JPS6350444A - Manufacture of nd-fe-b sintered alloy magnet - Google Patents

Manufacture of nd-fe-b sintered alloy magnet

Info

Publication number
JPS6350444A
JPS6350444A JP19481886A JP19481886A JPS6350444A JP S6350444 A JPS6350444 A JP S6350444A JP 19481886 A JP19481886 A JP 19481886A JP 19481886 A JP19481886 A JP 19481886A JP S6350444 A JPS6350444 A JP S6350444A
Authority
JP
Japan
Prior art keywords
sintered
sintering
temperature
under
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19481886A
Other languages
Japanese (ja)
Inventor
Takuo Takeshita
武下 拓夫
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP19481886A priority Critical patent/JPS6350444A/en
Publication of JPS6350444A publication Critical patent/JPS6350444A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a sintered alloy magnet excellent in magnetic properties, by compacting an Nd-Fe-B alloy powder, by sintering the resulting green compact under the conditions where grain growth can be inhibited, and then by applying hot isostatic pressing treatment to the sintered compact. CONSTITUTION:The Nd-Fe-B alloy powder is compacted in a metal mold, etc., and the green compact is sintered under the conditions where grain growth does not occur to the sintered compact, for example, under the condition of relatively low sintering temp. or shortened time of duration of sintering with ordinary sintering temp., etc. By the application of the above sintering, a sintered compact in which, while closed bores exist, open bores do not exist, can be formed. Subsequently, the sintered compact is subjected to hot isostatic pressing in a nonreactive atmosphere of Ar gas, etc., under the conditions of 500-950 deg.C and 10-2,000atm so as to be made dense. In this way, an Nd-Fe-B sintered alloy magnet having a theoretical density ratio of about 98% and also having superior magnetic properties can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁石特性のすぐれたNd −Fe−B系焼
結合金磁石の製造法(二関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a Nd-Fe-B based sintered alloy magnet with excellent magnetic properties.

〔従来の技術〕[Conventional technology]

近年、Nd −Fe − B系焼結合金磁石は、すぐれ
た磁石特性が評価され、その開発が進み、広く実用に供
されている。
In recent years, Nd-Fe-B-based sintered alloy magnets have been evaluated for their excellent magnetic properties, have been developed, and are now widely put into practical use.

このNb −Fe−B系焼結合金磁石は、通常、Nd 
−Fe−B系合金のインゴットあるいは粗粉末を、種々
の方法で粉砕して微粉末とし、この微粉末を、磁場中あ
るいは無磁場中で圧縮成形して圧粉体とし、ついでこの
圧粉体を、非酸{ヒ性雰囲気中あるイハ真空中で、10
00〜12oO℃ノ温度に30〜60分保持の条件で焼
結し、さらに必要{二応じて焼結体に、磁石特性?向上
させる目的で、真空中、あるいは減圧から常圧までの範
囲の非酸(ヒ性ガス雰囲気中C以下、これらの雰囲気?
総称して非反応性雰囲気という)で、時効処理などの熱
処理を施すことによって製造されている。
This Nb-Fe-B based sintered alloy magnet is usually Nd
- An ingot or coarse powder of a Fe-B alloy is ground into fine powder by various methods, and this fine powder is compression-molded in a magnetic field or in the absence of a magnetic field to form a green compact. , in a vacuum in a non-acid (arsenic atmosphere), for 10
Sintered at a temperature of 00 to 12 degrees Celsius for 30 to 60 minutes, and then sintered according to the required magnetic properties. For the purpose of improvement, in a vacuum or in a non-acid (arsenic gas atmosphere) in a range from reduced pressure to normal pressure, in these atmospheres?
They are manufactured by performing heat treatment such as aging treatment in a non-reactive atmosphere (generally referred to as a non-reactive atmosphere).

〔発明が解決しようとする間覇点〕[The victory point that the invention is trying to solve]

しかし、上記の従来Nd −Fe−B系焼結合金磁石に
おいては、未だ十分満足する磁石特性を示さないのが現
状である。
However, the above-mentioned conventional Nd-Fe-B based sintered alloy magnets currently do not exhibit sufficiently satisfactory magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、上記の
従来Nd −Fe−B系焼結合金磁石(二着目し、より
すぐれた磁石特性ビ有するNd −Fe−B系焼結合金
磁石を開発すべく研究を行なった結果、上記の従来Nd
−Fe−B系焼結合金磁石は、緻密化するものの、焼結
時に結晶粒の成長が起り、これが原因で十分満足する磁
石特性?示さないものであり、したがってNd −Fe
−B系焼結合金の磁石特性は、緻密]ヒと結晶粒微細組
織?付与せしめることによって著しく向上するようにな
るという結論に達し、しかして、圧粉体の焼結乞、通常
の焼結温度である1000〜1200℃より低い、望ま
しくは5〜20℃低い温度で行なうか、あるいは通常の
焼結温度にした場合には、通常の焼結保持時間である3
0〜60分よりも短かい、望ましくは10〜20分の焼
結保持時間で行なうかの焼結時に粒成長が起らない条件
で行ない、しかしこの場合の焼結体は、85〜95%の
理論密度比をもち、オープンボアハ存在しないが、クロ
ーズドボア馨内在して緻密ではないが、粒成長のないも
のであり、ついで、例えばsm−Co系焼結合金は、割
れが発生し易いことから、熱間加工?施すことはできな
いが、Nd −Fe−B系焼結合金は、950℃以下の
温度での熱間加工が可能であることから、この焼結体に
、粒成長が起らない条件、すなわち非反応性雰囲気中、
温度=500〜950℃、圧カニ10〜2000気圧の
条件で熱間静水圧プレス(HIP処理)を施すと、緻密
化するようになり、このように粒成長がなく、かつ緻密
なNd −Fe −B系焼結合金はすぐれた磁気特性を
示すという知見2得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors focused on the conventional Nd-Fe-B based sintered alloy magnet (Secondly, the Nd-Fe-B based sintered alloy magnet has better magnetic properties). As a result of research to develop the above-mentioned conventional Nd
-Although Fe-B based sintered alloy magnets become denser, crystal grains grow during sintering, and is this the reason for the satisfactory magnetic properties? Therefore, Nd-Fe
- What are the magnetic properties of B-based sintered alloys? We have come to the conclusion that the sintering of the green compact can be done at a temperature lower than the normal sintering temperature of 1000 to 1200°C, preferably 5 to 20°C lower. Or, if the normal sintering temperature is used, the normal sintering holding time is 3.
Sintering is carried out with a sintering holding time shorter than 0 to 60 minutes, preferably 10 to 20 minutes, or under conditions where grain growth does not occur during sintering, but in this case the sintered body has a sintering time of 85 to 95%. It has a theoretical density ratio of So, hot processing? However, since Nd-Fe-B-based sintered alloys can be hot-worked at temperatures below 950°C, this sintered body is subjected to conditions that do not cause grain growth, that is, non-forming conditions. In a reactive atmosphere,
When hot isostatic pressing (HIP treatment) is performed at a temperature of 500 to 950°C and a pressure of 10 to 2,000 atm, the Nd-Fe becomes denser and has no grain growth. We obtained the knowledge2 that -B-based sintered alloys exhibit excellent magnetic properties.

この発明は、上記知見にもとづいてなされたものであっ
て、Nd −Fe−B系合金粉末より成形した圧粉体言
、相対的に低い焼結温度にするか、あるいは通常の焼結
温度で焼結保持時間2短かくするかの結晶粒の成長を抑
制した条件で焼結?行ない、クローズドボアは存在する
が、オープンボアの存在しないNd  Fe  B系合
金焼結体を形成し、ついで、この焼結体に、非反応性雰
囲気中、温度:500〜950℃、圧カニ10〜200
0気王の条件でHIP処理?施して緻密fヒすることに
よって磁石特性のすぐれたNd −Fe−B系焼結合金
磁石を製造する方法に特徴を有するものである。
The present invention was made based on the above knowledge, and it is possible to compact the compacted powder from Nd-Fe-B alloy powder at a relatively low sintering temperature or at a normal sintering temperature. Sintering under conditions that suppress grain growth by shortening the sintering holding time 2? A Nd Fe B based alloy sintered body having closed bores but no open bores was formed, and then this sintered body was subjected to pressure crab 10 in a non-reactive atmosphere at a temperature of 500 to 950°C. ~200
HIP processing under the condition of 0 Ki King? This method is characterized by a method of manufacturing a Nd-Fe-B based sintered alloy magnet with excellent magnetic properties by applying and finely heating the magnet.

さらに、この発明の方法(二ついて詳細に説明する。Furthermore, the method of this invention (two methods will be explained in detail).

(a)  Nd −Fe −B系合金粉末の調製原料粉
末としてのNd −Fe−B系合金粉末を調製するに際
して、その粉砕を、回転ボールミルや振動ボールミル て、溶媒として有機溶媒、好ましくは脱水・脱気した炭
化水素や炭化フッ累系の溶媒2用いて湿式で行なうか、
あるいは同じく回転ボールミルや振動ボールミル、さら
にアトライタミルやジェットミルなどt用い、雰囲気を
非酸(ヒ性ガス、好ましくは水素、ヘリウム、アルゴン
、あるいは窒素とした乾式で行なうかして、平均粒径が
1〜70μm程度の微粉末とし、ついでこの微粉末を、
湿式による場合は真空乾燥器など(二より溶媒ビ除去し
た後、不活性ガス中での安定(比処理を行ない、また乾
式の場合も不活性ガス中での安定f比処理?行なうのが
望ましい。
(a) Preparation of Nd-Fe-B alloy powder When preparing Nd-Fe-B alloy powder as a raw material powder, the powder is pulverized using a rotary ball mill or a vibrating ball mill, and an organic solvent is used as a solvent, preferably an organic solvent, preferably dehydrated. It can be carried out in a wet manner using degassed hydrocarbons or fluorocarbonate solvents2, or
Alternatively, the average particle size is It is made into a fine powder of ~70 μm, and then this fine powder is
In the case of a wet method, it is desirable to remove the solvent in a vacuum dryer or the like (secondary), and then perform a stability treatment in an inert gas, and in the case of a dry method, it is desirable to perform a stability treatment in an inert gas. .

(b)  圧粉体の成形 圧粉体は、上記のように調製したNd −Fe−B系合
金粉末に、潤滑剤やバインダーとして働くステアリン酸
やパラフィンなどt添加し、混合した状態、あるいはこ
れらの潤滑剤やバインダー?添加しない状態で、磁界を
かけながら、、あるいは磁界?かげずに、金型中で圧縮
成形する通常の方法(=よって成形される。
(b) Forming of compacted powder The compacted powder is prepared by adding and mixing stearic acid and paraffin, which act as lubricants and binders, to the Nd-Fe-B alloy powder prepared as described above, or by mixing these. lubricant or binder? Without additives, while applying a magnetic field, or with a magnetic field? Without exception, it is formed by the usual method of compression molding in a mold.

(c)  焼結 焼結は、圧粉体が潤滑剤やバインダーヲ含有する場合に
は、非反応性雰囲気中、100〜soo’cの温度範囲
Y30〜180’C/hrの加熱速度で昇温して、これ
らの潤滑剤やバインダー乞除去してから、100〜b 一方、圧粉体が潤滑剤やバインダー?0:含有しない場
合には、100〜b 変に加熱し、 (1)焼結温度?通常の1000〜1200℃として、
保持時間乞通常の場合より短かい10〜20分とするか
、あるいは、 (2)  焼結温度’&1000〜1200℃より5〜
20°C低い温度とし、保持時間乞通常の保持時間であ
る30〜60分とするかして、 焼結体に結晶粒の成長が起らない条件で行ない、これ(
二よって理論密度比:85〜95%の焼結体乞製造する
のが望ましく、この場合、焼結体の理論密度比が85%
未満では後工程のHIP処理によって十分な緻密化がは
かれず、一方理論密度比が95%乞越える焼結体では、
焼結時(−おける粒成長?避けることができず、磁石特
性の劣fヒ原因になるからである。また、理論密度比が
85〜95%の焼結体では、4−プンポアは存在しない
が、クローズドボアが内在する組織となっている。
(c) Sintering Sintering is performed in a non-reactive atmosphere at a heating rate of 30 to 180'C/hr in a temperature range of 100 to 180'C/hr when the green compact contains a lubricant or binder. After heating and removing these lubricants and binders, it is heated to 100~B.On the other hand, does the green compact contain lubricants or binders? 0: If it does not contain, heat to 100~b. (1) Sintering temperature? As normal 1000-1200℃,
The holding time should be 10 to 20 minutes shorter than usual, or (2) The sintering temperature should be 5 to 10 minutes lower than 1000 to 1200℃.
The temperature was 20°C lower and the holding time was 30 to 60 minutes, which is the normal holding time, to prevent grain growth in the sintered body.
Therefore, it is desirable to produce a sintered body with a theoretical density ratio of 85 to 95%, and in this case, the theoretical density ratio of the sintered body is 85%.
If the density ratio is less than 95%, sufficient densification cannot be achieved by the post-process HIP treatment, while in the case of a sintered body with a theoretical density ratio exceeding 95%,
This is because grain growth during sintering (-) is unavoidable and causes poor magnetic properties.Furthermore, in a sintered body with a theoretical density ratio of 85 to 95%, 4-punpores do not exist. However, it has an internal closed-bore structure.

(dlHIP処理 HIP処理は、上記のようにNd −Fe−B系焼結合
金が熱間加工性?もつこと?利用して、これの十分な緻
密化をはかるために行なわれるもので、その条件として
は、非反応性雰囲気中、温度=500〜950°C9圧
カニ10〜20oo気王とする必要がある。これは、温
度が500℃未満でも、また圧力が10気圧未満でも所
望の高密度(ヒをはがることができず、一方温度が95
0℃乞越えると、粒成長が起るよう(二なるばかりでな
く、結晶配向も乱れるようになって磁石特性が劣(ヒし
、また2000気圧乞越えた圧力にしてもより一層の向
上効果が得られないという理由によるものである。
(dlHIP treatment HIP treatment is performed to sufficiently densify the Nd-Fe-B sintered alloy by taking advantage of its hot workability as described above. For this purpose, it is necessary to maintain the temperature = 500-950°C in a non-reactive atmosphere at a pressure of 10-20°C. (I couldn't peel it off, and the temperature was 95.
If the temperature exceeds 0℃, grain growth not only occurs, but also the crystal orientation becomes disordered, resulting in poor magnetic properties. This is because it cannot be obtained.

〔実施例〕〔Example〕

つぎに、この発明の方法?実施ρ]により具体的に説明
する。
Next, what is the method of this invention? This will be explained in detail by [Execution ρ].

とする軽希土類元素)、Fe−B合金、および純度:9
9.996の電解鉄を用い、これら原料を真空アーク炉
で溶製して、Nd15Fe77B8の組成をもった鋳塊
とし、この鋳塊t1スタンプミル乞用い、Ar気流中で
粗粉砕して、粒度:  28meshの粗粉末とし、さ
らに撮動ボールミルにて、脱気フロンを用い、5時間の
粉砕を行なって、フィッシャー、サブシブサイザーによ
る粒度測定で、平均粒径:4.3/JmY有する微粉末
とし、この微粉末を、15KOeの磁場中、1,5to
n/adの圧力で成形して、10m+mmX10mmX
10の寸法?もった立方体状圧粉体とし、ついでこの圧
粉体を、外熱式管状炉に装入し、I X 10” mm
Hgの真空中、300℃/hrの昇温速度で通常の焼結
温度より10°C低い1060°Cに加熱し、この温度
に60分間保持後、常圧のArガス?導入し、水冷の条
件で焼結?行なって理論密度比=94%の焼結体を製造
し、引続いて、この焼結体に、Arガス雰囲気中、10
00気圧の圧力で、温度=650℃に2時間保持後、急
冷の条件でHIP処理vlすことによって本発明法1?
実施し、理論密度比:98%?有する本発明焼結磁石1
?製造した。
light rare earth elements), Fe-B alloy, and purity: 9
Using 9.996 electrolytic iron, these raw materials are melted in a vacuum arc furnace to form an ingot with a composition of Nd15Fe77B8, and this ingot is coarsely pulverized in a t1 stamp mill in an Ar flow to determine the particle size. : A coarse powder of 28 mesh was obtained, and further pulverized for 5 hours using a deaerated CFC in a photographing ball mill, resulting in a fine powder having an average particle size of 4.3/JmY as determined by particle size measurement using a Fischer and Subsive Sizer. This fine powder was heated to 1.5 to
Molded with n/ad pressure, 10m+mmX10mmX
10 dimensions? Then, this green compact was charged into an external heating tubular furnace and heated to a size of I
In a Hg vacuum, heat to 1060°C, which is 10°C lower than the normal sintering temperature, at a heating rate of 300°C/hr. After holding this temperature for 60 minutes, Ar gas under normal pressure is heated. Introduced and sintered under water cooling conditions? to produce a sintered body with a theoretical density ratio of 94%, and then this sintered body was heated for 10 minutes in an Ar gas atmosphere.
The method 1 of the present invention is performed by holding the temperature at 650° C. for 2 hours at a pressure of 0.00 atm and then performing HIP treatment under rapid cooling conditions.
Theoretical density ratio: 98%? Sintered magnet 1 of the present invention having
? Manufactured.

また、比較の目的で1.焼結温度?通常の焼結温度であ
る1070’Cとし、かつHIP処理に代って、1×1
0−5間Hgの真空中、温度二650℃に2時間保持後
急冷の熱処理?施す以外は同一の条件で従来法aを実施
し、理論密度比:96%に有する従来焼結磁石a’r製
造した。
Also, for the purpose of comparison, 1. Sintering temperature? The normal sintering temperature was 1070'C, and instead of HIP treatment, 1×1
Heat treatment of quenching after holding at a temperature of 2650℃ for 2 hours in a vacuum of 0-5Hg? Conventional method a was carried out under the same conditions except that a conventional sintered magnet a'r having a theoretical density ratio of 96% was manufactured.

この結果得られた本発明焼結磁石aおよび従来焼結磁石
aの磁石特性乞測定し、この測定結果?第1表に示した
The magnetic properties of the resulting sintered magnet a of the present invention and the conventional sintered magnet a were measured, and the measurement results? It is shown in Table 1.

実施例 2 焼結温度を通常の焼結温度である1070’Cとし、一
方焼結保持時間ビ通常のそれより短がい15分とする以
外は、実施例1におけると同一の条件で本発明法すを実
施し、理論密度比:98%?有する本発明焼結磁石bY
製造した。
Example 2 The method of the present invention was carried out under the same conditions as in Example 1, except that the sintering temperature was 1070'C, which is the usual sintering temperature, and the sintering holding time was 15 minutes, which was shorter than the usual sintering temperature. The theoretical density ratio: 98%? Sintered magnet bY of the present invention having
Manufactured.

この本発明焼結磁石すについても磁石特性?測定し、第
1表に示した。
What are the magnetic properties of this sintered magnet according to the present invention? The results are shown in Table 1.

実施例 3 実施例1で用いた原料に加えて、純Coおよび純uv用
いて、鋳塊の組E ’:r: Nd 15Fe 63C
o 15B6AA 1とし、さら(ユ焼結温度ビ通常の
焼結温度より15°C低い1050℃とすると共に、H
IP処理での温度を630°Cとする以外は、実、茄例
1におけると同−の条件で本発明法C?実施し、理論密
度比985%?有する本発明焼結磁石c’r製造した。
Example 3 In addition to the raw materials used in Example 1, pure Co and pure UV were used to create an ingot set E':r: Nd 15Fe 63C
o 15B6AA 1, and the sintering temperature was set to 1050°C, which is 15°C lower than the normal sintering temperature, and H
In fact, method C of the present invention was carried out under the same conditions as in Example 1 except that the temperature in the IP treatment was 630°C. The theoretical density ratio was 985%? A sintered magnet C'r according to the present invention was manufactured.

また、比較の目的で、焼結温度乞通常の焼結温度である
1065℃とし、かつHIP処理に代って、I X 1
0−5個mgの真空中、温度二650℃に2時間保持後
急冷の熱処理?施す以外は同一の条件で従来法ct実施
し、理論密度比=96%の従来焼結磁石Cを製造した。
Also, for comparison purposes, the sintering temperature was set to 1065°C, which is the normal sintering temperature, and instead of HIP treatment, I
Heat treatment of 0-5 mg in vacuum, held at a temperature of 2650℃ for 2 hours, and then rapidly cooled? A conventional sintered magnet C with a theoretical density ratio of 96% was manufactured by carrying out conventional ct under the same conditions except for the following.

この本発明焼結磁石Cおよび従来焼結磁石Cに第  1
 表 〔発明の効果〕 第1表に示される結果、本発明i a −cによって製
造された本発明焼結磁石a −cは、いずれも結晶粒の
成長がなく、かつ高密度り有するので、高密度?有する
が、粒成長のある従来法a+cによって製造された従来
焼結磁石a、Cに比して、すぐれた磁石特性?もつこと
が明らかである。
The first sintered magnet C of the present invention and the conventional sintered magnet C are
Table [Effects of the Invention] The results shown in Table 1 show that the sintered magnets a to c of the present invention manufactured by the present inventions i a to c all have no growth of crystal grains and have a high density. High density? However, it has superior magnetic properties compared to conventional sintered magnets a and C manufactured by conventional method a+c with grain growth. It is clear that

上述のように、この発明の方法(二よれば、従来Nd 
−Fe−B系焼結合金磁石に比して、−段とすぐれた磁
石特性を有するNd −Fe−B系焼結合金磁石な製造
することができるのである。
As mentioned above, according to the method of the present invention (2), conventional Nd
It is possible to produce a Nd-Fe-B based sintered alloy magnet which has magnetic properties that are significantly superior to -Fe-B based sintered alloy magnets.

Claims (1)

【特許請求の範囲】  Nd−Fe−B系合金粉末より成形した圧粉体を、相
対的に低い焼結温度にするか、あるいは通常の焼結温度
で焼結保持時間を短かくするかの結晶粒の成長を抑制し
た条件で焼結を行ない、クローズドボアは存在するが、
オープンボアの存在しないNd−Fe−B系合金焼結体
を形成し、 ついで、この焼結体に、非反応性雰囲気中、温度:50
0〜950℃、圧力:10〜2000気圧の条件で熱間
静水圧プレスを施して緻密化することを特徴とする磁石
特性のすぐれたNd−Fe−B系焼結合金磁石の製造法
[Claims] A green compact formed from Nd-Fe-B alloy powder is sintered at a relatively low temperature, or the sintering time is shortened at a normal sintering temperature. Sintering is performed under conditions that suppress the growth of crystal grains, and although closed bores exist,
A Nd-Fe-B alloy sintered body without open bores is formed, and then this sintered body is heated at a temperature of 50°C in a non-reactive atmosphere.
A method for producing a Nd-Fe-B based sintered alloy magnet with excellent magnetic properties, which comprises densifying the magnet by hot isostatic pressing at a temperature of 0 to 950°C and a pressure of 10 to 2000 atm.
JP19481886A 1986-08-20 1986-08-20 Manufacture of nd-fe-b sintered alloy magnet Pending JPS6350444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19481886A JPS6350444A (en) 1986-08-20 1986-08-20 Manufacture of nd-fe-b sintered alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19481886A JPS6350444A (en) 1986-08-20 1986-08-20 Manufacture of nd-fe-b sintered alloy magnet

Publications (1)

Publication Number Publication Date
JPS6350444A true JPS6350444A (en) 1988-03-03

Family

ID=16330767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19481886A Pending JPS6350444A (en) 1986-08-20 1986-08-20 Manufacture of nd-fe-b sintered alloy magnet

Country Status (1)

Country Link
JP (1) JPS6350444A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252413A (en) * 1988-08-16 1990-02-22 Sanyo Special Steel Co Ltd Manufacture of permanent magnet
EP0430198A2 (en) * 1989-11-30 1991-06-05 Shin-Etsu Chemical Co., Ltd. Rare earth-based permanent magnet having corrosion resistant surface film and method for the preparation thereof
CN102233428A (en) * 2011-06-23 2011-11-09 宁波韵升股份有限公司 Method for preparing bulk sintered Nd-Fe-B permanent magnet material
JP2015113525A (en) * 2013-12-11 2015-06-22 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing high coercive force magnet
CN107931598A (en) * 2017-11-16 2018-04-20 浙江中杭新材料科技有限公司 The preparation method of hybrid exciting synchronous motor magnet steel
CN107931621A (en) * 2017-11-16 2018-04-20 浙江中杭新材料科技有限公司 The preparation method of high temperature resistant synchronous motor magnet steel
CN115007857A (en) * 2022-06-09 2022-09-06 宁波中杭磁材有限公司 Magnetic steel for hybrid excitation synchronous motor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136656A (en) * 1984-12-07 1986-06-24 Sumitomo Special Metals Co Ltd Production of sintered material for permanent magnet
JPS6217149A (en) * 1985-07-16 1987-01-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136656A (en) * 1984-12-07 1986-06-24 Sumitomo Special Metals Co Ltd Production of sintered material for permanent magnet
JPS6217149A (en) * 1985-07-16 1987-01-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252413A (en) * 1988-08-16 1990-02-22 Sanyo Special Steel Co Ltd Manufacture of permanent magnet
EP0430198A2 (en) * 1989-11-30 1991-06-05 Shin-Etsu Chemical Co., Ltd. Rare earth-based permanent magnet having corrosion resistant surface film and method for the preparation thereof
CN102233428A (en) * 2011-06-23 2011-11-09 宁波韵升股份有限公司 Method for preparing bulk sintered Nd-Fe-B permanent magnet material
JP2015113525A (en) * 2013-12-11 2015-06-22 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing high coercive force magnet
CN107931598A (en) * 2017-11-16 2018-04-20 浙江中杭新材料科技有限公司 The preparation method of hybrid exciting synchronous motor magnet steel
CN107931621A (en) * 2017-11-16 2018-04-20 浙江中杭新材料科技有限公司 The preparation method of high temperature resistant synchronous motor magnet steel
CN115007857A (en) * 2022-06-09 2022-09-06 宁波中杭磁材有限公司 Magnetic steel for hybrid excitation synchronous motor and preparation method thereof
CN115007857B (en) * 2022-06-09 2024-04-30 宁波中杭磁材有限公司 Magnetic steel for hybrid excitation synchronous motor and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0424401B2 (en)
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH0345884B2 (en)
JPH10256014A (en) Manufacture of rare-earth magnet powder of excellent magnetic anisotropy
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPS6236366B2 (en)
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH0568841B2 (en)
JP2591126B2 (en) Grinding method of alloy powder for rare earth permanent magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS58108709A (en) Manufacture of rare earth permanent magnet
JPH0475303B2 (en)
JPS5923803A (en) Production of magnet consisting of rare earth element
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPH0431164B2 (en)
JPS59154004A (en) Manufacture of permanent magnet
JPS58108710A (en) Manufacture of rare earth permanent magnet
JPS6386832A (en) Manufacture of permanent magnet of rare-earth sintered alloy