JP2015070141A - Method for manufacturing r-t-b-based sintered magnet - Google Patents

Method for manufacturing r-t-b-based sintered magnet Download PDF

Info

Publication number
JP2015070141A
JP2015070141A JP2013203819A JP2013203819A JP2015070141A JP 2015070141 A JP2015070141 A JP 2015070141A JP 2013203819 A JP2013203819 A JP 2013203819A JP 2013203819 A JP2013203819 A JP 2013203819A JP 2015070141 A JP2015070141 A JP 2015070141A
Authority
JP
Japan
Prior art keywords
molded body
spraying
compact
sintered magnet
oil agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013203819A
Other languages
Japanese (ja)
Other versions
JP6222518B2 (en
Inventor
亮二 小野
Ryoji Ono
亮二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013203819A priority Critical patent/JP6222518B2/en
Publication of JP2015070141A publication Critical patent/JP2015070141A/en
Application granted granted Critical
Publication of JP6222518B2 publication Critical patent/JP6222518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an R-T-B-based sintered magnet which is arranged to prevent the slip of a compact after covering the surface of a compact with an oil solution, which would lead to the collision of the compact with another compact thereby chipping the compact, and arranged to eliminate the need for a long time for removal of the oil solution at the time of sintering.SOLUTION: A method for manufacturing an R-T-B-based sintered magnet comprises: a compacting step for compacting alloy powder for the R-T-B-based sintered magnet (where R represents at least one of rare earth elements (including yttrium (Y)), which certainly includes neodymium (Nd), T represents iron (Fe) or a combination of iron and cobalt (Co), and B represents boron) thereby preparing a compact, provided that in the alloy powder for the R-T-B-based sintered magnet, the oxygen content is 4000 mass ppm or less; a spray step for spraying an oil solution on the entire surface of the compact under a pressure of 0.2-0.4 MPa with a spray amount of 1-2 L/hr for a spray time of 3-6 seconds; and a sintering step for sintering the compact after the spray step.

Description

本発明は、R−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)は、主にR14Bの正方晶化合物からなる主相、Nd等からなるRリッチ相から構成されている。R−T−B系焼結磁石は、主相であるR14Bの正方晶化合物の存在比率を増加させれば、その磁気特性が向上する。 R-T-B based sintered magnet (R is at least one rare earth element (including yttrium (Y)), and it always includes neodymium (Nd), T is iron (Fe) or iron and cobalt (Co), B (Means boron) is mainly composed of a main phase composed of a tetragonal compound of R 2 T 14 B and an R-rich phase composed of Nd or the like. The R-T-B based sintered magnet can be improved in magnetic properties by increasing the abundance ratio of the main phase R 2 T 14 B tetragonal compound.

Rリッチ相は液相焼結させるために最低量必要であるが、Rは雰囲気中の酸素と反応し、例えばRなどの酸化物を生成するため、Rの一部は焼結に役立たない部分に消費されてしまう。このため、酸化によって消費される分だけ余分のRが必要であった。酸化物の生成は、雰囲気中の酸素濃度が大きいほど顕著になる。そのため、これまでもR−T−B系焼結磁石用合金粉末(以下、「R−T−B系合金粉末」と記載する場合がある)製造時における雰囲気中の酸素量を低減することで酸化物の生成を抑制させることが検討されてきた。酸化物の生成を抑制することで、酸化によって消費されるRの量を抑制することができる。これにより、主相の存在比率を増加させ、磁気特性を向上させることができる。 The R-rich phase requires a minimum amount for liquid-phase sintering. However, R reacts with oxygen in the atmosphere to produce an oxide such as R 2 O 3, so that a part of R is used for sintering. It will be consumed in useless parts. For this reason, extra R is required for the consumption by oxidation. Oxide generation becomes more pronounced as the oxygen concentration in the atmosphere increases. Therefore, by reducing the amount of oxygen in the atmosphere at the time of manufacturing alloy powders for RTB-based sintered magnets (hereinafter sometimes referred to as “RTB-based alloy powders”). It has been studied to suppress the formation of oxides. By suppressing the formation of oxide, the amount of R consumed by oxidation can be suppressed. Thereby, the abundance ratio of the main phase can be increased and the magnetic characteristics can be improved.

しかし、R−T−B系合金粉末の酸素量を例えば4000質量ppm以下に低減させると、R−T−B系合金粉末が大気中の酸素と激しく反応し、常温でも数分で発火する恐れがある。従って、磁気特性を向上させるためにはR−T−B系合金粉末の酸素量を低減することが望ましいことが理解されていても、実際に製造現場で取り扱うことは極めて困難であるという問題があった。   However, if the oxygen content of the R-T-B system alloy powder is reduced to, for example, 4000 ppm by mass or less, the R-T-B system alloy powder may react vigorously with oxygen in the atmosphere and ignite in a few minutes even at room temperature. There is. Therefore, even if it is understood that it is desirable to reduce the oxygen content of the RTB-based alloy powder in order to improve the magnetic properties, there is a problem that it is extremely difficult to actually handle at the manufacturing site. there were.

この問題に対し、特許文献1、2に記載の希土類磁石の製造方法において、合金粉末(R−T−B系合金粉末に相当)を成形後、得られた成形体を槽内の有機溶剤(本発明の「油剤」に相当)中に投入することが提案されている。酸素量が低い(4000質量ppm以下)合金粉末であっても、得られた成形体を有機溶剤中に投入することにより、成形体が有機溶剤によって覆われるため成形体が大気中の酸素と直接接触することが抑制される。その結果、発火の危険を避けることができる。特許文献1、2の方法により安全に合金粉末の酸素含有量の増加を抑制することが出来た結果、酸化によって消費される余分なRの量を抑制し、R−T−B系焼結磁石の主相の存在比率を増加させて、R−T−B系焼結磁石の磁気特性を向上させることが可能となる。   In order to solve this problem, in the method for producing rare earth magnets described in Patent Documents 1 and 2, after molding an alloy powder (corresponding to an R-T-B alloy powder), the obtained compact is treated with an organic solvent ( It is proposed to be put into the “oil agent” of the present invention. Even in the case of an alloy powder having a low oxygen content (4000 mass ppm or less), the molded body is covered with an organic solvent by putting the obtained molded body into an organic solvent, so that the molded body is directly in contact with oxygen in the atmosphere. Contact is suppressed. As a result, the risk of ignition can be avoided. As a result of being able to safely suppress the increase in oxygen content of the alloy powder by the methods of Patent Documents 1 and 2, the amount of excess R consumed by oxidation is suppressed, and an R-T-B system sintered magnet It is possible to improve the magnetic properties of the RTB-based sintered magnet by increasing the abundance ratio of the main phase.

特開2002−8935号公報JP 2002-8935 A 特開2002−170728号公報JP 2002-170728 A

しかし、特許文献1、2の方法は、槽内から取り出した成形体を次工程の焼結工程を行うために焼結板等の上に複数個載置したときに、前記焼結板等の上にある成形体が成形体表面に付着した有機溶剤により滑り、それによって成形体同士が衝突して欠けが発生する場合があった。これは、成形体を槽内に投入しているために成形体表面に多量の有機溶剤が付着し、有機溶剤で成形体表面が厚く覆われるからだと考えられる。さらに成形体を載置した焼結板等にも成形体表面から有機溶剤が滴り落ちるなどして多量に有機溶剤が付着することになり、焼結時に成形体や焼結板等に付着した多量の有機溶剤を除去するために長時間の処理を必要とする場合があった。   However, in the methods of Patent Documents 1 and 2, when a plurality of molded bodies taken out from the tank are placed on a sintered plate or the like in order to perform the subsequent sintering step, In some cases, the molded body on the upper side slips due to the organic solvent adhering to the surface of the molded body, which causes the molded bodies to collide with each other and cause chipping. This is presumably because a large amount of an organic solvent adheres to the surface of the molded body because the molded body is put in the tank, and the surface of the molded body is covered with the organic solvent. Furthermore, a large amount of organic solvent adheres to the sintered plate or the like on which the molded body is placed, for example, by dripping the organic solvent from the surface of the molded body. In some cases, a long time treatment was required to remove the organic solvent.

本発明は、上記特許文献1、2における問題点を解決するためになされたものであり、成形体の表面を油剤(有機溶剤)で覆った後、成形体が油剤で滑り成形体同士が衝突することにより成形体に欠けが発生することを防止し、また、焼結時の油剤を除去するための処理に長時間要さないようにすることができるR−T−B系焼結磁石の製造方法を提供することを目的とする。   The present invention was made to solve the problems in Patent Documents 1 and 2, and after the surface of the molded body was covered with an oil agent (organic solvent), the molded body collided with the sliding molded body with the oil agent. Of the R-T-B system sintered magnet which prevents the chipping from occurring in the molded body and does not require a long time for the treatment for removing the oil during sintering. An object is to provide a manufacturing method.

本発明の態様1は、酸素含有量4000質量ppm以下のR−T−B系焼結磁石用合金粉末(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)を圧縮成形し、それによって成形体を作製する成形工程と、前記成形体の表面全体に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程と、前記噴霧工程後の成形体を焼結する焼結工程と、を含むR−T−B系焼結磁石の製造方法である。   Aspect 1 of the present invention is an alloy powder for an RTB-based sintered magnet having an oxygen content of 4000 mass ppm or less (R is at least one rare earth element (including yttrium (Y)) and neodymium (Nd). (T means iron (Fe) or iron and cobalt (Co), B means boron), and a molding step for producing a molded body by this, and an oil agent is pressured over the entire surface of the molded body A spraying step of spraying at a spray amount of 1 L / hr to 2 L / hr, a spraying time of 3 seconds to 6 seconds, and a sintering step of sintering the compact after the spraying step; The manufacturing method of the RTB system sintered magnet containing these.

本発明の態様2は、酸素含有量4000質量ppm以下のR−T−B系焼結磁石用合金粉末(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)を圧縮成形し、それによって成形体を作製する成形工程と、前記成形体を前記油剤が含浸された板状部材に載置して、前記板状部材に接した面以外の成形体の表面に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程と、前記噴霧工程後の成形体を焼結する焼結工程と、を含むR−T−B系焼結磁石の製造方法である。   Aspect 2 of the present invention is an alloy powder for an RTB-based sintered magnet having an oxygen content of 4000 mass ppm or less (R is at least one rare earth element (including yttrium (Y)) and neodymium (Nd). And T is iron (Fe) or iron and cobalt (Co), and B is boron). Thus, a molding step for producing a molded body, and the molded body is impregnated with the oil agent. The oil agent is placed on the plate-like member, and the oil is applied to the surface of the molded body other than the surface in contact with the plate-like member at a pressure of 0.2 MPa to 0.4 MPa, a spray amount of 1 L / hr to 2 L / hr, and a spray time of 3 It is a manufacturing method of the RTB system sintered magnet including the spraying process sprayed in 2 seconds or more and 6 seconds or less, and the sintering process which sinters the forming object after the spraying process.

本発明の態様3は、態様1または2において、前記噴霧工程は、容器にて成形体を覆い、前記容器内にて噴霧を行うことを特徴とするR−T−B系焼結磁石の製造方法である。   Aspect 3 of the present invention is the production of the R-T-B system sintered magnet according to aspect 1 or 2, wherein the spraying step covers the molded body with a container and sprays in the container. Is the method.

本発明により、成形体の表面を油剤で覆った後、成形体が油剤で滑り成形体同士が衝突することによる成形体の欠けの発生を防止するR−T−B系焼結磁石の製造方法を提供することができる。また、焼結時の油剤を除去するための処理に長時間要さないようにすることができるR−T−B系焼結磁石の製造方法を提供することができる。   According to the present invention, after the surface of a molded body is covered with an oil agent, the molded body is prevented from occurrence of chipping of the molded body due to collision of sliding molded bodies with the oil agent. Can be provided. Moreover, the manufacturing method of the RTB type | system | group sintered magnet which can be made not to require the process for removing the oil agent at the time of sintering for a long time can be provided.

本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention. 本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention. 本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention. 本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention. 本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention. 本発明における噴霧形態を示す説明図である。It is explanatory drawing which shows the spray form in this invention.

本発明は所定の条件で油剤を成形体の表面全体に噴霧する。これにより、特許文献1、2のような槽内に成形体を投入する場合のように、成形体に多量の油剤が付着しないため、成形体を焼結板等の上に置いても滑らず、成形体同士の衝突による欠けの発生を防止することができる。さらに、焼結板等にも油剤が多量に付着しないため、焼結時における油剤を除去するための処理時間を短縮させることができる。   In the present invention, the oil agent is sprayed on the entire surface of the molded body under predetermined conditions. This prevents a large amount of oil from adhering to the molded body as in the case of putting the molded body into a tank as in Patent Documents 1 and 2, so that the molded body does not slip even when placed on a sintered plate or the like. The occurrence of chipping due to the collision between the molded bodies can be prevented. Furthermore, since a large amount of oil does not adhere to the sintered plate or the like, the processing time for removing the oil during sintering can be shortened.

[酸素含有量4000質量ppm以下のR−T−B系焼結磁石用合金粉末を圧縮成形し、それによって成形体を作製する成形工程]
まず、酸素含有量4000質量ppm以下のR−T−B系合金粉末を準備する。酸素含有量4000質量ppm以下のR−T−B系合金粉末(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)は、公知のR−T−B系合金粉末の組成、製造方法によって製造されたR−T−B系合金粉末を用いることができる。R−T−B系合金粉末は、所定の組成となるように一種類の合金粉末を用いる場合や、組成の異なる二種類の合金粉末(第一合金粉末と第二合金粉末)を準備してそれらを混合することで所定の組成にする場合などがある。例えば、一種類の合金粉末を用いる場合、R:10原子%〜30原子%、B0.5原子%〜28原子%、残部:Fe、および不可避的不純物を含有するR−T−B系合金の溶湯を作成する。このR−T−B系合金の溶湯をストリップキャスト法によって、10〜10℃/秒の冷却速度で厚さ0.03mm〜10mmの薄板状に急冷凝固を行い、さらに水素粉砕法によって粗粉砕して粒度が数百μm程度の粗粉砕粉末を作製する。そして前記粗粉砕粉末をジェットミルにより平均粒径が3〜7μm程度に微粉砕して、R−T−B系合金粉末を準備する。なお、「平均粒径」とは、体積中位径(メジアン径)を指す。酸素含有量が4000質量ppm以下のR−T−B系合金粉末を準備するためには、上述の微粉砕は、不活性ガス(例えばN、ArやHeなど)を用いたジェットミルによって行うことが好ましい。この不活性ガス中の酸素濃度は、2000質量ppm以下に管理することが好ましい。
[Formation step of compression-molding an RTB-based sintered magnet alloy powder having an oxygen content of 4000 mass ppm or less, thereby producing a compact]
First, an RTB-based alloy powder having an oxygen content of 4000 mass ppm or less is prepared. R-T-B type alloy powder having an oxygen content of 4000 mass ppm or less (R is at least one rare earth element (including yttrium (Y)) and necessarily contains neodymium (Nd), and T is iron (Fe) or iron And cobalt (Co) and B means boron) can be used R-T-B type alloy powder produced by a known R-T-B type alloy powder composition and production method. As the RTB-based alloy powder, one type of alloy powder is used so as to have a predetermined composition, or two types of alloy powders (first alloy powder and second alloy powder) having different compositions are prepared. There are cases where a predetermined composition is obtained by mixing them. For example, when one kind of alloy powder is used, an R-TB alloy containing R: 10 atomic% to 30 atomic%, B 0.5 atomic% to 28 atomic%, balance: Fe, and inevitable impurities is used. Create molten metal. The melt of the RTB-based alloy is rapidly solidified into a thin plate having a thickness of 0.03 mm to 10 mm at a cooling rate of 10 2 to 10 4 ° C / second by a strip casting method, and further roughened by a hydrogen pulverization method. A coarsely pulverized powder having a particle size of about several hundred μm is prepared by pulverization. Then, the coarsely pulverized powder is finely pulverized to a mean particle size of about 3 to 7 μm by a jet mill to prepare an RTB-based alloy powder. The “average particle diameter” refers to the volume median diameter (median diameter). In order to prepare an RTB-based alloy powder having an oxygen content of 4000 mass ppm or less, the above-described fine pulverization is performed by a jet mill using an inert gas (for example, N 2 , Ar, He, or the like). It is preferable. The oxygen concentration in the inert gas is preferably controlled to 2000 ppm by mass or less.

得られたR−T−B系合金粉末に対して脂肪酸エステルなどを主成分とする液体潤滑剤を添加することが好ましい。液体潤滑剤を添加することでR−T−B系合金粉末の粉末粒子の酸化を防止するとともに、成形に際して成形体の密度を均一化し、配向の乱れを抑制することができる。   It is preferable to add a liquid lubricant containing a fatty acid ester or the like as a main component to the obtained RTB-based alloy powder. By adding the liquid lubricant, it is possible to prevent oxidation of the powder particles of the RTB-based alloy powder, to uniformize the density of the formed body at the time of forming, and to suppress disorder of orientation.

次に、得られたR−T−B系合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。   Next, molding is performed in a magnetic field using the obtained RTB-based alloy powder to obtain a compact. Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into a mold cavity and molding is performed while a magnetic field is applied. The slurry is injected into the mold cavity and the slurry dispersion medium is discharged. Any known forming method in a magnetic field may be used, including a wet forming method.

[成形体の表面全体に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程]
得られた成形体に油剤を噴霧する。成形体への噴霧は、成形体の表面全体に油剤が噴霧されるように、成形体の形状、寸法や一回に噴霧する成形体の個数に応じて、噴霧器の設置場所、設置個数を任意で決めて噴霧を行う。なお、本発明において「成形体の表面全体」とは、成形体を構成する全ての面であり、例えばブロック形状では6面、円柱形状では外周面と2つの端面である。そのため、通常、噴霧を行う時は、成形体が載置されている面以外の成形体の表面(ブロック形状なら5面、円柱形状なら外周面と一つの端面)に噴霧を行った後、成形体を反転させるなどして成形体が載置されている面を噴霧することで、成形体の表面全体に油剤を噴霧する。さらに「噴霧する」とは、油剤を霧状にして吹付けることをいい、所定の圧力、噴霧量、噴霧時間で噴霧することができる公知の噴霧器を用いて行うことができる。
[A spraying step of spraying the oil agent over the entire surface of the molded body at a pressure of 0.2 MPa to 0.4 MPa, a spray amount of 1 L / hr to 2 L / hr, and a spray time of 3 seconds to 6 seconds]
An oil agent is sprayed on the obtained molded body. Depending on the shape and size of the molded body and the number of molded bodies sprayed at one time, the sprayer can be sprayed onto the molded body at any location so that the oil agent is sprayed over the entire surface of the molded body. Decide on and spray. In the present invention, “the entire surface of the molded body” refers to all surfaces constituting the molded body, for example, six surfaces in a block shape, and an outer peripheral surface and two end surfaces in a cylindrical shape. Therefore, normally when spraying, after spraying on the surface of the molded body other than the surface on which the molded body is placed (five surfaces for block shape, outer peripheral surface and one end surface for cylindrical shape) The oil agent is sprayed on the entire surface of the molded body by spraying the surface on which the molded body is placed by inverting the body. Further, “spraying” refers to spraying the oil agent in a mist form, and can be performed using a known sprayer that can spray at a predetermined pressure, spray amount, and spray time.

油剤は、イソパラフィンに代表される石油系溶剤やナフテン系溶剤、カプロン酸メチル、カプリル酸メチル、ラウリ酸メチルなどの脂肪酸エステル、高級アルコール、高級脂肪酸などの飽和炭化水素系溶剤を用いることができる。さらに、前記飽和炭化水素系溶剤に限らず、α―ピネン、シクロブテン、シクロヘキサン、ジエチルベンゼンなどから形成される不飽和炭化水素系溶剤を用いることもできる。ただし、不飽和炭化水素系溶剤は、粉砕工程を経て活性な表面が露出した状態の粉体と反応する可能性があるため、飽和炭化水素系溶剤を用いることが好ましい。   As the oil agent, petroleum solvents such as isoparaffin, naphthene solvents, fatty acid esters such as methyl caproate, methyl caprylate and methyl laurate, saturated hydrocarbon solvents such as higher alcohols and higher fatty acids can be used. Furthermore, not only the saturated hydrocarbon solvent, but also an unsaturated hydrocarbon solvent formed from α-pinene, cyclobutene, cyclohexane, diethylbenzene or the like can be used. However, since the unsaturated hydrocarbon solvent may react with the powder in which the active surface is exposed through the pulverization step, it is preferable to use a saturated hydrocarbon solvent.

本発明は、成形体の表面全体に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する。圧力、噴霧量、噴霧時間が上記範囲からはずれると、成形体にかかる油剤の量が少なすぎて成形体が発火したり、逆に、成形体にかかる油剤の量が多くなり噴霧であっても成形体表面に多量の油剤が付着して本発明の効果を得ることができない恐れがある。なお、圧力、噴霧量、噴霧時間の上記範囲は、一つの噴霧器の噴霧条件である。成形体の形状、寸法や一回に噴霧する成形体の個数により複数個の噴霧器を用いる場合は、ひとつひとつの噴霧器の圧力、噴霧量、噴霧時間を上記範囲内になるように設定する。また、油剤と混合する気体は、成形体が発火しないように酸素ではなく不活性ガス(NやAr)を用いる。 In the present invention, the oil agent is sprayed on the entire surface of the molded body at a pressure of 0.2 MPa to 0.4 MPa, a spray amount of 1 L / hr to 2 L / hr, and a spray time of 3 seconds to 6 seconds. If the pressure, spray amount, and spray time deviate from the above ranges, the amount of oil applied to the molded body will be too small and the molded body will ignite, or conversely, the amount of oil applied to the molded body will increase and spraying may occur. There is a possibility that a large amount of the oil agent adheres to the surface of the molded body and the effect of the present invention cannot be obtained. In addition, the said range of a pressure, the amount of spraying, and the spraying time is the spraying conditions of one sprayer. When using a plurality of sprayers depending on the shape and size of the molded body and the number of molded bodies sprayed at one time, the pressure, spray amount, and spray time of each sprayer are set to be within the above ranges. Further, as the gas mixed with the oil agent, an inert gas (N 2 or Ar) is used instead of oxygen so that the molded body does not ignite.

[成形体を油剤が含浸された板状部材に載置して、前記板状部材に接した面以外の成形体の表面に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程]
好ましくは、成形体を油剤が含浸された板状部材に載置して、前記板状部材に接した面以外の成形体の表面に油剤を噴霧する。
本発明における好ましい噴霧形態を図1に示す。図1に示すように、油剤が含浸された板状部材2に成形体1を載置して板状部材2に接した面以外の成形体1の表面に対し、噴霧器3を二か所配置して油剤4を噴霧する。これにより、一回の噴霧で成形体の表面を油剤で覆うことができる。板状部材2に油剤が含浸されていない場合、板状部材2に接している成形体1の面(以下、「接触面」と記載する場合がある)には油剤が付着しないため、上述したように、接触面以外の成形体の表面を噴霧した後、もう一回、成形体1を反転させるなどして接触面を噴霧する。よって、成形体1を反転させる工程が必要になるうえ、反転させる際に欠けの発生を招く恐れがある。そのため、噴霧工程の工数削減(2回から1回に)や成形体を反転させるときの欠けの発生を防止するには、板状部材2は油剤を含浸する部材で構成することが好ましく、例えばフェルトやスポンジ等により構成することで油剤を含浸させることができる。
[The molded body is placed on a plate-like member impregnated with an oil agent, and the oil is applied to the surface of the molded body other than the surface in contact with the plate-like member with a pressure of 0.2 MPa to 0.4 MPa and a spray amount of 1 L / hr. Spraying step of spraying at 2 L / hr or less and spraying time of 3 seconds or more and 6 seconds or less]
Preferably, the molded body is placed on a plate-like member impregnated with an oil agent, and the oil agent is sprayed on the surface of the molded body other than the surface in contact with the plate-like member.
A preferred spray form in the present invention is shown in FIG. As shown in FIG. 1, two sprayers 3 are arranged on the surface of the molded body 1 other than the surface in contact with the plate-shaped member 2 by placing the molded body 1 on the plate-shaped member 2 impregnated with the oil. Then, the oil agent 4 is sprayed. Thereby, the surface of a molded object can be covered with an oil agent by spraying once. When the plate-like member 2 is not impregnated with the oil agent, the oil agent does not adhere to the surface of the molded body 1 that is in contact with the plate-like member 2 (hereinafter sometimes referred to as “contact surface”). Thus, after spraying the surface of the molded body other than the contact surface, the contact surface is sprayed again, for example, by reversing the molded body 1. Therefore, a step of reversing the molded body 1 is required, and there is a risk of occurrence of chipping when reversing. Therefore, in order to reduce the number of steps in the spraying process (from 2 times to 1 time) and to prevent the occurrence of chipping when the molded body is reversed, the plate-like member 2 is preferably composed of a member impregnated with an oil agent. The oil agent can be impregnated by using a felt or sponge.

さらに好ましい噴霧形態を図2に示す。図2に示す様に、油剤が含浸された板状部材2に成形体1を載置し、容器5にて成形体1を覆い、容器5内にて噴霧器3により噴霧を行う。容器5は、成形体を完全に密閉してもよいし、図2のように板状部材2との間に隙間が空いてもよい。容器5内で噴霧することにより、噴霧した霧状の油剤4が容器5に当たり、噴霧した方向以外の成形体表面にも霧状の油剤が回り込むため、容器5を用いない場合と比べて油剤を効率的に成形体の表面に覆うことができる。そのため、容器5の形状は、噴霧器から噴霧された霧状の油剤が、容器に当たるように、噴霧器の設置個数、設置場所に応じて作製する。さらに、図3、図4に例を示す。図3は、油剤が含浸された板状部材2に載置した成形体6を上面から見たものであり、噴霧器3の設置場所を○印で示す。図3に示すように、板状部材2に成形体6が4つ載置されている。そして、接触面以外の成形体の表面に油剤を噴霧するために、噴霧器3を4箇所設置している。これに対し、図3と同じ成形体6を図4に示すように噴霧器3から噴霧された霧状の油剤が容器に当たるように設定した容器5を用いて成形体6を覆う。図4の場合では容器5内で油剤を噴霧することにより、噴霧器3を2個設置して噴霧すれば成形体6の表面を油剤で覆うことができる。このように容器5を用いることにより、噴霧器の設置個数を減らすことができる。   A more preferred spray form is shown in FIG. As shown in FIG. 2, the molded body 1 is placed on a plate-like member 2 impregnated with an oil agent, the molded body 1 is covered with a container 5, and spraying is performed in the container 5 with a sprayer 3. The container 5 may completely seal the molded body, or a gap may be left between the plate-like member 2 as shown in FIG. By spraying in the container 5, the sprayed mist oil 4 hits the container 5, and the mist oil wraps around the surface of the molded body other than the sprayed direction. The surface of the molded body can be efficiently covered. Therefore, the shape of the container 5 is prepared according to the number of installed sprayers and the place of installation so that the mist-like oil sprayed from the sprayer hits the container. Further, examples are shown in FIGS. FIG. 3 is a top view of the molded body 6 placed on the plate-like member 2 impregnated with the oil, and the installation location of the sprayer 3 is indicated by a circle. As shown in FIG. 3, four molded bodies 6 are placed on the plate-like member 2. And in order to spray an oil agent on the surface of a molded object other than a contact surface, the sprayer 3 is installed in four places. On the other hand, as shown in FIG. 4, the molded body 6 is covered with a container 5 set so that the mist-like oil sprayed from the sprayer 3 hits the container as shown in FIG. 4. In the case of FIG. 4, the surface of the molded body 6 can be covered with the oil agent by spraying the oil agent in the container 5 and installing and spraying two sprayers 3. By using the container 5 in this way, the number of sprayers installed can be reduced.

[成形体を焼結させる工程]
成形体を焼結する工程は、公知のR−T−B系焼結磁石の製造方法と同様の方法を用いることができる。例えば、250℃で1.5時間の脱油工程を行い成形体から油剤を除去し、1040℃で6時間の処理を行う。本発明は、成形体の表面全体および焼結板等に多量の油剤がつかないため、脱油工程の処理時間を短縮させることができる。なお、焼結時の雰囲気による酸化を防止するために、雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスにより置換しておくことが好ましい。
[Process of sintering the compact]
For the step of sintering the formed body, a method similar to a known method for producing an RTB-based sintered magnet can be used. For example, a deoiling process is performed at 250 ° C. for 1.5 hours to remove the oil agent from the molded body, and a treatment is performed at 1040 ° C. for 6 hours. In the present invention, since a large amount of oil agent is not applied to the entire surface of the molded body and the sintered plate, the processing time of the deoiling process can be shortened. In order to prevent oxidation due to the atmosphere during sintering, the atmosphere gas is preferably replaced with an inert gas such as helium or argon.

さらに、焼結後のR−T−B系焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などの熱処理条件は、公知の条件(例えば、500℃で3時間)を用いることができる。なお、最終的な磁石寸法の調整を研削などの機械加工等により行ってもよい。この場合、熱処理の前に行っても、後に行ってもよい。   Furthermore, it is preferable to perform a heat treatment for the purpose of improving magnetic properties on the sintered RTB-based sintered magnet. Known conditions (eg, 3 hours at 500 ° C.) can be used as the heat treatment conditions such as the heat treatment temperature and the heat treatment time. Note that final magnet dimension adjustment may be performed by machining such as grinding. In this case, it may be performed before or after the heat treatment.

(実施例1)
Nd22.3%、Pr6.2%、Dy4.0%、B1.0%、Co0.9%、Cu0.1%、Al0.2%、Ga0.1%残部Fe(単位は質量%)の組成を有する合金の溶湯を高周波溶解炉によって溶解し、ストリップキャスト法によって厚さ0.2mm〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた前記粗粉砕粉末を粉砕室内の酸素濃度が50ppm以下となるように管理されたジェットミルによって微粉砕粉を行い、平均粒径が4.0μmの粉末を作製した。得られた微粉砕粉の含有酸素濃度は約1000ppmであった。なお、「平均粒径」とは、体積中位径(メジアン径)を指す。
Example 1
The composition of Nd 22.3%, Pr 6.2%, Dy 4.0%, B 1.0%, Co 0.9%, Cu 0.1%, Al 0.2%, Ga 0.1% balance Fe (unit: mass%). The molten alloy was melted by a high frequency melting furnace, and a flaky raw material alloy having a thickness of 0.2 mm to 0.4 mm was obtained by a strip casting method. The obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere and then subjected to dehydrogenation treatment by heating and cooling to 550 ° C. in a vacuum to obtain coarsely pulverized powder. The coarsely pulverized powder thus obtained was finely pulverized by a jet mill controlled so that the oxygen concentration in the pulverization chamber was 50 ppm or less, and a powder having an average particle diameter of 4.0 μm was produced. The oxygen content of the finely pulverized powder obtained was about 1000 ppm. The “average particle diameter” refers to the volume median diameter (median diameter).

次に、ロッキングミキサーを用い、前記微粉砕粉に対して0.4質量%の液体潤滑剤を添加した後、磁界中で成形し、長さ30mm×幅10mm×厚さ10mmの成形体を得た。成形体密度は、4.3〜4.4g/cmであった。 Next, using a rocking mixer, 0.4% by mass of a liquid lubricant is added to the finely pulverized powder, and then molded in a magnetic field to obtain a molded body of length 30 mm × width 10 mm × thickness 10 mm. It was. The compact density was 4.3 to 4.4 g / cm 3 .

次に得られた成形体に対して図5のようにして油剤を噴霧した。図5は、板状部材12に載置した成形体10(長さ30mm×幅10mm×厚さ10mm)を上面から見たものであり、噴霧器13の設置場所を○印で示す。板状部材12は、フッ素樹脂製の板の上に油剤を含浸させたフェルトを置くことで構成している。図5に示すように、板状部材12に成形体10が6つ載置されている。そして、接触面以外の成形体10の表面に油剤を噴霧するために噴霧器13を4箇所設置している。なお、噴霧器13は4箇所以下(3箇所、2箇所、1箇所)の設置では、全ての成形体10(6個)の表面(接触面以外)に油剤を噴霧することができなかった。油剤は、イソパラフィンを用いた。油剤を噴霧した圧力、噴霧量、噴霧時間を表1の「圧力(MPa)」、「噴霧量(L/hr)」、「噴霧時間(秒)」に示す。なお、表1の圧力、噴霧量、噴霧時間は、ひとつの噴霧器における圧力、噴霧量、噴霧時間であり、4箇所とも同等である。また、表1の試料No.15は、成形体に対して噴霧を行わず、油剤(イソパラフィン)の入った槽内へ成形体を投入し、3秒間槽内で成形体を保持した後取り出した。また、表1の試料No.16は、板状部材12をフッ素樹脂製の板のみ(油剤を含浸させたフェルトはなし)で構成し、噴霧器13により接触面以外の成形体10の表面を噴霧した後、さらに、成形体を反転させて、接触面を噴霧器13により噴霧した。   Next, the oil was sprayed on the resulting molded body as shown in FIG. FIG. 5 is a top view of the molded body 10 (length 30 mm × width 10 mm × thickness 10 mm) placed on the plate-like member 12, and the installation location of the sprayer 13 is indicated by a circle. The plate member 12 is configured by placing a felt impregnated with an oil on a fluororesin plate. As shown in FIG. 5, six molded bodies 10 are placed on the plate-like member 12. And four sprayers 13 are installed in order to spray the oil on the surface of the molded body 10 other than the contact surface. In addition, when the sprayer 13 was installed at four places or less (3 places, 2 places, 1 place), the oil agent could not be sprayed on the surface (other than the contact surface) of all the molded bodies 10 (six pieces). Isoparaffin was used as the oil. The pressure, spray amount, and spray time at which the oil was sprayed are shown in “Pressure (MPa)”, “Spray amount (L / hr)”, and “Spray time (seconds)” in Table 1. Note that the pressure, spray amount, and spray time in Table 1 are the pressure, spray amount, and spray time in one sprayer, and are the same in all four locations. In addition, sample No. No. 15 did not spray the molded body, put the molded body into a tank containing an oil (isoparaffin), held the molded body in the tank for 3 seconds, and then removed it. In addition, sample No. 16 comprises the plate-like member 12 only with a fluororesin plate (no felt impregnated with an oil agent), and after spraying the surface of the molded body 10 other than the contact surface with the sprayer 13, the molded body is further inverted. The contact surface was sprayed by the sprayer 13.

Figure 2015070141
Figure 2015070141

次に油剤で覆われた成形体を室内の大気中に放置し、成形体温度を測定した。成形体の温度は、成形体の表面を温度計により測定した。成形体温度の上昇は、成形体中の希土類元素が酸化することで発熱が生じ温度が上昇する。噴霧後の成形体温度の上昇は、いずれの試料も噴霧後約2000秒経過後に停止した。なお、発熱が90℃以上になると発火が起こる恐れがあり危険なため成形体が90℃に達した時点で、安全のため成形体を破棄する必要がある。そのため、成形体の温度は、90℃未満にする必要がある。成形体温度の測定結果を表1の「温度(℃)」に示す。表1の温度(℃)は、噴霧後2000秒間における成形体温度の最高値を記載している。   Next, the molded body covered with the oil was left in the indoor atmosphere, and the temperature of the molded body was measured. The temperature of the compact was measured with a thermometer on the surface of the compact. The increase in the temperature of the molded body is due to oxidation of the rare earth element in the molded body, resulting in heat generation and an increase in temperature. The rise in the temperature of the molded body after spraying stopped for all the samples after about 2000 seconds had passed after spraying. It should be noted that if the heat generation exceeds 90 ° C., there is a risk that ignition may occur and it is dangerous. Therefore, when the molded body reaches 90 ° C., it is necessary to discard the molded body for safety. Therefore, the temperature of the molded body needs to be less than 90 ° C. The measurement result of the molded body temperature is shown in “temperature (° C.)” in Table 1. The temperature (° C.) in Table 1 describes the maximum value of the molded body temperature in 2000 seconds after spraying.

さらに、試料No.1〜16の噴霧条件(試料No.15は噴霧せず油剤槽内へ投入)で各120個成形体を油剤で噴霧した後、成形体を12個ずつ焼結板上に載置した。なお、焼結板上への成形体の載置はロボットアームを用いて成形体をつかむ圧力および成形体から焼結板上へ放す速さは全て一定にして行った。ロボットアームから成形体を離して焼結板上に載置した時に、成形体が焼結板上で滑り、成形体同士が衝突して発生する欠けの数をカウントした。カウント数を表1の「欠け数(個)」に示す。   Furthermore, sample no. After spraying 120 molded bodies with an oil agent under spraying conditions of 1 to 16 (sample No. 15 was not sprayed into the oil tank), 12 molded bodies were placed on the sintered plate. The compact was placed on the sintered plate at a constant pressure for gripping the compact using a robot arm and the speed of releasing the compact from the compact onto the sintered plate. When the molded body was separated from the robot arm and placed on the sintered plate, the number of chips generated by the molded body sliding on the sintered plate and colliding with each other was counted. The number of counts is shown in “Number of missing pieces” in Table 1.

次に油剤で表面が覆われた成形体に対して、250℃で脱油工程を行い、油剤を除去し、さらに1040℃で6時間の焼結処理を行った。油剤を除去するための脱油工程にかかった処理時間を表1の「油剤処理(時間)」に示す。なお、表1における油剤処理の時間は、焼結工程の終了後にC量を測定し、所定(例えば1000質量ppm未満)のC量となるための最短の処理時間を記載している。   Next, the molded body whose surface was covered with the oil agent was subjected to a deoiling process at 250 ° C. to remove the oil agent, and further subjected to a sintering treatment at 1040 ° C. for 6 hours. The processing time required for the deoiling step for removing the oil agent is shown in “Oil agent treatment (time)” in Table 1. In addition, the time of the oil agent treatment in Table 1 describes the shortest processing time for measuring the C amount after the end of the sintering step and obtaining a predetermined C amount (for example, less than 1000 ppm by mass).

焼結後のR−T−B系焼結磁石に対して、500℃で3時間の熱処理を行い、磁気特性を評価した。磁気特性は以下の様にして求めた。まず、試料No.1〜9、11、12、15、16のR−T−B系焼結磁石を各3個ずつ10mm×10mm×10mmに機械加工し、BHトレーサーで測定(室温20℃)を行い得られた3個の磁気特性の平均値により求めた。磁気特性は、試料No.1〜9、11、12、15、16共に、Br=1.35〜1.36T、HcJ=1730〜1780kA/mであった。なお、試料No.10、13、14は、成形体の温度が90℃になり発火の恐れがあるため成形体を破棄した。そのため、R−T−B系焼結磁石を作製することができず、磁気特性を測定することができなかった。 The sintered RTB-based sintered magnet was heat treated at 500 ° C. for 3 hours to evaluate the magnetic properties. The magnetic properties were determined as follows. First, sample no. It was obtained by machining three RTB type sintered magnets of 1 to 9, 11, 12, 15, 16 to 10 mm × 10 mm × 10 mm each and measuring with a BH tracer (room temperature 20 ° C.). It calculated | required by the average value of three magnetic characteristics. The magnetic characteristics are shown in Sample No. 1-9, 11, 12, 15, and 16 were Br = 1.35-1.36T and HcJ = 1730-1780 kA / m. Sample No. Nos. 10, 13, and 14 were discarded because the temperature of the molded body was 90 ° C. and could ignite. For this reason, an RTB-based sintered magnet could not be produced, and the magnetic properties could not be measured.

表1に示すように、本発明である試料No.1〜8および16は、成形体の欠けが発生しなかった。これに対し、油剤を噴霧する圧力、噴霧量、噴霧時間のいずれかがが本発明の上限を超えている試料No.9、11、12および、槽内へ成形体を投入した試料No.15は、欠けが発生した。また、油剤を噴霧する圧力、噴霧量、噴霧時間のいずれかが本発明の下限未満である試料No.10、13、14は、上述したように噴霧後の成形体温度が90℃へ発熱したため、発火の危険があり成形体を廃棄した。さらに、本発明は、比較例に比べて油剤処理にかかった処理時間を短縮することができた。   As shown in Table 1, Sample No. In Nos. 1 to 8 and 16, chipping of the molded product did not occur. In contrast, Sample No. in which any one of the pressure, spray amount, and spray time for spraying the oil exceeds the upper limit of the present invention. 9, 11, 12 and Sample No. No. 1 in which the molded body was put into the tank. In No. 15, chipping occurred. Sample No. 1 in which any of the pressure, spray amount, and spray time for spraying the oil is less than the lower limit of the present invention. Nos. 10, 13, and 14 had the molded body temperature after spraying heated to 90 ° C. as described above, and therefore, there was a risk of ignition and the molded body was discarded. Furthermore, the present invention was able to shorten the processing time required for oil treatment compared to the comparative example.

(実施例2)
図6に示すように成形体10が覆われた容器14内にて、噴霧器13を4個から2個に変更して噴霧を行ったこと以外は、実施例1の試料No.8と同様の条件でR−T−B系焼結磁石を作製した。なお、磁気特性も同様に測定し、B=1.35T、HcJ=1750kA/mであり、実施例1の試料No.8と同等であった。そして、実施例1と同じ条件で、成形体の温度、120個成形体を作製し焼結板上に載置したときに発生する欠けの数、油剤を除去するための脱油工程にかかった処理時間をそれぞれ測定した。結果を表2に示す。
(Example 2)
As shown in FIG. 6, sample No. 1 in Example 1 was used except that the sprayer 13 was changed from four to two in the container 14 covered with the molded body 10. An RTB-based sintered magnet was produced under the same conditions as in No. 8. The magnetic characteristics were also measured in the same manner as B r = 1.35 T and H cJ = 1750 kA / m. Equivalent to 8. And under the same conditions as in Example 1, the temperature of the molded body, the number of chips generated when 120 molded bodies were produced and placed on the sintered plate, it took a deoiling step to remove the oil agent. Each treatment time was measured. The results are shown in Table 2.

Figure 2015070141
Figure 2015070141

表2に示すように、成形体が覆われた容器内で油剤を噴霧することより4個の噴霧器から2個の噴霧器へ変更しても試料No.8と同様の効果を得ることができる。   As shown in Table 2, even if the number of sprayers is changed from four sprayers to two sprayers by spraying the oil in the container covered with the molded body, the sample No. The effect similar to 8 can be obtained.

(実施例3)
表3に示す第一合金粉末と第二合金粉末の組成になるように各原料を配合し、それぞれを溶解し、ストリップキャスト法によって厚さ0.2mm〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた第一合金粉末の粗粉砕粉末と第二合金粉末の粗粉砕粉末を表3の試料No.18〜21は、9:1、表3の試料No.22は、8:2の質量比でV型混合機に投入して混合し、混合粉末を得た。前記混合粉末を粉砕室内の酸素濃度が1000質量ppm以下となるようにしてジェットミルによって微粉砕粉を行い、平均粒径が3.0μmの粉末を作製した。得られた微粉砕粉の含有酸素濃度は約3000質量ppmであった。なお、「平均粒径」とは、質量中位径(メジアン径)を指すものする。
(Example 3)
Each raw material is blended so as to have the composition of the first alloy powder and the second alloy powder shown in Table 3, each is melted, and a flaky raw material alloy having a thickness of 0.2 mm to 0.4 mm is formed by strip casting. Obtained. The obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder. The coarsely pulverized powder of the first alloy powder and the coarsely pulverized powder of the second alloy powder thus obtained were sample Nos. 18 to 21 are 9: 1, sample No. No. 22 was put into a V-type mixer at a mass ratio of 8: 2 and mixed to obtain a mixed powder. The mixed powder was finely pulverized by a jet mill so that the oxygen concentration in the pulverization chamber was 1000 mass ppm or less, and a powder having an average particle size of 3.0 μm was produced. The oxygen content of the finely pulverized powder obtained was about 3000 ppm by mass. The “average particle diameter” refers to the mass median diameter (median diameter).

Figure 2015070141
Figure 2015070141

次に、ロッキングミキサを用い、前記微粉砕粉に対して0.4質量%の液体潤滑剤を添加した後、磁界中で成形し、長さ60mm×幅25mm×厚さ5mmの成形体を得た。成形体密度は、4.3〜4.5g/cmであった。 Next, using a rocking mixer, 0.4% by mass of a liquid lubricant is added to the finely pulverized powder, and then molded in a magnetic field to obtain a molded body of length 60 mm × width 25 mm × thickness 5 mm. It was. The compact density was 4.3 to 4.5 g / cm 3 .

次に、得られた成形体に対して、実施例1の試料No.1と同じ条件で成形体に対して油剤を噴霧した。噴霧後の成形体に対して250℃で脱油工程を行い、油剤を除去し、さらに1050℃で2時間の焼結処理を行った。焼結後のR−T−B系焼結磁石に対して、480℃で3時間の熱処理を行い、磁気特性を測定した。得られたR−T−B系焼結磁石の組成および磁気特性(B(T)、HcJ(kA/m))の結果を表3に示す。なお、磁気特性の測定方法は、実施例1と同様である。 Next, with respect to the obtained molded body, the sample No. The oil agent was sprayed on the molded body under the same conditions as in 1. The sprayed molded body was deoiled at 250 ° C. to remove the oil agent, and further subjected to a sintering treatment at 1050 ° C. for 2 hours. The sintered RTB-based sintered magnet was heat treated at 480 ° C. for 3 hours, and the magnetic properties were measured. Table 3 shows the composition and magnetic properties (B r (T), H cJ (kA / m)) of the obtained RTB -based sintered magnet. The method for measuring the magnetic properties is the same as in Example 1.

さらに、実施例1と同じ条件で、成形体温度、120個成形体を作製し焼結板上に載置したときに発生する欠けの数、油剤を除去するための脱油工程にかかった処理時間をそれぞれ測定した。結果を表4に示す。   Further, under the same conditions as in Example 1, the molded body temperature, the number of chips generated when 120 molded bodies were produced and placed on the sintered plate, the treatment according to the deoiling process for removing the oil agent Each time was measured. The results are shown in Table 4.

Figure 2015070141
Figure 2015070141

表4に示す通り、試料No.18〜22いずれの実施例も試料No.1と同等の成形体温度、油剤処理時間であり、欠けも発生しなかった。   As shown in Table 4, Sample No. In any of Examples 18 to 22, sample No. The molded body temperature and the oil treatment time were the same as those of No. 1, and no chipping occurred.

Claims (3)

酸素含有量4000質量ppm以下のR−T−B系焼結磁石用合金粉末(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)を圧縮成形し、それによって成形体を作製する成形工程と、
前記成形体の表面全体に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程と、
前記噴霧工程後の成形体を焼結する焼結工程と、
を含むR−T−B系焼結磁石の製造方法。
Alloy powder for RTB-based sintered magnet having an oxygen content of 4000 ppm by mass or less (R is at least one rare earth element (including yttrium (Y)), and it always includes neodymium (Nd), and T is iron ( Fe) or iron and cobalt (Co), B means boron), thereby forming a molded body,
A spraying step of spraying the oil agent over the entire surface of the molded body at a pressure of 0.2 MPa or more and 0.4 MPa or less, a spray amount of 1 L / hr or more and 2 L / hr or less, a spraying time of 3 seconds or more and 6 seconds or less;
A sintering step of sintering the compact after the spraying step;
The manufacturing method of the RTB type | system | group sintered magnet containing this.
酸素含有量4000質量ppm以下のR−T−B系焼結磁石用合金粉末(Rは希土類元素(イットリウム(Y)を含む)の少なくとも1種でネオジム(Nd)を必ず含み、Tは鉄(Fe)または鉄とコバルト(Co)、Bはホウ素を意味する)を圧縮成形し、それによって成形体を作製する成形工程と、
前記成形体を前記油剤が含浸された板状部材に載置して、前記板状部材に接した面以外の成形体の表面に油剤を圧力0.2MPa以上0.4MPa以下、噴霧量1L/hr以上2L/hr以下、噴霧時間3秒以上6秒以下で噴霧する噴霧工程と、
前記噴霧工程後の成形体を焼結する焼結工程と、
を含むR−T−B系焼結磁石の製造方法。
Alloy powder for RTB-based sintered magnet having an oxygen content of 4000 ppm by mass or less (R is at least one rare earth element (including yttrium (Y)), and it always includes neodymium (Nd), and T is iron ( Fe) or iron and cobalt (Co), B means boron), thereby forming a molded body,
The molded body is placed on a plate-like member impregnated with the oil agent, and the oil agent is applied to the surface of the molded body other than the surface in contact with the plate-like member at a pressure of 0.2 MPa to 0.4 MPa and a spray amount of 1 L / a spraying step of spraying at a time of not less than hr and not more than 2 L / hr, a spraying time of not less than 3 seconds and not more than 6 seconds;
A sintering step of sintering the compact after the spraying step;
The manufacturing method of the RTB type | system | group sintered magnet containing this.
前記噴霧工程は、容器にて成形体を覆い、前記容器内にて噴霧を行うことを特徴とする、請求項1または2に記載のR−T−B系焼結磁石の製造方法。

The said spraying process covers a molded object with a container, and sprays in the said container, The manufacturing method of the RTB type | system | group sintered magnet of Claim 1 or 2 characterized by the above-mentioned.

JP2013203819A 2013-09-30 2013-09-30 Method for producing RTB-based sintered magnet Active JP6222518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013203819A JP6222518B2 (en) 2013-09-30 2013-09-30 Method for producing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203819A JP6222518B2 (en) 2013-09-30 2013-09-30 Method for producing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2015070141A true JP2015070141A (en) 2015-04-13
JP6222518B2 JP6222518B2 (en) 2017-11-01

Family

ID=52836541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203819A Active JP6222518B2 (en) 2013-09-30 2013-09-30 Method for producing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6222518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022042969A (en) * 2020-09-03 2022-03-15 煙台東星磁性材料株式有限公司 Atomizing device and atomizing method of additives to neodymium-iron-boron-based alloy powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325962A (en) * 1993-05-13 1994-11-25 Hitachi Metals Ltd Wet molding equipment of rare earth magnet
JP2000012317A (en) * 1998-06-23 2000-01-14 Sankyo Seiki Mfg Co Ltd Magnet and its manufacture
JP2006156789A (en) * 2004-11-30 2006-06-15 Tdk Corp Process for producing small ring magnet
WO2006098238A1 (en) * 2005-03-14 2006-09-21 Neomax Co., Ltd. Method for producing rare earth magnet and impregnation apparatus
JP2006281063A (en) * 2005-03-31 2006-10-19 Tdk Corp Fixture for surface treatment and surface treatment method
WO2012105399A1 (en) * 2011-01-31 2012-08-09 日立金属株式会社 Method for producing r-t-b system sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325962A (en) * 1993-05-13 1994-11-25 Hitachi Metals Ltd Wet molding equipment of rare earth magnet
JP2000012317A (en) * 1998-06-23 2000-01-14 Sankyo Seiki Mfg Co Ltd Magnet and its manufacture
JP2006156789A (en) * 2004-11-30 2006-06-15 Tdk Corp Process for producing small ring magnet
WO2006098238A1 (en) * 2005-03-14 2006-09-21 Neomax Co., Ltd. Method for producing rare earth magnet and impregnation apparatus
JP2006281063A (en) * 2005-03-31 2006-10-19 Tdk Corp Fixture for surface treatment and surface treatment method
WO2012105399A1 (en) * 2011-01-31 2012-08-09 日立金属株式会社 Method for producing r-t-b system sintered magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022042969A (en) * 2020-09-03 2022-03-15 煙台東星磁性材料株式有限公司 Atomizing device and atomizing method of additives to neodymium-iron-boron-based alloy powder
JP7280007B2 (en) 2020-09-03 2023-05-23 煙台東星磁性材料株式有限公司 Apparatus and method for spraying additive to Nd--Fe--B alloy powder
US11986836B2 (en) 2020-09-03 2024-05-21 Yantai Dongxing Magnetic Materials Inc. Device and method for the addition of liquid additives in the form of a spray during a jet milling step in a process for the manufacture of sintered NdFeB alloy magnets

Also Published As

Publication number Publication date
JP6222518B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP5874951B2 (en) Method for producing RTB-based sintered magnet
JP6409867B2 (en) Rare earth permanent magnet
JP2013216965A (en) Alloy for r-t-b-based rare earth sintered magnet, method for manufacturing the same, alloy material for the same, r-t-b-based rare earth sintered magnet, method for manufacturing the same, and motor
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
KR20150052153A (en) Production method for rare earth permanent magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
KR20150048233A (en) Production method for rare earth permanent magnet
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP6946905B2 (en) Diffusion source
JP7396148B2 (en) Manufacturing method of RTB based sintered magnet
JP6946904B2 (en) Diffusion source
JP5744286B2 (en) R-T-B Rare Earth Sintered Magnet Alloy and R-T-B Rare Earth Sintered Magnet Alloy Manufacturing Method
JP6222518B2 (en) Method for producing RTB-based sintered magnet
JP5967010B2 (en) Manufacturing method of rare earth sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2011082365A (en) R-t-b-based sintered magnet
JP2006283100A (en) Method for cutting rare earth alloy powder molding
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JP3456958B2 (en) Method for producing R-Fe-B based sintered magnet, and method for preparing and storing alloy powder material for R-Fe-B based sintered magnet
KR102589870B1 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6222518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350