JP2003034580A - Silicon nitride-based composite sintered body and method for producing the same - Google Patents

Silicon nitride-based composite sintered body and method for producing the same

Info

Publication number
JP2003034580A
JP2003034580A JP2001222815A JP2001222815A JP2003034580A JP 2003034580 A JP2003034580 A JP 2003034580A JP 2001222815 A JP2001222815 A JP 2001222815A JP 2001222815 A JP2001222815 A JP 2001222815A JP 2003034580 A JP2003034580 A JP 2003034580A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
based composite
composite sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222815A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001222815A priority Critical patent/JP2003034580A/en
Publication of JP2003034580A publication Critical patent/JP2003034580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-based composite sintered body having good mechanical properties in the range from room temperature to a low-to- medium temperature, a low coefficient of friction and good abrasion resistance, and to provide a method for producing the same. SOLUTION: The silicon nitride-based composite sintered body comprises silicon nitride, titanium nitrides and carbides, graphite or carbon, and silicon carbide, is characterized in that it has a coefficient of sliding friction of 0.2 or less and specific abrasion loss of 4.0×10<-8> mm<2> /N or less. The method for producing the silicon nitride-based composite sintered body comprises the steps for mixing silicon nitride powders, sintering aid powders, titanium metal powders, and graphite or carbon powders, molding the mixed powders to form moldings, and rapidly heating-up and sintering the moldings at a temperature of 1300-1600 deg.C under nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種機構部材や切
削工具・摺動部材等に使用される高耐摩耗・低摩擦のセ
ラミック材料として、室温から中低温領域で優れた機械
的特性を有する窒化ケイ素焼結体及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a ceramic material having high wear resistance and low friction, which is used for various mechanical members, cutting tools, sliding members, etc., and has excellent mechanical properties in the range of room temperature to middle and low temperatures. The present invention relates to a silicon nitride sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si34)は強度、靭性、
耐食性、耐酸化性、耐熱衝撃性において優れた材料であ
るために、切削工具やガスタービン、軸受等に幅広く使
用されている。さらに最近では、エンジン部品などの構
造材料にも使用する研究が進められ、耐摩耗性、硬度な
ど性能レベルが苛酷になりつつある。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) is used for strength, toughness,
It is widely used in cutting tools, gas turbines, bearings, etc. because of its excellent corrosion resistance, oxidation resistance, and thermal shock resistance. Furthermore, recently, research has been conducted for use in structural materials such as engine parts, and performance levels such as wear resistance and hardness are becoming severe.

【0003】例えば、高い耐摩耗性が要求されている特
定の自動車部品や塑性加工用の工具に窒化ケイ素系複合
材料を用いる場合には、超硬合金(WCからなる硬質粒
子とCo等の結合相とからなるサーメット材料)やハイ
スのような従来の材料に比べ顕著に高い耐摩耗性が要求
されている。
For example, when a silicon nitride-based composite material is used for a specific automobile part that requires high wear resistance or a tool for plastic working, cemented carbide (hard particles made of WC and Co, etc. is bonded). It is required to have significantly higher wear resistance than conventional materials such as cermet materials consisting of phases and HSS.

【0004】しかしながら、窒化珪素系の複合材料は、
これらの材料に比べ高価であるとともに、耐摩耗性は、
その価格レベルに見合うだけの満足したレベルにはない
のが現状である。
However, the silicon nitride-based composite material is
It is more expensive than these materials and wear resistance is
The current situation is that we are not satisfied with the price level.

【0005】なお、「窒化ケイ素系」とは、主結晶相と
して窒化ケイ素(Si34)及び/又はサイアロンを含
むセラミックスを指す。また、「窒化ケイ素系の複合材
料」とは、窒化ケイ素系セラミックスを主結晶とするマ
トリックス中に、それとは異なった成分を分散複合化さ
せた材料をいう。
The term "silicon nitride system" refers to ceramics containing silicon nitride (Si 3 N 4 ) and / or sialon as a main crystal phase. Further, the "silicon nitride-based composite material" refers to a material in which a different component is dispersed and composited in a matrix having silicon nitride-based ceramics as a main crystal.

【0006】このような窒化ケイ素系材料においては、
その特性をより一層向上させるために様々な研究が行わ
れている。例えば、特開平11−139882号公報並
びに特開平11−139874号公報には、窒化ケイ素
粉末と金属チタン粉末とを窒素雰囲気中にて高加速度で
混合することにより、微細な窒化ケイ素粒子と窒化チタ
ン粒子とからなる複合粉末が得られ、この複合粉末を用
いることにより、窒化チタン粒子が窒化ケイ素の粒成長
を抑制し、微細な結晶構造で高強度の窒化ケイ素焼結体
を製造できることが報告されている。
In such a silicon nitride material,
Various studies have been conducted to further improve the characteristics. For example, in JP-A-11-139882 and JP-A-11-139874, fine silicon nitride particles and titanium nitride are obtained by mixing silicon nitride powder and titanium metal powder at high acceleration in a nitrogen atmosphere. It is reported that a composite powder consisting of particles and a titanium nitride particle can suppress grain growth of silicon nitride by using this composite powder, and a high-strength silicon nitride sintered body with a fine crystal structure can be produced. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
窒化ケイ素焼結体は高強度を示すものの、機械構造用材
料としての摩擦に関する特性、特に現在の省エネルギー
化の傾向に関して最も期待されている無潤滑下での摩擦
を低下させることについては未だ研究されていなかっ
た。
However, although the above-mentioned silicon nitride sintered body exhibits high strength, it has the most promising non-lubricating properties in terms of friction properties as a material for machine structural use, especially in the current trend of energy saving. Reducing friction below has not yet been studied.

【0008】一方、低摩擦係数を有する窒化ホウ素、硫
化モリブデン、グラファイト等の固体潤滑剤を材料中に
分散させる手法がよく知られている。このような手法で
は摩擦係数が0.2程度の材料が報告されている(特開
平11−43372号公報)。しかし、いずれも相手材
がSi34等のセラミックス材料であり、鉄系のような
金属部品と摩擦させると凝着等が支配的になり、その摩
擦係数の低下には限界があった。
On the other hand, a method of dispersing a solid lubricant having a low coefficient of friction such as boron nitride, molybdenum sulfide or graphite in a material is well known. In such a method, a material having a friction coefficient of about 0.2 has been reported (JP-A-11-43372). However, in both cases, the mating material is a ceramic material such as Si 3 N 4 , and when it is rubbed with a metal part such as an iron-based material, adhesion or the like becomes dominant, and the reduction of the friction coefficient is limited.

【0009】本発明は、このような従来の事情に鑑み、
室温から中低温域で優れた機械的特性を有すると共に、
低い摩擦係数を有し、耐摩耗性に優れた窒化ケイ素系焼
結体及びその製造方法を提供することを目的とする。
The present invention has been made in view of such conventional circumstances.
In addition to having excellent mechanical properties from room temperature to mid-low temperature range,
An object of the present invention is to provide a silicon nitride-based sintered body having a low friction coefficient and excellent wear resistance, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明においては、Si
34をマトリックスとして、鉄等との凝着が少なく、且
つ硬質材料であるTiN、TiC、SiC等とカーボン
あるいはグラファイトを組合せ、同種材のみならず、金
属との摩擦摩耗特性を大幅に改善した材料を提供するも
のである。
In the present invention, Si
3 N 4 as a matrix, less adhesion between the iron and the like, and TiN is a hard material, TiC, and SiC or the like and the carbon or graphite combination, not only the same material, greatly improves the friction and wear properties of the metal It provides the material that

【0011】本発明は、まず、窒化ケイ素とチタン系窒
化物・炭化物及びグラファイトあるいはカーボン及びS
iCからなる窒化ケイ素系複合焼結体であって、無潤滑
中で摺動摩擦係数が0.2以下、比摩耗量が4.0×1
-8mm2/N以下であることを特徴とする窒化ケイ素
系複合焼結体である。一部のCはTi及びSiと反応
し、TiC、SiCを形成する。また、チタン系窒化物
とチタン系炭化物との一部は互いに固溶してTiCNを
形成している。しかし、急速昇温によって焼結すること
によりCの反応が抑制され、焼結体内で微細なグラファ
イトあるいはカーボンの形で残って、焼結体の摺動摩擦
係数を低下せしめる。又、Tiは焼結時におけるSi3
4やTiN、TiC、TiCNの結晶粒の成長を抑制
でき、室温から中低温域(300℃以下)で優れた機械
的強度を示し、優れた耐摩耗性を表す。このような窒化
ケイ素系複合焼結体は下記の製造方法によって得られ
る。
In the present invention, first of all, silicon nitride and titanium-based nitrides / carbides and graphite or carbon and S are used.
A silicon nitride-based composite sintered body made of iC, which has a sliding friction coefficient of 0.2 or less in a non-lubricated state and a specific wear amount of 4.0 × 1.
The silicon nitride-based composite sintered body is characterized in that it is 0 -8 mm 2 / N or less. Part of C reacts with Ti and Si to form TiC and SiC. Further, a part of the titanium-based nitride and the titanium-based carbide form a solid solution with each other to form TiCN. However, the reaction of C is suppressed by sintering due to the rapid temperature rise, and it remains in the form of fine graphite or carbon in the sintered body, and the sliding friction coefficient of the sintered body is lowered. Also, Ti is Si 3 during sintering.
It can suppress the growth of crystal grains of N 4 , TiN, TiC, and TiCN, exhibits excellent mechanical strength in the room temperature to middle-low temperature range (300 ° C. or less), and exhibits excellent wear resistance. Such a silicon nitride-based composite sintered body is obtained by the following manufacturing method.

【0012】すなわち、窒化ケイ素粉末と焼結助剤粉
末、金属チタン粉末、グラファイトあるいはカーボン粉
末を混合する工程と、混合粉末を成形し成形体とする工
程と、該成形体を急速昇温して1300〜1600℃で
窒素雰囲気下にて焼結する工程とよりなる製造方法であ
る。
That is, a step of mixing silicon nitride powder with a sintering aid powder, a metal titanium powder, graphite or carbon powder, a step of molding the mixed powder into a compact, and a rapid heating of the compact. It is a manufacturing method including a step of sintering in a nitrogen atmosphere at 1300 to 1600 ° C.

【0013】金属チタン添加量は、5〜60重量%。グ
ラファイトあるいはカーボンの添加量は0.5〜20重
量%が好適である。
The amount of metallic titanium added is 5 to 60% by weight. The addition amount of graphite or carbon is preferably 0.5 to 20% by weight.

【0014】金属チタンが5重量%未満の場合には反応
するTiの量が少な過ぎるために金属との凝着がおきや
すくなり、摩擦係数が改善しない。また、金属Tiの添
加量が60重量%を超えると反応するTiの量が多くな
り、焼結体の色ムラ等が発生する他、機械的特性が低下
するために好ましくない。
When the content of metallic titanium is less than 5% by weight, the amount of Ti that reacts is too small, so that adhesion with a metal easily occurs and the friction coefficient is not improved. Further, if the addition amount of metallic Ti exceeds 60% by weight, the amount of Ti that reacts increases, color unevenness and the like of the sintered body occur, and mechanical properties deteriorate, which is not preferable.

【0015】グラファイトあるいはカーボン量が20重
量%を超えると、アグレッシブ摩耗が激しくなり、耐摩
耗性が低下する。また、0.5重量%未満であると、固
体潤滑剤であるCが不十分となり摩耗係数が増大する。
If the amount of graphite or carbon exceeds 20% by weight, aggressive wear becomes severe and wear resistance is lowered. If it is less than 0.5% by weight, the solid lubricant C becomes insufficient and the wear coefficient increases.

【0016】焼結助剤としてはY23粉末とAl23
末等の一般的な焼結助剤を用いることができる。
As the sintering aid, general sintering aids such as Y 2 O 3 powder and Al 2 O 3 powder can be used.

【0017】混合は、ボールミル、超音波混合等、通常
の混合方法を用いる。また、焼結は、Cの反応を抑制す
るために昇温速度50℃/min以上、最高到達温度で
の保持時間は10分以内が好ましい。CはTiと反応
し、TiC、TiCNを形成するか、またはSi34
のSiと反応しSiCを形成する。平均粒径は、出発原
料に依存するが、5μm以下が望ましい。本発明の材料
は、Heltz応力×摺動速度(kgf/mm・se
c)が20000以下のときに優れた特性を発現する。
Heltz応力×摺動速度の値が、この値以上になると
アブレッシブ摩耗が激しくなり摩耗特性と耐摩耗性を両
立させることが困難となる。
For the mixing, a usual mixing method such as a ball mill or ultrasonic mixing is used. Further, in the sintering, in order to suppress the reaction of C, the temperature rising rate is preferably 50 ° C./min or more, and the holding time at the highest reached temperature is preferably within 10 minutes. C reacts with Ti to form TiC, TiCN or reacts with Si in Si 3 N 4 to form SiC. The average particle size depends on the starting material, but is preferably 5 μm or less. The material of the present invention has Heltz stress × sliding speed (kgf / mm · se
When c) is 20000 or less, excellent properties are exhibited.
When the value of Heltz stress × sliding speed exceeds this value, the abrasive wear becomes severe, and it becomes difficult to achieve both wear characteristics and wear resistance.

【0018】[0018]

【発明の実施の形態】次に本発明を実施例に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described based on Examples.

【0019】実施例1 平均粒径0.5μmのSi34粉末に、焼結助剤として
2.5重量%のY23粉末、1重量%のAl23粉末を
加え、これに平均粒径10μmの金属チタン40重量%
と、平均粒径5μmのカーボン粉末を10重量%配合
し、Si34ボールを用いたボールミルを用いて混合
し、混合粉末を得た。
Example 1 To Si 3 N 4 powder having an average particle size of 0.5 μm, 2.5 wt% Y 2 O 3 powder and 1 wt% Al 2 O 3 powder were added as a sintering aid. 40% by weight of metallic titanium with an average particle size of 10 μm
And 10% by weight of carbon powder having an average particle size of 5 μm were mixed and mixed using a ball mill using Si 3 N 4 balls to obtain a mixed powder.

【0020】得られた混合粉末は、カーボンダイスに充
填した後通電焼結が可能な放電プラズマ焼結で、昇温速
度100℃/min、保持時間5分で、表1に示す条件
で焼結した。この際の温度測定は、ダイス表面の温度を
二色温度計で測定した。
The mixed powder thus obtained was subjected to spark plasma sintering in which it was possible to carry out electric current sintering after being filled in a carbon die, and sintered under the conditions shown in Table 1 at a heating rate of 100 ° C./min and a holding time of 5 minutes. did. At this time, the temperature of the die surface was measured with a two-color thermometer.

【0021】[0021]

【表1】 [Table 1]

【0022】得られた焼結体は、研削、ラッピング処理
した後、XRDで組成を評価した他、ボールオンディス
ク試験機でφ5mmのSi34ボールを用い、無潤滑条
件(25℃、大気、湿度60%)で、摺動速度(mm/
sec)×Heltz応力(kgf/mm2)8000
の条件で、その摩擦係数と比摩耗量を評価した。以上の
結果を表2に示す。
The resulting sintered body was ground and lapped, and then the composition was evaluated by XRD, and Si 3 N 4 balls of φ5 mm were used in a ball-on-disk tester under non-lubricated conditions (25 ° C., atmospheric pressure). , Humidity 60%), sliding speed (mm /
sec) × Heltz stress (kgf / mm 2 ) 8000
Under the conditions, the friction coefficient and the specific wear amount were evaluated. The above results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例2 実施例1と同様に、平均粒径0.5μmのSi34粉末
に、焼結助剤として2.5重量%のY23粉末、1重量
%のAl23粉末を加え、これに平均粒径10μmの金
属チタン粉末と平均粒径5μmのカーボン粉末を表3に
示すように配合し、Si34ボールを用いたボールミル
を用いて混合し、混合粉末を得た。
Example 2 Similar to Example 1, 2.5 wt% Y 2 O 3 powder as a sintering aid was added to Si 3 N 4 powder having an average particle size of 0.5 μm, and 1 wt% Al 2 was added. O 3 powder was added, and metallic titanium powder having an average particle size of 10 μm and carbon powder having an average particle size of 5 μm were mixed as shown in Table 3 and mixed using a ball mill using Si 3 N 4 balls, and mixed. A powder was obtained.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた粉末は実施例1と同様、通電焼結
が可能な放電プラズマ焼結で、表3の条件で焼結した。
得られた焼結体は実施例1と同様な手法で評価した。こ
の結果を表4に示す。
The obtained powder was subjected to discharge plasma sintering capable of electric current sintering in the same manner as in Example 1, and was sintered under the conditions shown in Table 3.
The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】本結果からSi34、TiCN、C、Si
Cで構成された本材料は、低い摩擦係数と高い耐摩耗特
性を示すことがわかる。
From these results, Si 3 N 4 , TiCN, C, Si
It can be seen that the material composed of C exhibits a low coefficient of friction and high wear resistance.

【0029】実施例3 実施例1−Cの試料で摺動速度×Heltz応力を表5
に示すように変化させ、相手材をSUSボールとして同
様な試験を行った。結果を表5に示す。
Example 3 Sliding speed × Heltz stress is shown in Table 5 for the sample of Example 1-C.
The same test was conducted using the SUS ball as the mating material while changing the condition as shown in FIG. The results are shown in Table 5.

【0030】[0030]

【表5】 [Table 5]

【0031】この結果から、摺動速度×Heltz応力
が20000(kgf/mm・sec)以下では高い耐
摩耗特性と低い摩擦係数を示すことが判る。
From these results, it is understood that when the sliding speed × Heltz stress is 20000 (kgf / mm · sec) or less, high wear resistance and a low friction coefficient are exhibited.

【0032】[0032]

【発明の効果】本発明は、室温から中低温域(300℃
以下)で優れた機械的強度を有し、低い摩擦係数を有
し、耐摩耗性に優れた窒化ケイ素系複合焼結体であり、
各種機構部材や切削工具、摺動部材として有用なもので
ある。又、製造方法では急速昇温による焼結によって、
焼結時の粒成長を抑制することができて、上記のように
優れた特性をもつ窒化ケイ素系複合焼結体を得ることが
できる。
INDUSTRIAL APPLICABILITY The present invention has a room temperature to a low temperature range (300 ° C.).
The following) is a silicon nitride-based composite sintered body having excellent mechanical strength, a low friction coefficient, and excellent wear resistance,
It is useful as various mechanical members, cutting tools, and sliding members. Also, in the manufacturing method, by sintering by rapid heating,
Grain growth during sintering can be suppressed, and a silicon nitride-based composite sintered body having excellent properties as described above can be obtained.

フロントページの続き Fターム(参考) 3C046 FF33 FF47 4G001 BA03 BA09 BA22 BA25 BA32 BA38 BA57 BA60 BA61 BB03 BB09 BB22 BB25 BB32 BB38 BB57 BB60 BC01 BC02 BC13 BC42 BC52 BC54 BD12 BD18 BE21 Continued front page    F-term (reference) 3C046 FF33 FF47                 4G001 BA03 BA09 BA22 BA25 BA32                       BA38 BA57 BA60 BA61 BB03                       BB09 BB22 BB25 BB32 BB38                       BB57 BB60 BC01 BC02 BC13                       BC42 BC52 BC54 BD12 BD18                       BE21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒化ケイ素とチタン系窒化物・炭化物及
びグラファイトあるいはカーボン及び炭化ケイ素からな
る窒化ケイ素系複合焼結体であって、無潤滑中で摺動摩
擦係数が0.2以下、比摩耗量が4.0×10-8mm2
/N以下であることを特徴とする窒化ケイ素系複合焼結
体。
1. A silicon nitride-based composite sintered body comprising silicon nitride and titanium-based nitrides / carbides and graphite or carbon and silicon carbide, having a sliding friction coefficient of 0.2 or less in a non-lubricated state and a specific wear amount. Is 4.0 × 10 -8 mm 2
/ N or less, a silicon nitride-based composite sintered body.
【請求項2】 チタン系窒化物とチタン系炭化物とが互
いに固溶していることを特徴とする請求項1記載の窒化
ケイ素系複合焼結体。
2. The silicon nitride-based composite sintered body according to claim 1, wherein the titanium-based nitride and the titanium-based carbide are in solid solution with each other.
【請求項3】 窒化ケイ素粉末と焼結助剤粉末、金属チ
タン粉末、グラファイトあるいはカーボン粉末を混合す
る工程と、混合粉末を成形し成形体とする工程と、該成
形体を急速昇温して1300〜1600℃で窒素雰囲気
下にて焼結する工程とよりなることを特徴とする窒化ケ
イ素系複合焼結体の製造方法。
3. A step of mixing silicon nitride powder with a sintering aid powder, a metal titanium powder, graphite or carbon powder, a step of molding the mixed powder into a compact, and rapidly heating the compact. A method for producing a silicon nitride-based composite sintered body, which comprises a step of sintering at 1300 to 1600 ° C. in a nitrogen atmosphere.
【請求項4】 金属チタン粉末の添加量が5〜60重量
%であることを特徴とする請求項3記載の窒化ケイ素系
複合焼結体の製造方法。
4. The method for producing a silicon nitride-based composite sintered body according to claim 3, wherein the amount of the metallic titanium powder added is 5 to 60% by weight.
【請求項5】 グラファイトあるいはカーボン粉末の添
加量が0.5〜20重量%であることを特徴とする請求
項3又は4記載の窒化ケイ素系複合焼結体の製造方法。
5. The method for producing a silicon nitride-based composite sintered body according to claim 3, wherein the amount of graphite or carbon powder added is 0.5 to 20% by weight.
【請求項6】 焼結法が放電プラズマ焼結又はマイクロ
波焼結であることを特徴とする請求項3記載の窒化ケイ
素系複合焼結体の製造方法。
6. The method for producing a silicon nitride-based composite sintered body according to claim 3, wherein the sintering method is spark plasma sintering or microwave sintering.
JP2001222815A 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same Pending JP2003034580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222815A JP2003034580A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222815A JP2003034580A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003034580A true JP2003034580A (en) 2003-02-07

Family

ID=19056237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222815A Pending JP2003034580A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003034580A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
CN112266251A (en) * 2020-10-29 2021-01-26 齐鲁工业大学 Preparation method of silicon nitride/titanium carbide ceramic material based on spark plasma sintering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055783B2 (en) * 1985-05-27 1993-01-25 Sumitomo Electric Industries
JPH10251069A (en) * 1997-03-14 1998-09-22 Toshiba Corp Silicon nitride circuit board and semiconductor device
JPH1143372A (en) * 1997-07-23 1999-02-16 Sumitomo Electric Ind Ltd Silicon nitride-based ceramic and its production
JPH11325461A (en) * 1998-05-12 1999-11-26 Noritz Corp Combustor
JP2000154064A (en) * 1998-11-17 2000-06-06 Sumitomo Electric Ind Ltd Electrically conductive silicon nitride-base sintered compact and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055783B2 (en) * 1985-05-27 1993-01-25 Sumitomo Electric Industries
JPH10251069A (en) * 1997-03-14 1998-09-22 Toshiba Corp Silicon nitride circuit board and semiconductor device
JPH1143372A (en) * 1997-07-23 1999-02-16 Sumitomo Electric Ind Ltd Silicon nitride-based ceramic and its production
JPH11325461A (en) * 1998-05-12 1999-11-26 Noritz Corp Combustor
JP2000154064A (en) * 1998-11-17 2000-06-06 Sumitomo Electric Ind Ltd Electrically conductive silicon nitride-base sintered compact and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7723248B2 (en) 2003-10-29 2010-05-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method for producing same
CN112266251A (en) * 2020-10-29 2021-01-26 齐鲁工业大学 Preparation method of silicon nitride/titanium carbide ceramic material based on spark plasma sintering

Similar Documents

Publication Publication Date Title
JP4997561B2 (en) Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP2003034580A (en) Silicon nitride-based composite sintered body and method for producing the same
JP5079940B2 (en) Tungsten carbide cemented carbide composite material sintered body
EP1146025A1 (en) Wc-base composite ceramic sintered compact
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP3199407B2 (en) TiCN-based cermet
JPH08310867A (en) Production of boride ceramic
JPH10310840A (en) Superhard composite member and its production
JPH1143372A (en) Silicon nitride-based ceramic and its production
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
KR960016069B1 (en) Silicon nitride base sintered body
CN100448799C (en) Material based on sialon&#39;s
JP2003113438A (en) Die made from sintered hard metal alloy
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP2003034578A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP2003034584A (en) Silicon nitride-based composite powder and method for producing the same
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110307