JPH0252413A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH0252413A
JPH0252413A JP20334988A JP20334988A JPH0252413A JP H0252413 A JPH0252413 A JP H0252413A JP 20334988 A JP20334988 A JP 20334988A JP 20334988 A JP20334988 A JP 20334988A JP H0252413 A JPH0252413 A JP H0252413A
Authority
JP
Japan
Prior art keywords
container
powder
pressure
permanent magnet
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20334988A
Other languages
Japanese (ja)
Inventor
Masaru Yanagimoto
勝 柳本
Yoshikazu Tanaka
義和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP20334988A priority Critical patent/JPH0252413A/en
Publication of JPH0252413A publication Critical patent/JPH0252413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To efficiently manufacture a permanent magnet whose mechanical strength and magnetic characteristic are excellent by a method wherein a permanent-magnet metal powder is filled into a malleable metal container and is sealed hermetically, it is heated together with the container and it is compressed and sintered under a specific pressure. CONSTITUTION:During a heating process and a compression and sintering process to be executed after it, a powder at the inside is shut off from the outside by a container and is not oxidized. As a result, a non-oxidizing atmosphere is not required; accordingly, these processes can be executed by using facilities of a simple structure. When the container in which the powder has been enclosed is heated in advance by other means during the compression and sintering process, it is not required to heat a metal mold for pressurization use up to a treatment temperature; accordingly, it is possible to easily obtain a pressure of 2000kg/cm<2> or higher which is hard to realize in an industrial process. Thereby, it is possible to obtain a tough and high-density product where a void is hardly contained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は粉末冶金法による永久磁石の製造方法に関す
るものてあり、特に鋳造状態のままでは優れた磁気特性
のものを得難いNd −Fe −B系合金やSm−Co
系合金などの永久磁石の製造方法にか\るものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention relates to a method for manufacturing permanent magnets by powder metallurgy, and in particular Nd-Fe-B, which is difficult to obtain excellent magnetic properties in a cast state. alloys and Sm-Co
This depends on the method of manufacturing permanent magnets such as alloys.

〈従来の技術〉 Nd−Fe−B系合金やSs −Co系合金のような希
土類磁石は、鋳造状態のままでは優れた磁気特性のもの
か得られないために、鋳造品を粉砕したり、他の適当な
方法で粉末にしたものを素材として粉末冶金法によって
作られる。そのための焼結方法としては、粉末を冷間て
プレス圧縮成形した後に、真空或いは不活性ガス中て焼
結する方法や金型中に粉末を収容して金型ごと加熱した
後に、ラムによって高温圧縮成形するホットプレス法な
どが知られている。特殊な方法としては、粉末を金属容
器等に封入した後、該金属容器等を密閉室内にアルゴン
ガスと共に閉じ込め、全体を加熱することによりガス圧
を上昇させて、高温の粉末を圧縮成形する熱間等方圧プ
レス法も存在する。
<Prior art> Rare earth magnets such as Nd-Fe-B alloys and Ss-Co alloys cannot have excellent magnetic properties in their cast state, so it is necessary to crush the cast product or to It is made by powder metallurgy using materials that have been pulverized by other suitable methods. Sintering methods for this purpose include cold press compression molding of the powder and then sintering in a vacuum or inert gas, or placing the powder in a mold and heating the mold together, then heating it to a high temperature with a ram. A hot press method of compression molding is known. A special method is to seal the powder in a metal container, etc., then confine the metal container, etc. with argon gas in a sealed chamber, and heat the entire body to increase the gas pressure, thereby compressing and molding the high-temperature powder. There is also an isostatic press method.

その原料粉末を製造する方法としては、酸化物粉末を還
元して得た金属粉末を熱処理して原料粉末とする還元法
や、所望成分の合金を溶解、鋳造したインゴットを粉砕
し、この粉末を熱処理して原料粉末とするメルト法や、
所望成分の合金を回転中の冷却ローラー上に溶射するこ
とによって急冷薄帯を得て、これを粉砕して原料粉末と
するメルトスピニング法などが実施されている。
The raw material powder can be produced by a reduction method in which the metal powder obtained by reducing the oxide powder is heat-treated to produce the raw material powder, or by pulverizing an ingot made by melting and casting an alloy of the desired components. Melt method that heat-treats raw material powder,
A melt spinning method is practiced in which a quenched ribbon is obtained by thermally spraying an alloy of desired components onto a rotating cooling roller, and the quenched ribbon is pulverized to obtain a raw material powder.

例えば、SmCo5系合金は還元法やメルト法によって
粉末化され、5112(:017系合金はメルト法によ
って粉末化され、Nd −Fe −B系合金はメルト法
やメルトスピニンク法によって粉末化されている。
For example, SmCo5 alloys are powdered by a reduction method or a melt method, 5112(:017 alloys are powdered by a melt method, and Nd-Fe-B alloys are powdered by a melt method or a melt-spinning method.

〈発明か解決しようとする課題〉 しかし、冷開成形後に焼結する製造方法では。<Invention or problem to be solved> However, the manufacturing method involves sintering after cold-open forming.

工数か多くなると共に所要時間が長く、製造途中て成形
体が崩壊したり、焼結時に大きく変形したりする。また
、高温で酸化し易く、これによって所定の磁気特性が得
られない場合か起こるため、焼結雰囲気を厳密に管理し
なければならない。
This increases the number of man-hours and the time required, and the molded body may collapse during manufacturing or be significantly deformed during sintering. In addition, it is easily oxidized at high temperatures, which may cause it to fail to obtain desired magnetic properties, so the sintering atmosphere must be strictly controlled.

また、ホットプレス法の場合は、金型の熱間強度上の制
約から、工業的には実用上1000°C以下、1000
Kg/ cs”以下てしか使用てきないことや、粉末相
互間や粉末と金型との間の摩擦によって、製品に微細な
空孔か残り、十分な機械的強度のものを得難い。これに
加え、酸化防止のための特別な配慮か必要である。
In addition, in the case of the hot press method, due to restrictions on the hot strength of the mold, industrially it is practical to operate at temperatures below 1000°C and 1000°C.
Kg/cs” or less, and due to friction between the powders and between the powder and the mold, fine pores remain in the product, making it difficult to obtain sufficient mechanical strength. , special consideration for oxidation prevention is required.

熱間等方圧プレス法は、ホットプレス法よりも高温高圧
か得られ、金属等の容器に粉末を封入するため酸化も起
こらないが、1回のプレスに多大の時間を要するため、
工業的な量産には極めて不利である。
The hot isostatic pressing method can achieve higher temperatures and pressures than the hot pressing method, and does not cause oxidation because the powder is sealed in a metal container, but it takes a lot of time for one press.
This is extremely disadvantageous for industrial mass production.

この発明は、粉末冶金法を採用しながら、簡単な工程に
よって1機械的強度及び磁気特性か優れた永久磁石を能
率よく生産しようとするものである。
This invention aims to efficiently produce a permanent magnet with excellent mechanical strength and magnetic properties through a simple process using powder metallurgy.

〈課題を解決するための手段〉 この発明においては、先づ、前述のような永久磁石金属
の粉末を、可鍛性の炭素鋼、ステンレス鋼、高透磁率鋼
などの容器に充填し、密封する。
<Means for Solving the Problems> In the present invention, first, powder of the above-mentioned permanent magnet metal is filled into a container made of malleable carbon steel, stainless steel, high magnetic permeability steel, etc., and the container is sealed. do.

次に、この容器ごと内部の粉末を加熱する。最後に、こ
の加熱された容器を加圧用金型に収容して、2000K
g/ c+++”以上の圧力で圧縮して焼結させる。
Next, the powder inside this container is heated. Finally, this heated container is placed in a pressurizing mold and heated to 2000K.
It is compressed and sintered at a pressure of more than g/c+++”.

ここで、容器に充填される粉末は、予め冷間プレスによ
って容器の内部寸法に合致する形状に成形されていても
よい。容器の内部は、真空に脱気することか望ましいが
、容器内の酸素量か僅少であるために、脱気を行わなく
ても強い酸化や爆発などは起こらない。この容器は、加
熱に先立って冷間等方圧プレスを施してもよく、これを
行うときは粉末の充填密度が上昇し、加熱か効率良く迅
速に行われるようになる。
Here, the powder filled in the container may be molded in advance by cold pressing into a shape that matches the internal dimensions of the container. It is desirable to evacuate the inside of the container to a vacuum, but since the amount of oxygen in the container is very small, strong oxidation and explosions will not occur even if deaeration is not performed. The container may be subjected to cold isostatic pressing prior to heating, and when this is done, the packing density of the powder increases and heating can be performed efficiently and quickly.

加圧圧縮は、熱間押出機を利用し、その押出口を閉塞し
て使用するのが有利であり、そうすれば容易にlot/
cm2程度まて圧力を加えることかでき成形・焼結をよ
り迅速に行なうことができる。
For pressure compression, it is advantageous to use a hot extruder and close the extrusion port.
By applying a pressure of about cm2, molding and sintering can be performed more quickly.

加圧に際しては、10秒以内に圧力な0から目標値まで
上昇させるのか望ましく、目標圧力に到達したら、その
圧力に長時間保持する必要はなく、直ちに加圧を解除し
て、容器を取出すことができる。
When pressurizing, it is preferable to raise the pressure from 0 to the target value within 10 seconds. Once the target pressure is reached, there is no need to maintain that pressure for a long time, and the pressurization should be immediately released and the container removed. Can be done.

取出した容器は、冷却後、所定の厚さにスライスし、容
器から移行した金属層が有害な場合には研削によってこ
れを除去し、研磨加工して製品とする。
After cooling, the removed container is sliced to a predetermined thickness, and if the metal layer transferred from the container is harmful, it is removed by grinding, and the product is polished.

〈作  用〉 この発明においては、処理期間を通じて、永久磁石粉末
が容器に収容されているのて、取扱いが極めて容易であ
る。そして、加熱と、これに続く圧縮焼結の工程では、
容器によって内部の粉末が外界と遮断されて、酸化か起
こらないために、非酸化雰囲気を必要とせず、従って簡
単な構造の設備によってこれらの工程を実施することが
できる。また、圧縮焼結の工程ては粉末を封入した容器
を予め他で加熱すれば、加圧用金型を処理温度にまて加
熱する必要が無くなるため、ホットプレスては□工業的
に実現か困難な2000Kg/ am2以上の圧力を容
易に得ることかてき、そのために空孔かほとんど存在し
ない強靭で高密度の製品を得ることかできる。
<Function> In this invention, since the permanent magnet powder is housed in a container throughout the treatment period, handling is extremely easy. Then, in the heating and subsequent compression sintering process,
Since the powder inside is isolated from the outside world by the container and oxidation does not occur, a non-oxidizing atmosphere is not required, and therefore these steps can be carried out using equipment with a simple structure. In addition, in the compression sintering process, if the container containing the powder is heated beforehand, there is no need to heat the pressurizing mold to the processing temperature, so hot pressing is difficult to achieve industrially. It is possible to easily obtain a pressure of 2,000 Kg/am2 or more, which makes it possible to obtain a strong, high-density product with almost no pores.

更に、熱間等方圧プレスては圧力の上昇速度か極めて緩
慢なのに対して、この発明においては殆ど瞬間的に20
00Kg/ cra2以上の目標値に達するため、その
間に粉末粒子は著しい内部歪を生じる。
Furthermore, while hot isostatic pressing has an extremely slow rate of pressure increase, in this invention the pressure rises almost instantaneously.
In order to reach the target value of 00Kg/cra2 or more, the powder particles undergo significant internal strain during this time.

そして、この内部歪によって貯えられたエネルギーによ
って、粉末粒子相互間の拡散が促進されて、極めて短時
間内に焼結か進行する。
The energy stored by this internal strain promotes diffusion between powder particles, and sintering progresses within an extremely short time.

従って、この発明においては、比較的簡単な設備と比較
的簡単な操作により、高密度で機械的強度も優れた永久
磁石を、能率良く生産することができる。
Therefore, in the present invention, permanent magnets with high density and excellent mechanical strength can be efficiently produced using relatively simple equipment and relatively simple operations.

た。Ta.

く実 施 例〉 NdとFeとBとを29.8: 691: 0.9重量
%の割合に調整し、真空中で溶解した後、アルゴンガス
な導入して、溶解炉雰囲気を常圧に戻した。次いで、こ
の溶解合金を、冷却水を通した回転銅ロール上に射出し
て、急冷薄帯を得た。得られた薄帯は小片状に砕けてい
た。この薄帯な、不活性雰囲気中で粉砕して、円換算平
均直径100ル、平均肉厚20弘の急冷薄帯粉末を得た
Example: Nd, Fe, and B were adjusted to a ratio of 29.8: 691: 0.9% by weight, and after melting in vacuum, argon gas was introduced to bring the melting furnace atmosphere to normal pressure. I returned it. This molten alloy was then injected onto a rotating copper roll through which cooling water was passed to obtain a quenched ribbon. The obtained ribbon was broken into small pieces. This thin ribbon was pulverized in an inert atmosphere to obtain a quenched ribbon powder having an average diameter of 100 yen and an average wall thickness of 20 hi.

この粉末を、外径150■、長さ400■、肉厚25■
の純鉄製カプセルに振動充填した後、カプセル内を脱気
体しながら電子ビーム溶接によって蓋を密閉して、ビレ
ットを作製した。このビレットを、700°Cに加熱し
て、内径155 amのシリンダを有する熱間押出機に
、その押出口を閉塞した上で装填し、10.6 t /
 cts2の圧力で押圧した。押圧開始から最高圧力に
達するまでの時間は2秒である。最高圧力に10秒間保
持した後ビレットを取出した。ビレットの長さは365
II11に圧縮されてい上記製法によって得た永久磁石
は等方性で、その特性を下表に示す。
This powder has an outer diameter of 150cm, a length of 400cm, and a wall thickness of 25cm.
After vibration-filling into a pure iron capsule, the lid was sealed by electron beam welding while the inside of the capsule was degassed to produce a billet. This billet was heated to 700°C and loaded into a hot extruder having a cylinder with an inner diameter of 155 am, with the extrusion port closed, and the extrusion rate was 10.6 t/.
It was pressed with a pressure of cts2. The time from the start of pressing to reaching the maximum pressure is 2 seconds. After maintaining the maximum pressure for 10 seconds, the billet was taken out. Billet length is 365
The permanent magnet compressed to II11 obtained by the above manufacturing method is isotropic, and its properties are shown in the table below.

(実施例2) Mn:  AIL : C=69.4: 30.2: 
0.4重量%の割合に調整し、アルゴン雰囲気中て溶解
した後、アルゴンガスアトマイズによって平均粒径15
0 、の球状粉末を得た。この粉末を外径150+sm
 、長さ40011m、肉圧40mmのSO3304製
カプセルに振動充填した後、カプセル内を脱気しながら
電子ビーム溶接によって蓋を密閉し、ビレット作成した
。このビレウドを1150℃に加熱して、内径155■
のシリンダを有する熱間押出機に、その押出口を閉塞し
たして装填し、10.6t / cm”の圧力で押圧し
た。
(Example 2) Mn: AIL: C=69.4: 30.2:
After adjusting the proportion to 0.4% by weight and melting in an argon atmosphere, the average particle size was reduced to 15% by argon gas atomization.
0, spherical powder was obtained. This powder has an outer diameter of 150+sm.
After vibrating and filling an SO3304 capsule with a length of 40,011 m and a wall pressure of 40 mm, the lid was sealed by electron beam welding while the inside of the capsule was degassed to produce a billet. This bereud was heated to 1150℃ and the inner diameter was 155cm.
The sample was loaded into a hot extruder having a cylinder with its extrusion port closed and pressed at a pressure of 10.6 t/cm''.

押出開始から最高圧力に達するまての時間は2秒である
。最高圧力に10秒間保持した後、ビレットを取出した
。ビレットの長さは365■に圧縮されていた。
The time from the start of extrusion until the maximum pressure is reached is 2 seconds. After maintaining the maximum pressure for 10 seconds, the billet was removed. The length of the billet was compressed to 365cm.

上記製法によって得たMn−An−C合金を直径60m
m、長さ80m+sに加工して押出し用ビレットとし、
窒素ガス雰囲気中て680°Cに加熱した後、縦型押出
機によって2回押出しを行い、直径10mmの棒材を製
造した。本方法によって得たMn−Al−C磁石は、押
出し方向に異方化していた。磁気特性を下表に示す。
The Mn-An-C alloy obtained by the above manufacturing method was
m, processed into a length of 80m+s and made into a billet for extrusion,
After heating to 680°C in a nitrogen gas atmosphere, extrusion was performed twice using a vertical extruder to produce a bar with a diameter of 10 mm. The Mn-Al-C magnet obtained by this method was anisotropic in the extrusion direction. The magnetic properties are shown in the table below.

〈発明の効果〉 以上の実施例によって明らかなように、この発明による
ときは、比較的簡単な工程によって、空隙か殆ど存在せ
ず磁気特性が優れた永久磁石を、能率良く生産すること
かできた。
<Effects of the Invention> As is clear from the above examples, according to the present invention, permanent magnets with almost no voids and excellent magnetic properties can be efficiently produced by a relatively simple process. Ta.

Claims (1)

【特許請求の範囲】[Claims] (1)永久磁石金属粉末を可鍛性金属容器に充填して密
封し、これを容器ごと加熱して、2000Kg/cm^
2以上の圧力で圧縮、焼結することを特徴とする永久磁
石製造方法。
(1) Fill a malleable metal container with permanent magnet metal powder, seal it, and heat the container to 2000 kg/cm^
A permanent magnet manufacturing method characterized by compressing and sintering at two or more pressures.
JP20334988A 1988-08-16 1988-08-16 Manufacture of permanent magnet Pending JPH0252413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20334988A JPH0252413A (en) 1988-08-16 1988-08-16 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20334988A JPH0252413A (en) 1988-08-16 1988-08-16 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH0252413A true JPH0252413A (en) 1990-02-22

Family

ID=16472559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20334988A Pending JPH0252413A (en) 1988-08-16 1988-08-16 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH0252413A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106100A (en) * 1975-03-14 1976-09-20 Hitachi Metals Ltd
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet
JPS6345307A (en) * 1986-08-11 1988-02-26 ワ−ル−テツク リミテツド Production of billet from metal powder
JPS6350444A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered alloy magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106100A (en) * 1975-03-14 1976-09-20 Hitachi Metals Ltd
JPS62270746A (en) * 1986-05-17 1987-11-25 Tohoku Metal Ind Ltd Manufacture of rare earth-type permanent magnet
JPS6345307A (en) * 1986-08-11 1988-02-26 ワ−ル−テツク リミテツド Production of billet from metal powder
JPS6350444A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered alloy magnet

Similar Documents

Publication Publication Date Title
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
US10930417B2 (en) Rapid consolidation method for preparing bulk metastable iron-rich materials
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
CN109411225B (en) Preparation process of samarium cobalt magnet
KR101428672B1 (en) Nd-Fe-B magnet alloys and powders and the manufacturing method of the same by gas atomization
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JPH0252413A (en) Manufacture of permanent magnet
JP7156226B2 (en) Method for manufacturing rare earth magnet
WO2006098238A1 (en) Method for producing rare earth magnet and impregnation apparatus
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JP2922615B2 (en) Manufacturing method of permanent magnet
JPS6350469A (en) Manufacture of alloy target for sputtering
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy
SU1760563A1 (en) Method of producing permanent magnet billets
JPS62214602A (en) Manufacture of green compact permanent magnet
JPS63260004A (en) Manufacture of permanent magnet
CN117238648A (en) Sheath treatment method of samarium cobalt magnet, samarium cobalt magnet and preparation method
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPS63211707A (en) Manufacture of sintered rare-earth magnet
JPS62122108A (en) Manufacture of sintered rare earth magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder