及び溶湯部材
などとして有用な高硬度、高靭性、高強度で耐熱衝撃性
に優れた硼化物セラミックス及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boride ceramics having a special structure and a method for producing the same, and more particularly to a high-useful material useful as a wear-resistant member, a tool material, a metal hot extrusion jig, a molten metal member, and the like. The present invention relates to a boride ceramics having excellent hardness, high toughness, high strength and thermal shock resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】硼化物セラミックスは高融点、高硬度、
高電気伝導度といった優れた特性を有しており、高耐摩
耗材料、高耐蝕材料、切削工具などの工業用材料として
有望視されている。しかし、硼化物セラミックスは共有
結合性が強く、単相焼結では緻密かつ高特性の焼結体を
得ることは難しい。このために、焼結助剤の添加、或い
は、硼化物セラミックスのサーメット化といった改良が
施され、焼結性と強度についてはある程度改善効果が得
られている。
2. Description of the Related Art Boride ceramics have a high melting point, a high hardness,
It has excellent properties such as high electrical conductivity and is regarded as a promising industrial material such as high wear resistant material, high corrosion resistant material, and cutting tools. However, boride ceramics have a strong covalent bond, and it is difficult to obtain a dense and high-performance sintered body by single-phase sintering. For this reason, improvements such as the addition of a sintering aid or the cermetization of boride ceramics have been made, and the sinterability and strength have been improved to some extent.

【0003】[0003]

【発明が解決しようとする課題】しかし、焼結助剤を用
いた場合、或いは、サーメット化した場合には、硼化物
セラミックス本来の高硬度の特性は生かされず、破壊靭
性も低く、アルミニウム用溶湯治具の一部の用途にしか
使用されていないのが現状である。
However, when a sintering aid is used or when it is cermetized, the high hardness characteristics inherent to boride ceramics are not utilized, the fracture toughness is low, and molten metal for aluminum is used. At present, it is only used for some purposes of jigs.

【0004】従って、硼化物セラミックスの特性向上の
ためには、今までと異なる材料設計と焼結方法が必要と
なる。
Therefore, in order to improve the characteristics of boride ceramics, a material design and a sintering method different from those in the past are required.

【0005】本発明は上記従来の実情に鑑みてなされた
ものであって、耐摩耗部材、工具用材料、金属の熱間押
出治具及び溶湯部材などとして有用な高硬度、高靭性、
高強度で耐熱衝撃性に優れた硼化物セラミックス及びそ
の製造方法を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and has high hardness, high toughness, useful as wear resistant members, tool materials, hot metal extrusion jigs, molten metal members, and the like.
An object of the present invention is to provide a boride ceramics having high strength and excellent thermal shock resistance and a method for producing the boride ceramics.

【0006】[0006]

【課題を解決するための手段】本発明の硼化物セラミッ
クスは、粒子径0.3〜5μmの結晶粒子を有する元素
周期律表第4a族よりなる群から選ばれる1元素の硼化
物をマトリックス(以下「マトリックス硼化物」と称す
る場合がある。)とし、その結晶粒内及び/又は粒界
に、平均粒径500nm以下の、炭化珪素、炭化チタ
ン、窒化チタン、炭化硼素、硼化ランタン及び硼化セリ
ウムよりなる群から選ばれる1種又は2種以上の微粒子
(以下「第1分散粒子」と称する場合がある。)を3〜
30体積%、あるいは前記の混合粉末に、更に、クロ
ム、鉄、イットリア及びアルミナよりなる群から選ばれ
る1種の粉末(以下、「第2分散粒子」と称する場合が
ある。)を、1〜10%分散させたことを特徴とする。
The boride ceramics of the present invention has a matrix of boride of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements having crystal grains with a grain size of 0.3 to 5 μm. Hereinafter, it may be referred to as a "matrix boride"), and silicon carbide, titanium carbide, titanium nitride, boron carbide, lanthanum boride and boro having an average particle diameter of 500 nm or less in the crystal grains and / or grain boundaries thereof. 3 to 1 or 2 or more types of fine particles (hereinafter sometimes referred to as "first dispersed particles") selected from the group consisting of cerium chloride.
1 to 30% by volume, or one kind of powder selected from the group consisting of chromium, iron, yttria, and alumina (hereinafter, may be referred to as “second dispersed particles”) in addition to 30% by volume. It is characterized by being dispersed by 10%.

【0007】本発明においては、マトリックス硼化物の
結晶粒内及び/又は粒界に、硼化ランタン等の第1分散
粒子を分散させた複合化を行うことにより、材料の機械
的特性を改善した。
In the present invention, the mechanical properties of the material are improved by performing the compounding in which the first dispersed particles such as lanthanum boride are dispersed in the crystal grains of the matrix boride and / or in the grain boundaries. .

【0008】本発明において、マトリックス硼化物の結
晶粒内及び/又は粒界に分散した硼化ランタン等の第1
分散粒子及びクロムなどの第2分散粒子の役割は、次の
通りである。
In the present invention, the first lanthanum boride or the like dispersed in the crystal grains of the matrix boride and / or in the grain boundaries is used.
The roles of the dispersed particles and the second dispersed particles such as chromium are as follows.

【0009】 マトリックス硼化物の結晶粒内及び/
又は粒界に分散した硼化ランタン等の第1分散粒子は、
焼結工程の緻密化段階で、マトリックスの粒界移動を抑
制し、マトリックス粒子の粒成長制御の効果をもたら
す。その結果、マトリックスの異常粒成長は抑制され、
均一な組織になり破壊強度と硬度が向上する。また、焼
結温度が高くてもマトリックスの粒成長は抑制されるた
めに、緊密化可能な下限の焼結温度よりも高い温度で焼
結することにより、粒子形状を制御することも可能であ
り、破壊靭性値が向上する。
In the crystal grains of the matrix boride and /
Alternatively, the first dispersed particles such as lanthanum boride dispersed in the grain boundary are
In the densification stage of the sintering process, the grain boundary movement of the matrix is suppressed, and the effect of controlling the grain growth of the matrix grains is brought about. As a result, abnormal grain growth of the matrix is suppressed,
It has a uniform structure and improves fracture strength and hardness. Further, since the grain growth of the matrix is suppressed even if the sintering temperature is high, it is possible to control the particle shape by sintering at a temperature higher than the lower limit sintering temperature at which the compaction is possible. , The fracture toughness value is improved.

【0010】 クロム、イットリアなどの第2分散粒
子は、マトリックス硼化物の粒界での濡れ性を改善し、
焼結性を向上させる。また、焼結過程で結晶粒を板状又
は柱状粒子に制御することも可能であり、クラック偏向
により、破壊靭性の向上にも寄与する。
The second dispersed particles such as chromium and yttria improve the wettability of the matrix boride at the grain boundaries,
Improves sinterability. Further, it is possible to control the crystal grains into plate-like or columnar grains during the sintering process, and the crack deflection contributes to the improvement of fracture toughness.

【0011】このような本発明の硼化物セラミックス
は、本発明の硼化物セラミックスの製造方法に従って、
マトリックス硼化物と、炭化珪素、炭化チタン、窒化チ
タン、炭化硼素、硼化ランタン及び硼化セリウムよりな
る群から選ばれる1種又は2種以上の粉末と、更に必要
に応じて、クロム、鉄、イットリア及びアルミナよりな
る群から選ばれる1種の粉末とを、混合して成形した
後、真空又は不活性雰囲気中で1700℃以上(第2分
散粒子を添加する場合は1500℃以上)の温度で焼結
することにより製造される。
The boride ceramics of the present invention as described above can be produced by the method for producing a boride ceramics of the present invention.
Matrix boride and one or more powders selected from the group consisting of silicon carbide, titanium carbide, titanium nitride, boron carbide, lanthanum boride and cerium boride, and, if necessary, chromium, iron, After mixing and molding with one kind of powder selected from the group consisting of yttria and alumina, at a temperature of 1700 ° C. or higher (1500 ° C. or higher when the second dispersed particles are added) in a vacuum or an inert atmosphere. It is manufactured by sintering.

【0012】この方法において、成形後、水素雰囲気中
700〜800℃で還元処理した後、焼結することによ
り、硼化物粉末の表面に存在する酸化物を除去して、焼
結性をより一層改善することができる。また、粒界に脆
弱な反応相を形成しないために、高特性の硼化物セラミ
ックスが得られる。
[0012] In this method, after molding, a reduction treatment is performed in a hydrogen atmosphere at 700 to 800 ° C, and then sintering is performed to remove oxides present on the surface of the boride powder, thereby further improving the sinterability. Can be improved. Further, since a brittle reaction phase is not formed at the grain boundary, boride ceramics having high characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0014】本発明の硼化物セラミックスは、結晶粒径
0.3〜5μm、好ましくは2μm以下の、元素周期律
表第4a族よりなる群から選ばれる1元素の硼化物、即
ち、硼化チタン(TiB2 ),硼化ジルコニウム(Zr
2 ),硼化ハフニウム(HfB2 )をマトリックスと
し、このマトリックスの結晶粒内及び/又は粒界に、第
1分散粒子として、平均粒径が500nm以下の、炭化
珪素(SiC)、炭化チタン(TiC)、窒化チタン
(TiN)、炭化硼素(B4 C)、硼化ランタン(La
6 )及び硼化セリウム(CeB6 )よりなる群から選
ばれる1種又は2種以上の粉末3〜30体積、あるいは
前述の混合粉末に更に第2分散粒子として、クロム(C
r)、鉄(Fe)、イットリア(Y23 )及びアルミ
ナ(Al2O3 )よりなる群から選ばれる1種の粉末を、
1〜10体積%分散させてなる構造のセラミックスであ
る。なお、第2分散粒子の平均粒径は1μm以下とする
のが好ましい。
The boride ceramics of the present invention is a boride of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements, ie, titanium boride, having a crystal grain size of 0.3 to 5 μm, preferably 2 μm or less. (TiB 2 ), zirconium boride (Zr
B 2 ), hafnium boride (HfB 2 ) as a matrix, and silicon carbide (SiC), titanium carbide having an average particle size of 500 nm or less as the first dispersed particles in the crystal grains and / or grain boundaries of this matrix. (TiC), titanium nitride (TiN), boron carbide (B 4 C), lanthanum boride (La)
B 6) and boride of cerium (one or more powder 3-30 volume selected from the group consisting of CeB 6) or as further second dispersed particles in the mixed powder described above, chromium (C
r), iron (Fe), yttria (Y 2 O 3 ) and alumina (Al 2 O 3 )
It is a ceramic having a structure in which 1 to 10% by volume is dispersed. The average particle size of the second dispersed particles is preferably 1 μm or less.

【0015】本発明において、第1分散粒子及び第2分
散粒子の平均粒径を上記のような値とする理由は、マト
リックスの結晶粒内に取り込まれ易いこと、材料欠陥と
なるほどのマイクロクラックが発生しない範囲であるこ
と等による。
In the present invention, the reason why the average particle diameters of the first dispersed particles and the second dispersed particles are set to the above values is that they are easily incorporated into the crystal grains of the matrix, and that microcracks that cause material defects are generated. This is because the range does not occur.

【0016】また、マトリックスである元素周期律表第
4a族よりなる群から選ばれる元素の硼化物の結晶粒径
を0.3〜5μmにする理由は、得られる材料の特性が
高くなるためであり、好ましくは2μm以下である。
The reason why the crystal grain size of the boride of the element selected from the group consisting of Group 4a of the periodic table of the elements, which is the matrix, is 0.3 to 5 μm is that the characteristics of the obtained material are high. Yes, and preferably 2 μm or less.

【0017】第1分散粒子の含有割合を3〜30体積%
とする理由は、焼結時におけるマトリックス硼化物粒子
の寸法、形状の制御に効果があり、複合焼結体の組織を
均質化して常温及び高温時の破壊強度、破壊靭性などを
高める効果が十分に得られるためである。
The content ratio of the first dispersed particles is 3 to 30% by volume.
The reason is that the size and shape of the matrix boride particles during sintering are effective, and the effect of homogenizing the structure of the composite sintered body and increasing the fracture strength and fracture toughness at room temperature and high temperature is sufficient. This is because it can be obtained.

【0018】また、第2分散粒子の含有割合を1〜10
体積%とする理由は、マトリックス硼化物セラミックス
の有する高硬度を損なうことなく、焼結性を改善できる
ことによる。この割合が10体積%を超えると、焼結性
は向上するが、組織の制御が困難となり、硬度も低下す
る。
Further, the content ratio of the second dispersed particles is 1-10.
The reason why the volume percentage is set is that the sinterability can be improved without impairing the high hardness of the matrix boride ceramics. If this proportion exceeds 10% by volume, the sinterability is improved, but the control of the structure becomes difficult and the hardness also decreases.

【0019】本発明の硼化物セラミックスは、本発明の
方法に従って、好ましくは次のようにして製造される。
The boride ceramics of the present invention are produced according to the method of the present invention, preferably as follows.

【0020】即ち、まず、平均粒径3μm以下、好まし
くは1μm以下の元素周期律表第4a族よりなる群から
選ばれる1元素の硼化物粉末と、平均粒径500nm以
下の第1分散粒子の粉末と、更に必要に応じて平均粒径
1μm以下の第2分散粒子の粉末とを所定割合で混合し
て、所定形状に成形する。得られた成形体は、好ましく
は水素雰囲気中700〜800℃で1〜2時間還元処理
した後、不活性雰囲気又は真空中で1700℃以上(第
2分散粒子を添加した場合は1500℃以上)で焼結す
る。焼結温度が1700℃未満(第2分散粒子を添加し
た場合は1500℃未満)であると十分な緻密化が図れ
ず、高特性の焼結体が得られない。
That is, first, a boride powder of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements having an average particle size of 3 μm or less, preferably 1 μm or less, and first dispersed particles having an average particle size of 500 nm or less. The powder and, if necessary, the powder of the second dispersed particles having an average particle size of 1 μm or less are mixed at a predetermined ratio and molded into a predetermined shape. The obtained compact is preferably subjected to reduction treatment in a hydrogen atmosphere at 700 to 800 ° C. for 1 to 2 hours and then in an inert atmosphere or vacuum at 1700 ° C. or higher (1500 ° C. or higher when the second dispersed particles are added). Sinter with. If the sintering temperature is lower than 1700 ° C. (less than 1500 ° C. when the second dispersed particles are added), sufficient densification cannot be achieved, and a sintered body with high characteristics cannot be obtained.

【0021】焼結は、真空又は不活性雰囲気で常圧焼
結、常圧焼結+HIP(熱間等方圧プレス)処理、或い
は、ホットプレス焼結にて行なうのが好ましい。
Sintering is preferably carried out by atmospheric pressure sintering in a vacuum or an inert atmosphere, atmospheric pressure sintering + HIP (hot isostatic pressing) treatment, or hot press sintering.

【0022】この焼結に先立ち、所定条件で還元処理す
ることにより、粉末表面の酸化物を除去し、焼結性を高
めるという効果が奏される。
Prior to the sintering, a reduction treatment is performed under predetermined conditions to remove oxides on the surface of the powder and to improve the sinterability.

【0023】このように、元素周期律表第4a族よりな
る群から選ばれる1元素の硼化物をマトリックスとし、
その結晶粒内及び/又は粒界に、SiC、TiC、Ti
N、B4 C、LaB6 又はCeB6 よりなる第1分散粒
子を3〜30体積%分散させ、或は更にCr,Fe,Y
23 又はAl23 よりなる第2分散粒子を分散させ
て、焼結することにより高性能の硼化物セラミックスを
提供することができ、摺動部材においては、硼化物の粒
成長を制御し、耐摩耗性のある構造部材においては、使
用中の破壊特性が著しく改善された材料を得ることがで
きる。
Thus, a boride of one element selected from the group consisting of Group 4a of the Periodic Table of Elements is used as a matrix,
SiC, TiC, Ti within the crystal grain and / or in the grain boundary
Disperse the first dispersed particles of N, B 4 C, LaB 6 or CeB 6 in an amount of 3 to 30% by volume, or further add Cr, Fe, Y.
By dispersing and sintering the second dispersed particles of 2 O 3 or Al 2 O 3 , high-performance boride ceramics can be provided, and in the sliding member, the boride grain growth can be controlled. However, in the case of a structural member having wear resistance, it is possible to obtain a material having significantly improved fracture characteristics during use.

【0024】[0024]

【実施例】以下に実施例及び比較例を挙げて、本発明を
更に詳しく説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

【0025】なお、実施例及び比較例で用いた原料は次
の通りである。
The raw materials used in the examples and comparative examples are as follows.

【0026】マトリックス硼化物粉末 TiB2 (出光マテリアル社製,平均粒径1.2μm) ZrB2 (日本新金属社製,平均粒径1.5μm) HfB2 (日本新金属社製,平均粒径1.5μm)第1分散粒子粉末 SiC (昭和電工社製,平均粒径0.3μm) TiC (古河機械金属社製STD,平均粒径0.2μ
m) TiN (Tioxide社製,平均粒径0.2μm) B4 C (出光マテリアル社製,平均粒径0.4μm) LaB6 (共立窯業社製,平均粒径1.2μmの粉砕・
分級品) CeB6 (共立窯業社製,平均粒径1.2μmの粉砕・
分級品)第2分散粒子粉末 Cr(MMC社製,平均粒径10μmの粉砕・分級品) Fe(MMC社製,平均粒径10μmの粉砕・分級品) Y23 (信越化学社製,平均粒径0.2μm) Al23 (大明化学社製,平均粒径0.2μm) 実施例1〜29,比較例1〜7 マトリックス硼化物粉末に第1分散粒子粉末及び第2分
散粒子粉末を表1〜3に示す配合割合で加え、分散媒と
してエタノールを用いて撹拌ミルで2時間湿式混合し、
これを十分に乾燥した後、乾式ボールミルで解砕混合し
た。
Matrix boride powder TiB 2 (manufactured by Idemitsu Material Co., Ltd., average particle size 1.2 μm) ZrB 2 (manufactured by Nippon Shinkin Co., Ltd., average particle size 1.5 μm) HfB 2 (manufactured by Nippon Shinkin Co., Ltd., average particle size) 1.5 μm) First dispersed particle powder SiC (Showa Denko KK, average particle size 0.3 μm) TiC (Furukawa Kikai Metal STD, average particle size 0.2 μm
m) TiN (manufactured by Tioxide Co., average particle size 0.2 μm) B 4 C (manufactured by Idemitsu Material Co., Ltd., average particle size 0.4 μm) LaB 6 (manufactured by Kyoritsu Kikai Co., Ltd., crushed with average particle size 1.2 μm)
Classified product) CeB 6 (manufactured by Kyoritsu Kiln Co., Ltd., crushed with an average particle size of 1.2 μm)
Classified product) Second dispersed particle powder Cr (manufactured by MMC, crushed / classified product with average particle size 10 μm) Fe (manufactured by MMC, crushed / classified product with average particle size 10 μm) Y 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., Average particle size 0.2 μm) Al 2 O 3 (manufactured by Daimei Kagaku Co., average particle size 0.2 μm) Examples 1 to 29, Comparative Examples 1 to 7 First dispersed particle powder and second dispersed particle in matrix boride powder. The powder was added at the mixing ratios shown in Tables 1 to 3, and the mixture was wet-mixed for 2 hours with a stirring mill using ethanol as a dispersion medium.
This was thoroughly dried and then crushed and mixed with a dry ball mill.

【0027】この原料粉末を黒鉛ダイスに充填し、真空
中で表1〜3に示す温度で30分〜1時間焼結した。一
部のサンプルについては、焼結前に水素雰囲気中にて7
50℃で2時間還元処理した。焼結にはホットプレス装
置(富士電波工業社製)を用い、プレス圧は300kg
f/cm2 とした。
This raw material powder was filled in a graphite die and sintered in vacuum at the temperatures shown in Tables 1 to 30 for 1 hour to 1 hour. For some samples, 7
Reduction treatment was carried out at 50 ° C. for 2 hours. A hot press machine (manufactured by Fuji Denpa Kogyo Co., Ltd.) was used for sintering, and the pressing pressure was 300 kg.
f / cm 2 .

【0028】得られた各種の焼結体の機械的特性をJI
S(硬度:ビッカース硬度計(荷重5kg、荷重時間1
0秒),破壊靭性値:IF法)に準じて評価し、評価を
表1〜3に示した。
The mechanical properties of the obtained various sintered bodies were measured by JI.
S (hardness: Vickers hardness meter (load 5 kg, loading time 1
0 second), fracture toughness value: IF method), and the evaluation is shown in Tables 1 to 3.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】表1〜3より、本発明の硼化物セラミック
スは、ナノサイズの分散粒子により材料組織が微細・均
質化され、硬度、破壊靭性が改善されていることが明ら
かである。
From Tables 1 to 3, it is clear that the boride ceramics of the present invention have a fine and homogenized material structure due to nano-sized dispersed particles, and have improved hardness and fracture toughness.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の硼化物セラ
ミックスにおいては、マトリックス硼化物の結晶粒内及
び/又は粒界にナノサイズの分散粒子が存在する特殊な
組織構造を有し、また、マトリックス硼化物と分散粒子
は強い界面を形成していることから、破壊靭性値、硬度
等の機械的特性が大幅に向上した。
As described above in detail, the boride ceramics of the present invention has a special structure structure in which nano-sized dispersed particles are present in the crystal grains of the matrix boride and / or in the grain boundaries. Since the matrix boride and the dispersed particles form a strong interface, the mechanical properties such as fracture toughness value and hardness are significantly improved.

【0034】また、本発明の硼化物セラミックスは、高
温時でも高硬度、高強度を有する材料であり、本発明に
よれば耐摩耗部材、金属の熱間押出治具及び溶湯部材な
どに応用可能な高特性セラミックスが提供される。
Further, the boride ceramics of the present invention is a material having high hardness and high strength even at a high temperature, and according to the present invention, it can be applied to wear resistant members, hot metal extrusion jigs, molten metal members and the like. High-performance ceramics are provided.

【0035】本発明の硼化物セラミックスの製造方法に
よれば、このような本発明の硼化物セラミックスを容易
かつ効率的に製造することができる。
According to the method for producing boride ceramics of the present invention, such boride ceramics of the present invention can be easily and efficiently produced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒子径0.3〜5μmの結晶粒子を有す
る元素周期律表第4a族よりなる群から選ばれる1元素
の硼化物をマトリックスとし、その結晶粒内及び/又は
粒界に、平均粒径500nm以下の、炭化珪素、炭化チ
タン、窒化チタン、炭化硼素、硼化ランタン及び硼化セ
リウムよりなる群から選ばれる1種又は2種以上の微粒
子を3〜30体積%分散させたことを特徴とする硼化物
セラミックス。
1. A boride of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements having crystal grains having a grain size of 0.3 to 5 μm is used as a matrix, and within the crystal grains and / or grain boundaries, 3 to 30% by volume of one or more kinds of fine particles having an average particle diameter of 500 nm or less selected from the group consisting of silicon carbide, titanium carbide, titanium nitride, boron carbide, lanthanum boride and cerium boride are dispersed. Boride ceramics.
【請求項2】 請求項1に記載のセラミックスにおい
て、更に、クロム、鉄、イットリア及びアルミナよりな
る群から選ばれる1種の粉末を、1〜10体積%分散さ
せたことを特徴とする硼化物セラミックス。
2. The ceramic according to claim 1, further comprising 1 to 10% by volume of a powder selected from the group consisting of chromium, iron, yttria and alumina. Ceramics.
【請求項3】 請求項1に記載のセラミックスを製造す
る方法であって、元素周期律表第4a族よりなる群から
選ばれる1元素の硼化物と、炭化珪素、炭化チタン、窒
化チタン、炭化硼素、硼化ランタン及び硼化セリウムよ
りなる群から選ばれる1種又は2種以上の粉末とを混合
して成形した後、真空又は不活性雰囲気中で1700℃
以上の温度で焼結することを特徴とする硼化物セラミッ
クスの製造方法。
3. The method for producing a ceramic according to claim 1, wherein a boride of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements, silicon carbide, titanium carbide, titanium nitride and carbonization. After mixing and molding with one or more powders selected from the group consisting of boron, lanthanum boride and cerium boride, the mixture is molded at 1700 ° C. in a vacuum or an inert atmosphere.
A method for producing boride ceramics, which comprises sintering at the above temperature.
【請求項4】 請求項2に記載の硼化物セラミックスを
製造する方法であって、元素周期律表第4a族よりなる
群から選ばれる1元素の硼化物と、炭化珪素、炭化チタ
ン、窒化チタン、炭化硼素、硼化ランタン及び硼化セリ
ウムよりなる群から選ばれる1種又は2種以上の粉末
と、クロム、鉄、イットリア及びアルミナよりなる群か
ら選ばれる1種の粉末とを、混合して成形した後、真空
又は不活性雰囲気中で1500℃以上の温度で焼結する
ことを特徴とする硼化物セラミックスの製造方法。
4. The method for producing the boride ceramics according to claim 2, wherein the boride of one element selected from the group consisting of Group 4a of the Periodic Table of the Elements, silicon carbide, titanium carbide and titanium nitride. A mixture of one or more powders selected from the group consisting of boron carbide, lanthanum boride and cerium boride and one powder selected from the group consisting of chromium, iron, yttria and alumina. A method for producing boride ceramics, which comprises molding and then sintering at a temperature of 1500 ° C. or higher in a vacuum or an inert atmosphere.
【請求項5】 請求項3又は4に記載の方法において、
成形後、水素雰囲気中700〜800℃で還元処理した
後、焼結することを特徴とする硼化物セラミックスの製
造方法。
5. The method according to claim 3 or 4,
After the molding, a reduction treatment is performed at 700 to 800 ° C. in a hydrogen atmosphere, followed by sintering, which is a method for producing a boride ceramics.
JP7256210A 1995-10-03 1995-10-03 Boride ceramic and its production Withdrawn JPH09100165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256210A JPH09100165A (en) 1995-10-03 1995-10-03 Boride ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7256210A JPH09100165A (en) 1995-10-03 1995-10-03 Boride ceramic and its production

Publications (1)

Publication Number Publication Date
JPH09100165A true JPH09100165A (en) 1997-04-15

Family

ID=17289459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256210A Withdrawn JPH09100165A (en) 1995-10-03 1995-10-03 Boride ceramic and its production

Country Status (1)

Country Link
JP (1) JPH09100165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110149A1 (en) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Sintered wear-resistant boride material, sinterable powder mixture for producing said material, method for producing the material and use thereof
KR101466946B1 (en) * 2012-12-24 2014-12-03 한국세라믹기술원 Manufacturing method of zirconium diboride-silicon carbide composite with high thermal conductivity
CN109704816A (en) * 2019-03-08 2019-05-03 航天特种材料及工艺技术研究所 A kind of high temperature self-healing duplex heat treatment and its preparation method and application formed on basis material
WO2020202878A1 (en) * 2019-04-02 2020-10-08 学校法人同志社 Zirconium boride/boron carbide composite and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110149A1 (en) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Sintered wear-resistant boride material, sinterable powder mixture for producing said material, method for producing the material and use thereof
KR101466946B1 (en) * 2012-12-24 2014-12-03 한국세라믹기술원 Manufacturing method of zirconium diboride-silicon carbide composite with high thermal conductivity
CN109704816A (en) * 2019-03-08 2019-05-03 航天特种材料及工艺技术研究所 A kind of high temperature self-healing duplex heat treatment and its preparation method and application formed on basis material
WO2020202878A1 (en) * 2019-04-02 2020-10-08 学校法人同志社 Zirconium boride/boron carbide composite and method for manufacturing same

Similar Documents

Publication Publication Date Title
Ahmadi et al. Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron-and nano-sized SiC particulates
Khodaei et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites
Zhang et al. Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics
Vafa et al. Role of h-BN content on microstructure and mechanical properties of hot-pressed ZrB2–SiC composites
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
US5543370A (en) Composite materials based on boron carbide, titanium diboride and elemental carbon and processes for the preparation of same
Wang et al. Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C composites
US20120172193A1 (en) Method for producing pressurelessly sintered zirconium diboride/silicon carbide composite bodies
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
Akbari et al. The influence of different SiC amounts on the microstructure, densification, and mechanical properties of hot‐pressed Al2O3‐SiC composites
EP0170889B1 (en) Zrb2 composite sintered material
CN111747748B (en) Ultrahigh-temperature heat-proof/insulation integrated ZrC/Zr 2 C complex phase material and preparation method thereof
JPH09100165A (en) Boride ceramic and its production
JPH1095670A (en) Production of silicon carbide composite ceramic
JPH08310867A (en) Production of boride ceramic
JPH09100164A (en) Boride ceramic composite material and its production
JP3694583B2 (en) Crusher parts
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP3051603B2 (en) Titanium compound sintered body
Cameron et al. A Comparison of Reaction vs Conventionally Hot‐Pressed Ceramic Composites
JP3045367B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH09249456A (en) Boride complex ceramic and its production
JP2000143351A (en) High-toughness silicon nitride-based sintered compact

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203