JP4644784B2 - Low friction and low wear silicon nitride matrix composite and method for producing the same - Google Patents

Low friction and low wear silicon nitride matrix composite and method for producing the same Download PDF

Info

Publication number
JP4644784B2
JP4644784B2 JP2003371161A JP2003371161A JP4644784B2 JP 4644784 B2 JP4644784 B2 JP 4644784B2 JP 2003371161 A JP2003371161 A JP 2003371161A JP 2003371161 A JP2003371161 A JP 2003371161A JP 4644784 B2 JP4644784 B2 JP 4644784B2
Authority
JP
Japan
Prior art keywords
carbon fiber
silicon nitride
composite material
low
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003371161A
Other languages
Japanese (ja)
Other versions
JP2005112703A (en
Inventor
游 周
喜代司 平尾
幸彦 山内
秀樹 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003371161A priority Critical patent/JP4644784B2/en
Publication of JP2005112703A publication Critical patent/JP2005112703A/en
Application granted granted Critical
Publication of JP4644784B2 publication Critical patent/JP4644784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Description

本発明は、窒化ケイ素基複合材料等に関するものであり、更に詳しくは、窒化ケイ素を母相として特定の炭素繊維を複合した、低摩擦性、低摩耗性及び高破壊靱性を兼ね備えた窒化ケイ素−炭素繊維複合材料、その製造方法及び摺動部材に関するものである。本発明は、無潤滑剤下及び水中での摺動材料としての利用が期待されている窒化ケイ素系セラミックス及びその応用技術の分野において、自己潤滑性で、低摩擦性と低摩耗性とが両立している摺動材料、特に、無潤滑剤下で使用するボールベアリング及び水中で使用するポンプ等に用いるメカニカルシールなどとして用いることが可能な新規摺動材料を提供するものとして有用である。   The present invention relates to a silicon nitride-based composite material and the like, more specifically, silicon nitride having a low friction property, a low wear property, and a high fracture toughness in which a specific carbon fiber is composited using silicon nitride as a matrix. The present invention relates to a carbon fiber composite material, a manufacturing method thereof, and a sliding member. The present invention achieves both self-lubricating, low friction and low wear in the field of silicon nitride ceramics and its applied technology, which are expected to be used as sliding materials in the absence of lubricant and in water. The present invention is useful for providing a new sliding material that can be used as a sliding material, particularly a ball bearing used in the absence of a lubricant and a mechanical seal used in a pump used in water.

一般に、セラミックス材料は、多方面での工業的応用を可能にする特性を有している。例えば、機械工業分野では、これまで、セラミックス材料は、過酷なトライボロジー環境下での使用が期待されており、特に、無潤滑剤下での摺動材料としての利用が期待されている。なかでも、窒化ケイ素セラミックスは、他の工業用セラミックスと比べても、破壊強度、破壊靭性などの機械的特性が優れているため、潤滑下で使用するボールベアリング等の摺動材料として用いられている(例えば、非特許文献1参照)。しかし、従来の窒化ケイ素セラミックスでは、それ同士の、無潤滑剤下での摺動状態では、滑り摩擦係数が大きく、セラミックス特有の脆性のため、摩耗が速いという問題があった。例えば、金属からなる従来の摺動材料と比較して、従来の窒化ケイ素セラミックスには、一旦摩耗が始まると、摩耗の進行が速い、という問題があった。また、窒化ケイ素セラミックスは、水中での使用に関しては、炭化ケイ素等の他のセラミックスと比較して、摺動条件に対してその摩擦係数及び摩耗の進行する速度が敏感であり、限られた領域でしか、その低摩擦低摩耗性を発現することができないという問題を有していた。   In general, ceramic materials have characteristics that enable industrial application in various fields. For example, in the machine industry field, ceramic materials have been expected to be used in harsh tribological environments, and in particular, they are expected to be used as sliding materials under a non-lubricant. Above all, silicon nitride ceramics are superior in mechanical properties such as fracture strength and fracture toughness compared to other industrial ceramics. (For example, refer nonpatent literature 1). However, the conventional silicon nitride ceramics have a problem that when they are slid under a non-lubricant, the sliding friction coefficient is large and the ceramics are brittle, so that they wear quickly. For example, compared with a conventional sliding material made of metal, the conventional silicon nitride ceramics has a problem that once the wear begins, the progress of wear is fast. Silicon nitride ceramics, when used in water, are more sensitive to sliding conditions than the other ceramics such as silicon carbide in terms of the coefficient of friction and the rate at which wear proceeds, and are limited. However, there was a problem that the low friction and low wear property could not be expressed.

そこで、窒化ケイ素セラミックス中に固体潤滑剤粒子を分散させ、低摩擦性にする試みも多くなされてきたが、低摩擦性が得られたとしても、機械的特性、特に破壊靭性値が低下する傾向が生じてしまうという問題が起きていた。また、固体潤滑剤粒子としてグラファイト粉末を用いた場合、その疎水性及び混合粉砕装置への付着性などのために、窒化ケイ素原料などとの混合工程で種々の問題が生ずる。更に、窒化ケイ素−炭素繊維複合体とステンレススチールとの無潤滑剤下の摺動について検討することもなされたが、有利な潤滑効果は得られなかった(非特許文献2参照)。このように、従来、窒化ケイ素セラミックスについて、摺動材料、特に、無潤滑剤下での滑り型の摺動材料としての応用が種々検討されているが、充分な低摩擦性と低摩耗性とが両立している窒化ケイ素系セラミックスは、未だ報告されていないのが実情である。   Therefore, many attempts have been made to disperse solid lubricant particles in silicon nitride ceramics to achieve low friction, but even if low friction is obtained, mechanical properties, particularly fracture toughness, tend to decrease. There was a problem that would occur. Further, when graphite powder is used as the solid lubricant particles, various problems arise in the mixing process with the silicon nitride raw material due to its hydrophobicity and adhesion to the mixing and grinding apparatus. Furthermore, although the sliding under a non-lubricant between a silicon nitride-carbon fiber composite and stainless steel was also examined, an advantageous lubricating effect was not obtained (see Non-Patent Document 2). As described above, various applications of silicon nitride ceramics as a sliding material, in particular, a sliding type sliding material under a non-lubricant have been studied in the past. In fact, silicon nitride ceramics that are compatible with each other have not yet been reported.

K.Tanimoto et al.,「Hybrid ceramic ball bearings for Turbochargers」,presented at the Society of Automotive Engineers International Off−Highway&Powerplant Congress&Exhibition,Milwaukee,WI,2000(paper No.200−01−1339)K. Tanimoto et al. , “Hybrid ceramic ball bearings for Turbochargers”, Presented at the Society of Automotive Engineers, International Energy and Power Organization, and P.J.Blau et al.,「Reciprocating Friction and Wear Behaviour of a Ceramic−Matrix Graphite Composite for Possible Use in Diesel Engine Valve Guides」,Wear,225−229,1338−1349(1999)P. J. et al. Blau et al. , “Reciprocating Friction and Wear Behavior of a Ceramic-Matrix Graphite Composite for Possible Use in Diesel Engine Valve 13”, 29-49, 49-2

このような状況の中で、本発明者らは、上記従来技術に鑑みて、無潤滑下で使用可能な窒化ケイ素基材料を開発することを目標として、鋭意研究を続けた結果、窒化ケイ素系セラミックスに、引っ張り弾性率が550GPaを上回り、グラファイト結合含有量が85%を上回る特定の炭素繊維を分散させると、上記課題を解決でき、所期の目的を達成し得ることを見出し、更に研究を重ねて本発明を完成するに至った。
本発明は、低摩擦性と低摩耗性とが両立しており、無潤滑剤下で使用する場合でも、摩擦係数が小さく、滑り型の摩擦形態のときも、脆化し摩耗することが少ない、即ち、無潤滑剤下でも、充分な低摩擦性(0.25以下)と低摩耗性とが両立している、また、水中においても、従来の窒化ケイ素が大きく摩耗するような摺動条件及び現在利用されている炭化ケイ素セラミックスの摩擦係数変動が大きい摺動条件においても、低摩擦低摩耗を発現する、高破壊靱性の窒化ケイ素系セラミックス複合材料、その製造方法、及び摺動部材を提供することを目的とするものである。
Under such circumstances, the present inventors, in view of the above-mentioned prior art, have conducted intensive research with the goal of developing a silicon nitride-based material that can be used without lubrication. We have found that the above problems can be solved and the intended purpose can be achieved by dispersing specific carbon fibers with a tensile modulus exceeding 550 GPa and a graphite bond content exceeding 85% in ceramics. Repeatedly, the present invention has been completed.
The present invention has both low friction and low wear properties, and even when used under a non-lubricant, the friction coefficient is small, and even when in a sliding friction form, it is less brittle and worn. That is, even under a non-lubricant, the sliding condition is such that both sufficiently low friction (less than 0.25) and low wear are achieved, and that conventional silicon nitride is greatly worn even in water. Provided is a silicon nitride ceramic composite material with high fracture toughness that exhibits low friction and wear even under sliding conditions in which the friction coefficient of silicon carbide ceramics currently used is large, a manufacturing method thereof, and a sliding member It is for the purpose.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)窒化ケイ素を母相として、引っ張り弾性率が550GPaを上回り、グラファイト結合含有量が85%を上回る炭素繊維を配合し、焼結した、低摩擦低摩耗窒化ケイ素−炭素繊維複合材料であって、
配合する炭素繊維の長さが、50〜300μmで、該炭素繊維の配合量が、2.5〜10vol.%であり、窒化ケイ素ボールφ10を相手材として、無潤滑下、25℃、摺速0.18m/s、荷重5N、及び摺動半径10mmでボールオンディスク試験を行ったときの、無潤滑下での摩擦係数が高くても0.25で、かつJISR1607に準じて測定した場合の破壊靭性が少なくても11MPa・m1/2あり、低摩擦性、低摩耗性で、かつ高破壊靱性を兼ね備えた窒化ケイ素複合材料であることを特徴とする上記複合材料。
)窒化ケイ素粉末に、焼結助剤を添加し、引っ張り弾性率が550GPaを上回り、グラファイト結合含有量が85%を上回る炭素繊維を配合し、混合・粉砕し、炭素繊維を均一に分散させ、次いで、焼結する、低摩擦低摩耗窒化ケイ素−炭素繊維複合材料の製造方法であって、
配合する炭素繊維の長さが50〜300μmで、該炭素繊維の配合量が、2.5〜10vol.%であり、窒化ケイ素ボールφ10を相手材として、無潤滑下、25℃、摺速0.18m/s、荷重5N、及び摺動半径10mmでボールオンディスク試験を行ったときの、無潤滑下での摩擦係数が高くても0.25で、かつJISR1607に準じて測定した場合の破壊靭性が少なくても11MPa・m1/2あり、低摩擦性、低摩耗性で、かつ高破壊靱性を兼ね備えた窒化ケイ素−炭素繊維複合材料を製造することを特徴とする上記複合材料の製造方法。
)不活性雰囲気下でホットプレス焼結することを特徴とする、前記()に記載の複合材料の製造方法。
)前記(2)又は(3)に記載の方法で作製した窒化ケイ素−炭素繊維複合材料からなる、無潤滑剤下で用いることが可能な摺動部材。
)前記(1)に記載の窒化ケイ素−炭素繊維複合材料からなる、水中下で用いることが可能なメカニカルシール摺動部材。
)前記(2)又は(3)に記載の方法で作製した窒化ケイ素−炭素繊維複合材料からなる、水中下で用いることが可能なメカニカルシール摺動部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A low-friction, low-wear silicon nitride-carbon fiber composite material in which silicon nitride is used as a parent phase, a tensile modulus of elasticity exceeds 550 GPa, and a carbon fiber having a graphite bond content exceeding 85% is blended and sintered. And
The length of the carbon fiber to be blended is 50 to 300 μm, and the blending amount of the carbon fiber is 2.5 to 10 vol. When the ball-on-disk test was conducted at 25 ° C., sliding speed of 0.18 m / s, load of 5 N, and sliding radius of 10 mm, using silicon nitride ball φ10 as a counterpart material The friction coefficient at 0.25 is at most 0.25, and the fracture toughness measured according to JISR1607 is at least 11 MPa · m 1/2, which is low friction, low wear, and high fracture toughness. The above-mentioned composite material, which is a silicon nitride composite material having
( 2 ) Adding a sintering aid to silicon nitride powder, blending carbon fibers with a tensile modulus of elasticity exceeding 550 GPa and a graphite bond content exceeding 85%, mixing and grinding, uniformly dispersing the carbon fibers A method for producing a low friction, low wear silicon nitride-carbon fiber composite material, wherein
The length of the carbon fiber to be blended is 50 to 300 μm, and the blending amount of the carbon fiber is 2.5 to 10 vol. When the ball-on-disk test was conducted at 25 ° C., sliding speed of 0.18 m / s, load of 5 N, and sliding radius of 10 mm, using silicon nitride ball φ10 as a counterpart material The friction coefficient at 0.25 is at most 0.25, and the fracture toughness measured according to JISR1607 is at least 11 MPa · m 1/2, which is low friction, low wear, and high fracture toughness. A method for producing a composite material comprising: producing a silicon nitride-carbon fiber composite material having both of the above.
( 3 ) The method for producing a composite material according to ( 2 ), wherein hot press sintering is performed in an inert atmosphere.
( 4 ) A sliding member made of a silicon nitride-carbon fiber composite material produced by the method according to ( 2) or (3), which can be used without a lubricant.
( 5 ) A mechanical seal sliding member made of the silicon nitride-carbon fiber composite material according to ( 1), which can be used in water.
( 6 ) A mechanical seal sliding member that can be used underwater, comprising a silicon nitride-carbon fiber composite material produced by the method according to ( 2) or (3) .

次に、本発明について更に詳細に説明する。
本発明は、窒化ケイ素を母相とする窒化ケイ素−炭素繊維複合材料、特に、低摩擦係数を有し、低摩耗性である窒化ケイ素−炭素繊維複合材料、その製造方法、及び摺動部材に係るものであり、具体的には、本発明は、窒化ケイ素セラミックス中に、原料として配合するときの引っ張り弾性率が550GPaを上回り、グラファイト結合量が85%を上回る特定の炭素繊維を、短繊維として分散させ、焼結することにより、炭素繊維内のグラファイト結晶構造により、低摩擦性及び高靭性を共存させた、低摩耗性の窒化ケイ素−炭素繊維複合材料を作製することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a silicon nitride-carbon fiber composite material having silicon nitride as a matrix, particularly a silicon nitride-carbon fiber composite material having a low friction coefficient and low wear, a method for producing the same, and a sliding member. Specifically, the present invention relates to a specific carbon fiber having a tensile elastic modulus of more than 550 GPa and a graphite bond amount exceeding 85% when incorporated as a raw material in silicon nitride ceramics. It is characterized by producing a low-wear silicon nitride-carbon fiber composite material in which low friction and high toughness coexist with the graphite crystal structure in the carbon fiber by dispersing and sintering as It is.

本発明に係る窒化ケイ素−炭素繊維複合材料は、それ自体、強度及び靭性が高く、構造部材を構成する窒化ケイ素セラミックスを母相として炭素繊維を配合した窒化ケイ素セラミックスと炭素繊維との複合体である。そして、本発明に係る窒化ケイ素−炭素繊維複合材料においては、上記窒化ケイ素セラミックス中に、グラファイト結合を含有する炭素繊維が配向分散しているため、摺動時に、摺動面にその炭素繊維が供給され、摩擦係数を大幅に低減し、摺動特性を向上させることができる。   The silicon nitride-carbon fiber composite material according to the present invention is a composite of silicon nitride ceramics and carbon fibers, which itself has high strength and toughness, and is compounded with carbon fibers using the silicon nitride ceramics constituting the structural member as a parent phase. is there. In the silicon nitride-carbon fiber composite material according to the present invention, since the carbon fibers containing graphite bonds are oriented and dispersed in the silicon nitride ceramic, the carbon fibers are present on the sliding surface during sliding. Supplied, the friction coefficient can be greatly reduced, and the sliding characteristics can be improved.

前記グラファイト結合含有量は、炭素繊維の引っ張り弾性率と関係があり、弾性率が高い場合には、炭素繊維に含まれるグラファイト結合の量が多い。本発明において、グラファイト結合含有量とは、ラマンスペクトルにおける1580cm-1に起因するピークの積分値を、ラマンスペクトルにおける1360cm-1に起因するピークの積分値で除した値を意味するものとして定義される。 The graphite bond content is related to the tensile elastic modulus of the carbon fiber, and when the elastic modulus is high, the amount of the graphite bond contained in the carbon fiber is large. In the present invention, the graphite bond content is defined to mean a value of the integral value of the peak attributable to 1580 cm -1, divided by the integrated value of the peak due to 1360 cm -1 in the Raman spectrum in Raman spectra The

また、炭素繊維におけるグラファイト結晶構造(グラファイト結合)は、本発明に係る窒化ケイ素−炭素繊維複合材料の製造過程における焼結中に劣化する。原料材料としての、炭素繊維自体の弾性率が低い場合には、焼結中にグラファイト結晶構造が劣化して、焼結体中の炭素繊維のグラファイト結晶構造が減少し、低摩擦にはならない。しかしながら、原料材料としての、炭素繊維自体の弾性率が高い場合には、焼結中に炭素繊維のグラファイト結晶構造が多少劣化しても、焼結体中に多くのグラファイト結晶構造が残っているため、弾性率の低い繊維を同体積添加する場合に比し、グラファイトが摺動面に効果的に供給され、低摩擦を維持する。   In addition, the graphite crystal structure (graphite bond) in the carbon fiber deteriorates during sintering in the production process of the silicon nitride-carbon fiber composite material according to the present invention. When the elastic modulus of the carbon fiber itself as a raw material is low, the graphite crystal structure deteriorates during sintering, the graphite crystal structure of the carbon fiber in the sintered body decreases, and low friction does not occur. However, when the elastic modulus of the carbon fiber itself as a raw material is high, a large number of graphite crystal structures remain in the sintered body even if the graphite crystal structure of the carbon fibers deteriorates somewhat during sintering. Therefore, as compared with the case where fibers having a low elastic modulus are added in the same volume, graphite is effectively supplied to the sliding surface and maintains low friction.

本発明では、窒化ケイ素セラミックス中に分散・含有せしめる、原料としての炭素繊維の引っ張り弾性率は、550GPaを上回ること、好ましくは900GPa以上であることが重要である。即ち、炭素繊維のグラファイト結晶構造は焼結中に劣化することから、原料としての炭素繊維の弾性率が550GPa以下では、焼結体中の炭素繊維のグラファイト構造が少なくなり過ぎて、低摩擦にならない。   In the present invention, it is important that the tensile elastic modulus of the carbon fiber as a raw material dispersed and contained in the silicon nitride ceramic exceeds 550 GPa, preferably 900 GPa or more. That is, since the graphite crystal structure of carbon fiber deteriorates during sintering, if the elastic modulus of the carbon fiber as a raw material is 550 GPa or less, the graphite structure of the carbon fiber in the sintered body becomes too small and the friction is reduced. Don't be.

窒化ケイ素セラミックス中に分散・含有させる炭素繊維の好適な割合は、原料として配合する時点で、2.5−10vol.%の範囲にすることが重要である。即ち、炭素繊維の含有量が2.5vol.%よりも少ないと、摺動面に存在する炭素繊維量が少なくなり、炭素繊維に含有されるグラファイト結合が有する潤滑効果が発揮されることも少なく、その結果、摩擦係数の低減も充分になされない。他方、炭素繊維の含有量が10vol.%よりも多いと、複合セラミックス自体の強度が大幅に低下すると共に、摺動時に炭素繊維が基材より除去されてしまうため、摩耗量が著しく増大する。   A suitable ratio of carbon fiber dispersed and contained in the silicon nitride ceramic is 2.5-10 vol. % Is important. That is, the carbon fiber content is 2.5 vol. If the amount is less than 1%, the amount of carbon fiber present on the sliding surface decreases, and the lubricating effect of the graphite bond contained in the carbon fiber is rarely exhibited. As a result, the friction coefficient is sufficiently reduced. Not. On the other hand, the carbon fiber content is 10 vol. When the amount is more than%, the strength of the composite ceramics itself is significantly reduced, and the amount of wear is remarkably increased because the carbon fibers are removed from the base material during sliding.

本発明の窒化ケイ素−炭素繊維複合材料は、好適には、例えば、窒化ケイ素粉末に、焼結助剤を添加し、引っ張り弾性率が900GPa以上の炭素繊維を混合し、それらを混合・粉砕し、得られた混合粉末を乾燥した後、焼結することによって製造される。焼結助剤としては、例えば、A123 、CeO2 、MgO、Yb23 、Y23 等が例示されるが、これらに限定されない。また、焼結は、窒素雰囲気等の不活性雰囲気下でホットプレス焼結することが好ましい。 The silicon nitride-carbon fiber composite material of the present invention is preferably prepared by, for example, adding a sintering aid to silicon nitride powder, mixing carbon fibers having a tensile modulus of 900 GPa or more, and mixing and pulverizing them. The obtained mixed powder is dried and then sintered. Examples of the sintering aid include, but are not limited to, A1 2 O 3 , CeO 2 , MgO, Yb 2 O 3 , Y 2 O 3 and the like. Moreover, it is preferable that sintering is hot press sintering in inert atmospheres, such as nitrogen atmosphere.

更に、本発明において、炭素繊維は、窒化ケイ素−炭素繊維複合材料中で均一に分散していることが望ましい。炭素繊維が均一に分散していると、摺動面全体に効率よく炭素繊維が供給される、即ち、グラファイト成分が供給されるために、摩擦係数を低減させることができる。しかし、炭素繊維が不均一に分散していると、炭素繊維の凝集が生じ、潤滑効果に充分寄与しないまま窒化ケイ素−炭素繊維複合材料から除去されてしまうため、摩擦係数及び摩耗量は、ともに増大してしまう。   Furthermore, in the present invention, it is desirable that the carbon fibers are uniformly dispersed in the silicon nitride-carbon fiber composite material. When the carbon fibers are uniformly dispersed, the carbon fibers are efficiently supplied to the entire sliding surface, that is, the graphite component is supplied, so that the friction coefficient can be reduced. However, if the carbon fibers are unevenly dispersed, the carbon fibers are aggregated and removed from the silicon nitride-carbon fiber composite material without sufficiently contributing to the lubrication effect. It will increase.

炭素繊維の長さは、50−500μm、より好ましくは50−300μmの範囲であり、100μm程度が最も好適である。炭素繊維の長さが上記の長さを超えると、炭素繊維が凝集してしまい、前述の理由と同様の理由によって、摩擦係数及び摩耗量は、ともに増加してしまう。また、炭素繊維の長さが50μm未満になると、摩擦係数及び摩耗量は、ともに低い値を示すが、破壊靭性値が大きく低下してしまう。   The length of the carbon fiber is in the range of 50 to 500 μm, more preferably 50 to 300 μm, and most preferably about 100 μm. When the length of the carbon fiber exceeds the above length, the carbon fiber is aggregated, and both the friction coefficient and the wear amount increase for the same reason as described above. Moreover, when the length of the carbon fiber is less than 50 μm, both the friction coefficient and the wear amount are low, but the fracture toughness value is greatly reduced.

本発明において、窒化ケイ素系セラミックスの原料に、原料として配合するときの引っ張り弾性率が550GPaを上回る特定の炭素繊維を、短繊維として混合し、窒化ケイ素を母相とし炭素繊維を分散させ複合させた窒化ケイ素−炭素繊維複合セラミックスとすると、配向分散している炭素繊維の引き抜け効果で、必要充分量の炭素繊維が固体潤滑剤として常時摺動面に供給され、摩擦係数を0.25以下に維持することができ、また、配向分散している炭素繊維の引き抜け効果で、材料自体の破壊靭性値が向上し、脆性破壊に起因する摩耗が抑制される。更に、炭素繊維の短繊維を用いる場合は、長繊維を用いる場合よりも、窒化ケイ素−炭素繊維複合材料の製造が容易であり、前述のように、強度低下を最小限に抑制し、かつ、炭素繊維の固体潤滑機能を充分に発揮させることが可能になる。   In the present invention, a specific carbon fiber having a tensile modulus of elasticity exceeding 550 GPa when blended as a raw material is mixed as a short fiber with a silicon nitride ceramic raw material, and the carbon fiber is dispersed and compounded using silicon nitride as a parent phase. With the silicon nitride-carbon fiber composite ceramics, the necessary and sufficient amount of carbon fibers is always supplied to the sliding surface as a solid lubricant due to the effect of pulling out the oriented and dispersed carbon fibers, and the friction coefficient is 0.25 or less. Furthermore, the effect of pulling out the orientationally dispersed carbon fibers improves the fracture toughness value of the material itself and suppresses wear due to brittle fracture. Furthermore, when carbon fiber short fibers are used, it is easier to produce a silicon nitride-carbon fiber composite material than when long fibers are used, and as described above, strength reduction is minimized, and The solid lubricating function of the carbon fiber can be sufficiently exhibited.

本発明により、(1)窒化ケイ素セラミックス中に、グラファイト結合を含有する炭素繊維が配向分散しているため、摺動時に、摺動面にその炭素繊維が供給され、摩擦係数を大幅に低減し、摺動特性を向上させることができる、(2)摩擦係数及び摩耗量が共に小さく、無潤滑剤下でも使用可能な、窒化ケイ素−炭素繊維複合材料及びその製造方法を提供することができる、(3)高いグラファイト含有量を有する炭素繊維を添加することで低摩擦及び高靱性を両立させた複合材料を製造し、提供することができる、(4)また、本発明の窒化ケイ素−炭素繊維複合材料は、無潤滑剤下での、低摩擦性及び低摩耗性に優れていることから、例えば、無潤滑剤下で用いるボールベアリング等の摺動部材の材料として利用することができる、という効果が奏される。   According to the present invention, (1) since carbon fibers containing graphite bonds are oriented and dispersed in silicon nitride ceramics, the carbon fibers are supplied to the sliding surface during sliding, greatly reducing the coefficient of friction. (2) It is possible to provide a silicon nitride-carbon fiber composite material and a method for producing the same, which can improve sliding properties, and (2) have both a small friction coefficient and a low wear amount, and can be used even without a lubricant. (3) A composite material having both low friction and high toughness can be produced and provided by adding a carbon fiber having a high graphite content. (4) The silicon nitride-carbon fiber of the present invention can also be provided. Since the composite material is excellent in low friction and low wear under a non-lubricant, for example, it can be used as a material for a sliding member such as a ball bearing used under a non-lubricant. Cormorants effect is achieved.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、これらの実施例等によって何ら限定されるものではない。   Next, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and the like.

実施例1〜6、比較例1〜4
弾性率の異なる4種類の炭素繊維を、分散用の原料として使用した。その際、炭素繊維の結晶化度(グラファイト率)は、ラマン分光高度計で測定されるラマンシフトピーク積分値により算出した。グラファイト面構造の存在を示す1580cm-1のピークと炭素非晶質構造の度合いを表す1360cm-1のピークにより、それぞれの積分値を算出した後、その総量に対するグラファイト結晶構造の割合を、グラファイト結合含有量として算出した。その割合を表1に示す。
Examples 1-6, Comparative Examples 1-4
Four types of carbon fibers having different elastic moduli were used as raw materials for dispersion. At that time, the degree of crystallinity (graphite ratio) of the carbon fiber was calculated from the Raman shift peak integrated value measured with a Raman spectrophotometer. After calculating the integrated values of the peak at 1580 cm −1 indicating the presence of the graphite surface structure and the peak at 1360 cm −1 indicating the degree of the carbon amorphous structure, the ratio of the graphite crystal structure to the total amount is calculated as the graphite bond. Calculated as content. The ratio is shown in Table 1.

また、炭素繊維の弾性率は、炭素繊維自体の微構造を反映している。図1に示した、実施例乃至は比較例で用いる炭素繊維の断面の電子顕微鏡(SEM)写真から判るように、弾性率の低い炭素繊維の場合は、切断面は微細粒子の集合体のように見えるのに対して、弾性率の高い炭素繊維の場合は、内部のグラファイト結晶が配向していることが判る。   The elastic modulus of the carbon fiber reflects the microstructure of the carbon fiber itself. As can be seen from the electron microscope (SEM) photographs of the cross-sections of the carbon fibers used in the examples and comparative examples shown in FIG. 1, in the case of carbon fibers having a low elastic modulus, the cut surface looks like an aggregate of fine particles. On the other hand, in the case of carbon fiber having a high elastic modulus, it can be seen that the internal graphite crystals are oriented.

窒化ケイ素粉末(α−相95%以上、宇部工業製)に、焼結助剤として2mass%のA123 及び5mass%のY23 を添加し、ボールミルによって混合・粉砕を行った後、乾燥させた。次いで、前述のようにグラファイト結合含有率を測定した炭素繊維(3〜5mm)を5vol.%加えた後、遊星ボールミルによって1時間混合・粉砕を行った。配合を表2に示す。 After adding 2 mass% A1 2 O 3 and 5 mass% Y 2 O 3 as sintering aids to silicon nitride powder (α-phase 95% or more, manufactured by Ube Industries), mixing and grinding with a ball mill , Dried. Subsequently, the carbon fiber (3-5 mm) whose graphite bond content was measured as described above was added at 5 vol. % Was added and mixed and ground for 1 hour by a planetary ball mill. The formulation is shown in Table 2.

こうして得られた混合粉末を乾燥した後、窒素中10atm中、1950℃、圧力30MPaで2時間ホットプレス焼結を行った。得られた焼結体を30φに加工を行い、窒化ケイ素ボールφ10を相手材として、無潤滑下、25℃、摺速0.18m/s、荷重5N、及び摺動半径10mmでボールオンディスク試験を行った。該試験で、そのときの焼結体の摩擦係数及び比摩耗量を測定した。ここで謂う比摩耗量は、摩耗量を、荷重と摺動距離で除した値であり、単位距離及び単位荷重当りの摩耗量を表している。
また、得られた焼結体の破壊靭性値及び破壊強度は、それぞれJISR1607及びJISR1601に準じて測定した。
After the mixed powder thus obtained was dried, hot press sintering was performed at 1950 ° C. under a pressure of 30 MPa in nitrogen at 10 atm for 2 hours. The obtained sintered body was processed to 30φ, and a ball-on-disk test was performed at 25 ° C., a sliding speed of 0.18 m / s, a load of 5 N, and a sliding radius of 10 mm without lubrication using a silicon nitride ball φ10 as a counterpart material. Went. In the test, the friction coefficient and specific wear amount of the sintered body at that time were measured. Here, the so-called specific wear amount is a value obtained by dividing the wear amount by the load and the sliding distance, and represents the wear amount per unit distance and unit load.
Moreover, the fracture toughness value and the fracture strength of the obtained sintered body were measured according to JIS R1607 and JIS R1601, respectively.

図2に、研磨後の試料表面の顕微鏡写真を示す。弾性率1000GPaの繊維を用いた場合に、その繊維の表面は、研磨後に鏡面にらず明らかに異なる表面であることが確認される。図3、4に、摺動試験時の焼結体の平均摩擦係数と比摩耗量及び破壊靭性値の関係を示す。弾性率1000GPaの炭素繊維を添加した実施例1〜5の複合体では、2.5vol.%以上の添加量で、摩擦係数が0.1−0.3の値が得られる。また、図4に示すように、その場合の比摩耗量は、炭素繊維の添加量が10vol.%までは、10-5mm3 /Nm以下であった。即ち、炭素繊維の添加量が、2.5vol.%〜10vol.%の範囲において、低摩擦と低摩耗とが両立した材料となっていた。 FIG. 2 shows a micrograph of the sample surface after polishing. When a fiber having an elastic modulus of 1000 GPa is used, it is confirmed that the surface of the fiber is clearly different from the mirror surface after polishing. 3 and 4 show the relationship between the average friction coefficient, the specific wear amount, and the fracture toughness value of the sintered body during the sliding test. In the composites of Examples 1 to 5 to which carbon fiber having an elastic modulus of 1000 GPa was added, 2.5 vol. With an addition amount of at least%, a coefficient of friction of 0.1-0.3 is obtained. In addition, as shown in FIG. 4, the specific wear amount in that case is 10 vol. % Was 10 −5 mm 3 / Nm or less. That is, the amount of carbon fiber added is 2.5 vol. % To 10 vol. %, The material has both low friction and low wear.

また、破壊靭性値は、炭素繊維の添加量が5vol.%以上で、11〜13MPa・m1/2 の値を示した(図3)。以上の結果から、窒化ケイ素−炭素繊維複合セラミックス材料において、炭素繊維の添加量が2.5vol.%〜10vol.%の範囲であると、低摩擦性及び低摩耗性に加えて、高破壊靭性といった特長を兼ね備えることができることが確かめられた。 In addition, the fracture toughness value was 5 vol. %, A value of 11 to 13 MPa · m 1/2 was shown (FIG. 3). From the above results, in the silicon nitride-carbon fiber composite ceramic material, the amount of carbon fiber added was 2.5 vol. % To 10 vol. In the range of%, it has been confirmed that in addition to low friction and low wear properties, it can have features such as high fracture toughness.

図5に、炭素繊維の弾性率と焼結体の摩擦係数との関係を示す。また、比較例2及び3の弾性率が、350GPa及び550GPaの炭素繊維を分散含有した窒化ケイ素−炭素繊維複合材料において、比較例2の場合の焼結体の摩擦係数は、350GPaの炭素繊維を5vol.%添加したにも拘わらず、比較例1の場合の、炭素繊維無添加の窒化ケイ素セラミックスの摩擦係数(図3又は図4参照)と比べて、ほぼ同等の値を示した。   FIG. 5 shows the relationship between the elastic modulus of the carbon fiber and the friction coefficient of the sintered body. In addition, in the silicon nitride-carbon fiber composite material in which the elastic modulus of Comparative Examples 2 and 3 is dispersed and containing carbon fibers of 350 GPa and 550 GPa, the friction coefficient of the sintered body in Comparative Example 2 is that of carbon fiber of 350 GPa. 5 vol. In spite of the addition of%, the friction coefficient (see FIG. 3 or FIG. 4) of silicon nitride ceramics without carbon fiber in Comparative Example 1 was almost the same value.

窒化ケイ素−炭素繊維複合体の摩擦係数は、添加した炭素繊維の弾性率に大きく依存しており、炭素繊維の弾性率が大きくなるに従って、摩擦係数は低下している。本発明の実施例である、弾性率が900GPaの炭素繊維を複合した実施例6の場合及び弾性率が1000GPaの炭素繊維を複合した実施例1〜5の場合には、焼結体の摩擦係数が0.25以下となっており、低摩擦性であることが確認された。   The friction coefficient of the silicon nitride-carbon fiber composite greatly depends on the elastic modulus of the added carbon fiber, and the friction coefficient decreases as the elastic modulus of the carbon fiber increases. In the case of Example 6 in which carbon fiber having an elastic modulus of 900 GPa is combined and Examples 1 to 5 in which carbon fiber having an elastic modulus of 1000 GPa is combined, which is an example of the present invention, the friction coefficient of the sintered body Was 0.25 or less, confirming low friction.

図6に、炭素繊維の長さと、焼結体の摩擦係数との関係を示す。実施例3の試料について、粉砕時間を変えることで炭素繊維の平均長さを変えた場合、焼結体の摩擦係数は、炭素繊維の平均長さが1000μmを超えるまでは、0.2程度の低摩擦性を示し、摩耗量も同じ傾向を示した(図5)。しかしながら、炭素繊維の長さが50μm以下になると焼結体の破壊靱性値が低くなる。   FIG. 6 shows the relationship between the length of the carbon fiber and the friction coefficient of the sintered body. For the sample of Example 3, when the average length of the carbon fiber was changed by changing the pulverization time, the friction coefficient of the sintered body was about 0.2 until the average length of the carbon fiber exceeded 1000 μm. It showed low friction and the same amount of wear (Fig. 5). However, when the length of the carbon fiber is 50 μm or less, the fracture toughness value of the sintered body is lowered.

図7に、水中での摩擦係数変化を示す。本開発材(実施例3)では、荷重を変化させた場合の摩擦係数変化が試験終了条件である1000Nまで、大きな変化が確認できないのに対して、通常の窒化ケイ素セラミックス(比較例1)では、200N程度で明らかに摩擦係数の大きな変動が確認できる。また、現在メカニカルシール材として使用されている炭化ケイ素(比較例5)でも、また、本開発材よりも明らかに摩擦係数の変動が大きいことが確認できる。つまり、本開発材は、従来のメカニカルシール材と比較してもその動作安定性に明らかな優位性を有することが確認された。   FIG. 7 shows the friction coefficient change in water. In the developed material (Example 3), the friction coefficient change when the load is changed does not show a large change up to 1000 N which is the test end condition, whereas in the normal silicon nitride ceramics (Comparative Example 1). A large fluctuation of the friction coefficient can be clearly confirmed at about 200N. It can also be confirmed that the friction coefficient of silicon carbide (Comparative Example 5), which is currently used as a mechanical seal material, is clearly larger than that of the developed material. In other words, it was confirmed that the developed material has a clear superiority in the operational stability even when compared with the conventional mechanical seal material.

以上詳述したように、本発明は、低摩擦低摩耗窒化ケイ素基複合材料、その製造方法、及び摺動部材に係るものであり、本発明により、機械工業、特に、摺動部材などのトライボロジー分野で有用な、新規な低摩擦低摩耗窒化ケイ素基複合材料、その製造方法、及び摺動部材を提供することができる。
本発明に係る窒化ケイ素−炭素繊維複合材料は、例えば、ボールベアリング及び水中用のメカニカルシール及びチルティングパッドなどの摺動部材の材料として有用である。
As described above in detail, the present invention relates to a low-friction low-wear silicon nitride-based composite material, a method for producing the same, and a sliding member. According to the present invention, the tribology of the machine industry, in particular, a sliding member, etc. It is possible to provide a novel low-friction low-wear silicon nitride matrix composite, a production method thereof, and a sliding member that are useful in the field.
The silicon nitride-carbon fiber composite material according to the present invention is useful as a material for sliding members such as ball bearings, underwater mechanical seals, and tilting pads.

炭素繊維の切断面の微構造(SEM)である。It is the microstructure (SEM) of the cut surface of carbon fiber. 研磨後の試料表面の微構造(SEM)である。It is the microstructure (SEM) of the sample surface after polishing. 炭素繊維の添加量と、焼結体の摩擦係数及び破壊靭性値との関係を示す。The relationship between the addition amount of carbon fiber and the friction coefficient and fracture toughness value of a sintered compact is shown. 炭素繊維の添加量と、焼結体の摩擦係数と比摩耗量との関係を示す。The relationship between the addition amount of a carbon fiber, the friction coefficient of a sintered compact, and the specific wear amount is shown. 炭素繊維の弾性率と、焼結体の摩擦係数との関係を示す。The relationship between the elastic modulus of carbon fiber and the friction coefficient of a sintered compact is shown. 炭素繊維の長さと、焼結体の摩擦係数及び破壊靭性値との関係を示す。The relationship between the length of a carbon fiber, the friction coefficient of a sintered compact, and a fracture toughness value is shown. 水中での摩擦係数と荷重の関係を示す。The relationship between friction coefficient and load in water is shown.

Claims (6)

窒化ケイ素を母相として、引っ張り弾性率が550GPaを上回り、グラファイト結合含有量が85%を上回る炭素繊維を配合し、焼結した、低摩擦低摩耗窒化ケイ素−炭素繊維複合材料であって、
配合する炭素繊維の長さが、50〜300μmで、該炭素繊維の配合量が、2.5〜10vol.%であり、窒化ケイ素ボールφ10を相手材として、無潤滑下、25℃、摺速0.18m/s、荷重5N、及び摺動半径10mmでボールオンディスク試験を行ったときの、無潤滑下での摩擦係数が高くても0.25で、かつJISR1607に準じて測定した場合の破壊靭性が少なくても11MPa・m1/2あり、低摩擦性、低摩耗性で、かつ高破壊靱性を兼ね備えた窒化ケイ素複合材料であることを特徴とする上記複合材料。
A low-friction low-wear silicon nitride-carbon fiber composite material comprising silicon nitride as a parent phase, blended and sintered with carbon fibers having a tensile modulus of elasticity exceeding 550 GPa and a graphite bond content exceeding 85%,
The length of the carbon fiber to be blended is 50 to 300 μm, and the blending amount of the carbon fiber is 2.5 to 10 vol. When the ball-on-disk test was conducted at 25 ° C., sliding speed of 0.18 m / s, load of 5 N, and sliding radius of 10 mm, using silicon nitride ball φ10 as a counterpart material The friction coefficient at 0.25 is at most 0.25, and the fracture toughness measured according to JISR1607 is at least 11 MPa · m 1/2, which is low friction, low wear, and high fracture toughness. The above-mentioned composite material, which is a silicon nitride composite material having
窒化ケイ素粉末に、焼結助剤を添加し、引っ張り弾性率が550GPaを上回り、グラファイト結合含有量が85%を上回る炭素繊維を配合し、混合・粉砕し、炭素繊維を均一に分散させ、次いで、焼結する、低摩擦低摩耗窒化ケイ素−炭素繊維複合材料の製造方法であって、
配合する炭素繊維の長さが50〜300μmで、該炭素繊維の配合量が、2.5〜10vol.%であり、窒化ケイ素ボールφ10を相手材として、無潤滑下、25℃、摺速0.18m/s、荷重5N、及び摺動半径10mmでボールオンディスク試験を行ったときの、無潤滑下での摩擦係数が高くても0.25で、かつJISR1607に準じて測定した場合の破壊靭性が少なくても11MPa・m1/2あり、低摩擦性、低摩耗性で、かつ高破壊靱性を兼ね備えた窒化ケイ素−炭素繊維複合材料を製造することを特徴とする上記複合材料の製造方法。
A sintering aid is added to the silicon nitride powder, a carbon fiber having a tensile modulus of elasticity exceeding 550 GPa and a graphite bond content exceeding 85% is blended, mixed and pulverized, and the carbon fiber is uniformly dispersed. A method for producing a sintered, low friction, low wear silicon nitride-carbon fiber composite comprising:
The length of the carbon fiber to be blended is 50 to 300 μm, and the blending amount of the carbon fiber is 2.5 to 10 vol. When the ball-on-disk test was conducted at 25 ° C., sliding speed of 0.18 m / s, load of 5 N, and sliding radius of 10 mm, using silicon nitride ball φ10 as a counterpart material The friction coefficient at 0.25 is at most 0.25, and the fracture toughness measured according to JISR1607 is at least 11 MPa · m 1/2, which is low friction, low wear, and high fracture toughness. A method for producing a composite material comprising: producing a silicon nitride-carbon fiber composite material having both of the above.
不活性雰囲気下でホットプレス焼結することを特徴とする、請求項に記載の複合材料の製造方法。 The method for producing a composite material according to claim 2 , wherein hot press sintering is performed in an inert atmosphere. 請求項2又は3に記載の方法で作製した窒化ケイ素−炭素繊維複合材料からなる、無潤滑剤下で用いることが可能な摺動部材。 A sliding member that is made of a silicon nitride-carbon fiber composite material produced by the method according to claim 2 and that can be used under a lubricant-free condition. 請求項1に記載の窒化ケイ素−炭素繊維複合材料からなる、水中下で用いることが可能なメカニカルシール摺動部材。 A mechanical seal sliding member comprising the silicon nitride-carbon fiber composite material according to claim 1 and capable of being used under water. 請求項2又は3に記載の方法で作製した窒化ケイ素−炭素繊維複合材料からなる、水中下で用いることが可能なメカニカルシール摺動部材。 A mechanical seal sliding member made of a silicon nitride-carbon fiber composite material produced by the method according to claim 2 and usable in water.
JP2003371161A 2003-09-16 2003-10-30 Low friction and low wear silicon nitride matrix composite and method for producing the same Expired - Lifetime JP4644784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371161A JP4644784B2 (en) 2003-09-16 2003-10-30 Low friction and low wear silicon nitride matrix composite and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003323260 2003-09-16
JP2003371161A JP4644784B2 (en) 2003-09-16 2003-10-30 Low friction and low wear silicon nitride matrix composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005112703A JP2005112703A (en) 2005-04-28
JP4644784B2 true JP4644784B2 (en) 2011-03-02

Family

ID=34554457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371161A Expired - Lifetime JP4644784B2 (en) 2003-09-16 2003-10-30 Low friction and low wear silicon nitride matrix composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4644784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655792B (en) * 2018-02-06 2023-07-25 大塚化学株式会社 Sliding member
CN114180971A (en) * 2021-12-27 2022-03-15 中国科学院上海硅酸盐研究所 Silicon nitride complex phase ceramic with low friction coefficient and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042279A (en) * 1983-08-17 1985-03-06 九州耐火煉瓦株式会社 Silicon nitride composite refractories
JPH04124066A (en) * 1990-09-12 1992-04-24 Nippon Cement Co Ltd Production of sintered product of carbon short fiber-compounded non-oxide ceramic
JPH05294733A (en) * 1991-02-06 1993-11-09 Mitsubishi Kasei Corp Silicon nitride-carbon fiber composite and its production
JPH0848576A (en) * 1994-03-29 1996-02-20 Euratom Abrasion-ersistant composite material
JPH1143372A (en) * 1997-07-23 1999-02-16 Sumitomo Electric Ind Ltd Silicon nitride-based ceramic and its production
WO2003068707A1 (en) * 2002-02-14 2003-08-21 Toyo Tanso Co., Ltd. Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085721B2 (en) * 1987-03-16 1996-01-24 株式会社日立製作所 Composite ceramic sintered body and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042279A (en) * 1983-08-17 1985-03-06 九州耐火煉瓦株式会社 Silicon nitride composite refractories
JPH04124066A (en) * 1990-09-12 1992-04-24 Nippon Cement Co Ltd Production of sintered product of carbon short fiber-compounded non-oxide ceramic
JPH05294733A (en) * 1991-02-06 1993-11-09 Mitsubishi Kasei Corp Silicon nitride-carbon fiber composite and its production
JPH0848576A (en) * 1994-03-29 1996-02-20 Euratom Abrasion-ersistant composite material
JPH1143372A (en) * 1997-07-23 1999-02-16 Sumitomo Electric Ind Ltd Silicon nitride-based ceramic and its production
WO2003068707A1 (en) * 2002-02-14 2003-08-21 Toyo Tanso Co., Ltd. Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same

Also Published As

Publication number Publication date
JP2005112703A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4744704B2 (en) Method for manufacturing wear-resistant member
US5762895A (en) Bearing material of porous SIC having a trimodal pore composition
Ciudad et al. Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered α-SiC
US7521388B2 (en) Wear resistant member comprised of silicon nitride and process for producing the same
JP5486044B2 (en) Silicon nitride body and method for producing the same
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
WO2013035302A1 (en) Silicon nitride sintered body, method for producing same, and abrasion-resistant member and bearing each produced using same
JP2008285349A (en) Silicon nitride sintered compact and sliding member using the same
JP6334413B2 (en) Silicon nitride sintered body and sliding member using the same
JP5404495B2 (en) Wear-resistant member and rolling support device using the same
Chen et al. Microstructure, mechanical properties and friction/wear behavior of hot-pressed Si3N4/BN ceramic composites
JP2010241616A (en) Impact resistant member and method for manufacturing the same
JP4644784B2 (en) Low friction and low wear silicon nitride matrix composite and method for producing the same
JP5362758B2 (en) Wear resistant parts
EP1146025B1 (en) Wc-base composite ceramic sintered compact
Schulz et al. Nano Si3N4 composites with improved tribological properties
JP2004002067A (en) Wear-resistant member and its production process
WO2003084895A1 (en) Silicon nitride anti-wear member and process for producing the same
JP2001151576A (en) Sliding member
JP4479142B2 (en) Zirconia sintered body and method for producing the same
JP4642971B2 (en) Silicon nitride ceramic sintered body and wear-resistant member using the same
Hyuga et al. Tribological behavior of a Si3N4/carbon short fiber composite under water lubrication
CN110372391A (en) A kind of SiC/ graphite composite material and its preparation method and application
JP2004339587A (en) Self-lubricating hard material
JP5349525B2 (en) Rolling element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4644784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term