WO2006098238A1 - Method for producing rare earth magnet and impregnation apparatus - Google Patents

Method for producing rare earth magnet and impregnation apparatus Download PDF

Info

Publication number
WO2006098238A1
WO2006098238A1 PCT/JP2006/304731 JP2006304731W WO2006098238A1 WO 2006098238 A1 WO2006098238 A1 WO 2006098238A1 JP 2006304731 W JP2006304731 W JP 2006304731W WO 2006098238 A1 WO2006098238 A1 WO 2006098238A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
rare earth
antioxidant
powder
container
Prior art date
Application number
PCT/JP2006/304731
Other languages
French (fr)
Japanese (ja)
Inventor
Akihito Tsujimoto
Yuji Kaneko
Original Assignee
Neomax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co., Ltd. filed Critical Neomax Co., Ltd.
Priority to JP2006536499A priority Critical patent/JP4743120B2/en
Publication of WO2006098238A1 publication Critical patent/WO2006098238A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Definitions

  • the present invention relates to a method for manufacturing a rare earth magnet and an impregnation apparatus. More specifically, the present invention relates to the production of high performance rare earth sintered magnets produced from rare earth alloy powders with reduced oxygen content.
  • R—Fe—B rare earth magnets (R is a rare earth element) are mainly composed of tetragonal R Fe B compounds.
  • the generation of the oxide of 2 3 becomes more remarkable as the amount of oxygen increases. Therefore, by reducing the amount of oxygen in the atmosphere gas at the time of powder preparation, the R relative amount in the finally obtained R-Fe-B rare earth magnet can be reduced and the magnetic properties can be improved. Has been considered.
  • the amount of oxygen in the R-Fe-B-based alloy powder used for the production of the R-Fe-B-based magnet is small.
  • the method of improving the magnet characteristics by reducing the amount of oxygen in the R—Fe—B alloy powder has not been realized as a mass production technology. The reason for this is that when an R—Fe—B alloy powder is produced in an environment in which the oxygen concentration is controlled to be low and the oxygen content of the alloy powder is reduced to, for example, 4000 ppm or less by weight, the powder is separated from oxygen in the atmosphere. This is because it reacted violently and could ignite within a few minutes even at room temperature.
  • the hydrogen pulverization method has higher production efficiency than mechanical pulverization methods such as ball milling.
  • magnetic properties especially coercive force
  • the fluctuation in characteristics is remarkable when the oxygen content of the sintered body is suppressed to 4000 ppm or less by weight, and the force is relatively small when the rare earth element content is relatively small (for example, the rare earth element content is 32 mass% or less of the entire magnet). To occur.
  • a liquid lubricant such as a fatty acid ester is added to the fine powder before the pressing step to improve the compressibility of the powder.
  • a liquid lubricant such as a fatty acid ester is added to the fine powder before the pressing step to improve the compressibility of the powder.
  • Patent Document 2 and Patent Document 3 disclose a technique in which R-Fe-B alloy powder having a low oxygen content (eg, 1500 ppm) is mixed with mineral oil and slurried. Yes. Since the powder particles in the slurry do not come into contact with the atmosphere, heat generation and ignition can be prevented while reducing the oxygen content of the R—Fe—B alloy powder.
  • R-Fe-B alloy powder having a low oxygen content eg, 1500 ppm
  • Patent Document 1 Japanese Patent Publication No. 6-6728
  • Patent Document 2 U.S. Pat.No. 5,489,343
  • Patent Document 3 Japanese Patent Laid-Open No. 10-321451
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-8935
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-170728
  • the antioxidant when the molded body is immersed in the antioxidant, the antioxidant soaks into the interior from the surface of the molded body. At this time, air existing in the gaps between the powder particles constituting the compact is confined in the compact. As a result, the air inside the compact loses its escape and the air pressure inside the compact increases as impregnation proceeds.
  • the molding density is adjusted to a low value as a whole. Also, when performing magnetic field orientation, the molding density is set low. In this way, in a molded body whose molding density is adjusted to a low value as a whole and whose strength is low, cracking and chipping are particularly likely to occur during the antioxidant impregnation process. In addition, if the molded body is cracked or peeled during the impregnation process, the production yield of the sintered magnet will be significantly reduced.
  • the present invention has been made in view of various advantages, and its main purpose is to provide a method and apparatus capable of producing a high-performance rare earth magnet having a low oxygen content and excellent magnetic properties with a high yield. It is to provide.
  • the method for producing an R—Fe—B rare earth magnet according to the present invention includes a pressing step (A) for producing a compact by compressing a rare earth alloy powder by a dry press method, and a surface of the compact.
  • the method includes a step (B) of impregnating the molded body with an antioxidant and a step (C) of sintering the molded body.
  • the molded body is a decompressed container. And impregnated with the antioxidant.
  • the step (B) includes a step of storing the molded body in the container, a step of decompressing the inside of the container, and supplying the antioxidant to the inside of the container. Including the step of.
  • the rare earth alloy powder has an oxygen content of 50 ppm to 4000 ppm by weight and a nitrogen content of 150 ppm to 1500 ppm by weight.
  • the step (C) includes a first step of holding at a temperature range of 700 ° C or higher and lower than 1000 ° C for a time of 10 minutes or longer and 420 minutes or shorter; And a second step in which sintering proceeds in a temperature range from C to 1200 ° C.
  • the rare earth alloy powder has an average particle size of 1.0 / zm to 5. O / zm.
  • the antioxidant is composed of a volatile component.
  • step (B) by volatilization of the anti-oxidation agent.
  • the temperature of the molded body is lowered at least temporarily.
  • the antioxidant is isoparaffin.
  • the impregnation apparatus includes a container for storing a molded body of rare earth alloy powder, a means for supplying an antioxidant used for impregnation of the molded body to the inside of the container, and a reduced pressure for reducing the internal pressure of the container. Device.
  • the molded product is impregnated with an antioxidant under reduced pressure, the antioxidant can be impregnated quickly without causing cracks or chips in the molded product during the impregnation process.
  • the oxygen content of the magnet powder it is possible to suppress the oxidation of the powder compact with good yield.
  • the risk of heat generation and ignition can be reduced, and the amount of the main phase of the magnet can be increased safely and practically, so that the magnet characteristics of the rare earth magnet can be greatly improved. become.
  • FIG. 1 is a schematic view showing a configuration of an impregnation apparatus used in the present invention.
  • FIG. 2 (a) to (c) are process cross-sectional views showing an impregnation process (conventional example) performed under atmospheric pressure.
  • FIG. 3 (a) to (c) are process cross-sectional views showing an impregnation process performed under reduced pressure according to the present invention.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a press apparatus used for molding magnetic powder.
  • FIG. 5 is a view showing a temperature profile of a sintering process, and shows a profile 30 related to a conventional sintering process and a profile 32 related to the sintering process of the present invention.
  • FIG. 6 (a) is a diagram showing a molded body in which cracks occurred when impregnation was performed at atmospheric pressure.
  • (B) and (c) are views showing a molded body in an example of the present invention.
  • FIG. 7 is a graph showing the relationship between the pressure during impregnation (impregnation pressure) and the amount of impregnation.
  • the molded body is impregnated with an antioxidant before performing the sintering process of the molded body.
  • the process to make is performed.
  • the main feature of the present invention is that the antioxidant impregnation step is performed under reduced pressure.
  • FIG. 1 schematically shows a main part of an apparatus suitably used in the impregnation step in the present invention.
  • This device reduces the internal pressure of the decompression vessel 100, the decompression vessel 100 that houses the rare earth alloy powder compact 20 produced in the pressing process, the supply unit 110 that supplies the antioxidant to the interior of the decompression vessel 100, and And a decompression device 120 for performing the above operation.
  • the decompression vessel 100 is easy to observe the contents from the outside. In this way, a transparent member such as acrylic or glass can also be produced.
  • the decompression vessel 100 is connected to the decompression device 120 via a pipe line, and after the molded body 20 is set in the decompression vessel 100, evacuation in the decompression vessel 100 is executed. It is done.
  • the support base 130 on which the molded body 20 is placed rises to the drive unit 140 and is stored in the decompression container 100.
  • the decompression device 120 is a vacuum pump such as an ejector, and can reduce the internal pressure of the decompression vessel 100 to a range of, for example, ⁇ 50 kPa to 1 lOOkPa.
  • ⁇ 50 kPa” and “one 100 kPa” mean “50 kPa lower than atmospheric pressure, pressure” and “lOOkPa lower than atmospheric pressure, pressure”, respectively.
  • the ejector operates using jet steam or the like as a drive source, has no mechanical drive unit, and is a vacuum pump. Therefore, the ejector has an advantage that the structure is simple and failure is unlikely to occur.
  • the decompression device 120 is not limited to an ejector, and may be another type of vacuum device.
  • the antioxidant when the internal pressure of the decompression vessel 100 reaches the range of ⁇ 50 kPa to ⁇ lOOkPa, the antioxidant is supplied into the decompression vessel 100.
  • the reservoir (supply unit 110) in which the antioxidant is stored and the decompression vessel 100 are connected via a valve (not shown).
  • the valve When the valve is opened while the inside of the decompression vessel 100 is decompressed, the acid / antioxidant flows from the reservoir into the decompression vessel 100 and flows into the decompression vessel 100.
  • FIG. 2 is a diagram showing an impregnation process (comparative example) performed under atmospheric pressure
  • FIG. 3 is a diagram showing an impregnation process (present invention) performed under reduced pressure.
  • the impregnation process described above is performed, whereby the molded body generates heat without causing cracks. Can be solved.
  • an antioxidant effective for preventing heat generation and ignition of the molded body is considered preferable for a rare earth sintered magnet, and is a force containing carbon and other impurities. Since it is sufficiently removed by the previous debinding process, the final magnet properties are not adversely affected.
  • a volatile antioxidant is used, when the molded body after the impregnation process is taken out of the pressure reducing container, the temperature of the molded body temporarily decreases due to volatilization of the anti-oxidation agent, thus preventing ignition. The effect is more remarkable and preferable.
  • the antioxidant is supplied into the reduced pressure vessel.
  • the reduced pressure is started after the antioxidant is supplied into the reduced pressure vessel.
  • the antioxidant having boilability will boil and the molded body will be cracked or chipped.
  • the rare earth element R is at least one element selected from the group force consisting of Y, La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu): 10 atomic% ⁇ 30 atomic%, B: 0.5 atomic% to 28 atomic%, balance: Fe, and a molten R—Fe—B alloy containing inevitable impurities is prepared.
  • one part of Fe may be substituted with one or two of Co and Ni, or a part of B may be substituted with C.
  • the rare earth element R preferably contains 10 atomic% or more of heavy rare earth elements such as Dy, Tb, and Ho.
  • the molten alloy is lowered to a temperature of 1000 ° C or lower by a rapid cooling method such as a strip cast method at a cooling rate of 10 2 to 10 4 ° C / second to a thickness of 0.03mn! Rapidly solidifies into a thin plate of ⁇ 10mm. Then cooled at a cooling rate of 10 to 10 2 ° CZ seconds to room temperature.
  • the R-rich phase is fabricated into a piece having a structure separated in a fine size of 5 m or less, and then the piece is accommodated in a container that can be inhaled and exhausted.
  • H gas at a pressure of 0.03 MPa to l.
  • OMPa is supplied into the container to form a collapsed alloy powder. This collapse
  • Gold powder is finely pulverized in an inert gas stream after dehydrogenation.
  • the piece of magnet material used in the present invention is preferably manufactured by a strip casting method using a molten alloy having a specific composition by a single roll method or a twin roll method. Depending on the thickness of the piece to be produced, the single roll method and the twin roll method can be used properly. If the piece is thick, it is preferable to use the twin roll method. If the piece is thick, it is preferable to use the single roll method.
  • the alloy by the rapid cooling method has a sharp particle size distribution and can have a uniform particle size, the squareness after sintering is improved.
  • the rapid cooling effect is increased, so that the crystal grain size may be too small. If the crystal grain size force is too large, the individual particles will be polycrystallized when powdered and the crystal orientation cannot be aligned, leading to deterioration of magnetic properties. On the other hand, if the thickness of the flake exceeds 10 mm, the cooling rate slows down, and a Fe crystallizes out and the N d rich phase is unevenly distributed.
  • the hydrogen storage treatment can be performed, for example, as follows. That is, after a piece of a piece that has been broken to a predetermined size is inserted into a raw material case, the raw material case is inserted into a sealable hydrogen furnace, and the hydrogen furnace is sealed. Next, after the inside of the hydrogen furnace is sufficiently evacuated, hydrogen gas having a pressure of 3 OkPa to l.OMPa is supplied into the container, and hydrogen is occluded in the piece. Since the hydrogen absorption reaction is an exothermic reaction, it is preferable to provide a cooling pipe for supplying cooling water around the outer periphery of the furnace to prevent temperature rise in the furnace. As a result of absorption and absorption of hydrogen, the splinters spontaneously collapse and become powder.
  • the fine pulverization is preferably performed by a dry pulverization apparatus such as a jet mill, an attritor, and a vibration mill using an inert gas containing nitrogen and substantially free of oxygen. It is desirable to use high-purity nitrogen gas with a purity of 99.99% or more as the inert gas whose oxygen concentration in the inert gas is preferably controlled to 500 ppm or less. By performing the powdering process in such an atmosphere of high purity nitrogen gas, a finely pulverized powder having a low oxygen concentration and a thinly nitrided surface can be obtained.
  • the average particle size (pulverized particle size) of the powder is preferably in the range of 1. to 5.5 ⁇ m.
  • a liquid lubricant containing a fatty acid ester or the like as a main component to the magnet powder thus produced.
  • the addition amount is, for example, 0.15 to 5.0% by mass.
  • fatty acid esters include methyl methyl pronate, methyl caprylate, and methyl laurate.
  • the lubricant may contain components such as a binder. The important point is that the lubricant volatilizes and can be removed later.
  • the lubricant itself is a solid that is difficult to mix uniformly with the alloy powder, it may be diluted with a solvent.
  • the solvent petroleum solvents such as isoparaffin and naphthenic solvents can be used.
  • the timing of addition of the lubricant is arbitrary, and may be any of before pulverization, during pulverization, and after pulverization.
  • the liquid lubricant coats the surface of the powder particles and exhibits an anti-oxidation effect on the particles, and also has a function of uniforming the density of the compact during pressing and suppressing the disorder of orientation.
  • FIG. 4 magnetic field orientation and compression molding are performed using a press apparatus as shown in FIG. 4 includes a die 1 having a through hole and punches 2 and 3 that sandwich the through hole of the die 1 from above and below.
  • the raw material powder 4 is filled in the space (cavity) formed by the die 1, the lower punch 2 and the upper punch 3, and the distance between the lower punch 2 and the upper punch 3 is reduced.
  • Compression molding is performed by a small amount (pressing process).
  • the pressing device 10 of FIG. 4 is provided with coils 5 and 7 for magnetic field orientation!
  • the packing density of the powder 4 is set within a range that enables magnetic field orientation and that hardly disturbs the orientation of the magnetic powder after the magnetic field is removed.
  • the filling density is 20 to 30% of the true density.
  • the density of the green body shows a value included in the range of 3.8 to 4.2 g / cm 3.
  • an orientation magnetic field is formed in the space filled with the powder 4, and the magnetic field orientation of the powder 4 is executed.
  • the magnetic field applied for orientation may be a static magnetic field or a pulsed magnetic field.
  • an inert gas such as nitrogen.
  • the molded body 20 is taken out from the press apparatus 10, it is immediately subjected to an impregnation treatment with an antioxidant.
  • the molded body 20 is impregnated with isoparaffin in a reduced pressure state (pressure: about ⁇ 50 kPa to about 1 lOOkPa) using an apparatus having the configuration shown in FIG.
  • the surface of the rare earth magnet alloy powder constituting the compact 20 is coated with an antioxidant, so that even if the compact 20 is exposed to the atmosphere, the powder particles are in direct contact with oxygen. Is suppressed. As a result, even if the molded body 20 is left in the atmosphere, the possibility of heat generation or ignition in a short time is greatly reduced.
  • a liquid lubricant added to the powder for the purpose of improving the moldability and the degree of orientation and the same substance as the antioxidant for diluting the liquid lubricant are used.
  • petroleum-based solvents such as isoparaffin, naphthenic solvents, methyl caprate, methyl caprylate, methyl laurate, etc. Fatty acid esters, higher alcohols, and higher fatty acids are particularly preferred.
  • the molded body 20 After the impregnation treatment, the molded body 20 finally becomes a permanent magnet product through a production process such as a binder removal step, a sintering step, and an aging treatment step.
  • the carbon contained in the oil component deteriorates the magnetic properties of the rare earth magnet.
  • the process and the sintering step one that is detached from the molded body is selected. For this reason, the oil does not adversely affect the magnet characteristics.
  • the furnaces for performing the binder removal process and the sintering process are connected and moved between the furnaces so that the compact does not directly contact the atmosphere. It is more desirable to perform the above treatment using a batch furnace.
  • the crystal grain size in the finally obtained sintered magnet is 3 ⁇ m or more and 9 ⁇ m or less, preferably 3 ⁇ m or more, by performing a two-step sintering process described later. It can be controlled within the range of 6 ⁇ m or less.
  • crystal grains are coarsened by grain growth during sintering, and it was difficult to sufficiently improve the coercive force even when low oxygen magnetic powder was used. According to the process, the effect of using the low oxygen magnetic powder can be sufficiently exhibited.
  • FIG. 5 shows a temperature profile in the sintering process.
  • the profile indicated by reference numeral “30” is adopted in the conventional sintering process, and the profile indicated by reference numeral “32” is adopted in the sintering process of the present invention. Is.
  • a relatively long time (preferably 10 to 420 minutes) is maintained in a relatively low temperature range (preferably 700 to: L 000 ° C.), and then the process proceeds to the second stage.
  • a relatively short temperature (for example, 30 to 240 minutes) is maintained in a relatively high temperature range (preferably 1000 to 1200 ° C).
  • the atmosphere during sintering is preferably an inert gas such as nitrogen, hydrogen, or argon.
  • the hydrogen remaining in the R Fe B phase which is the main phase, is removed from the binder at about 500 ° C before the sintering process.
  • rare earth hydrogen compounds (RH) formed by combining rare earth elements and hydrogen contained in the R-rich phase etc. during hydrogen crushing treatment do not metallize at about 500 ° C (hydrogen does not release into a metallic state) ).
  • the rare earth hydrogen compound (RH) releases hydrogen and metallizes it in the first stage. The That is, RH ⁇ R + (x / 2) H x 2 in the first stage heat treatment performed at a temperature of 700 ° C or higher
  • the reaction represented by the chemical reaction formula ⁇ As a result of the reaction represented by the chemical reaction formula ⁇ , the R-rich phase at the grain boundary quickly becomes a liquid phase in the second stage heat treatment, and the sintering reaction proceeds rapidly. As a result, the sintering process is completed in a short time and the coarsening of the crystal grains is suppressed, so that the coercive force is improved and the sintering density is also improved.
  • the change in coercive force due to the difference in crystal grain size in the sintered magnet is remarkable when the amount of oxygen contained is small.
  • the coercive force of both is 10%, regardless of whether the crystal grain size is about 3-6 / ⁇ ⁇ or 12-15 / ⁇ ⁇ .
  • the oxygen content was 3000 ppm by mass or less, there was a difference of about 10% or more in coercive force between magnets with an average crystal grain size of 9 m or less and magnets with an average crystal grain size of more than 9 m.
  • the average grain size of R-Fe-B rare earth magnets is 3 ⁇ m or more and 9 ⁇ m or less, the oxygen concentration is 50 ppm to 4000 ppm by weight, and the nitrogen concentration is 150 ppm to 1500 ppm by weight. Is preferred. After sintering, perform aging treatment at 400-900 ° C.
  • 6-8 rare earth magnets broadly includes those in which the-part of 6 is replaced with a metal such as 0) and rare earth magnets in which part of B (boron) is replaced with C (carbon).
  • R-Fe-B rare earth magnets have a tetragonal structure
  • B-type compound power The structure surrounding the main phase, which is surrounded by the R-rich phase and B-rich phase (grain boundary phase)
  • an alloy melt having the composition Nd + Pr (30.0 mass%) — Dy (l. 0 mass%) — B (l. 0 mass%) — Fe (remainder) was prepared by a high-frequency melting furnace. Then, the molten metal was cooled by a water-cooled roll type strip casting method to produce a thin plate-like piece (flaked alloy) having a thickness of about 0.5 mm. This flaky alloy contains 150 mass ppm of oxygen was.
  • the flaky alloy was accommodated in a hydrogen furnace. After evacuating the furnace, hydrogen gas was supplied into the furnace for 2 hours in order to embrittle hydrogen. The hydrogen partial pressure in the furnace was 200 kPa. After the flakes spontaneously collapsed due to hydrogen occlusion, they were evacuated with heating and dehydrated. Argon gas was introduced into the furnace and cooled to room temperature. When the alloy temperature was cooled to 20 ° C, the hydrogen reactor power was also removed. At this stage, the oxygen content of the alloy was 1000 ppm by mass.
  • the alloy was pulverized by a jet mill filled in the pulverization chamber with a nitrogen gas atmosphere in which the oxygen concentration was controlled to 200 mass ppm or less to produce magnet powders having various oxygen concentration values.
  • the average particle size (grinding particle size) of the magnet powder was changed in the range of 1.5 to 7.
  • Various powders with different average particle sizes were prepared.
  • the amount of oxygen contained in the nitrogen atmosphere was controlled, and the oxygen content of the powder was changed to a maximum of about 7000 mass ppm.
  • the nitrogen concentration of the powder thus obtained was in the range of 100-900 mass ppm.
  • a liquid lubricant was added to the pulverized powder using a rocking mixer.
  • This lubricant was mainly composed of methyl cabronate.
  • dry refers to a powder that includes a case where the powder contains a relatively small amount of lubricant (oil agent) as in this embodiment, and does not require a step of squeezing the oil agent.
  • the size of the molded body was 30 mm X 50 mm X 30 mm, and the density was 4.2 to 4.4 gZcm 3 .
  • FIGS. 6 (b) and 6 (c) show a case where the impregnation time is relatively short and the entire molded body is not impregnated, but the impregnation part is formed on the surface of the molded body, so that ignition is prevented. The effect is sufficiently obtained.
  • Fig. 6 (c) shows a state where the impregnated part has spread over the entire compact. In the molded body shown in FIG. 6, a portion indicated as a region with more dense points is a portion where the antioxidant is impregnated.
  • FIG. 7 is a graph showing the relationship between the pressure in the decompression vessel and the amount of impregnation.
  • the amount of impregnation increases as the pressure in the vacuum vessel becomes lower than the atmospheric pressure. If the difference between the pressure in the vacuum vessel and atmospheric pressure is 35kPa or less, the molded body may crack. For this reason, the pressure in the decompression vessel is preferably 40 kPa or more lower than the atmospheric pressure.
  • FIG. 8 is a graph showing the relationship between the molding density (the density of the molded body) and the amount of impregnation. As can be seen from Fig. 8, if the pressure and impregnation time are the same, the amount of impregnation increases as the molding density decreases.
  • the molded product after impregnating almost all of the molded product with the anti-oxidation agent, the molded product was left in the atmosphere at room temperature, and the temperature of the molded product was measured.
  • the rare earth element in the molded body is oxidized, heat is generated. Therefore, it is possible to evaluate the progress of oxidation based on the molded body temperature.
  • the temperature of the compact immediately after the impregnation treatment was 40 ° C or less, and even after 600 seconds, the temperature remained below 50 ° C. Even with compacts made from powder with the lowest oxygen concentration, the maximum temperature is only around 70 ° C, and even if the compact is left in the atmosphere for a long time (eg 6 hours) There was no risk of ignition, and no deterioration of the magnetic properties was observed. In addition, a phenomenon was observed in which the temperature of the molded body decreased temporarily (about 2 to 3 minutes) after the impregnation treatment. This is because the antioxidant was volatilized from the surface of the molded body and the molded body was cooled by the heat of vaporization.
  • the molded body impregnated with the antioxidant was subjected to a binder removal step at 250 ° C for 2 hours, and then a sintering step.
  • a binder removal step at 250 ° C for 2 hours, and then a sintering step.
  • the oxygen concentration is, for example, 1000 mass ppm or more and 4000 mass ppm or less, it is preferable that the average crystal grain size range of the sintered magnet is 3 ⁇ m or more and 9 ⁇ m or less.
  • the powder surface is not nitrided by, for example, pulverizing in an atmosphere of He or argon, a nitride layer is not formed on the surface of the powder particles, so that the process is easy to oxidize. Ignition and magnetic properties deteriorated.
  • the nitrogen concentration in the magnet powder in the range of 150 mass ppm to 1500 mass ppm, and more preferably in the range of 200 mass ppm to 700 mass ppm.
  • the sintered magnet obtained in the embodiment of the present invention also has the same nitrogen concentration and oxygen concentration. Will have.
  • the raw material composition of the rare earth magnet used in the present invention is not limited to the composition of the above example! Needless to say, the low oxygen concentration at which there is a risk of heat generation and ignition due to an oxidation reaction in the atmosphere.
  • the present invention is widely applicable to rare earth alloy powders.
  • V and deviation are also measured using a dry press method.
  • the present invention is applied using a wet press method as disclosed in US Pat. No. 5,489,343. May be implemented. According to the present invention, since the effect of reducing the hydrogen concentration can be obtained regardless of the type of pressing method, the magnetic characteristics are improved. Moreover, when producing a molded body using a wet press, the step of impregnating the molded body with an oil after pressing may be omitted.
  • the pulverization step is performed in a nitrogen atmosphere, but argon or helium may be used instead of nitrogen or in place of nitrogen.
  • argon or helium may be used instead of nitrogen or in place of nitrogen.
  • the low-density, low-strength magnet powder molded body can be impregnated with the anti-oxidation agent without causing cracks and the like. It becomes possible to provide magnets with high yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Disclosed is a method for producing an R-Fe-B rare earth magnet comprising a pressing step (A) wherein a molded body (20) is formed by compression molding a rare earth alloy powder by dry pressing; a step (B) wherein the molded body (20) is impregnated with an antioxidant through the surface thereof; and a step (C) wherein the molded body (20) is sintered. In the step (B), the molded body (20) is impregnated with the antioxidant within a container (100) wherein the pressure is reduced.

Description

明 細 書  Specification
希土類磁石の製造方法および含浸装置  Rare earth magnet manufacturing method and impregnation apparatus
技術分野  Technical field
[0001] 本発明は、希土類磁石の製造方法および含浸装置に関する。より詳細には、酸素 含有量を低減した希土類合金粉末から製造される高性能希土類焼結磁石の製造に 関する。  The present invention relates to a method for manufacturing a rare earth magnet and an impregnation apparatus. More specifically, the present invention relates to the production of high performance rare earth sintered magnets produced from rare earth alloy powders with reduced oxygen content.
背景技術  Background art
[0002] R—Fe— B系希土類磁石 (Rは希土類元素)は、主に R Fe Bの正方晶化合物から  [0002] R—Fe—B rare earth magnets (R is a rare earth element) are mainly composed of tetragonal R Fe B compounds.
2 14  2 14
なる主相、 Ndなどの希土類元素を多く含む Rリッチ相、および B (ホウ素)を多く含む Bリッチ相力 構成されている。 R—Fe— B系希土類磁石では、主相である R Fe B  Main phase, R rich phase rich in rare earth elements such as Nd, and B rich phase force rich in B (boron). In R—Fe—B rare earth magnets, the main phase is R Fe B
2 14 の正方晶化合物の存在比率を増加させれば、その磁気特性が向上する。  Increasing the abundance ratio of 2 14 tetragonal compound improves its magnetic properties.
[0003] Rリッチ相は液相焼結させるために最低量は必要である力 Rは酸素とも反応し、 R  [0003] The minimum amount of R-rich phase is required for liquid phase sintering. R reacts with oxygen, R
2 2
Oなる酸ィ匕物を作るため、 Rの一部は焼結に役立たない部分に消費されてしまう。こIn order to make an oxide of O, a part of R is consumed in the part that is not useful for sintering. This
3 Three
のため、従来、酸ィ匕によって消費される分だけ余分の Rが必要であった。 R O  For this reason, conventionally, an extra R is required for consumption by acid. R O
2 3なる酸 化物の生成は、酸素量が大きいほど顕著になる。そのため、これまでにも粉末作製 時における雰囲気ガス中の酸素量を低減することにより、最終的に得られる R— Fe— B系希土類磁石中の R相対量を少なくし、磁気特性を向上させることが検討されてき た。  The generation of the oxide of 2 3 becomes more remarkable as the amount of oxygen increases. Therefore, by reducing the amount of oxygen in the atmosphere gas at the time of powder preparation, the R relative amount in the finally obtained R-Fe-B rare earth magnet can be reduced and the magnetic properties can be improved. Has been considered.
[0004] このように、 R—Fe— B系磁石の製造に用いる R— Fe— B系合金粉末の酸素量は 少ないことが好ましい。しかしながら、 R—Fe— B系合金粉末の酸素量を低減するこ とによって磁石特性を改善する方法は、量産化技術としては実現しな力つた。その理 由は、酸素濃度を低く管理した環境下で R— Fe— B系合金粉末を作製し、合金粉末 の酸素量を重量比で例えば 4000ppm以下に低減させると、粉末が大気中の酸素と 激しく反応し、常温でも数分で発火するおそれがあつたためである。  [0004] As described above, it is preferable that the amount of oxygen in the R-Fe-B-based alloy powder used for the production of the R-Fe-B-based magnet is small. However, the method of improving the magnet characteristics by reducing the amount of oxygen in the R—Fe—B alloy powder has not been realized as a mass production technology. The reason for this is that when an R—Fe—B alloy powder is produced in an environment in which the oxygen concentration is controlled to be low and the oxygen content of the alloy powder is reduced to, for example, 4000 ppm or less by weight, the powder is separated from oxygen in the atmosphere. This is because it reacted violently and could ignite within a few minutes even at room temperature.
[0005] 水素粉砕法はボール'ミルなどの機械的な粉砕方法に比べて生産効率が良いが、 水素粉砕法によって製造した磁石粉末を用いると、焼結条件によっては磁気特性( 特に保磁力)が変動しやすぐまた、発火が生じやすいという問題がある。特に磁気 特性の変動は、焼結体の酸素量を重量比で 4000ppm以下に抑え、し力も、希土類 元素量を比較的少なくした場合 (例えば希土類元素量が磁石全体の 32質量 %以下 の場合)に顕著に生じる。 [0005] The hydrogen pulverization method has higher production efficiency than mechanical pulverization methods such as ball milling. However, magnetic properties (especially coercive force) can be obtained depending on the sintering conditions when using magnetic powder produced by the hydrogen pulverization method. There is a problem that ignition is likely to occur again as soon as it fluctuates. Especially magnetic The fluctuation in characteristics is remarkable when the oxygen content of the sintered body is suppressed to 4000 ppm or less by weight, and the force is relatively small when the rare earth element content is relatively small (for example, the rare earth element content is 32 mass% or less of the entire magnet). To occur.
[0006] 以上のことから、磁気特性を向上させるためには R—Fe— B系合金粉末中の酸素 量を低減することが望ましいことが理解されていても、実際には、含有酸素濃度を低 くした R— Fe— B系合金粉末を工場などの生産現場で取り扱うことは極めて困難であ つた o [0006] From the above, even though it has been understood that it is desirable to reduce the amount of oxygen in the R—Fe—B based alloy powder in order to improve the magnetic properties, It was extremely difficult to handle reduced R—Fe—B alloy powder at production sites such as factories.
[0007] 特に、粉末を圧縮成形するプレス工程にお!、ては、圧縮に伴う粉末同士の摩擦熱 や、成形体取り出し時に粉末とキヤビティ内壁面との間で生じる摩擦熱によって、成 形体の温度が上昇するため、発火の危険性が高い。この発火を防止する目的で、プ レス装置の周辺を非酸素雰囲気とすることも考えられるが、原料の供給や成形体取り 出しが困難となるため実用的でない。また、成形体をプレス装置力も取り出すごとに 個々の成形体を速やかに焼結すれば発火の問題は回避できる力もしれないが、それ は極めて効率の悪い方法であり、量産化には向いていない。焼結プロセスは 4時間 以上もかかるため、 1回の焼結工程でたくさんの成形体を同時に処理することが合理 的である。また、プレス力も焼結工程までの間、成形体を極低酸素濃度の雰囲気下 で管理することも量産設備では困難である。  [0007] In particular, in the pressing process for compressing and molding powders, the heat generated by the friction between the powders accompanying compression and the frictional heat generated between the powder and the inner wall surface of the cavity when the molded body is taken out is reduced. Due to the rise in temperature, there is a high risk of ignition. In order to prevent this ignition, a non-oxygen atmosphere around the press device may be considered, but it is not practical because it is difficult to supply raw materials and take out the molded body. In addition, it is impossible to avoid the problem of ignition if the individual compacts are sintered quickly each time the compact is taken out of the pressing equipment, but this is an extremely inefficient method and is not suitable for mass production. . Since the sintering process takes more than 4 hours, it is reasonable to treat many compacts simultaneously in one sintering process. In addition, it is difficult for mass production equipment to manage the compact in an atmosphere with an extremely low oxygen concentration until the pressing force reaches the sintering step.
[0008] なお、プレス工程前の微粉末に対して脂肪酸エステルなどの液体潤滑剤を添加し 、粉末の圧縮性を向上させることが行われている。このような液体潤滑剤の添カ卩によ つて、粉末粒子の表面は薄い油性被膜が形成されるが、酸素濃度が 4000ppm以下 の粉末の酸ィ匕を充分に防止することはできな 、。  [0008] Incidentally, a liquid lubricant such as a fatty acid ester is added to the fine powder before the pressing step to improve the compressibility of the powder. By adding such a liquid lubricant, a thin oily film is formed on the surface of the powder particles, but it is not possible to sufficiently prevent the oxidation of the powder having an oxygen concentration of 4000 ppm or less.
[0009] 以上の理由から、 R—Fe— B系合金を粉砕するとき、意図的に雰囲気中へ微量酸 素を導入し、それによつて微粉砕粉の表面を薄く酸ィ匕し、反応性を低下させることが 行われている。例えば、特許文献 1には、所定量の酸素を含有した超音速不活性ガ ス気流によって希土類合金を微粉砕するとともに、粉砕によって生まれた微粉末の粒 子表面に薄く酸ィ匕被膜を形成するという技術が開示されている。この技術によれば、 大気中の酸素は粉末粒子表面の酸ィ匕被膜によって遮断されるため、酸ィ匕による発熱 •発火が防止できる。ただし、粉末粒子の表面に酸ィ匕被膜が存在するため、粉末に 含有される酸素量は増大してしまうことになる。 [0009] For the above reasons, when crushing R-Fe-B alloys, a small amount of oxygen is intentionally introduced into the atmosphere, thereby thinly oxidizing the surface of the finely pulverized powder and making it reactive. Is being reduced. For example, in Patent Document 1, a rare-earth alloy is finely pulverized by a supersonic inert gas stream containing a predetermined amount of oxygen, and a thin oxide film is formed on the surface of fine powder particles generated by the pulverization. This technique is disclosed. According to this technology, oxygen in the atmosphere is blocked by the acid coating on the surface of the powder particles, so heat generation and ignition by acid can be prevented. However, since there is an acid coating on the surface of the powder particles, The amount of oxygen contained will increase.
[0010] これに対して、特許文献 2や特許文献 3には、低酸素量 (例えば 1500ppm)の R— Fe— B系合金粉末を鉱物油等に混合し、スラリー化する技術が開示されている。スラ リー中の粉末粒子は大気と接触しないため、 R—Fe— B系合金粉末の含有酸素量を 低くしながら、発熱'発火を防止することができる。  [0010] On the other hand, Patent Document 2 and Patent Document 3 disclose a technique in which R-Fe-B alloy powder having a low oxygen content (eg, 1500 ppm) is mixed with mineral oil and slurried. Yes. Since the powder particles in the slurry do not come into contact with the atmosphere, heat generation and ignition can be prevented while reducing the oxygen content of the R—Fe—B alloy powder.
[0011] し力しながら、上記従来技術によれば、スラリー状の R—Fe— B系合金粉末をプレ ス装置のキヤビティ内に充填した後、油分を絞り出しながらプレス工程を実行する必 要があるため、生産性が低い。また、従来の希土類磁石の製造方法によれば、焼結 工程で結晶粒が粗大化しやす 、ため、低酸素濃度の磁石粉末を用いた場合でも磁 石特性 (保磁力)が充分に向上しないという問題もあった。  [0011] However, according to the above-described conventional technique, it is necessary to perform the pressing process while squeezing out the oil after filling the slurry-like R—Fe—B alloy powder into the cavity of the press device. Therefore, productivity is low. In addition, according to the conventional method for producing rare earth magnets, the crystal grains are likely to be coarsened in the sintering process, so that the magnetite characteristics (coercive force) are not sufficiently improved even when a magnet powder having a low oxygen concentration is used. There was also a problem.
[0012] 一方、上記の問題を解決するため、本出願人は、粉末の成形体に酸化防止剤を含 浸することにより、成形体を構成する磁石粉末と大気雰囲気との接触を断ち、酸化を 防止する技術を開発し、特許文献 4および特許文献 5に開示している。  [0012] On the other hand, in order to solve the above problem, the present applicant cuts the contact between the magnetic powder constituting the compact and the atmospheric atmosphere by impregnating the powder compact with an antioxidant, thereby oxidizing the powder. A technology for preventing this is developed and disclosed in Patent Document 4 and Patent Document 5.
特許文献 1:特公平 6— 6728号公報  Patent Document 1: Japanese Patent Publication No. 6-6728
特許文献 2 :米国特許第 5, 489, 343号公報  Patent Document 2: U.S. Pat.No. 5,489,343
特許文献 3 :特開平 10— 321451号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-321451
特許文献 4:特開 2002— 8935号公報  Patent Document 4: Japanese Patent Laid-Open No. 2002-8935
特許文献 5:特開 2002— 170728号公報  Patent Document 5: Japanese Patent Laid-Open No. 2002-170728
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] し力しながら、特許文献 4および特許文献 5に開示されている技術によれば、酸ィ匕 防止剤中に成形体を浸すと、気泡が発生するとともに成形体に剥離が発生し、崩壊 する場合がある。このような成形体の崩壊は次のようにして生じると考えられる。  [0013] However, according to the techniques disclosed in Patent Document 4 and Patent Document 5, when the molded body is dipped in the antioxidation agent, bubbles are generated and peeling occurs in the molded body. May collapse. Such a collapse of the molded body is considered to occur as follows.
[0014] すなわち、成形体を酸化防止剤中に浸すと、酸化防止剤が成形体の表面から内部 に浸み込んでゆく。このとき、成形体を構成する粉末粒子の隙間に存在していた空 気が成形体の内部に閉じ込められる。その結果、成形体内部の空気は逃げ場を失 い、含浸の進行に伴って成形体内部の空気圧が上昇してゆくことになる。  That is, when the molded body is immersed in the antioxidant, the antioxidant soaks into the interior from the surface of the molded body. At this time, air existing in the gaps between the powder particles constituting the compact is confined in the compact. As a result, the air inside the compact loses its escape and the air pressure inside the compact increases as impregnation proceeds.
[0015] 一方、成形体には部位によって密度のばらつきが存在するため、含浸プロセス中に 成形体内で圧縮された空気が逃げ場を求め、成形密度が相対的に低い部分から外 部へ漏れ出してしまうことがある。このとき、酸化防止剤の溶液中に気泡が発生すると ともに、成形体に割れ (クラック)や剥離が発生してしまう。 [0015] On the other hand, since the density of the molded product varies depending on the site, Compressed air in the molded body seeks escape and may leak out from the relatively low molding density. At this time, bubbles are generated in the solution of the antioxidant, and cracks and peeling occur in the molded body.
[0016] ボイスコイルモータ (VCM)用の希土類焼結磁石のように、複雑な形状 (例えば弓 形)にプレスされた成形体では、成形密度が全体として低い値に調整されている。ま た、磁場配向を行う場合にも、成形密度は低めに設定される。このように成形密度が 全体として低い値に調節され、強度が低くなつている成形体では、酸化防止剤の含 浸プロセス中に特に割れや欠けが発生しやすくなる。また、含浸プロセス中に成形体 に割れや剥離が発生すると、焼結磁石の製造歩留まりは著しく低下してしまうこと〖こ なる。  [0016] In a molded body pressed into a complicated shape (for example, a bow shape) like a rare earth sintered magnet for a voice coil motor (VCM), the molding density is adjusted to a low value as a whole. Also, when performing magnetic field orientation, the molding density is set low. In this way, in a molded body whose molding density is adjusted to a low value as a whole and whose strength is low, cracking and chipping are particularly likely to occur during the antioxidant impregnation process. In addition, if the molded body is cracked or peeled during the impregnation process, the production yield of the sintered magnet will be significantly reduced.
[0017] 本発明は力かる諸点に鑑みてなされたものであり、その主な目的は、含有酸素量が 低く、優れた磁石特性を有する高性能希土類磁石を歩留まり良く製造できる方法お よび装置を提供することにある。  [0017] The present invention has been made in view of various advantages, and its main purpose is to provide a method and apparatus capable of producing a high-performance rare earth magnet having a low oxygen content and excellent magnetic properties with a high yield. It is to provide.
課題を解決するための手段  Means for solving the problem
[0018] 本発明による R— Fe— B系希土類磁石の製造方法は、希土類合金粉末を乾式プ レス法で圧縮成形することによって成形体を作製するプレス工程 (A)と、前記成形体 の表面力 酸化防止剤を前記成形体に含浸させる工程 (B)と、前記成形体を焼結さ せる工程 (C)とを包含し、前記工程 (B)において、前記成形体は、減圧された容器 内で前記酸化防止剤に含浸される。 [0018] The method for producing an R—Fe—B rare earth magnet according to the present invention includes a pressing step (A) for producing a compact by compressing a rare earth alloy powder by a dry press method, and a surface of the compact. The method includes a step (B) of impregnating the molded body with an antioxidant and a step (C) of sintering the molded body. In the step (B), the molded body is a decompressed container. And impregnated with the antioxidant.
[0019] 好ましい実施形態において、前記工程 (B)は、前記成形体を前記容器内に収納す る工程と、前記容器の内部を減圧する工程と、前記容器の内部に前記酸化防止剤を 供給する工程とを含む。 In a preferred embodiment, the step (B) includes a step of storing the molded body in the container, a step of decompressing the inside of the container, and supplying the antioxidant to the inside of the container. Including the step of.
[0020] 好ま 、実施形態にお!、て、前記希土類合金粉末は、酸素含有量が重量比で 50 ppm以上 4000ppm以下、窒素含有量が重量比で 150ppm以上 1500ppm以下で ある。 [0020] Preferably, in the embodiment, the rare earth alloy powder has an oxygen content of 50 ppm to 4000 ppm by weight and a nitrogen content of 150 ppm to 1500 ppm by weight.
[0021] 好まし 、実施形態にぉ 、て、前記工程 (C)は、 700°C以上 1000°C未満の温度範 囲に 10分以上 420分以下の時間保持する第 1工程と、 1000°C以上 1200°C以下の 温度範囲で焼結を進行させる第 2工程とを含む。 [0022] 好ましい実施形態において、前記希土類合金粉末の平均粒径を 1. 0 /z m以上 5. O /z m以下とする。 [0021] Preferably, according to the embodiment, the step (C) includes a first step of holding at a temperature range of 700 ° C or higher and lower than 1000 ° C for a time of 10 minutes or longer and 420 minutes or shorter; And a second step in which sintering proceeds in a temperature range from C to 1200 ° C. In a preferred embodiment, the rare earth alloy powder has an average particle size of 1.0 / zm to 5. O / zm.
[0023] 好ま 、実施形態にぉ 、て、前記酸化防止剤は揮発性を有する成分から構成され ている。  [0023] Preferably, in the embodiment, the antioxidant is composed of a volatile component.
[0024] 好ましい実施形態において、前記工程 (B)の後、前記酸ィ匕防止剤の揮発によって [0024] In a preferred embodiment, after the step (B), by volatilization of the anti-oxidation agent.
、前記成形体の温度を少なくとも一時的に低下させる。 The temperature of the molded body is lowered at least temporarily.
[0025] 好ま 、実施形態にぉ 、て、前記酸化防止剤は、イソパラフィンである。 [0025] Preferably, in the embodiment, the antioxidant is isoparaffin.
[0026] 含浸装置は、希土類合金粉末の成形体を収納する容器と、前記成形体の含浸に 用いる酸化防止剤を前記容器の内部に供給する手段と、前記容器の内部圧力を低 減する減圧装置とを備える。 [0026] The impregnation apparatus includes a container for storing a molded body of rare earth alloy powder, a means for supplying an antioxidant used for impregnation of the molded body to the inside of the container, and a reduced pressure for reducing the internal pressure of the container. Device.
発明の効果  The invention's effect
[0027] 本発明では、減圧下で成形体に酸化防止剤を含浸させるため、含浸プロセス中に 成形体に割れや欠けを発生させることなぐ速やかに酸化防止剤の含浸を行なうこと ができる。その結果、磁石粉末の酸素含有量を低減しながらも、歩留まり良ぐ粉末 成形体の酸ィ匕を抑制することができる。  [0027] In the present invention, since the molded product is impregnated with an antioxidant under reduced pressure, the antioxidant can be impregnated quickly without causing cracks or chips in the molded product during the impregnation process. As a result, while reducing the oxygen content of the magnet powder, it is possible to suppress the oxidation of the powder compact with good yield.
[0028] 本発明によれば、発熱 ·発火の危険性を低減し、安全かつ実用的に磁石の主相量 を増加させることができるので、希土類磁石の磁石特性を大いに向上させることが可 會 になる。  [0028] According to the present invention, the risk of heat generation and ignition can be reduced, and the amount of the main phase of the magnet can be increased safely and practically, so that the magnet characteristics of the rare earth magnet can be greatly improved. become.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明で用いられる含浸装置の構成を示す模式図である。 [0029] FIG. 1 is a schematic view showing a configuration of an impregnation apparatus used in the present invention.
[図 2] (a)〜 (c)は、大気圧下で行われる含浸プロセス (従来例)を示す工程断面図で ある。  FIG. 2 (a) to (c) are process cross-sectional views showing an impregnation process (conventional example) performed under atmospheric pressure.
[図 3] (a)〜 (c)は、本発明の減圧下で行われる含浸プロセスを示す工程断面図であ る。  FIG. 3 (a) to (c) are process cross-sectional views showing an impregnation process performed under reduced pressure according to the present invention.
[図 4]磁性粉末の成形に用いられるプレス装置の概略構成を示す断面図である。  FIG. 4 is a cross-sectional view showing a schematic configuration of a press apparatus used for molding magnetic powder.
[図 5]焼結工程の温度プロファイルを示す図であり、従来の焼結工程に関するプロフ アイル 30、および本発明の焼結工程に関するプロファイル 32を示している。  FIG. 5 is a view showing a temperature profile of a sintering process, and shows a profile 30 related to a conventional sintering process and a profile 32 related to the sintering process of the present invention.
[図 6] (a)は、大気圧で含浸を行なったときにクラックが発生した成形体を示す図であ り、(b)および (c)は、本発明の実施例における成形体を示す図である。 [Fig. 6] (a) is a diagram showing a molded body in which cracks occurred when impregnation was performed at atmospheric pressure. (B) and (c) are views showing a molded body in an example of the present invention.
[図 7]含浸時の圧力 (含浸圧力)と含浸量との関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the pressure during impregnation (impregnation pressure) and the amount of impregnation.
圆 8]成形体密度と含浸量との関係を示すグラフである。  8] A graph showing the relationship between the compact density and the amount of impregnation.
符号の説明  Explanation of symbols
1 ダイ  1 die
2 下パンチ  2 Bottom punch
3 上パンチ  3 Top punch
4 原料粉末  4 Raw material powder
5 コィノレ  5 Coinole
7 コィノレ  7 Koinole
10 プレス装置  10 Press equipment
20 成形体  20 Molded body
21 酸化防止剤  21 Antioxidants
22 溶液槽  22 Solution tank
23 空気  23 Air
24 クラック  24 crack
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 本発明では、希土類合金粉末を乾式プレス法で圧縮成形することによって成形体 を作製するプレス工程を行った後、成形体の焼結工程を行なう前に酸化防止剤を成 形体に含浸させる工程を行なう。本発明の主たる特徴点は、酸化防止剤の含浸工程 を減圧下で実行することにある。  [0031] In the present invention, after performing a pressing process for producing a molded body by compression molding rare earth alloy powder by a dry press method, the molded body is impregnated with an antioxidant before performing the sintering process of the molded body. The process to make is performed. The main feature of the present invention is that the antioxidant impregnation step is performed under reduced pressure.
[0032] 以下、図 1を参照しながら、本発明による R—Fe— B系希土類磁石の製造方法を説 明する。  Hereinafter, a method for producing an R—Fe—B rare earth magnet according to the present invention will be described with reference to FIG.
[0033] 図 1は、本発明における含浸工程に好適に用いられる装置の主要部を模式的に示 している。この装置は、プレス工程で作製された希土類合金粉末の成形体 20を収納 する減圧容器 100と、酸化防止剤を減圧容器 100の内部に供給する供給部 110と、 減圧容器 100の内部圧力を低減する減圧装置 120とを備えている。  [0033] FIG. 1 schematically shows a main part of an apparatus suitably used in the impregnation step in the present invention. This device reduces the internal pressure of the decompression vessel 100, the decompression vessel 100 that houses the rare earth alloy powder compact 20 produced in the pressing process, the supply unit 110 that supplies the antioxidant to the interior of the decompression vessel 100, and And a decompression device 120 for performing the above operation.
[0034] 好ましい実施形態において、この減圧容器 100は、中身を外部から観察しやすい ように例えばアクリルやガラスなどの透明部材カも作製され得る。 [0034] In a preferred embodiment, the decompression vessel 100 is easy to observe the contents from the outside. In this way, a transparent member such as acrylic or glass can also be produced.
[0035] 図示される例では、減圧容器 100は管路を介して減圧装置 120に接続されており、 成形体 20が減圧容器 100内にセットされた後、減圧容器 100内の真空引きが実行さ れる。図示する例では、成形体 20を載せる支持台 130が駆動部 140に上昇し、減圧 容器 100内に収納される。減圧装置 120は、ェジェクタなどの真空ポンプであり、減 圧容器 100の内部圧力を例えば— 50kPa〜一 lOOkPaの範囲に低下させることが できる。ここで、 「— 50kPa」および「一 100kPa」は、それぞれ、「大気圧よりも 50kPa 低!、圧力」および「大気圧よりも lOOkPa低 、圧力」を意味する。  [0035] In the illustrated example, the decompression vessel 100 is connected to the decompression device 120 via a pipe line, and after the molded body 20 is set in the decompression vessel 100, evacuation in the decompression vessel 100 is executed. It is done. In the example shown in the drawing, the support base 130 on which the molded body 20 is placed rises to the drive unit 140 and is stored in the decompression container 100. The decompression device 120 is a vacuum pump such as an ejector, and can reduce the internal pressure of the decompression vessel 100 to a range of, for example, −50 kPa to 1 lOOkPa. Here, “−50 kPa” and “one 100 kPa” mean “50 kPa lower than atmospheric pressure, pressure” and “lOOkPa lower than atmospheric pressure, pressure”, respectively.
[0036] ェジェクタは、噴射蒸気などを駆動源として動作し、機械的駆動部の無!、真空ボン プであるため、構造が簡単であり、故障が生じにくい利点を有している。ただし、減圧 装置 120は、ェジヱクタに限らず、他のタイプの真空装置であってもよい。  [0036] The ejector operates using jet steam or the like as a drive source, has no mechanical drive unit, and is a vacuum pump. Therefore, the ejector has an advantage that the structure is simple and failure is unlikely to occur. However, the decompression device 120 is not limited to an ejector, and may be another type of vacuum device.
[0037] 好ましい実施形態では、減圧容器 100の内部圧力が— 50kPa〜― lOOkPaの範 囲内に達したとき、酸化防止剤を減圧容器 100内に供給する。酸化防止剤が蓄えら れている貯蔵器 (供給部 110)と減圧容器 100との間は、不図示のバルブを介して接 続されている。減圧容器 100の内部が減圧された状態でバルブを開くと、貯蔵器から 減圧容器 100に向力つて酸ィ匕防止剤が流れ込み、減圧容器 100の内部に注がれて ゆく。  In a preferred embodiment, when the internal pressure of the decompression vessel 100 reaches the range of −50 kPa to −lOOkPa, the antioxidant is supplied into the decompression vessel 100. The reservoir (supply unit 110) in which the antioxidant is stored and the decompression vessel 100 are connected via a valve (not shown). When the valve is opened while the inside of the decompression vessel 100 is decompressed, the acid / antioxidant flows from the reservoir into the decompression vessel 100 and flows into the decompression vessel 100.
[0038] 次に、図 2および図 3を参照しながら、成形体の含浸プロセスを説明する。図 2は、 大気圧下で行なう含浸プロセス(比較例)を示す図であり、図 3は、減圧下で行なう含 浸プロセス (本発明)を示す図である。  Next, the impregnation process of the molded body will be described with reference to FIG. 2 and FIG. FIG. 2 is a diagram showing an impregnation process (comparative example) performed under atmospheric pressure, and FIG. 3 is a diagram showing an impregnation process (present invention) performed under reduced pressure.
[0039] 図 2 (a)に示すように、溶液槽に貯められた酸ィ匕防止剤に成形体 20を漬けると、成 形体 20の表面から酸化防止剤の含浸が進行し、含浸部 20aが内部に向力つて広が つてゆく。しかし、図 2 (b)に示すように含浸が進行するにつれ、成形体 20の内部(粉 末間)に閉じ込められた空気 23が圧縮され、その内圧が上昇する。その結果、成形 体 20の強度が低い部分力も空気 23が外部に逃げ、図 2 (c)に示すようにクラック 24 が発生することになる。  [0039] As shown in Fig. 2 (a), when the molded product 20 is immersed in the anti-oxidation agent stored in the solution tank, the impregnation of the antioxidant proceeds from the surface of the molded product 20, and the impregnated portion 20a However, the inside will spread and become stronger. However, as impregnation proceeds as shown in FIG. 2 (b), the air 23 trapped inside the compact 20 (between the powder) is compressed and its internal pressure rises. As a result, even if the strength of the molded body 20 is low, the air 23 escapes to the outside, and cracks 24 are generated as shown in FIG. 2 (c).
[0040] これに対して、減圧容器 100の内部に成形体 20を配置し、減圧下で酸化防止剤の 含浸を行うと、図 3 (a)〜(c)に示すように、酸化防止剤の含浸が速やかに進行する。 減圧容器 100内の圧力を例えば— 90kPa以下に低下させておくと、成形体の内部 には含浸の妨げとなる空気が殆んど存在しなくなるため、含浸部 20aは成形体 20の 中心部まで速やかに広がってゆく。 [0040] On the other hand, when the molded body 20 is placed inside the vacuum container 100 and impregnated with the antioxidant under reduced pressure, the antioxidant is obtained as shown in FIGS. 3 (a) to (c). Impregnation proceeds rapidly. If the pressure in the decompression vessel 100 is reduced to, for example, −90 kPa or less, the impregnated part 20a extends to the center of the compact 20 because almost no air that impedes impregnation exists in the compact. It spreads quickly.
[0041] このように、減圧下で含浸を行なうと、成形体 20の内部で含浸に抵抗する空気圧が ほとんど形成されないため、空気の漏れによって成形体に割れや欠けが発生すると いうことがない。 [0041] As described above, when impregnation is performed under reduced pressure, air pressure that resists impregnation is hardly formed inside the molded body 20, so that the molded body is not cracked or chipped due to air leakage.
[0042] 本発明によれば、低酸素濃度磁石粉末の成形体をプレス工程で作成した後、上述 の含浸工程を行なうことにより、成形体にクラックを発生させることなぐ成形体の発熱 •発火問題を解決することができる。  [0042] According to the present invention, after forming a molded body of low oxygen concentration magnet powder in the pressing process, the impregnation process described above is performed, whereby the molded body generates heat without causing cracks. Can be solved.
[0043] なお、成形体の発熱 ·発火防止に効果的な酸化防止剤は、希土類焼結磁石にとつ て好ましくな 、と考えられて 、る炭素やその他の不純物を含む力 これらは焼結前の 脱バインダ工程で充分に除去されるため、最終的な磁石特性に悪影響をもたらすこ とはない。揮発性を有する酸化防止剤を用いると、含浸工程の終了した成形体を減 圧容器から取り出したとき、酸ィ匕防止剤の揮発によって成形体の温度が一時的に低 下するため、発火防止効果が更に顕著に発揮され、好ましい。  [0043] It should be noted that an antioxidant effective for preventing heat generation and ignition of the molded body is considered preferable for a rare earth sintered magnet, and is a force containing carbon and other impurities. Since it is sufficiently removed by the previous debinding process, the final magnet properties are not adversely affected. When a volatile antioxidant is used, when the molded body after the impregnation process is taken out of the pressure reducing container, the temperature of the molded body temporarily decreases due to volatilization of the anti-oxidation agent, thus preventing ignition. The effect is more remarkable and preferable.
[0044] 上述の例では、減圧容器内で減圧状態を形成した後、酸化防止剤を減圧容器内 に供給しているが、酸化防止剤を減圧容器内に供給した後に減圧を開始すると、揮 発性を有する酸化防止剤が沸騰し、成形体に割れや欠けが発生するおそれがある。 このため、酸化防止剤の減圧容器内への供給は、減圧容器内の圧力を充分に低減 した後に行なうことが好ま U、。  [0044] In the above example, after the reduced pressure state is formed in the reduced pressure vessel, the antioxidant is supplied into the reduced pressure vessel. However, when the reduced pressure is started after the antioxidant is supplied into the reduced pressure vessel, There is a possibility that the antioxidant having boilability will boil and the molded body will be cracked or chipped. For this reason, it is preferable to supply the antioxidant into the vacuum container after the pressure in the vacuum container has been sufficiently reduced.
[0045] 以下、本発明の実施形態をより詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail.
[0046] (実施形態)  [0046] (Embodiment)
まず、希土類元素 R は、 Y、 La、 Ce、 Pr、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Tm、 Yb 、および Luからなる群力も選択された少なくとも 1種の元素): 10原子%〜30原子% 、 B: 0. 5原子%〜28原子%、残部: Fe、および不可避的不純物を含有する R— Fe —B系合金の溶湯を作製する。ただし、 Feの 1部を Co、 Niの 1種または 2種にて置換 してもよいし、 Bの一部を Cで置換しても良い。本発明によれば、酸素含有量を低減し 、希土類元素 Rの酸ィ匕物生成を抑制できるため、希土類元素 Rの量を必要最小限度 に低く抑えることが可能である。なお、希土類元素 Rは、 Dy、 Tb、および Hoなどの重 希土類元素を希土類元素全体の 10原子%以上含むことが好ま ヽ。 First, the rare earth element R is at least one element selected from the group force consisting of Y, La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu): 10 atomic% ˜30 atomic%, B: 0.5 atomic% to 28 atomic%, balance: Fe, and a molten R—Fe—B alloy containing inevitable impurities is prepared. However, one part of Fe may be substituted with one or two of Co and Ni, or a part of B may be substituted with C. According to the present invention, since the oxygen content can be reduced and the production of rare earth element R oxides can be suppressed, the amount of rare earth element R can be minimized. Can be kept low. In addition, the rare earth element R preferably contains 10 atomic% or more of heavy rare earth elements such as Dy, Tb, and Ho.
[0047] 次に、この合金溶湯をストリップキャスト法などの急冷法によって 102〜104°C/秒の 冷却速度で 1000°C以下の温度まで低下させ、厚さ 0. 03mn!〜 10mmの薄板状に 急冷凝固する。その後、室温まで 10〜102°CZ秒の冷却速度で冷却する。このように して、 Rリッチ相が 5 m以下の微細なサイズで分離した組織を有する铸片に铸造し た後、铸片を吸排気可能な容器に収容する。容器内を真空引きした後、容器内に圧 力 0. 03MPa〜l . OMPaの Hガスを供給し、崩壊合金粉を形成する。この崩壊合 [0047] Next, the molten alloy is lowered to a temperature of 1000 ° C or lower by a rapid cooling method such as a strip cast method at a cooling rate of 10 2 to 10 4 ° C / second to a thickness of 0.03mn! Rapidly solidifies into a thin plate of ~ 10mm. Then cooled at a cooling rate of 10 to 10 2 ° CZ seconds to room temperature. In this manner, the R-rich phase is fabricated into a piece having a structure separated in a fine size of 5 m or less, and then the piece is accommodated in a container that can be inhaled and exhausted. After evacuating the inside of the container, H gas at a pressure of 0.03 MPa to l. OMPa is supplied into the container to form a collapsed alloy powder. This collapse
2  2
金粉は、脱水素処理後、不活性ガス気流中で微粉砕される。  Gold powder is finely pulverized in an inert gas stream after dehydrogenation.
[0048] 本発明で使用する磁石材料の铸片は、特定組成の合金溶湯を単ロール法または 双ロール法によるストリップキャスト法によって好適に製造される。作製する铸片の板 厚に応じて、単ロール法と双ロール法とを使い分けることができる。铸片が厚い場合 は双ロール法を用いることが好ましぐ薄 、場合は単ロール法を用いることが好まし ヽ[0048] The piece of magnet material used in the present invention is preferably manufactured by a strip casting method using a molten alloy having a specific composition by a single roll method or a twin roll method. Depending on the thickness of the piece to be produced, the single roll method and the twin roll method can be used properly. If the piece is thick, it is preferable to use the twin roll method. If the piece is thick, it is preferable to use the single roll method.
。なお、急冷法による合金は粒度分布がシャープであり、粒径をそろえることができる ため、焼結後の角形性も向上する。 . In addition, since the alloy by the rapid cooling method has a sharp particle size distribution and can have a uniform particle size, the squareness after sintering is improved.
[0049] 铸片の厚さが 0. 03mm未満になると急冷効果が大きくなるため、結晶粒径が小さく なりすぎるおそれがある。結晶粒径力 、さすぎると、粉末化されたときに粒子個々が 多結晶化し、結晶方位を揃えられなくなるため、磁気特性の劣化を招来する。逆に铸 片の厚さが 10mmを超えると、冷却速度が遅くなるため、 a Feが晶出しやすぐ N dリッチ相の偏在も生じる。  [0049] When the thickness of the piece is less than 0.03 mm, the rapid cooling effect is increased, so that the crystal grain size may be too small. If the crystal grain size force is too large, the individual particles will be polycrystallized when powdered and the crystal orientation cannot be aligned, leading to deterioration of magnetic properties. On the other hand, if the thickness of the flake exceeds 10 mm, the cooling rate slows down, and a Fe crystallizes out and the N d rich phase is unevenly distributed.
[0050] 水素吸蔵処理は、例えば、次のようにして行われ得る。すなわち、所定の大きさに 破断した铸片を原料ケース内に挿入した後、原料ケースを密閉可能な水素炉に挿入 し、その水素炉を密閉する。次に、その水素炉内を十分に真空引きした後、圧力が 3 OkPa〜l . OMPaの水素ガスを容器内に供給し、铸片に水素を吸蔵させる。水素吸 蔵反応は発熱反応であるため、炉の外周には冷却水を供給する冷却配管を周設し て炉内の昇温を防止することが好ましい。水素の吸収吸蔵によって铸片は自然崩壊 して粉化する。  [0050] The hydrogen storage treatment can be performed, for example, as follows. That is, after a piece of a piece that has been broken to a predetermined size is inserted into a raw material case, the raw material case is inserted into a sealable hydrogen furnace, and the hydrogen furnace is sealed. Next, after the inside of the hydrogen furnace is sufficiently evacuated, hydrogen gas having a pressure of 3 OkPa to l.OMPa is supplied into the container, and hydrogen is occluded in the piece. Since the hydrogen absorption reaction is an exothermic reaction, it is preferable to provide a cooling pipe for supplying cooling water around the outer periphery of the furnace to prevent temperature rise in the furnace. As a result of absorption and absorption of hydrogen, the splinters spontaneously collapse and become powder.
[0051] 粉化した合金を冷却した後、真空中で加熱して脱水素処理を行う。脱水素処理に よって得られた合金粉末の粒内には微細亀裂が存在するため、その後に行うボール 'ミル、ジヱットミル等により短時間で微粉砕され、前述した粒度分布を持った合金粉 末を作製することができる。水素粉砕処理の好ましい態様については、特開平 7—1 8366号公報に開示されている。 [0051] After cooling the powdered alloy, it is heated in vacuum to perform a dehydrogenation treatment. For dehydrogenation treatment As a result, fine cracks are present in the resulting alloy powder grains, so that it can be finely pulverized in a short time by a ball mill, a jet mill or the like to produce an alloy powder having the particle size distribution described above. it can. A preferred embodiment of the hydrogen pulverization treatment is disclosed in JP-A-7-18366.
[0052] 上述の微粉砕は、窒素を含有し、酸素を実質的に含まない不活性ガスを用いたジ エツトミル、アトライタ、振動ミルなどの乾式粉砕装置によって行うことが好ましい。この 不活性ガス中の酸素濃度は 500ppm以下に管理することが好ましぐ不活性ガスとし て純度 99. 99%以上の高純度窒素ガスを用いることが望ましい。このような高純度 窒素ガスの雰囲気中で粉碎工程を行なうことにより、酸素濃度が低ぐ表面が薄く窒 化された微粉砕粉が得られる。粉末の平均粒径 (粉砕粒度)は 1. 以上 5. 5 μ m以下の範囲にあることが好ましい。粉末粒子は、平均粒径が小さくなるほど、酸ィ匕 しゃすくなるため、粉末粒径が 5. 0 m以下 (特に 2. 0 m以下)となる場合は、酸 素濃度が 4000ppmを超える場合でも、本発明の製造方法を実施する利点がある。 [0052] The fine pulverization is preferably performed by a dry pulverization apparatus such as a jet mill, an attritor, and a vibration mill using an inert gas containing nitrogen and substantially free of oxygen. It is desirable to use high-purity nitrogen gas with a purity of 99.99% or more as the inert gas whose oxygen concentration in the inert gas is preferably controlled to 500 ppm or less. By performing the powdering process in such an atmosphere of high purity nitrogen gas, a finely pulverized powder having a low oxygen concentration and a thinly nitrided surface can be obtained. The average particle size (pulverized particle size) of the powder is preferably in the range of 1. to 5.5 μm. The smaller the average particle size, the more acidic the powder particles become. Therefore, when the powder particle size is 5.0 m or less (especially 2.0 m or less), even if the oxygen concentration exceeds 4000 ppm. There is an advantage of implementing the manufacturing method of the present invention.
[0053] こうして作製された磁石粉末に対して脂肪酸エステルなどを主成分とする液体潤滑 剤を添加することが好ましい。添加量は、例えば 0. 15〜5. 0質量%である。脂肪酸 エステルとしては、力プロン酸メチル、カプリル酸メチル、ラウリン酸メチルなとが挙げ られる。潤滑剤には結合剤などの成分が含まれていても良い。重要な点は、後のェ 程で潤滑剤が揮発し、除去され得ることにある。また、潤滑剤それ自体が合金粉末と 均一に混合しにくい固形状のものである場合は、溶剤で希釈して用いれば良い。溶 剤としては、イソパラフィンに代表される石油系溶剤やナフテン系溶剤等を用いること ができる。潤滑剤添加のタイミングは任意であり、微粉砕前、微粉砕中、微粉砕後の 何れであっても良い。液体潤滑剤は、粉末粒子の表面を被覆し、粒子の酸化防止効 果を発揮するとともに、プレスに際して成形体の密度を均一化し、配向の乱れを抑制 する機能を発揮する。 [0053] It is preferable to add a liquid lubricant containing a fatty acid ester or the like as a main component to the magnet powder thus produced. The addition amount is, for example, 0.15 to 5.0% by mass. Examples of fatty acid esters include methyl methyl pronate, methyl caprylate, and methyl laurate. The lubricant may contain components such as a binder. The important point is that the lubricant volatilizes and can be removed later. In addition, when the lubricant itself is a solid that is difficult to mix uniformly with the alloy powder, it may be diluted with a solvent. As the solvent, petroleum solvents such as isoparaffin and naphthenic solvents can be used. The timing of addition of the lubricant is arbitrary, and may be any of before pulverization, during pulverization, and after pulverization. The liquid lubricant coats the surface of the powder particles and exhibits an anti-oxidation effect on the particles, and also has a function of uniforming the density of the compact during pressing and suppressing the disorder of orientation.
[0054] 次に、図 4に示すようなプレス装置を用いて、磁界配向と圧縮成形とを行う。図 4の 装置 10は、貫通穴を有するダイ 1と、ダイ 1の貫通穴を上下方向から挟み込むパンチ 2および 3とを備えている。原料粉末 4は、ダイ 1、下パンチ 2、および上パンチ 3によつ て形成される空間(キヤビティ)内に充填され、下パンチ 2と上パンチ 3との間隔が減 少することによって圧縮成形される(プレス工程)。図 4のプレス装置 10は、磁界配向 を行うためにコイル 5および 7を備えて!/、る。 Next, magnetic field orientation and compression molding are performed using a press apparatus as shown in FIG. 4 includes a die 1 having a through hole and punches 2 and 3 that sandwich the through hole of the die 1 from above and below. The raw material powder 4 is filled in the space (cavity) formed by the die 1, the lower punch 2 and the upper punch 3, and the distance between the lower punch 2 and the upper punch 3 is reduced. Compression molding is performed by a small amount (pressing process). The pressing device 10 of FIG. 4 is provided with coils 5 and 7 for magnetic field orientation!
[0055] 粉末 4の充填密度は、磁界配向を可能にし、かつ、磁界除去後に磁粉の配向に乱 れが生じにくくなる範囲内に設定される。本実施形態の場合、充填密度を真密度の 例えば 20〜30%とすることが好ましい。その結果、成形体密度は 3. 8〜4. 2g/cm 3の範囲内に含まれる値を示すようになる。  [0055] The packing density of the powder 4 is set within a range that enables magnetic field orientation and that hardly disturbs the orientation of the magnetic powder after the magnetic field is removed. In the case of this embodiment, it is preferable that the filling density is 20 to 30% of the true density. As a result, the density of the green body shows a value included in the range of 3.8 to 4.2 g / cm 3.
[0056] 粉末充填後、粉末 4が充填されている空間に配向磁界を形成し、粉末 4の磁界配 向を実行する。磁界の向きとプレス方向とを一致させる平行磁界成形の場合だけで はなぐ磁界の向きとプレス方向とを垂直にする垂直磁界成形の場合でも効果を奏 する。配向のために印加する磁界は、静磁界であってもよいし、パルス磁界であって もよい。粉末の酸ィ匕を防止するためには、プレス工程自体を窒素などの不活性ガス 中で行なうことが好ましい。  [0056] After the powder filling, an orientation magnetic field is formed in the space filled with the powder 4, and the magnetic field orientation of the powder 4 is executed. Even in the case of vertical magnetic field shaping in which the direction of the magnetic field and the pressing direction are perpendicular to each other, it is effective not only in the case of parallel magnetic field shaping in which the direction of the magnetic field matches the pressing direction. The magnetic field applied for orientation may be a static magnetic field or a pulsed magnetic field. In order to prevent acidity of the powder, it is preferable to perform the pressing process itself in an inert gas such as nitrogen.
[0057] 成形体は、プレス装置 10から取り出された後、速やかに酸化防止剤による含浸処 理を受ける。本実施形態では、図 1に示す構成を有する装置を用いて減圧状態 (圧 力:—50kPa〜一 lOOkPa程度)で成形体 20にイソパラフィンを含浸させる。  [0057] After the molded body is taken out from the press apparatus 10, it is immediately subjected to an impregnation treatment with an antioxidant. In this embodiment, the molded body 20 is impregnated with isoparaffin in a reduced pressure state (pressure: about −50 kPa to about 1 lOOkPa) using an apparatus having the configuration shown in FIG.
[0058] 上記の含浸により、成形体 20を構成する希土類磁石合金粉末の表面は酸化防止 剤で被覆されるため、成形体 20が大気中に暴露されても、粉末粒子が酸素と直接接 触することが抑制される。その結果、成形体 20を大気中に放置しても、短時間で発 熱'発火するおそれは大きく減じられる。  [0058] By the above impregnation, the surface of the rare earth magnet alloy powder constituting the compact 20 is coated with an antioxidant, so that even if the compact 20 is exposed to the atmosphere, the powder particles are in direct contact with oxygen. Is suppressed. As a result, even if the molded body 20 is left in the atmosphere, the possibility of heat generation or ignition in a short time is greatly reduced.
[0059] 含浸処理に用いる酸ィ匕防止剤としては、成形性や配向度の向上を目的として粉末 に添加される液体潤滑剤や、液体潤滑剤を希釈する酸化防止剤と同様の物質を用 いることができる。ただし、表面酸ィ匕防止機能を持つ酸ィ匕防止剤であることが必要で あるため、イソパラフィンに代表される石油系溶剤やナフテン系溶剤、カブロン酸メチ ル、カプリル酸メチル、ラウリン酸メチルなどの脂肪酸エステル、高級アルコール、高 級脂肪酸などが特に好まし 、と考えられる。  [0059] As the anti-oxidation agent used for the impregnation treatment, a liquid lubricant added to the powder for the purpose of improving the moldability and the degree of orientation and the same substance as the antioxidant for diluting the liquid lubricant are used. Can be. However, since it is necessary to be an acid / antioxidant having a surface acid / antioxidation function, petroleum-based solvents such as isoparaffin, naphthenic solvents, methyl caprate, methyl caprylate, methyl laurate, etc. Fatty acid esters, higher alcohols, and higher fatty acids are particularly preferred.
[0060] 含浸処理の後、成形体 20は、脱バインダ工程、焼結工程、時効処理工程などの製 造プロセスを経て最終的に永久磁石製品となる。油剤成分に含まれる炭素は、希土 類磁石の磁気特性を劣化させるため、成形体 20に含浸させる油剤は、脱バインダェ 程および焼結工程に際して成形体から離脱するものが選択される。そのため、油剤 が磁石特性に悪 ヽ影響を及ぼすことは無 ヽ。焼結前の脱バインダ工程などによって 油剤が揮発した後は、その成形体を大気に接触させることなぐ酸素濃度の低い環 境下に置くことが必要である。このため、脱バインダ工程や焼結工程を行う炉は連結 し、成形体が大気と直接に接触しないようにして炉間を移動させることが好ましい。ま た、バッチ炉を用いて上記処理を行なうことが更に望ましい。 [0060] After the impregnation treatment, the molded body 20 finally becomes a permanent magnet product through a production process such as a binder removal step, a sintering step, and an aging treatment step. The carbon contained in the oil component deteriorates the magnetic properties of the rare earth magnet. In the process and the sintering step, one that is detached from the molded body is selected. For this reason, the oil does not adversely affect the magnet characteristics. After the oil has volatilized, such as in the binder removal process before sintering, it is necessary to place the compact in an environment with a low oxygen concentration without contacting it with the atmosphere. For this reason, it is preferable that the furnaces for performing the binder removal process and the sintering process are connected and moved between the furnaces so that the compact does not directly contact the atmosphere. It is more desirable to perform the above treatment using a batch furnace.
[0061] 本発明では、後述する 2段階焼結工程を行なうことにより、最終的に得られる焼結 磁石中の結晶粒径を 3 μ m以上 9 μ m以下の範囲、好ましくは 3 μ m以上 6 μ m以下 の範囲内に制御することができる。従来の焼結工程では、焼結時の粒成長によって 結晶粒が粗大化し、低酸素磁粉を用いても十分に保磁力を向上させることが難しか つたが、本発明で採用している焼結工程によれば、低酸素磁性粉末を用いることの 効果を充分に発揮させることができる。  [0061] In the present invention, the crystal grain size in the finally obtained sintered magnet is 3 μm or more and 9 μm or less, preferably 3 μm or more, by performing a two-step sintering process described later. It can be controlled within the range of 6 μm or less. In the conventional sintering process, crystal grains are coarsened by grain growth during sintering, and it was difficult to sufficiently improve the coercive force even when low oxygen magnetic powder was used. According to the process, the effect of using the low oxygen magnetic powder can be sufficiently exhibited.
[0062] 図 5は、焼結工程における温度プロファイルを示している。図 5において、参照符号 「30」で示されるプロファイルは、従来の焼結工程で採用されているものであり、参照 符号「32」で示されるプロファイルは、本発明の焼結工程で採用されているものであ る。  FIG. 5 shows a temperature profile in the sintering process. In FIG. 5, the profile indicated by reference numeral “30” is adopted in the conventional sintering process, and the profile indicated by reference numeral “32” is adopted in the sintering process of the present invention. Is.
[0063] 本実施形態で用いる焼結工程では 2段階の熱処理を行なう。まず、第 1段階では、 相対的に低い温度範囲 (好ましくは 700〜: L 000°C)で相対的に長い時間(好ましく は 10〜420分)だけ保持し、その後、第 2段階に進む。第 2段階では、相対的に高い 温度範囲(好ましくは 1000〜1200°C)で相対的に短い時間(例えば 30〜240分) だけ保持する。焼結時の雰囲気は、窒素、水素、アルゴンなどの不活性ガスであるこ とが好ましい。  [0063] In the sintering process used in this embodiment, two-stage heat treatment is performed. First, in the first stage, a relatively long time (preferably 10 to 420 minutes) is maintained in a relatively low temperature range (preferably 700 to: L 000 ° C.), and then the process proceeds to the second stage. In the second stage, a relatively short temperature (for example, 30 to 240 minutes) is maintained in a relatively high temperature range (preferably 1000 to 1200 ° C). The atmosphere during sintering is preferably an inert gas such as nitrogen, hydrogen, or argon.
[0064] 希土類合金による水素吸蔵 ·放出現象を利用した水素粉砕処理時に、主相である R Fe B相に残存していた水素は、焼結工程前に実行される約 500°Cの脱バインダ [0064] During the hydrogen crushing process using the hydrogen occlusion / release phenomenon by the rare earth alloy, the hydrogen remaining in the R Fe B phase, which is the main phase, is removed from the binder at about 500 ° C before the sintering process.
2 14 2 14
工程によって放出される。しかし、水素粉砕処理時に Rリッチ相等に含まれる希土類 元素と水素とが結合することによって形成された希土類水素化合物 (RH )は、 500 °C程度ではメタルイ匕しない (水素放出して金属状態にならない)。しかし、本発明の焼 結工程によれば、第 1段階で希土類水素化合物 (RH )は水素を放出し、メタル化す る。すなわち、 700°C以上の温度で行う第 1段階の熱処理で、 RH→R+ (x/2) H x 2Released by the process. However, rare earth hydrogen compounds (RH) formed by combining rare earth elements and hydrogen contained in the R-rich phase etc. during hydrogen crushing treatment do not metallize at about 500 ° C (hydrogen does not release into a metallic state) ). However, according to the sintering process of the present invention, the rare earth hydrogen compound (RH) releases hydrogen and metallizes it in the first stage. The That is, RH → R + (x / 2) H x 2 in the first stage heat treatment performed at a temperature of 700 ° C or higher
†の化学反応式で示される反応が生じる結果、第 2段階の熱処理では粒界の Rリツ チ相が速やかに液相となり、焼結反応が速やかに進行する。この結果、短時間で焼 結工程が完了し、結晶粒の粗大化が抑制されるため、保磁力が向上するとともに、焼 結密度も向上する。 As a result of the reaction represented by the chemical reaction formula †, the R-rich phase at the grain boundary quickly becomes a liquid phase in the second stage heat treatment, and the sintering reaction proceeds rapidly. As a result, the sintering process is completed in a short time and the coarsening of the crystal grains is suppressed, so that the coercive force is improved and the sintering density is also improved.
[0065] 本発明者の実験によると、焼結磁石における結晶粒径の違いに起因する保磁力の 変化は、含有酸素量が少ない場合に顕著である。含有酸素量が例えば 7000質量 p pmの場合、結晶粒径が 3〜6 /ζ πι程度であっても、 12〜15 /ζ πι程度であっても、両 者の保磁力に 10%の開きも生じな力つた力 含有酸素量が 3000質量 ppm以下にな ると、平均結晶粒径が 9 m以下の磁石と 9 mを超える磁石とでは保磁力に約 10 %以上の差が発生した。 R—Fe— B系希土類磁石の平均結晶粒径は 3 μ m以上 9 μ m以下、含有酸素濃度は重量比で 50ppm以上 4000ppm以下、含有窒素濃度は重 量比で 150ppm以上 1500ppm以下であることが好ましい。焼結後は、 400〜900°C で時効処理を行なう。  According to the experiments of the present inventors, the change in coercive force due to the difference in crystal grain size in the sintered magnet is remarkable when the amount of oxygen contained is small. For example, when the oxygen content is 7000 mass ppm, the coercive force of both is 10%, regardless of whether the crystal grain size is about 3-6 / ζ πι or 12-15 / ζ πι. When the oxygen content was 3000 ppm by mass or less, there was a difference of about 10% or more in coercive force between magnets with an average crystal grain size of 9 m or less and magnets with an average crystal grain size of more than 9 m. The average grain size of R-Fe-B rare earth magnets is 3 μm or more and 9 μm or less, the oxygen concentration is 50 ppm to 4000 ppm by weight, and the nitrogen concentration is 150 ppm to 1500 ppm by weight. Is preferred. After sintering, perform aging treatment at 400-900 ° C.
[0066] 本実施形態では、原料合金をストリップキャスト法によって作製する例を説明したが 、他の方法 (例えばインゴット法、直接還元法、アトマイズ法、遠心铸造法)によっても よい。  In this embodiment, an example in which the raw material alloy is produced by the strip casting method has been described, but other methods (for example, an ingot method, a direct reduction method, an atomizing method, a centrifugal forging method) may be used.
[0067] なお、本明細書において、 ¾ー?6— 8系希土類磁石」とは、 6のー部が0)等の 金属で置換されたものや、 B (ホウ素)の一部が C (炭素)によって置換された希土類 磁石を広く含むものとする。 R—Fe— B系希土類磁石は、正方晶構造を有する R Fe  [0067] In the present specification, ¾? "6-8 rare earth magnets" broadly includes those in which the-part of 6 is replaced with a metal such as 0) and rare earth magnets in which part of B (boron) is replaced with C (carbon). R-Fe-B rare earth magnets have a tetragonal structure R Fe
2 1 twenty one
B型化合物力 なる主相の周りを Rリッチ相や Bリッチ相 (粒界相)が取り囲む組織構B-type compound power The structure surrounding the main phase, which is surrounded by the R-rich phase and B-rich phase (grain boundary phase)
4 Four
造を有している。このような R—Fe— B系希土類磁石の構造は、米国特許第 564565 1に開示されている。  Has a structure. The structure of such an R—Fe—B rare earth magnet is disclosed in US Pat. No. 5,564,565.
[0068] <実施例 > [0068] <Example>
まず、 Nd + Pr(30. 0質量%)— Dy(l. 0質量%)— B (l. 0質量%)— Fe (残部) の組成を有する合金の溶湯を高周波溶解炉によって作製した後、水冷ロール式のス トリップキャスティング法によって上記溶湯を冷却し、厚さ 0. 5mm程度の薄板状铸片 (フレーク状合金)を作製した。このフレーク状合金の含有酸素濃度は 150質量 ppm だった。 First, an alloy melt having the composition Nd + Pr (30.0 mass%) — Dy (l. 0 mass%) — B (l. 0 mass%) — Fe (remainder) was prepared by a high-frequency melting furnace. Then, the molten metal was cooled by a water-cooled roll type strip casting method to produce a thin plate-like piece (flaked alloy) having a thickness of about 0.5 mm. This flaky alloy contains 150 mass ppm of oxygen was.
[0069] 次に、フレーク状合金を水素炉内に収容した。その炉内を真空引きした後、水素脆 化を行うために炉内に水素ガスを 2時間供給した。炉内の水素分圧は 200kPaとした 。フレークが水素吸蔵による自然崩壊を起こした後、加熱しながら真空引きし、脱水 素処理を施した。そして炉内にアルゴンガスを導入し、室温まで冷却した。合金温度 が 20°Cまで冷却された時点で水素炉カも取り出した。この段階で、合金の酸素含有 量は 1000質量 ppmだつた。  [0069] Next, the flaky alloy was accommodated in a hydrogen furnace. After evacuating the furnace, hydrogen gas was supplied into the furnace for 2 hours in order to embrittle hydrogen. The hydrogen partial pressure in the furnace was 200 kPa. After the flakes spontaneously collapsed due to hydrogen occlusion, they were evacuated with heating and dehydrated. Argon gas was introduced into the furnace and cooled to room temperature. When the alloy temperature was cooled to 20 ° C, the hydrogen reactor power was also removed. At this stage, the oxygen content of the alloy was 1000 ppm by mass.
[0070] その後、酸素濃度が 200質量 ppm以下に制御された窒素ガス雰囲気によって粉砕 室を満たしたジェットミルにより、上記合金の粉砕を行い、種々の酸素濃度値を示す 磁石粉末を作製した。また、粉砕時間などの粉砕条件を調節することによって、磁石 粉末の平均粒径 (粉砕粒度)を 1. 5〜7. の範囲で変化させ、平均粒径の異な る種々の粉末を作製した。また、粉砕に際して、窒素雰囲気中に含まれる酸素の量 を制御し、粉末の含有酸素量を最大 7000質量 ppm程度まで変化させた。こうして得 られた粉末の窒素濃度は、 100〜900質量 ppmの範囲内にあった。  [0070] Thereafter, the alloy was pulverized by a jet mill filled in the pulverization chamber with a nitrogen gas atmosphere in which the oxygen concentration was controlled to 200 mass ppm or less to produce magnet powders having various oxygen concentration values. In addition, by adjusting the grinding conditions such as grinding time, the average particle size (grinding particle size) of the magnet powder was changed in the range of 1.5 to 7. Various powders with different average particle sizes were prepared. Also, during pulverization, the amount of oxygen contained in the nitrogen atmosphere was controlled, and the oxygen content of the powder was changed to a maximum of about 7000 mass ppm. The nitrogen concentration of the powder thus obtained was in the range of 100-900 mass ppm.
[0071] この後、ロッキングミキサを用いて上記粉砕粉に対して 0. 5質量%の液体潤滑剤を 添加した。この潤滑剤はカブロン酸メチルを主成分とするものであった。そして、図 1 に示す装置を用い、乾式プレス法によって上記粉末から成形体を作製した。ここでい う「乾式」とは、本実施例のように粉末が比較的少量の潤滑剤 (油剤)を含有する場合 をも広く包含し、油剤を搾り出す工程が不要なものを言う。成形体のサイズは 30mm X 50mm X 30mm、密度は 4. 2〜4. 4gZcm3だった。 [0071] Thereafter, 0.5% by mass of a liquid lubricant was added to the pulverized powder using a rocking mixer. This lubricant was mainly composed of methyl cabronate. Then, using the apparatus shown in FIG. 1, a compact was produced from the powder by a dry press method. The term “dry” as used herein refers to a powder that includes a case where the powder contains a relatively small amount of lubricant (oil agent) as in this embodiment, and does not require a step of squeezing the oil agent. The size of the molded body was 30 mm X 50 mm X 30 mm, and the density was 4.2 to 4.4 gZcm 3 .
[0072] 次に、図 1に示す構成を備える装置を用い、減圧下で成形体の表面から酸化防止 剤を成形体に含浸させる工程を行った。酸ィ匕防止剤としては、イソパラフィンを用い た。  Next, using the apparatus having the configuration shown in FIG. 1, a step of impregnating the molded body with an antioxidant from the surface of the molded body under reduced pressure was performed. Isoparaffin was used as the anti-oxidation agent.
[0073] 比較のため、図 2に示す方法により、大気圧下での含浸を行った場合、図 6 (a)に 示すように、クラックが発生した。一方、本実施例によれば、図 6 (b)、(c)に示すよう に、クラックが発生せず、成形体の内部まで酸化防止剤の含浸が速やかに進行して いた。図 6 (b)は、含浸時間が相対的に短い場合を示し、成形体の全体が含浸され たわけではないが、成形体の表面に含浸部が形成されているため、発火を防止する 効果は充分に得られる。図 6 (c)は、成形体の全体に含浸部が行き渡った状態を示し ている。図 6に示す成形体のうち、より密集した点が付された領域として示されている 部分は、酸化防止剤の含浸が行われた部分を示して ヽる。 [0073] For comparison, when impregnation was performed under atmospheric pressure by the method shown in Fig. 2, cracks occurred as shown in Fig. 6 (a). On the other hand, according to this example, as shown in FIGS. 6 (b) and 6 (c), cracks did not occur, and the impregnation of the antioxidant proceeded rapidly to the inside of the molded body. Fig. 6 (b) shows a case where the impregnation time is relatively short and the entire molded body is not impregnated, but the impregnation part is formed on the surface of the molded body, so that ignition is prevented. The effect is sufficiently obtained. Fig. 6 (c) shows a state where the impregnated part has spread over the entire compact. In the molded body shown in FIG. 6, a portion indicated as a region with more dense points is a portion where the antioxidant is impregnated.
[0074] 図 7は、減圧容器の圧力と含浸量との関係を示すグラフである。減圧容器内の圧力 が大気圧に比べて低くなるほど、含浸量が増加している。減圧容器内の圧力と大気 圧との差が 35kPa以下になると、成形体にクラックが入る場合がある。このため、減圧 容器内の圧力は大気圧に比べて 40kPa以上低 、ことが好ま 、。  FIG. 7 is a graph showing the relationship between the pressure in the decompression vessel and the amount of impregnation. The amount of impregnation increases as the pressure in the vacuum vessel becomes lower than the atmospheric pressure. If the difference between the pressure in the vacuum vessel and atmospheric pressure is 35kPa or less, the molded body may crack. For this reason, the pressure in the decompression vessel is preferably 40 kPa or more lower than the atmospheric pressure.
[0075] 図 8は、成形密度 (成形体の密度)と含浸量との関係を示すグラフである。図 8から わ力るように、圧力および含浸時間が同じならば、含浸量は成形密度が低くなるほど 増加している。  FIG. 8 is a graph showing the relationship between the molding density (the density of the molded body) and the amount of impregnation. As can be seen from Fig. 8, if the pressure and impregnation time are the same, the amount of impregnation increases as the molding density decreases.
[0076] 本発明の実施例につ!ヽて、酸ィ匕防止剤を成形体のほぼ全体に含浸した後、成形 体を室温の大気中に放置し、成形体の温度を測定した。成形体中の希土類元素が 酸化すると、発熱が生じるため、成形体温度によって酸化の進行程度を評価すること が可能である。  [0076] For the examples of the present invention, after impregnating almost all of the molded product with the anti-oxidation agent, the molded product was left in the atmosphere at room temperature, and the temperature of the molded product was measured. When the rare earth element in the molded body is oxidized, heat is generated. Therefore, it is possible to evaluate the progress of oxidation based on the molded body temperature.
[0077] なお、含浸処理直後における成形体温度は 40°C以下であり、 600秒経過後にお Vヽても 50°Cを下回ったままであった。酸素濃度の最も低!、粉末を用いて作製した成 形体でも、その温度の最高値は 70°C程度に過ぎず、成形体を大気雰囲気中に長時 間(例えば 6時間)放置したとしても発火のおそれは無ぐ磁石特性の劣化も観察され なかった。また、含浸処理後に成形体温度が一時的に(2〜3分間程度)低下する現 象が観察された。これは、成形体表面から酸化防止剤が揮発し、気化熱により成形 体が冷却されたためである。  [0077] The temperature of the compact immediately after the impregnation treatment was 40 ° C or less, and even after 600 seconds, the temperature remained below 50 ° C. Even with compacts made from powder with the lowest oxygen concentration, the maximum temperature is only around 70 ° C, and even if the compact is left in the atmosphere for a long time (eg 6 hours) There was no risk of ignition, and no deterioration of the magnetic properties was observed. In addition, a phenomenon was observed in which the temperature of the molded body decreased temporarily (about 2 to 3 minutes) after the impregnation treatment. This is because the antioxidant was volatilized from the surface of the molded body and the molded body was cooled by the heat of vaporization.
[0078] 成形体に対して酸化防止剤の含浸工程を行わなかった場合 (比較例)、酸素濃度 が約 2000質量 ppm以下に調節された成形体では、プレス装置力も成形体を取り出 して約 6分 45秒経過後に大気中で 80°Cに達し、発火した。酸ィ匕によって発生した熱 は周囲の粉末の酸化を促進するため、 V、つたん酸化が始まり出すと成形体の温度は 急激に増加し、発火の危険性が著しく高まる。このような成形体は、酸素濃度を比較 的に低くした雰囲気ガスのケース内に収納した場合でも、ケース内で徐々に酸化さ れつづけ、成形体の内部で熱を蓄積してゆくと考えられる。そのため、やがては急激 に発熱し、発火に至る危険性がある。 [0078] When the molded article was not subjected to the impregnation step with the antioxidant (comparative example), in the molded article in which the oxygen concentration was adjusted to about 2000 ppm by mass or less, the pressing device force was also taken out. After about 6 minutes and 45 seconds, it reached 80 ° C in the atmosphere and ignited. Since the heat generated by the acid promotes the oxidation of the surrounding powder, the temperature of the compact rapidly increases when the oxidation of V and oxidization starts, and the risk of ignition increases significantly. Even if such a compact is housed in a case of atmospheric gas with a relatively low oxygen concentration, it is thought that it gradually oxidizes in the case and accumulates heat inside the compact. . Therefore, eventually it will suddenly There is a risk of overheating and ignition.
[0079] 酸化防止剤の含浸を行った成形体に対し、 250°Cで 2時間の脱バインダ工程を行 つた後、焼結工程を行なった。低酸素濃度の磁石粉末を用いて焼結磁石を作製する 場合は、特に 2段階焼結プロセスを用いて結晶粒径を小さくすることが好ましい。酸 素濃度が例えば 1000質量 ppm以上 4000質量 ppm以下の場合、焼結磁石の平均 結晶粒径の範囲を 3 μ m以上 9 μ m以下とすることが好ましい。  [0079] The molded body impregnated with the antioxidant was subjected to a binder removal step at 250 ° C for 2 hours, and then a sintering step. When producing a sintered magnet using a magnet powder with a low oxygen concentration, it is particularly preferable to reduce the crystal grain size using a two-stage sintering process. When the oxygen concentration is, for example, 1000 mass ppm or more and 4000 mass ppm or less, it is preferable that the average crystal grain size range of the sintered magnet is 3 μm or more and 9 μm or less.
[0080] なお、例えば Heやアルゴンの雰囲気中で微粉砕を行なうことにより、粉末表面の窒 化を行なわなカゝつた場合、粉末粒子表面に窒化層が形成されないため、酸化しやす ぐ工程中での発火や、磁気特性の劣化が生じた。逆に、粉末粒子表面の窒化が進 行し過ぎると、焼結プロセスが進行しにくくなり、磁気特性が劣化するという不都合が 生じた。このため、磁石粉末中の窒素濃度は 150質量 ppm以上 1500質量 ppm以下 の範囲に制御することが好ましぐ 200質量 ppm以上 700質量 ppm以下の範囲に制 御することが更に好ましい。磁石粉末中の窒素濃度が 150質量 ppm以上 1500質量 ppm以下、酸素濃度が 50質量 ppm4000質量 ppm以下であれば、本発明の実施形 態で得られた焼結磁石も同じ窒素濃度 ·酸素濃度を有することになる。  [0080] When the powder surface is not nitrided by, for example, pulverizing in an atmosphere of He or argon, a nitride layer is not formed on the surface of the powder particles, so that the process is easy to oxidize. Ignition and magnetic properties deteriorated. On the other hand, if the nitriding of the powder particle surface proceeds too much, the sintering process becomes difficult to proceed and the magnetic properties deteriorate. For this reason, it is preferable to control the nitrogen concentration in the magnet powder in the range of 150 mass ppm to 1500 mass ppm, and more preferably in the range of 200 mass ppm to 700 mass ppm. If the nitrogen concentration in the magnet powder is 150 mass ppm or more and 1500 mass ppm or less and the oxygen concentration is 50 mass ppm or less and 4000 mass ppm or less, the sintered magnet obtained in the embodiment of the present invention also has the same nitrogen concentration and oxygen concentration. Will have.
[0081] また、本発明で用いる希土類磁石の原料組成も上記実施例の組成に限定されな!ヽ ことは言うまでも無ぐ大気中での酸化反応によって発熱'発火の危険がある低酸素 濃度希土類合金の粉末に対して本発明は広く適用可能である。  [0081] In addition, the raw material composition of the rare earth magnet used in the present invention is not limited to the composition of the above example! Needless to say, the low oxygen concentration at which there is a risk of heat generation and ignition due to an oxidation reaction in the atmosphere. The present invention is widely applicable to rare earth alloy powders.
[0082] なお、上記の実施形態では、 V、ずれも、乾式プレス法を用いて 、るが、米国特許第 5, 489, 343に開示されているような湿式プレス法を用いて本発明を実施してもよい 。本発明によれば、プレス方法の種類によらず、水素濃度低減による効果が得られる ため、磁気特性が向上する。また、湿式プレスを用いて成形体を作製する場合は、プ レス後に成形体を油剤に含浸する工程を省略しても良い。  [0082] In the above-described embodiment, V and deviation are also measured using a dry press method. However, the present invention is applied using a wet press method as disclosed in US Pat. No. 5,489,343. May be implemented. According to the present invention, since the effect of reducing the hydrogen concentration can be obtained regardless of the type of pressing method, the magnetic characteristics are improved. Moreover, when producing a molded body using a wet press, the step of impregnating the molded body with an oil after pressing may be omitted.
[0083] また、上記実施形態では、微粉砕工程を窒素雰囲気中で行っているが、窒素に代 えて、あるいは窒素にカ卩えて、アルゴンやヘリウムを用いてもよい。窒素ガスを用いて 微粉砕を行わない場合、粉末粒子表面の窒化は行われないが、酸素濃度および水 素濃度の制御による効果が得られる。  In the above embodiment, the pulverization step is performed in a nitrogen atmosphere, but argon or helium may be used instead of nitrogen or in place of nitrogen. When fine pulverization is not performed using nitrogen gas, the powder particle surface is not nitrided, but the effect of controlling the oxygen concentration and hydrogen concentration can be obtained.
産業上の利用可能性 本発明によれば、低密度'低強度の磁石粉末成形体に対してクラックなどを生じさ せること無く酸ィ匕防止剤の含浸を行なうことができるため、磁石特性に優れた低酸素 希土類合金磁石を歩留まり良く提供することが可能になる。 Industrial applicability According to the present invention, the low-density, low-strength magnet powder molded body can be impregnated with the anti-oxidation agent without causing cracks and the like. It becomes possible to provide magnets with high yield.

Claims

請求の範囲 The scope of the claims
[1] 希土類合金粉末を乾式プレス法で圧縮成形することによって成形体を作製するプ レス工程 (A)と、  [1] A pressing step (A) for producing a compact by compressing a rare earth alloy powder by a dry press method;
前記成形体の表面力 酸ィ匕防止剤を前記成形体に含浸させる工程 (B)と、 前記成形体を焼結させる工程 (C)と、  Surface force of the molded body Step (B) of impregnating the molded body with an anti-oxidation agent, Step (C) of sintering the molded body,
を包含し、  Including
前記工程 (B)において、前記成形体は、減圧された容器内で前記酸化防止剤に 含浸される、 R— Fe— B系希土類磁石の製造方法。  In the step (B), the molded body is impregnated with the antioxidant in a decompressed container. The method for producing an R—Fe—B rare earth magnet.
[2] 前記工程 (B)は、 [2] The step (B)
前記成形体を前記容器内に収納する工程と、  Storing the molded body in the container;
前記容器の内部を減圧する工程と、  Depressurizing the interior of the container;
前記容器の内部に前記酸化防止剤を供給する工程と、  Supplying the antioxidant into the container;
を含む、請求項 1に記載の製造方法。  The manufacturing method of Claim 1 containing this.
[3] 前記希土類合金粉末は、酸素含有量が重量比で 50ppm以上 4000ppm以下、窒 素含有量が重量比で 150ppm以上 1500ppm以下である、請求項 1に記載の製造 方法。 [3] The production method according to claim 1, wherein the rare earth alloy powder has an oxygen content of 50 ppm to 4000 ppm by weight and a nitrogen content of 150 ppm to 1500 ppm by weight.
[4] 前記工程 (C)は、  [4] The step (C) includes
700°C以上 1000°C未満の温度範囲に 10分以上 420分以下の時間保持する第 1 工程と、  A first step of maintaining a temperature in a temperature range of 700 ° C or higher and lower than 1000 ° C for a period of 10 minutes to 420 minutes;
1000°C以上 1200°C以下の温度範囲で焼結を進行させる第 2工程と、 を含む、請求項 1に記載の製造方法。  The manufacturing method according to claim 1, comprising: a second step in which sintering proceeds in a temperature range of 1000 ° C or higher and 1200 ° C or lower.
[5] 前記希土類合金粉末の平均粒径を 1. 0 /z m以上 5. 0 m以下とする請求項 1に 記載の製造方法。 [5] The production method according to claim 1, wherein the rare earth alloy powder has an average particle size of 1.0 / z m or more and 5.0 m or less.
[6] 前記酸化防止剤は揮発性を有する成分から構成されて!ヽる請求項 1に記載の製造 方法。  6. The production method according to claim 1, wherein the antioxidant is composed of a volatile component.
[7] 前記工程 (B)の後、前記酸ィ匕防止剤の揮発によって、前記成形体の温度を少なく とも一時的に低下させる請求項 6に記載の製造方法。  7. The method according to claim 6, wherein after the step (B), the temperature of the molded body is at least temporarily reduced by volatilization of the anti-oxidation agent.
[8] 前記酸化防止剤は、イソパラフィンである請求項 1に記載の製造方法。 希土類合金粉末の成形体を収納する容器と、 8. The production method according to claim 1, wherein the antioxidant is isoparaffin. A container for storing a molded body of rare earth alloy powder;
前記成形体の含浸に用いる酸ィヒ防止剤を前記容器の内部に供給する手段と、 前記容器の内部圧力を低減する減圧装置と、  Means for supplying an oxidization inhibitor used for impregnation of the molded body to the inside of the container; and a pressure reducing device for reducing the internal pressure of the container;
を備える含浸装置。 An impregnation apparatus comprising:
PCT/JP2006/304731 2005-03-14 2006-03-10 Method for producing rare earth magnet and impregnation apparatus WO2006098238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006536499A JP4743120B2 (en) 2005-03-14 2006-03-10 Rare earth magnet manufacturing method and impregnation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-071053 2005-03-14
JP2005071053 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006098238A1 true WO2006098238A1 (en) 2006-09-21

Family

ID=36991583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304731 WO2006098238A1 (en) 2005-03-14 2006-03-10 Method for producing rare earth magnet and impregnation apparatus

Country Status (3)

Country Link
JP (1) JP4743120B2 (en)
CN (1) CN1989581A (en)
WO (1) WO2006098238A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015070141A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for manufacturing r-t-b-based sintered magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0912349D0 (en) * 2009-07-16 2009-08-26 Magnequench Internat Inc Process for manufacture of a bonded magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163906A (en) * 1988-12-17 1990-06-25 Tokin Corp Manufacture of bond magnet
JPH04273413A (en) * 1991-02-28 1992-09-29 Shin Etsu Polymer Co Ltd Manufacture of rare-earth bonded magnet
JPH06267720A (en) * 1993-03-16 1994-09-22 Sankyo Seiki Mfg Co Ltd Resin bonded rare earth element magnet and manufacture thereof
JPH11224811A (en) * 1998-02-05 1999-08-17 Daido Denshi:Kk Rare-earth bonded magnet and its manufacture
JP2000124052A (en) * 1998-10-20 2000-04-28 Citizen Watch Co Ltd Manufacture of bonded magnet
JP2002008935A (en) * 1999-11-12 2002-01-11 Sumitomo Special Metals Co Ltd Method of manufacturing rare-earth magnet
JP2002020802A (en) * 2000-04-21 2002-01-23 Sumitomo Special Metals Co Ltd Powder press, and manufacturing method of rare earth magnet using the press
JP2002170728A (en) * 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2005294556A (en) * 2004-03-31 2005-10-20 Tdk Corp Method of manufacturing rare-earth sintered magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255302A (en) * 1987-04-09 1988-10-21 Daido Steel Co Ltd Production of porous magnet
JPH1167514A (en) * 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd Manufacture of bonded permanent magnet and its raw material powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163906A (en) * 1988-12-17 1990-06-25 Tokin Corp Manufacture of bond magnet
JPH04273413A (en) * 1991-02-28 1992-09-29 Shin Etsu Polymer Co Ltd Manufacture of rare-earth bonded magnet
JPH06267720A (en) * 1993-03-16 1994-09-22 Sankyo Seiki Mfg Co Ltd Resin bonded rare earth element magnet and manufacture thereof
JPH11224811A (en) * 1998-02-05 1999-08-17 Daido Denshi:Kk Rare-earth bonded magnet and its manufacture
JP2000124052A (en) * 1998-10-20 2000-04-28 Citizen Watch Co Ltd Manufacture of bonded magnet
JP2002008935A (en) * 1999-11-12 2002-01-11 Sumitomo Special Metals Co Ltd Method of manufacturing rare-earth magnet
JP2002020802A (en) * 2000-04-21 2002-01-23 Sumitomo Special Metals Co Ltd Powder press, and manufacturing method of rare earth magnet using the press
JP2002170728A (en) * 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2005294556A (en) * 2004-03-31 2005-10-20 Tdk Corp Method of manufacturing rare-earth sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191849A (en) * 2006-09-15 2013-09-26 Inter Metallics Kk Ndfeb sintered magnet
JP2015070141A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for manufacturing r-t-b-based sintered magnet

Also Published As

Publication number Publication date
JPWO2006098238A1 (en) 2008-08-21
JP4743120B2 (en) 2011-08-10
CN1989581A (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR100829986B1 (en) Rare earth magnet and method for manufacturing the same
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP5598465B2 (en) R-T-B-M alloy for sintered magnet and method for producing the same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP4998096B2 (en) Method for producing R-Fe-B permanent magnet
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
CN104488048B (en) The manufacture method of NdFeB based sintered magnets
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
WO2013054678A1 (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP3418605B2 (en) Rare earth magnet manufacturing method
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
WO2006098238A1 (en) Method for producing rare earth magnet and impregnation apparatus
JP6691666B2 (en) Method for manufacturing RTB magnet
KR100734061B1 (en) Method for manufacturing rare earth magnet
JP7156226B2 (en) Method for manufacturing rare earth magnet
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
JP2008274420A (en) METHOD FOR PRODUCING R-Fe-B BASED RARE EARTH MAGNET
JP4561432B2 (en) Method for producing RTB-based sintered magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
JPH0252413A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536499

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000489.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728899

Country of ref document: EP

Kind code of ref document: A1