JP2003034584A - Silicon nitride-based composite powder and method for producing the same - Google Patents

Silicon nitride-based composite powder and method for producing the same

Info

Publication number
JP2003034584A
JP2003034584A JP2001222813A JP2001222813A JP2003034584A JP 2003034584 A JP2003034584 A JP 2003034584A JP 2001222813 A JP2001222813 A JP 2001222813A JP 2001222813 A JP2001222813 A JP 2001222813A JP 2003034584 A JP2003034584 A JP 2003034584A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
titanium
based composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222813A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001222813A priority Critical patent/JP2003034584A/en
Priority to US10/311,604 priority patent/US6844282B2/en
Priority to PCT/JP2002/003864 priority patent/WO2002085812A1/en
Priority to EP02718611A priority patent/EP1298106A4/en
Priority to CNB028013255A priority patent/CN100480214C/en
Publication of JP2003034584A publication Critical patent/JP2003034584A/en
Priority to US11/031,994 priority patent/US7008893B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-based composite powder having good mechanical properties in the range from room temperature to a low-to-medium temperature, a low coefficient of friction and good abrasion resistance, and to provide a method for producing the same. SOLUTION: The silicon nitride-based composite powder is a secondary composite-particle powder comprising silicon nitride, a titanium-based compound, and a graphite and/or carbon, all having primary particles having an average particle diameter of 30 nm or less, wherein the surface of these particles are covered by a phase comprising at least titanium and/or silicon, and partly an amorphous phase of carbon. The method for producing the silicon nitride-based composite powder is characterized in mixing and grinding the silicon nitride powder, titanium metal powder, and graphite powder or carbon powder, at a temperature of from room temperature to 250 deg.C and at an acceleration of 10-300 G.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種機械部材や切
削工具、摺動部材等に使用される高耐摩耗・低摩擦の構
造用セラミック材料として、室温から中低温域で優れた
機械的特性並びに低い摩擦係数を有する窒化ケイ素系焼
結体の原料複合粉末及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a structural ceramic material having high wear resistance and low friction, which is used for various machine members, cutting tools, sliding members, etc. In addition, the present invention relates to a raw material composite powder of a silicon nitride-based sintered body having a low friction coefficient and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si34)は強度、靭性、
耐食性、耐酸化性、耐熱衝撃性において優れた材料であ
るために、切削工具やガスタービン、軸受等に幅広く使
用されている。さらに最近では、エンジン部品などの構
造材料にも使用する研究が進められ、耐摩耗性、硬度な
ど要求される性能レベルが苛酷になりつつある。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) is used for strength, toughness,
It is widely used in cutting tools, gas turbines, bearings, etc. because of its excellent corrosion resistance, oxidation resistance, and thermal shock resistance. Furthermore, recently, research has been conducted for use in structural materials such as engine parts, and the required performance levels such as wear resistance and hardness are becoming severe.

【0003】例えば、高い耐摩耗性が要求されている特
定の自動車部品や塑性加工用の工具に窒化ケイ素系複合
材料を用いる場合には、超硬合金(WCからなる硬質粒
子とCo等の結合相とからなるサーメット材料)やハイ
スのような従来の材料に比べ顕著に高い耐摩耗性が要求
されている。
For example, when a silicon nitride-based composite material is used for a specific automobile part that requires high wear resistance or a tool for plastic working, cemented carbide (hard particles made of WC and Co, etc. is bonded). It is required to have significantly higher wear resistance than conventional materials such as cermet materials consisting of phases and HSS.

【0004】しかしながら、窒化珪素系の複合材料は、
これらの材料に比べ高価であるとともに、摩耗特性は、
その価格レベルに見合うだけの満足したレベルにはない
のが現状である。
However, the silicon nitride-based composite material is
It is more expensive than these materials and its wear characteristics are
The current situation is that we are not satisfied with the price level.

【0005】なお、「窒化ケイ素系」とは、主結晶相と
して窒化ケイ素(Si34)及び/又はサイアロンを含
むセラミックスを指す。また「窒化ケイ素系の複合材
料」とは、窒化ケイ素系セラミックスを主結晶とするマ
トリックス中に、それとは異なった成分を分散複合化さ
せた材料をいう。
The term "silicon nitride system" refers to ceramics containing silicon nitride (Si 3 N 4 ) and / or sialon as a main crystal phase. Further, the "silicon nitride-based composite material" refers to a material in which a component different from the above is dispersed and composited in a matrix having silicon nitride-based ceramics as a main crystal.

【0006】このような窒化ケイ素系材料においては、
その特性をより一層向上させるために様々な研究が行わ
れている。例えば、特開平11−139882号公報並
びに特開平11−139874号公報には、窒化ケイ素
粉末と金属チタン粉末とを窒素雰囲気中にて高加速度で
混合することにより、微細な窒化ケイ素粒子と窒化チタ
ン粒子とからなる複合粉末が得られ、この複合粉末を用
いることにより、窒化チタン粒子が窒化ケイ素の粒成長
を抑制し、微細な結晶構造で高強度の窒化ケイ素焼結体
を製造できることが報告されている。
In such a silicon nitride material,
Various studies have been conducted to further improve the characteristics. For example, in JP-A-11-139882 and JP-A-11-139874, fine silicon nitride particles and titanium nitride are obtained by mixing silicon nitride powder and titanium metal powder at high acceleration in a nitrogen atmosphere. It is reported that a composite powder consisting of particles and a titanium nitride particle can suppress grain growth of silicon nitride by using this composite powder, and a high-strength silicon nitride sintered body with a fine crystal structure can be produced. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
窒化ケイ素焼結体は高強度を示すものの、機械構造用材
料としての摩擦に関する特性、特に現在の省エネルギ化
の傾向に関して最も期待されている無潤滑下での摩擦を
低下させることについては未だ研究されていなかった。
However, although the above-mentioned silicon nitride sintered body exhibits high strength, it has the most expected properties regarding friction as a material for machine structural use, particularly the present tendency of energy saving. Reducing friction under lubrication has not yet been studied.

【0008】一方、低摩擦係数を有するセラミック材料
を作製するために一般的に行われる手法としては、窒化
ホウ素、硫化モリブデン、グラファイト等の固体潤滑材
を材料中に分散させる手法がよく知られている。しか
し、これら固体潤滑材の第2相はサブミクロン程度の大
きさでしか分散させることができず、そのため摩擦係数
の低下には限界があった。
On the other hand, as a method generally used for producing a ceramic material having a low coefficient of friction, a method of dispersing a solid lubricant such as boron nitride, molybdenum sulfide or graphite in the material is well known. There is. However, the second phase of these solid lubricants can be dispersed only in a size of submicron, so that there is a limit to the reduction of the friction coefficient.

【0009】又、特開平11−43372号公報には遊
離炭素を0.5重量%以上50重量%未満含み、窒化ケ
イ素系結晶粒の平均短軸径が0.5μm以下で、無潤滑
下条件での摩擦係数が0.2以下を有する窒化ケイ素系
セラミックスが提案されている。しかし、窒化ケイ素と
遊離炭素の組み合せは比摩耗量が10-7mm2/Nと低
く、摩耗量については未だ課題が残っている。
Further, JP-A No. 11-43372 discloses that free carbon is contained in an amount of 0.5% by weight or more and less than 50% by weight, the average minor axis diameter of silicon nitride type crystal grains is 0.5 μm or less, and the conditions under non-lubrication conditions Have proposed silicon nitride ceramics having a friction coefficient of 0.2 or less. However, the combination of silicon nitride and free carbon has a low specific wear amount of 10 −7 mm 2 / N, and a problem still remains with respect to the wear amount.

【0010】本発明は、このような従来の事情に鑑み、
室温から中低温域で優れた機械的特性を有すると共に、
低い摩擦係数を有し耐摩耗性に優れた窒化ケイ素系焼結
体を製造するに適した複合粉末及びその製造方法を提供
することを目的とする。
The present invention has been made in view of such conventional circumstances.
In addition to having excellent mechanical properties from room temperature to mid-low temperature range,
An object of the present invention is to provide a composite powder suitable for producing a silicon nitride-based sintered body having a low friction coefficient and excellent wear resistance, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、一次粒子の平均粒径がいずれも30nm
以下の窒化ケイ素、チタン系化合物及びグラファイト及
び/又はカーボンと、これらの粒子の表面を覆っている
少なくともアモルファスを含む相とからなる二次複合粒
子粉末であることを特徴とする窒化ケイ素系複合粉末を
提供するものである。上記においてアモルファス相はチ
タン、ケイ素及び一部がカーボンである。
In order to achieve the above object, the present invention has an average primary particle diameter of 30 nm.
A silicon nitride-based composite powder comprising the following silicon nitride, titanium-based compound and graphite and / or carbon, and a secondary composite particle powder composed of a phase covering at least the surface of these particles and containing at least an amorphous material. Is provided. In the above, the amorphous phase is titanium, silicon and partly carbon.

【0012】一次粒子の平均粒径がいずれも30nm以
下の窒化ケイ素、チタン系化合物とグラファイト及び/
又はカーボンは、互いに凝集して複合粉末を形成してい
るほか、その表面がチタン及び/又はケイ素のアモルフ
ァス金属さらには一部アモルファスのカーボンで覆われ
ているために、通常の非酸化物系のナノ粉末よりも表面
酸化が抑制され、簡便に取扱うことができる。また、こ
の凝集体である二次複合粒子粉末の平均粒径は0.3〜
1.0μm程度であるため、従来の市販粉末と同様に取
扱うことができる。ここでいうチタン系化合物は、窒化
チタン、炭窒化チタン、炭化チタンのうち少なくとも1
種以上である。
Silicon nitride, titanium-based compound and graphite and // having an average primary particle diameter of 30 nm or less
Or, the carbon is agglomerated with each other to form a composite powder, and the surface thereof is covered with an amorphous metal of titanium and / or silicon and a part of amorphous carbon. The surface oxidation is suppressed more than that of nanopowder, and it can be handled easily. In addition, the average particle size of the secondary composite particle powder that is this agglomerate is 0.3 to
Since it is about 1.0 μm, it can be handled in the same manner as a conventional commercially available powder. The titanium-based compound here is at least one of titanium nitride, titanium carbonitride, and titanium carbide.
More than a seed.

【0013】上記の窒化ケイ素系複合粉末の製造方法と
しては、市販の窒化ケイ素粉末に金属チタン粉末及びグ
ラファイト粉末及び/又はカーボン粉末を添加して、窒
素雰囲気中にて、室温〜250℃の温度で、10〜30
0Gの高加速度で混合する。混合手段としては粉砕を伴
う遊星ボールミルやアトライターを用いることが好まし
い。なお、グラファイト、カーボンは粉末としてではな
く、フェノール樹脂等として添加しても有効である。
As the method for producing the above-mentioned silicon nitride-based composite powder, commercially available silicon nitride powder is added with metallic titanium powder and graphite powder and / or carbon powder, and the temperature is from room temperature to 250 ° C. in a nitrogen atmosphere. So 10-30
Mix at high acceleration of 0G. As a mixing means, it is preferable to use a planetary ball mill or an attritor that involves grinding. It should be noted that graphite and carbon are effective not only in the form of powder but also in the form of phenol resin or the like.

【0014】かかる高加速度での混合により金属チタン
及びグラファイトは下記の各反応を起こして、窒化ケイ
素を微細化していくものと考えられる。 Si34+4Ti→4TiN+3Si 2Ti+N2→2TiN Ti+C→TiC また一部にはTiCNも生成する。
It is considered that the titanium metal and graphite cause the following reactions by the mixing at such a high acceleration, and the silicon nitride is miniaturized. Si 3 N 4 + 4Ti → 4TiN + 3Si 2Ti + N 2 → 2TiN Ti + C → TiC In addition, TiCN is also partially generated.

【0015】ここで、加速度を10〜300Gに限定す
る理由は、10G未満では均一な粉末の微細化が起こり
難く、最終的に焼結体としたときの焼結体の結晶粒径が
不均一になってしまうためである。また、混合時の加速
度が300Gを超えると、ポットやボールが摩耗するこ
とにより不純物が混入されるためである。
Here, the reason why the acceleration is limited to 10 to 300 G is that if it is less than 10 G, it is difficult for the powder to be made uniform and the crystal grain size of the sintered body when finally made into a sintered body is not uniform. This is because Also, if the acceleration during mixing exceeds 300 G, impurities are mixed due to wear of the pots and balls.

【0016】この高加速度で混合粉砕する際の温度とし
ては、室温〜250℃、より好ましくは50℃〜200
℃である。この温度領域において上記反応が促進され、
短時間で目的とする二次複合粉末を得ることができる。
混合時間については、0.5時間未満では反応に伴う微
細化が進行せず、50時間を超えると不純物が混入する
ため、0.5〜50時間とすることが望ましい。なお、
混合の際の加速度、温度、混合時間は、その作製したい
粉末の条件により適宜制御することが必要である。
The temperature for mixing and pulverizing with high acceleration is room temperature to 250 ° C, more preferably 50 ° C to 200 ° C.
℃. The reaction is promoted in this temperature range,
The target secondary composite powder can be obtained in a short time.
Regarding the mixing time, if the time is less than 0.5 hours, the miniaturization accompanying the reaction does not proceed, and if the time exceeds 50 hours, impurities are mixed, so that the mixing time is preferably 0.5 to 50 hours. In addition,
It is necessary to appropriately control the acceleration, temperature, and mixing time during mixing depending on the conditions of the powder to be produced.

【0017】また上記の反応を起こすためには窒素雰囲
気が必要であり、その窒素雰囲気の圧力は0.05〜
1.0MPaの範囲が好ましく、0.08〜0.15M
Paの範囲がさらに好ましい。窒素雰囲気の圧力が0.
05MPa未満では反応の制御が困難であり、また、
1.0MPaを超えると耐圧容器等の特殊な容器が必要
となるので好ましくない。
Further, a nitrogen atmosphere is required to cause the above reaction, and the pressure of the nitrogen atmosphere is 0.05 to.
The range of 1.0 MPa is preferable, and 0.08 to 0.15 M
The range of Pa is more preferable. The pressure of the nitrogen atmosphere is 0.
If it is less than 05 MPa, it is difficult to control the reaction, and
If it exceeds 1.0 MPa, a special container such as a pressure resistant container is required, which is not preferable.

【0018】金属チタンの添加量は特に制限はないが、
5重量%未満の場合には反応するTiの量が少な過ぎる
ために、窒化ケイ素を微細化することができない。ま
た、金属チタン粉末の添加量が60重量%を超えると、
反応するTiの量が多くなり、焼結体に色ムラ等が発生
するために好ましくない。したがって、金属チタン粉末
の添加量は5〜60重量%の範囲が好ましい。
The amount of titanium metal added is not particularly limited,
If it is less than 5% by weight, the amount of Ti that reacts is too small, and therefore silicon nitride cannot be made fine. Further, if the addition amount of titanium metal powder exceeds 60% by weight,
This is not preferable because the amount of Ti that reacts increases and color unevenness or the like occurs in the sintered body. Therefore, the addition amount of the titanium metal powder is preferably in the range of 5 to 60% by weight.

【0019】また、グラファイト及び/又はカーボンの
添加量は0.5〜20重量%である。0.5重量%未満
の場合には、焼結体とした時に充分な摩擦特性を得るこ
とができない。さらに、混合時に粉末が容器の壁面に付
着するが、その付着量が多くなり、粉末の回収率が低下
する。グラファイト及び/又はカーボンの添加量が20
重量%を超えると、焼結体とした時に緻密化がはかれ
ず、材料特性が悪化する。
The addition amount of graphite and / or carbon is 0.5 to 20% by weight. If the amount is less than 0.5% by weight, sufficient friction characteristics cannot be obtained when a sintered body is formed. Further, the powder adheres to the wall surface of the container at the time of mixing, but the adhered amount increases, and the powder recovery rate decreases. Addition amount of graphite and / or carbon is 20
If it exceeds 5% by weight, it will not be densified when it is made into a sintered body and the material properties will deteriorate.

【0020】このような本発明の窒化ケイ素系複合粉末
を用いて製造される窒化ケイ素系複合焼結体は、Si3
4、チタン系化合物、SiC、Cが微細な粒径で制御
された結晶構造をもっており、摩擦係数が低く、優れた
高耐摩耗性を備えている。
A silicon nitride-based composite sintered body produced using such a silicon nitride-based composite powder of the present invention is Si 3
N 4 , titanium compounds, SiC, and C have a crystal structure controlled by a fine grain size, have a low friction coefficient, and have excellent high wear resistance.

【0021】[0021]

【発明の実施の形態】以下、実施例に基づいて本発明を
具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below based on Examples.

【0022】実施例1 市販の平均粒径0.5μmのSi34粉末に、焼結助剤
として2.5wt%のY23粉末と1wt%のAl23
粉末を加え、更に平均粒径10μmの金属Ti粉末を4
0wt%、平均粒径5μmのグラファイト粉末を5wt
%添加して、0.1MPaの窒素雰囲気中において50
℃の温度条件で、Si34製ボールを用いた遊星ボール
ミルにより加速度150Gで16時間混合した。
Example 1 2.5 wt% Y 2 O 3 powder and 1 wt% Al 2 O 3 as a sintering aid were added to a commercially available Si 3 N 4 powder having an average particle size of 0.5 μm.
Powder was added, and metal Ti powder with an average particle size of 10 μm was added to 4
0 wt%, 5 wt% graphite powder with an average particle size of 5 μm
%, And added in a nitrogen atmosphere of 0.1 MPa to 50
Under a temperature condition of ° C, they were mixed for 16 hours at an acceleration of 150 G by a planetary ball mill using Si 3 N 4 balls.

【0023】得られた二次複合粒子粉末をXRDにて定
性分析を行ったところ、Si34、TiN、TiC(T
iCN)及びCのブロードなピークを確認することがで
きた。また、この二次複合粒子粉末を透過電子顕微鏡で
観察した結果、各構成粒子の平均粒径はいずれも30n
m以下であり、それらの粒子はアモルファスのTiとS
iさらには一部がCで覆われている構造であることが分
かった。なお、得られた二次複合粒子粉末の平均粒径は
0.3μmであった。
Qualitative analysis of the obtained secondary composite particle powder by XRD revealed that Si 3 N 4 , TiN, TiC (T
iCN) and C broad peaks could be confirmed. In addition, as a result of observing this secondary composite particle powder with a transmission electron microscope, the average particle diameter of each constituent particle is 30 n.
m or less, and their particles are amorphous Ti and S
i Furthermore, it was found that the structure was partially covered with C. The average particle size of the obtained secondary composite particle powder was 0.3 μm.

【0024】次にこの本発明の窒化ケイ素複合粉末を用
いて焼結体の製造を行った。前記二次複合粒子粉末をカ
ーボンダイスに充填した後、放電プラズマ焼結体(SP
S)を用いて昇温速度100℃/min、保持時間5
分、1400℃で焼結した。得られた焼結体について、
研削、ラッピング処理した後、ボールオンディスク試験
機で耐摩耗特性を評価した。その結果、得られた焼結体
は摩擦係数0.12と低い摩擦係数であり、比摩耗量が
5×10-9mm2/Nという高い耐摩耗性を示した。ま
た、この焼結体を研磨した後、Arイオンエッチングで
薄膜試験片を作製し、透過電子顕微鏡を用いて評価した
結果、粒子は50nm以下と非常い微細な粒子が形成さ
れていた。
Next, a sintered body was manufactured using this silicon nitride composite powder of the present invention. After filling the secondary composite particle powder in a carbon die, a spark plasma sintered body (SP
S) is used to raise the temperature at 100 ° C./min and the holding time is 5
Min, sintered at 1400 ° C. About the obtained sintered body,
After grinding and lapping, abrasion resistance was evaluated by a ball-on-disk tester. As a result, the obtained sintered body had a low friction coefficient of 0.12 and a high specific wear amount of 5 × 10 −9 mm 2 / N. After polishing the sintered body, a thin film test piece was prepared by Ar ion etching and evaluated using a transmission electron microscope. As a result, very fine particles of 50 nm or less were formed.

【0025】比較例1 比較のために、遊星ボールミルに代えて、原料粉末を超
音波混合した以外は上記の実施例1と同様にして複合粉
末を作製し、その複合粉末を用いて同様に焼結した。得
られた比較例1の焼結体中には数μmの大きさのTiC
N粒子が観察され、その摩擦係数も0.5程度と高く、
比摩耗量も、5.0×10-8mm2/Nの低耐摩耗性の
材料が得られた。
Comparative Example 1 For comparison, a composite powder was prepared in the same manner as in Example 1 except that the raw material powder was ultrasonically mixed instead of the planetary ball mill, and the composite powder was similarly burned. Tied up. In the obtained sintered body of Comparative Example 1, TiC having a size of several μm was used.
N particles were observed, and the friction coefficient was as high as about 0.5,
A material having a low wear resistance with a specific wear amount of 5.0 × 10 −8 mm 2 / N was also obtained.

【0026】実施例2及び比較例2 平均粒径0.5μmのSi34粉末に実施例1と同一の
焼結助剤を加え、さらに10μmのTiと平均粒径5μ
mのグラファイト粉末を表1に示す如く加え、表2に示
す雰囲気、温度、加速度、時間で実施例1と同様にして
二次複合粒子を得た。得られた二次複合粒子についてX
RDにて定性分析をしたところ、Si34、チタン系化
合物(TiN、TiC、TiCN)、Cの平均粒径が表
3に示すとおりであった。
Example 2 and Comparative Example 2 The same sintering additive as in Example 1 was added to Si 3 N 4 powder having an average particle size of 0.5 μm, and Ti of 10 μm and an average particle size of 5 μm were added.
Graphite powder of m was added as shown in Table 1, and secondary composite particles were obtained in the same manner as in Example 1 in the atmosphere, temperature, acceleration and time shown in Table 2. Regarding the obtained secondary composite particles X
Qualitative analysis by RD revealed that the average particle diameters of Si 3 N 4 , titanium compounds (TiN, TiC, TiCN) and C are as shown in Table 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】本発明によれば、Si34を主成分とす
る微細なマトリックス中に、金属の窒化物を主成分とす
る微細な分散粒子を分散させ、その製造過程での原料及
びその混合粉砕方法を工夫し、通常の取扱いによっても
容易に特性の優れた焼結体を得ることができる窒化ケイ
素複合粉末を提供することができる。
According to the present invention, fine dispersed particles containing a metal nitride as a main component are dispersed in a fine matrix containing Si 3 N 4 as a main component, and a raw material in a manufacturing process thereof and By devising the mixing and pulverizing method, it is possible to provide a silicon nitride composite powder capable of easily obtaining a sintered body having excellent characteristics even by ordinary handling.

フロントページの続き Fターム(参考) 4G001 BA03 BA09 BA25 BA32 BA38 BA57 BA60 BA61 BB03 BB25 BB32 BB38 BB57 BB60 BC01 BC02 BC21 4G030 AA12 AA36 AA45 AA49 AA52 AA60 AA61 BA18 BA19 GA03 GA04 GA07 Continued front page    F-term (reference) 4G001 BA03 BA09 BA25 BA32 BA38                       BA57 BA60 BA61 BB03 BB25                       BB32 BB38 BB57 BB60 BC01                       BC02 BC21                 4G030 AA12 AA36 AA45 AA49 AA52                       AA60 AA61 BA18 BA19 GA03                       GA04 GA07

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子の平均粒径がいずれも30nm
以下の窒化ケイ素、チタン系化合物とグラファイト及び
/又はカーボンからなり、これらの粒子の表面を覆って
いる少なくともアモルファスを含む相とからなる二次複
合粒子粉末であることを特徴とする窒化ケイ素系複合粉
末。
1. The average particle size of primary particles is 30 nm in all cases.
A silicon nitride-based composite, which is a secondary composite particle powder comprising the following silicon nitride, a titanium-based compound, graphite and / or carbon, and a phase covering at least the surface of these particles and containing at least an amorphous material. Powder.
【請求項2】 アモルファス相はチタン及び/又はケイ
素及び一部カーボンである請求項1記載の窒化ケイ素系
複合粉末。
2. The silicon nitride-based composite powder according to claim 1, wherein the amorphous phase is titanium and / or silicon and a part of carbon.
【請求項3】 チタン系化合物が、窒化チタン、炭窒化
チタン、炭化チタンのうち少なくとも1種以上であるこ
とを特徴とする請求項1又は2記載の窒化ケイ素系複合
粉末。
3. The silicon nitride-based composite powder according to claim 1, wherein the titanium-based compound is at least one selected from titanium nitride, titanium carbonitride, and titanium carbide.
【請求項4】 窒化ケイ素粉末、金属チタン粉末及びグ
ラファイト粉末及び/又はカーボン粉末を窒素雰囲気
中、室温〜250℃の温度において、10〜300Gの
加速度で混合粉砕することを特徴とする窒化ケイ素系複
合粉末の製造方法。
4. A silicon nitride system characterized by mixing and pulverizing silicon nitride powder, metallic titanium powder and graphite powder and / or carbon powder at a temperature of room temperature to 250 ° C. at an acceleration of 10 to 300 G. Method for producing composite powder.
【請求項5】 窒素雰囲気圧力が0.05MPa〜1.
0MPaである請求項4記載の窒化ケイ素系複合粉末の
製造方法。
5. A nitrogen atmosphere pressure of 0.05 MPa to 1.
The method for producing a silicon nitride-based composite powder according to claim 4, wherein the pressure is 0 MPa.
【請求項6】 金属チタン粉末の添加量が全体の5〜6
0重量%である請求項4記載の窒化ケイ素系複合粉末の
製造方法。
6. The total amount of titanium metal powder added is 5-6.
The method for producing a silicon nitride-based composite powder according to claim 4, wherein the content is 0% by weight.
【請求項7】 グラファイトあるいはカーボン粉末の添
加量が全体の重量の0.5〜20重量%である請求項4
記載の窒化ケイ素系複合粉末の製造方法。
7. The amount of graphite or carbon powder added is 0.5 to 20% by weight of the total weight.
A method for producing the silicon nitride-based composite powder described.
【請求項8】 混合時間が0.5時間〜50時間である
請求項4記載の窒化ケイ素系複合粉末の製造方法。
8. The method for producing a silicon nitride-based composite powder according to claim 4, wherein the mixing time is 0.5 hours to 50 hours.
【請求項9】 混合粉砕を遊星ボールミル又はアトライ
ターで行う請求項4記載の窒化ケイ素系複合粉末の製造
方法。
9. The method for producing a silicon nitride-based composite powder according to claim 4, wherein the mixed pulverization is performed by a planetary ball mill or an attritor.
JP2001222813A 2001-04-20 2001-07-24 Silicon nitride-based composite powder and method for producing the same Pending JP2003034584A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001222813A JP2003034584A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite powder and method for producing the same
US10/311,604 US6844282B2 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
PCT/JP2002/003864 WO2002085812A1 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
EP02718611A EP1298106A4 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
CNB028013255A CN100480214C (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and production method thereof
US11/031,994 US7008893B2 (en) 2001-04-20 2005-01-11 Silicon nitride-based composite sintered body and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222813A JP2003034584A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003034584A true JP2003034584A (en) 2003-02-07

Family

ID=19056235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222813A Pending JP2003034584A (en) 2001-04-20 2001-07-24 Silicon nitride-based composite powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003034584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040064A1 (en) * 2003-10-29 2005-05-06 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040064A1 (en) * 2003-10-29 2005-05-06 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
JP2005154258A (en) * 2003-10-29 2005-06-16 Sumitomo Electric Ind Ltd Ceramic composite material and method for producing same
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
CN100425572C (en) * 2003-10-29 2008-10-15 住友电气工业株式会社 Ceramic composite material and method for producing same
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same

Similar Documents

Publication Publication Date Title
EP2297371B1 (en) Cubic boron nitride compact
WO2010104094A1 (en) Cermet and coated cermet
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2813005B2 (en) WC based hard alloy
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JP2626866B2 (en) Cemented carbide and its manufacturing method
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2003034584A (en) Silicon nitride-based composite powder and method for producing the same
JPS644988B2 (en)
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPS644989B2 (en)
JP2005272877A (en) Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
JP5008789B2 (en) Super hard sintered body
JP2796011B2 (en) Whisker reinforced cemented carbide
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JPH0225871B2 (en)
JPH09111390A (en) Titanium-carbonitride-base alloy
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JPH0849037A (en) Sintered compact for tool and its production
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2003034580A (en) Silicon nitride-based composite sintered body and method for producing the same