JPH1143372A - Silicon nitride-based ceramic and its production - Google Patents

Silicon nitride-based ceramic and its production

Info

Publication number
JPH1143372A
JPH1143372A JP9196620A JP19662097A JPH1143372A JP H1143372 A JPH1143372 A JP H1143372A JP 9196620 A JP9196620 A JP 9196620A JP 19662097 A JP19662097 A JP 19662097A JP H1143372 A JPH1143372 A JP H1143372A
Authority
JP
Japan
Prior art keywords
silicon nitride
carbon
powder
sintering
based ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9196620A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9196620A priority Critical patent/JPH1143372A/en
Publication of JPH1143372A publication Critical patent/JPH1143372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-based ceramic contrived in the lowering of frictional coefficient under a non-lubricating condition and in the improvement of mechanical characteristics, chemical stability and self lubricity by molding a mixture of silicon nitride powder with carbon and/or a compound capable of thermally producing carbon and subsequently sintering the molded product at a specific temperature in a non-oxidizing atmosphere. SOLUTION: This silicon nitride-based ceramic is obtained by mixing carbon and/or a compound capable of thermally producing carbon with silicon nitride powder or silicon powder and a sintering auxiliary, molding the mixture, and subsequently sintering the molded product at a temperature of 1,300-1,900 deg.C for <=30 min in a non-oxidizing atmosphere, if necessary, containing nitrogen gas. The produced silicon nitride-based ceramic has an average-particle diameter of <=1 μm, a free carbon content of 0.5-50 wt.%, a silicon nitride-based crystal particle average minor axis diameter of <=0.2 μm, a frictional coefficient of <=0.2 μm under a non-lubricating condition and a flexural strength of >=750 Mpa. It is possible to use a compound capable of producing carbon with heat on the sintering treatment, such as a phenol resin, etc. instead of the carbon powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械特性や化学的
安定性に優れ、しかも摩擦係数が低く、自己潤滑性を示
す窒化ケイ素系セラミックス、及びその製造方法に関す
る。
The present invention relates to a silicon nitride ceramic having excellent mechanical properties and chemical stability, a low coefficient of friction, and self-lubricating properties, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素系セラミックスは、低温から
高温までの広い温度範囲で機械的強度に優れ、耐食性も
高いことから、エンジン部品、切削工具、摺動部材等と
して広く用いられている。特に摺動部材としては、表面
精度を向上させることで潤滑下での摩擦係数を低下させ
ることができ、しかも耐摩耗性にも優れた性能を得るこ
とが可能である。
2. Description of the Related Art Silicon nitride ceramics are widely used as engine parts, cutting tools, sliding members, etc. because of their excellent mechanical strength and high corrosion resistance in a wide temperature range from low to high temperatures. In particular, as a sliding member, it is possible to reduce the coefficient of friction under lubrication by improving the surface accuracy, and it is possible to obtain performance excellent in wear resistance.

【0003】しかし、窒化ケイ素系セラミックスは、他
のセラミックス材料と同様に、無潤滑或いは境界潤滑の
条件下では摩擦係数が高く、特に摺動特性に優れた材料
であるとは言い難い。そこで、窒化ケイ素系セラミック
スに自己潤滑性を与え、摩擦摺動特性を向上させる試み
が種々検討されている。
However, silicon nitride-based ceramics, like other ceramic materials, have a high coefficient of friction under non-lubricating or boundary lubricating conditions, and cannot be said to be particularly excellent in sliding characteristics. Thus, various attempts have been made to impart self-lubricating properties to silicon nitride-based ceramics and improve frictional sliding characteristics.

【0004】例えば、特開平2−221352号公報に
は、平均サイズが1〜50μmの片状又は球状のグラフ
ァイトを、0.3〜15vol%の割合で硬質部材中に
均一に析出させた摺動・摩擦部用材料が記載されてい
る。また、特開平4−254471号公報には、窒化ケ
イ素を主体とし、炭素を内部よりも表面部に多く含む複
合焼結体が提案されている。更に、特開昭59−307
69号公報には、1μm以下の炭素、窒化硼素、遊離炭
素を含む炭化ケイ素から選ばれた固体潤滑剤を1〜20
体積%含有した窒化ケイ素焼結体が提案されている。
[0004] For example, Japanese Patent Application Laid-Open No. 221352/1990 discloses a sliding method in which flaky or spherical graphite having an average size of 1 to 50 µm is uniformly deposited in a hard member at a rate of 0.3 to 15 vol%. -The material for the friction part is described. Japanese Patent Application Laid-Open No. 4-254471 proposes a composite sintered body mainly composed of silicon nitride and containing more carbon on the surface than on the inside. Further, JP-A-59-307
No. 69 discloses a solid lubricant selected from the group consisting of carbon having a size of 1 μm or less, boron nitride and silicon carbide containing free carbon.
A silicon nitride sintered body containing volume% has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の特開平
2−221352号、特開平4−254471号、特開
昭59−30769号の各公報に開示された技術では、
窒化ケイ素系セラミックスに炭素を添加しても摩擦係数
の低下が十分に発現せず、むしろ炭素の添加により窒化
ケイ素系セラミックスの強度が低下し、構造材料として
の信頼性が大きく低下するという欠点があった。
However, the techniques disclosed in the above-mentioned JP-A-2-221352, JP-A-4-254471 and JP-A-59-30769 disclose the following.
Even if carbon is added to silicon nitride ceramics, the friction coefficient does not sufficiently decrease, but rather, the strength of the silicon nitride ceramic decreases due to the addition of carbon, and the reliability as a structural material is greatly reduced. there were.

【0006】また、炭素の添加によって窒化ケイ素系セ
ラミックスから窒化ケイ素系粒子が脱落しやすくなり、
その脱落によって摩耗量が大きくなるといった問題もあ
った。更に、特開平4−254471号公報に記載のよ
うに、表面部と内部とで炭素の分布を変化させるために
は、製造方法が非常に複雑になり、製造コストが高くな
るという欠点があった。
In addition, the addition of carbon makes it easier for silicon nitride-based particles to fall off from silicon nitride-based ceramics,
There was also a problem that the amount of wear was increased due to the falling off. Further, as described in JP-A-4-254471, in order to change the distribution of carbon between the surface portion and the inside, there is a disadvantage that the manufacturing method becomes very complicated and the manufacturing cost increases. .

【0007】本発明は、このような従来の事情に鑑み、
機械的特性や化学的安定性に優れると同時に、無潤滑の
条件下でも摩擦係数が低く、優れた自己潤滑性を持ち実
用性に優れた窒化ケイ素系セラミックス、及びその製造
方法を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
An object of the present invention is to provide a silicon nitride ceramic having excellent mechanical properties and chemical stability, a low coefficient of friction even under non-lubricated conditions, excellent self-lubricating properties, and excellent practicality, and a method for producing the same. Aim.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する窒化ケイ素系セラミックスは、遊
離炭素を0.5重量%以上50重量%未満含み、窒化ケ
イ素系結晶粒の平均短軸径が0.5μm以下で、無潤滑
条件下での摩擦係数が0.2以下であることを特徴とす
る。
Means for Solving the Problems To achieve the above object, the silicon nitride-based ceramic provided by the present invention contains free carbon in an amount of from 0.5% by weight to less than 50% by weight, and has an average shortness of silicon nitride-based crystal grains. It is characterized in that the shaft diameter is 0.5 μm or less and the friction coefficient under non-lubricated conditions is 0.2 or less.

【0009】この本発明の窒化ケイ素系セラミックスに
おいては、含まれる遊離炭素の平均粒径を1μm以下と
することによって、固体潤滑材となる炭素の添加により
引き起こされる窒化ケイ素系セラミックスの強度低下を
克服できる。また、遊離炭素としては、黒鉛を用いるこ
とで好ましい結果が得られる。
In the silicon nitride ceramics of the present invention, by reducing the average particle size of the free carbon contained to 1 μm or less, the strength reduction of the silicon nitride ceramics caused by the addition of carbon as a solid lubricant is overcome. it can. A preferable result is obtained by using graphite as the free carbon.

【0010】しかも、本発明の窒化ケイ素系セラミック
スは、遊離炭素の添加によって優れた自己潤滑性を持つ
と同時に機械的特性にも優れ、特に曲げ強度を750M
Pa以上とすることができ、高い機械的信頼性を確保で
きる。
Further, the silicon nitride-based ceramic of the present invention has excellent self-lubricating properties by adding free carbon and also has excellent mechanical properties, and particularly has a bending strength of 750M.
Pa or more, and high mechanical reliability can be secured.

【0011】上記本発明の窒化ケイ素系セラミックス
は、炭素及び/又は加熱により炭素を生成する化合物と
窒化ケイ素粉末を混合し、該混合物を成形して成形体と
した後、該成形体を非酸化性雰囲気中において1300
から1900℃で30分以内の加熱により焼結する方法
により製造することができる。
The silicon nitride-based ceramic of the present invention is obtained by mixing carbon and / or a compound capable of forming carbon by heating with silicon nitride powder, molding the mixture to form a molded body, and then oxidizing the molded body. 1300 in neutral atmosphere
And sintering by heating at 1900 ° C. for 30 minutes or less.

【0012】また、本発明の窒化ケイ素系セラミックス
は、炭素及び/又は加熱により炭素を生成する化合物と
ケイ素粉末を混合し、該混合物を成形して成形体とした
後、該成形体を窒素を含む非酸化性雰囲気中において1
450℃以下で加熱して窒化させる、反応焼結法によっ
ても得られる。更に、上記のごとく窒化させた後、引き
続き1900℃以下で30分以内の加熱により焼結し
て、更に緻密化することもできる。
The silicon nitride-based ceramic of the present invention is obtained by mixing carbon and / or a compound capable of generating carbon by heating with silicon powder, molding the mixture to form a compact, and then removing the compact with nitrogen. In a non-oxidizing atmosphere containing
It can also be obtained by a reaction sintering method of heating and nitriding at 450 ° C. or lower. Further, after nitriding as described above, sintering may be performed by heating at 1900 ° C. or lower for 30 minutes or less to further densify.

【0013】尚、本発明において「窒化ケイ素系」と
は、Si34及び/又はサイアロンを意味する用語とし
て使用する。
In the present invention, "silicon nitride-based" is used as a term meaning Si 3 N 4 and / or Sialon.

【0014】[0014]

【発明の実施の形態】本発明の窒化ケイ素系セラミック
スは、前記した各公知技術とは異なり、まず第1に、窒
化ケイ素系結晶粒の平均短軸径が0.5μm以下と微細
であることが必要である。即ち、窒化ケイ素系結晶粒の
平均短軸径が0.5μmを越えると、炭素と混合したと
きの焼結体の曲げ強度が低下し、しかも無潤滑条件での
摩擦係数も0.2を越えてしまうからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The silicon nitride-based ceramics of the present invention differs from the above-mentioned known techniques in that, first, the average minor axis diameter of silicon nitride-based crystal grains is as fine as 0.5 μm or less. is necessary. That is, when the average short axis diameter of the silicon nitride crystal grains exceeds 0.5 μm, the bending strength of the sintered body when mixed with carbon is reduced, and the friction coefficient under non-lubricated conditions also exceeds 0.2. It is because.

【0015】また、窒化ケイ素系セラミックス中に含ま
れる遊離炭素量は、0.5重量%未満では固体潤滑作用
が小さくなり、所望の摩擦係数を得ることができず、逆
に50重量%以上では焼結体の曲げ強度が低下すると共
に摩耗量が急激に増大するので、0.5重量%以上50
重量%未満の範囲とする。
If the amount of free carbon contained in the silicon nitride-based ceramics is less than 0.5% by weight, the solid lubricating effect is reduced, and a desired friction coefficient cannot be obtained. Since the bending strength of the sintered body is lowered and the wear amount is rapidly increased, the sintered body is more than 0.5% by weight.
The range is less than weight%.

【0016】本発明によれば、窒化ケイ素系セラミック
スの優れた機械的特性及び化学的安定性を保持したま
ま、遊離炭素の添加により優れた潤滑作用が発揮され、
無潤滑の条件下での摩擦係数が0.2以下の窒化ケイ素
系セラミックスが得られる。
According to the present invention, excellent lubricating action is exhibited by the addition of free carbon while maintaining excellent mechanical properties and chemical stability of the silicon nitride-based ceramics.
A silicon nitride ceramic having a friction coefficient of 0.2 or less under non-lubricated conditions is obtained.

【0017】窒化ケイ素系セラミックスに含まれる遊離
炭素は、平均粒径が1μm以下であることが特に好まし
い。遊離炭素の平均粒径が1μmを越えると、焼結体強
度が急激に低下するからである。尚、添加する炭素とし
ては、黒鉛粉末や炭素粉末などがあるが、特に黒鉛粉末
を用いることで好ましい特性が得られる。
It is particularly preferable that the free carbon contained in the silicon nitride ceramic has an average particle size of 1 μm or less. This is because if the average particle size of the free carbon exceeds 1 μm, the strength of the sintered body rapidly decreases. In addition, as the carbon to be added, there are graphite powder, carbon powder, and the like, and particularly, preferable characteristics can be obtained by using graphite powder.

【0018】また、本発明の窒化ケイ素系セラミックス
は、上記のごとく優れた自己潤滑性を備えながら、同時
に750MPa以上という優れた曲げ強度を達成するこ
とができる。曲げ強度が750MPa未満では、窒化ケ
イ素系結晶粒の結合力が低くなり、その脱落により摩耗
量が大きくなってしまう上、摺動部品として使用中に破
壊してしまうなど、信頼性が大幅に低くなる。尚、本発
明での曲げ強度とは、JIS基準による3点曲げ強度を
言う。
Further, the silicon nitride-based ceramic of the present invention has excellent self-lubricating properties as described above, and at the same time can achieve excellent bending strength of 750 MPa or more. If the flexural strength is less than 750 MPa, the bonding strength of the silicon nitride-based crystal grains will be low, the amount of wear will be large due to the falling off, and the reliability will be significantly low, such as breaking during use as a sliding part. Become. The bending strength in the present invention refers to a three-point bending strength according to JIS standards.

【0019】次に、本発明の窒化ケイ素系セラミックス
の製造方法について説明する。第1の方法は、窒化ケイ
素粉末と炭素粉末を混合し、その成形体を非酸化性雰囲
気中において1300〜1900℃で30分以内にて加
熱焼結する。混合粉末には、窒化ケイ素系セラミックス
の緻密化を促進するために、焼結助剤として公知の酸化
物粉末を添加できる。また、炭素粉末に代えて、焼結時
の加熱により炭素を生成する化合物、例えばフェノール
樹脂等を用いることも可能である。
Next, a method for producing the silicon nitride-based ceramic of the present invention will be described. In the first method, a silicon nitride powder and a carbon powder are mixed, and the compact is heated and sintered at 1300 to 1900 ° C. in a non-oxidizing atmosphere within 30 minutes. A known oxide powder as a sintering aid can be added to the mixed powder in order to promote densification of the silicon nitride-based ceramic. Further, instead of the carbon powder, a compound that generates carbon by heating during sintering, such as a phenol resin, can be used.

【0020】焼結温度が1300℃未満では緻密化が不
十分となり、焼結体の曲げ強度が不足し、耐摩耗性も低
くなってしまう。焼結温度が1900℃を越えると、添
加した炭素が窒化ケイ素或いは焼結助剤と反応してしま
い、焼結体中に遊離炭素として残留しない。また、窒化
ケイ素系結晶が粒成長して粗粒化し、平均短軸径が0.
5μmを越えてしまう。焼結時間は短い方が好ましく、
30分を越えると、やはり遊離炭素の残留が少なくなっ
たり、結晶が粒成長して粗粒化する。
If the sintering temperature is less than 1300 ° C., the densification becomes insufficient, the bending strength of the sintered body becomes insufficient, and the abrasion resistance decreases. If the sintering temperature exceeds 1900 ° C., the added carbon reacts with silicon nitride or a sintering aid and does not remain as free carbon in the sintered body. In addition, the silicon nitride-based crystal grows and coarsens, and the average minor axis diameter is 0.1.
It exceeds 5 μm. Shorter sintering time is preferable,
When the time exceeds 30 minutes, the residual free carbon is reduced, and the crystals grow to coarse grains.

【0021】更に、第2の方法として、窒化ケイ素粉末
の一部又は全部に代えて金属ケイ素粉末を用い、これと
炭素粉末との混合粉末を窒素を含む非酸化性雰囲気中で
加熱することにより、ケイ素を窒化させて窒化ケイ素系
主成分に転換させる反応焼結を用いることができる。更
に、この反応焼結により窒化ケイ素系主成分に転換した
後、加熱温度を上げて更に焼結することにより、一層緻
密化を進めることも可能である。
Further, as a second method, a metal silicon powder is used in place of part or all of the silicon nitride powder, and a mixed powder of the metal silicon powder and the carbon powder is heated in a non-oxidizing atmosphere containing nitrogen. Alternatively, reaction sintering in which silicon is nitrided and converted into a silicon nitride-based main component can be used. Furthermore, after conversion to the silicon nitride-based main component by this reaction sintering, it is possible to further densify by raising the heating temperature and further sintering.

【0022】この場合、1450℃を越える温度で窒化
のための反応焼結を行うと、金属ケイ素が溶融して形成
体の形状が変化してしまうので、1450℃以下の温度
とする。窒化のための反応焼結の時間は、
In this case, if the reaction sintering for nitridation is performed at a temperature exceeding 1450 ° C., the metal silicon is melted and the shape of the formed body is changed. The reaction sintering time for nitriding is

【0023】また、上記反応焼結後の緻密化のための焼
結は、1900℃以下の温度で30分以内で行う必要が
ある。緻密化のための焼結温度が1900℃を越えるか
又はその焼結時間が30分を越えると、前記第1の方法
の焼結の場合と同様に、焼結体中に残留する遊離炭素が
少なくなったり、窒化ケイ素系結晶が粗粒化して平均短
軸径が0.5μmを越えてしまうからである。
Further, sintering for densification after the above reaction sintering must be performed at a temperature of 1900 ° C. or less within 30 minutes. When the sintering temperature for densification exceeds 1900 ° C. or the sintering time exceeds 30 minutes, free carbon remaining in the sintered body is reduced as in the case of the sintering of the first method. This is because the silicon nitride-based crystal becomes coarse and the average minor axis diameter exceeds 0.5 μm.

【0024】[0024]

【実施例】実施例1 Si34粉末(平均粒径0.3μm)に、焼結助剤とし
て5重量%のY23粉末と2重量%のA123粉末を添
加し、試料1を除いて更に炭素成分として表1に示す黒
鉛又はフェノール樹脂(FRと略記)を添加して混合し
た。その後、各混合粉末を成形し、得られた各成形体を
下記表1に示す条件でホットプレス焼結した。
EXAMPLES Example 1 Si 3 N 4 powder (average particle size 0.3 [mu] m), was added 5 wt% of Y 2 0 3 powder and 2 wt% of A1 2 0 3 powder as a sintering aid, Except for Sample 1, graphite or phenolic resin (abbreviated as FR) shown in Table 1 was further added and mixed as a carbon component. Thereafter, each mixed powder was molded, and the obtained molded bodies were subjected to hot press sintering under the conditions shown in Table 1 below.

【0025】得られた各焼結体について、窒化ケイ素系
結晶の平均短軸径、含まれる遊離炭素の量、遊離炭素の
平均粒径、及び曲げ強度を表1に示した。また、各焼結
体をピン オン ディスク試験により、無潤滑条件下に
て摺動速度2m/秒、荷重5kgf/mm2で摩擦係数
を測定し、その結果を表1に併せて示した。
Table 1 shows the average short-axis diameter of the silicon nitride-based crystal, the amount of free carbon contained, the average particle size of free carbon, and the bending strength of each of the obtained sintered bodies. The friction coefficient of each sintered body was measured by a pin-on-disk test under a non-lubricated condition at a sliding speed of 2 m / sec and a load of 5 kgf / mm 2 , and the results are shown in Table 1.

【0026】[0026]

【表1】 炭素成分 Si34 焼 結 体 の 特 性 添加量 焼結条件 短軸径 遊離炭素 炭素粒径 強度 摩擦試料 (wt%) (℃×hr) (μm) (wt%) (μm) (MPa) 係数 1* なし 1750×0.2 0.3 >0.1 − 1000 0.7 2* 黒鉛 0.2 1750×0.2 0.2 0.2 0.8 900 0.5 3 黒鉛 1.0 1750×0.2 0.2 0.8 0.8 850 0.15 4 黒鉛 5.0 1750×0.2 0.2 4.5 0.8 800 0.1 5 黒鉛 20 1750×0.2 0.2 18.5 0.8 800 0.1 6 黒鉛 40 1750×0.2 0.2 16.0 0.8 750 0.07 7 黒鉛 60 1750×0.2 0.2 54 0.8 400 0.07 8 黒鉛 5.0 1750×0.2 0.2 4.0 0.2 850 0.12 9 FR 5.0 1750×0.2 0.2 4.0 0.2 750 0.12 10* 黒鉛 5.0 1950×0.1 0.4 0.2 0.8 600 0.5 11* 黒鉛 5.0 1750×2.0 0.8 0.4 0.8 650 0.3 12* 黒鉛 5.0 1250×0.5 0.2 5.0 0.8 150 0.1 13* 黒鉛 5.0 1750×0.5 0.2 5.0 1.5 500 0.2 (注)表中の*を付した試料は比較例である。[Table 1] Carbon componentsCharacteristics of Si 3 N 4 sintered body Addition amount Sintering condition Short axis diameter Free carbon Carbon particle size Strength Frictionsample (wt%) (℃ × hr) (μm) (wt%) (μm) (MPa) coefficient  1 * None 1750 × 0.2 0.3> 0.1 − 1000 0.7 2 * Graphite 0.2 1750 × 0.2 0.2 0.2 0.8 900 0.5 3 Graphite 1.0 1750 × 0.2 0.2 0.8 0.8 850 0.15 4 Graphite 5.0 1750 × 0.2 0.2 4.5 0.8 800 0.1 5 Graphite 20 1750 × 0.2 0.2 18.5 0.8 800 0.1 6 Graphite 40 1750 × 0.2 0.2 16.0 0.8 750 0.07 7 Graphite 60 1750 × 0.2 0.2 54 0.8 400 0.07 8 Graphite 5.0 1750 × 0.2 0.2 4.0 0.2 850 0.12 9 FR 5.0 1750 × 0.2 0.2 4.0 0.2 750 0.12 10 * graphite 5.0 1950 × 0.1 0.4 0.2 0.8 600 0.5 11 * graphite 5.0 1750 × 2.0 0.8 0.4 0.8 650 0.3 12 * graphite 5.0 1250 × 0.5 0.2 5.0 0.8 150 0.1 13 * graphite 5.0 1750 × 0.5 0.2 5.0 1.5 500 0.2 ( Note) Samples marked with * in the table are comparative examples.

【0027】実施例2 金属Si粉末(平均粒径0.8μm)に、焼結助剤とし
て3重量%のY23粉末と2重量%のAl23粉末を添
加し、試料14を除いて更に炭素成分として黒鉛を下記
表2に示す割合で添加して混合した。その後、各混合粉
末を成形し、各成形体を窒素を含む非酸化性雰囲気中に
おいて、下記表2に示す温度で2時間の反応焼結を行っ
て窒化した。更に、試料17を除いて、非酸化性雰囲気
中において、表2に示す条件で焼結して緻密化した。
Example 2 To a metal Si powder (average particle size: 0.8 μm), 3% by weight of Y 2 O 3 powder and 2% by weight of Al 2 O 3 powder were added as sintering aids. Except for this, graphite was further added and mixed as a carbon component at a ratio shown in Table 2 below. Thereafter, each mixed powder was molded, and each compact was nitrided by performing reaction sintering at a temperature shown in Table 2 for 2 hours in a non-oxidizing atmosphere containing nitrogen. Further, except for the sample 17, the sample was sintered and densified in a non-oxidizing atmosphere under the conditions shown in Table 2.

【0028】得られた各焼結体について、窒化ケイ素系
結晶の平均短軸径、含まれる遊離炭素の量、遊離炭素の
平均粒径、及び曲げ強度を表2に示した。また、各焼結
体をピン オン ディスク試験により、無潤滑条件下に
て摺動速度2m/秒、荷重5kgf/mm2で摩擦係数
を測定し、その結果を表2に併せて示した。
Table 2 shows the average minor axis diameter of the silicon nitride-based crystal, the amount of free carbon contained, the average particle size of free carbon, and the bending strength of each of the obtained sintered bodies. Further, the friction coefficient of each sintered body was measured by a pin-on-disk test under a non-lubricated condition at a sliding speed of 2 m / sec and a load of 5 kgf / mm 2 , and the results are shown in Table 2.

【0029】[0029]

【表2】 窒化反応 緻密化 Si34 焼 結 体 の 特 性 黒鉛 焼結温度 焼結条件 短軸径 遊離炭素 炭素粒径 強度 摩擦試料 (wt%) (℃) (℃×hr) (μm) (wt%) (μm) (MPa) 係数 14* なし 1400 1750×0.2 0.4 >0.1 − 900 0.7 15* 0.2 1400 1750×0.2 0.4 0.2 0.8 800 0.5 16 1.0 1400 1750×0.2 0.3 0.8 0.8 800 0.15 17 1.0 1400 なし 0.3 0.8 0.8 750 0.15 18 20 1400 1750×0.2 0.3 18.5 0.8 750 0.1 19* 5.0 1500 1750×0.2 0.3 1.5 0.8 350 0.3[Table 2] Nitriding reaction Characteristics of densified Si 3 N 4 sintered graphite Graphite sintering temperature Sintering condition Short axis diameter Free carbon Carbon particle size Strength Friction sample (wt%) (° C) (° C × hr) (μm ) (wt%) (μm) (MPa) Coefficient 14 * None 1400 1750 × 0.2 0.4> 0.1 − 900 0.7 15 * 0.2 1400 1750 × 0.2 0.4 0.2 0.8 800 0.5 16 1.0 1400 1750 × 0.2 0.3 0.8 0.8 800 0.15 17 1.0 1400 None 0.3 0.8 0.8 750 0.15 18 20 1400 1750 × 0.2 0.3 18.5 0.8 750 0.1 19 * 5.0 1500 1750 × 0.2 0.3 1.5 0.8 350 0.3

【0030】[0030]

【発明の効果】本発明によれば、機械的特性や化学的安
定性に優れ、しかも無潤滑の条件下でも摩擦係数が低
く、優れた自己潤滑性を示す窒化ケイ素系セラミックス
を安価に提供することができる。
According to the present invention, a silicon nitride ceramic having excellent mechanical properties and chemical stability, a low friction coefficient even under non-lubricating conditions, and excellent self-lubricating properties is provided at a low cost. be able to.

【0031】従って、本発明の窒化ケイ素系セラミック
スは、潤滑性を要求される摺動部材や摩擦部材などの機
械構造部品として広く用いることができ、機械部品の摩
擦損失を低減し、エネルギーロスを低下させることがで
きる。
Therefore, the silicon nitride-based ceramics of the present invention can be widely used as mechanical structural parts such as sliding members and friction members that require lubricating properties, reduce friction loss of mechanical parts and reduce energy loss. Can be reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 遊離炭素を0.5重量%以上50重量%
未満含み、窒化ケイ素系結晶粒の平均短軸径が0.5μ
m以下で、無潤滑下条件での摩擦係数が0.2以下であ
ることを特徴とする窒化ケイ素系セラミックス。
(1) free carbon in an amount of not less than 0.5% by weight and not more than 50% by weight;
And the average minor axis diameter of silicon nitride crystal grains is 0.5μ
m or less and a coefficient of friction under no-lubrication conditions of 0.2 or less.
【請求項2】 遊離炭素の平均粒径が1μm以下である
ことを特徴とする、請求項1に記載の窒化ケイ素系セラ
ミックス。
2. The silicon nitride-based ceramic according to claim 1, wherein the average particle size of the free carbon is 1 μm or less.
【請求項3】 遊離炭素が黒鉛であることを特徴とす
る、請求項1又は2に記載の窒化ケイ素系セラミック
ス。
3. The silicon nitride-based ceramic according to claim 1, wherein the free carbon is graphite.
【請求項4】 曲げ強度が750MPa以上であること
を特徴とする、請求項1〜3のいずれかに記載の窒化ケ
イ素系セラミックス。
4. The silicon nitride-based ceramic according to claim 1, wherein the flexural strength is 750 MPa or more.
【請求項5】 炭素及び/又は加熱により炭素を生成す
る化合物と窒化ケイ素粉末を混合し、該混合物を成形し
て成形体とした後、該成形体を非酸化性雰囲気中におい
て1300から1900℃で30分以内の加熱により焼
結することを特徴とする窒化ケイ素系セラミックスの製
造方法。
5. A method of mixing carbon and / or a compound capable of generating carbon by heating with silicon nitride powder, molding the mixture into a molded body, and then heating the molded body in a non-oxidizing atmosphere at 1300 to 1900 ° C. Sintering by heating for 30 minutes or less under the above conditions.
【請求項6】 炭素及び/又は加熱により炭素を生成す
る化合物とケイ素粉末を混合し、該混合物を成形して成
形体とした後、該成形体を窒素を含む非酸化性雰囲気中
において1450℃以下で加熱して窒化させることを特
徴とする窒化ケイ素系セラミックスの製造方法。
6. A mixture of carbon and / or a compound capable of producing carbon by heating and silicon powder, and molding the mixture to form a molded body. The molded body is placed in a non-oxidizing atmosphere containing nitrogen at 1450 ° C. A method for producing a silicon nitride-based ceramic, comprising heating and nitriding the following.
【請求項7】 請求項1の方法により得られた焼結体
を、更に非酸化性雰囲気中において1900℃以下で3
0分以内の加熱により焼結することを特徴とする窒化ケ
イ素系セラミックスの製造方法。
7. The sintered body obtained by the method according to claim 1 is further heated to 1900 ° C. or lower in a non-oxidizing atmosphere.
A method for producing a silicon nitride-based ceramic, comprising sintering by heating within 0 minutes.
JP9196620A 1997-07-23 1997-07-23 Silicon nitride-based ceramic and its production Pending JPH1143372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9196620A JPH1143372A (en) 1997-07-23 1997-07-23 Silicon nitride-based ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9196620A JPH1143372A (en) 1997-07-23 1997-07-23 Silicon nitride-based ceramic and its production

Publications (1)

Publication Number Publication Date
JPH1143372A true JPH1143372A (en) 1999-02-16

Family

ID=16360791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9196620A Pending JPH1143372A (en) 1997-07-23 1997-07-23 Silicon nitride-based ceramic and its production

Country Status (1)

Country Link
JP (1) JPH1143372A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
JP2003034580A (en) * 2001-07-24 2003-02-07 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body and method for producing the same
WO2004014817A1 (en) * 2002-08-06 2004-02-19 H.C. Starck Ceramics Gmbh & Co. Kg Highly shock-resistant ceramic material
JP2005112703A (en) * 2003-09-16 2005-04-28 National Institute Of Advanced Industrial & Technology Low-friction low-wear composite material based on silicon nitride and its manufacturing method
JP2011530682A (en) * 2008-08-08 2011-12-22 フレニ ブレンボ エス.ピー.エー. Method for producing ceramic matrix material for brake friction parts and ceramic matrix material produced by the method
CN114180971A (en) * 2021-12-27 2022-03-15 中国科学院上海硅酸盐研究所 Silicon nitride complex phase ceramic with low friction coefficient and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085812A1 (en) * 2001-04-20 2002-10-31 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
EP1298106A1 (en) * 2001-04-20 2003-04-02 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US6844282B2 (en) 2001-04-20 2005-01-18 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US7008893B2 (en) 2001-04-20 2006-03-07 Sumitomo Electric Industries, Ltd. Silicon nitride-based composite sintered body and producing method thereof
EP1298106A4 (en) * 2001-04-20 2007-04-04 Sumitomo Electric Industries Silicon nitride based composite sintered product and method for production thereof
JP2003034580A (en) * 2001-07-24 2003-02-07 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body and method for producing the same
WO2004014817A1 (en) * 2002-08-06 2004-02-19 H.C. Starck Ceramics Gmbh & Co. Kg Highly shock-resistant ceramic material
JP2005112703A (en) * 2003-09-16 2005-04-28 National Institute Of Advanced Industrial & Technology Low-friction low-wear composite material based on silicon nitride and its manufacturing method
JP4644784B2 (en) * 2003-09-16 2011-03-02 独立行政法人産業技術総合研究所 Low friction and low wear silicon nitride matrix composite and method for producing the same
JP2011530682A (en) * 2008-08-08 2011-12-22 フレニ ブレンボ エス.ピー.エー. Method for producing ceramic matrix material for brake friction parts and ceramic matrix material produced by the method
CN114180971A (en) * 2021-12-27 2022-03-15 中国科学院上海硅酸盐研究所 Silicon nitride complex phase ceramic with low friction coefficient and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4744704B2 (en) Method for manufacturing wear-resistant member
JPH0680470A (en) Production of silicon nitride sintered compact
US5462813A (en) Composite ceramic sintered material
US5635431A (en) Silicon nitride-based sinter
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
US5804523A (en) Sintered product of silicon nitride
JP2002087884A (en) Ceramic molding derived from polymer and manufacturing method thereof
JPH1143372A (en) Silicon nitride-based ceramic and its production
JP5362758B2 (en) Wear resistant parts
JP2663028B2 (en) Silicon nitride sintered body
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JPH09157028A (en) Silicon nitride sintered compact and its production
JPH06183841A (en) Low frictional ceramic
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP2524635B2 (en) Fiber reinforced ceramics
JPH07232964A (en) Silicon nitride sintered compact
JPH11310465A (en) Ceramic sintered body and sealing material using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070501