JP2011082365A - R-t-b-based sintered magnet - Google Patents

R-t-b-based sintered magnet Download PDF

Info

Publication number
JP2011082365A
JP2011082365A JP2009233839A JP2009233839A JP2011082365A JP 2011082365 A JP2011082365 A JP 2011082365A JP 2009233839 A JP2009233839 A JP 2009233839A JP 2009233839 A JP2009233839 A JP 2009233839A JP 2011082365 A JP2011082365 A JP 2011082365A
Authority
JP
Japan
Prior art keywords
sintered magnet
magnetization
crystal grains
compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009233839A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujimori
信彦 藤森
Tomoki Fukagawa
智機 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009233839A priority Critical patent/JP2011082365A/en
Publication of JP2011082365A publication Critical patent/JP2011082365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an R-T-B-based sintered magnet with superior magnetization capable of achieving high magnetization, even in a low magnetization magnetic field. <P>SOLUTION: In the R-T-B-based sintered magnet for improving its magnetization, the ratio of the number of crystal particles wherein no R<SB>2</SB>O<SB>3</SB>compound exists even between adjoining two particles, to the total number of crystal particles forming the sintered magnet is 50 to 100%. Preferably, the ratio is 70 to 100%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低着磁磁界でも大きな着磁性を達成できる着磁性のよいR−T−B系焼結磁石に関する。   The present invention relates to an R-T-B type sintered magnet with good magnetization that can achieve high magnetization even with a low magnetization field.

R−T−B系焼結磁石(RはYを含む希土類元素、TはFeまたはFeとCo、Bはボロンを指す)は、回転モータ、リニアモータ、ボイスコイルモータ(VCM)等の用途に広く用いられている。   R-T-B sintered magnets (R is a rare earth element including Y, T is Fe or Fe and Co, and B is boron) for applications such as rotary motors, linear motors, and voice coil motors (VCM) Widely used.

モータ用R−T−B系焼結磁石は、未着磁の状態でモータに組み込んだ後着磁する、所謂組立着磁を採用することが多く、R−T−B系焼結磁石を実用上充分に着磁するに必要な強度の磁界を印加することが困難な場合がある。着磁が不充分な磁石は、所望の磁気特性(特に残留磁束密度)を有しない。   R-T-B system sintered magnets for motors often employ so-called assembly magnetization that is magnetized after being incorporated in a motor in an unmagnetized state. In addition, it may be difficult to apply a magnetic field having a strength necessary for sufficient magnetization. A magnet with insufficient magnetization does not have the desired magnetic properties (particularly residual magnetic flux density).

低着磁磁界でも大きな着磁性を達成できる着磁性のよいR−T−B系焼結磁石を得るように着磁性向上を図る技術が種々提案されてきた。   Various techniques have been proposed for improving magnetization so as to obtain a highly magnetized R-T-B sintered magnet that can achieve a large magnetization even in a low magnetization field.

特許文献1では、希土類元素R中の軽希土類元素と重希土類元素の比率が違う二種類のR14B系合金を準備し、混合してから粉砕し、焼結することで、結晶粒中に重希土類元素RHが多いR14B相と、重希土類元素RHが少ないR14B相と、それらの中間量の重希土類元素RHを含有するR14B相とが混在するR−T−B系焼結磁石を作製する技術が開示されている。 In Patent Document 1, two types of R 2 T 14 B-based alloys having different ratios of light rare earth elements and heavy rare earth elements in the rare earth element R are prepared, mixed, pulverized, and sintered. and R 2 T 14 B phase is large heavy rare-earth element RH into a heavy rare-earth element RH is less R 2 T 14 B phase, and R 2 T 14 B phase containing the heavy rare-earth element RH in their intermediate amount A technique for producing a mixed RTB-based sintered magnet is disclosed.

特開2002−356701号公報JP 2002-356701 A

特許文献1では結晶粒中に重希土類元素RHが多いR14B相と、重希土類元素RHが少ないR14B相と、それらの中間量の重希土類元素RHを含有するR14B相とが混在するR−T−B系焼結磁石にて着磁性を改善するとしているが、特に組立着磁において所望の着磁性を得ることが困難であった。 And in the patent literature 1, the crystal grains heavy rare-earth element RH is often R 2 T 14 B phase, containing a heavy rare-earth element RH is less R 2 T 14 B phase, the heavy rare-earth element RH in their intermediate amount R 2 Although the magnetism is improved by the RTB-based sintered magnet in which the T 14 B phase is mixed, it is difficult to obtain the desired magnetization particularly in the assembly magnetization.

本発明者は、R−T−B系焼結磁石において、隣り合う結晶粒(R14B相)の2粒子間におけるR化合物の存在有無が着磁性に深く関係していることを知見し、その知見に基づき本発明を完成した。 In the R-T-B based sintered magnet, the present inventor is closely related to the magnetization by the presence or absence of the R 2 O 3 compound between two grains of adjacent crystal grains (R 2 T 14 B phase). Based on this knowledge, the present invention has been completed.

本発明は、R−T−B系焼結磁石において、隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数の割合が50%から100%とすることによって、着磁性の良いR−T−B系焼結磁石を提供することを目的とする。 In the R-T-B based sintered magnet, the ratio of the number of crystal grains in which no R 2 O 3 compound exists between any two adjacent crystal grains is 50% to 100%. It is an object of the present invention to provide an R-T-B based sintered magnet with good magnetization.

本発明は、R−T−B系焼結磁石において、焼結磁石を構成する結晶粒全数に対して、隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数の割合が50%から100%であるR−T−B系焼結磁石である。 In the R-T-B system sintered magnet according to the present invention, no R 2 O 3 compound is present in any of two adjacent crystal grains with respect to the total number of crystal grains constituting the sintered magnet. An RTB-based sintered magnet having a crystal grain number ratio of 50% to 100%.

本発明の好ましい実施形態として前記割合が70%から100%である。   In a preferred embodiment of the present invention, the ratio is 70% to 100%.

本発明により、低着磁磁界でも大きな着磁性を達成できる着磁性のよいR−T−B系焼結磁石を提供することができる。   According to the present invention, it is possible to provide an R-T-B sintered magnet having good magnetization that can achieve high magnetization even with a low magnetization field.

実施例の焼結磁石断面におけるSEM写真である。It is a SEM photograph in the sintered magnet cross section of an Example. 実施例の焼結磁石断面におけるSEM写真である。It is a SEM photograph in the sintered magnet cross section of an Example. 実施例の焼結磁石のTEM写真である。It is a TEM photograph of the sintered magnet of an Example. 比較例の焼結磁石断面におけるSEM写真である。It is a SEM photograph in the cross section of the sintered magnet of a comparative example. 比較例の焼結磁石のTEM写真である。It is a TEM photograph of the sintered magnet of a comparative example.

[組織]
本発明は、R−T−B系焼結磁石において、焼結磁石を構成する結晶粒全数に対して、隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数の割合が50%から100%となっている。R化合物は、結晶粒の2粒子間に存在するR化合物をいい、粒界三重点に存在するR化合物は請求項1の対象とはしない。すなわち、粒界三重点に存在するR化合物は着磁性には関係しないと考えられる。
[Organization]
In the R-T-B system sintered magnet according to the present invention, no R 2 O 3 compound is present in any of two adjacent crystal grains with respect to the total number of crystal grains constituting the sintered magnet. The ratio of the number of crystal grains is 50% to 100%. R 2 O 3 compound, refers to R 2 O 3 compounds present between two particles of the crystal grains, R 2 O 3 compounds present in the grain boundary triple point are not the eligible claim 1. That is, it is considered that the R 2 O 3 compound existing at the grain boundary triple point is not related to magnetism.

隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数を数え、隣り合う結晶粒の2粒子間のいずれかでR化合物が存在している結晶粒の数を数え、結晶粒全数に対して前記R化合物が存在しない結晶粒の数の割合を計算している。 In either between the crystal grains of 2 grains adjacent even count the number of crystal grains does not exist R 2 O 3 compound, R 2 O 3 compound either between 2 particles adjacent crystal grains are present The ratio of the number of crystal grains in which the R 2 O 3 compound does not exist is calculated with respect to the total number of crystal grains.

結晶粒の2粒子間に存在するR化合物は、粒状結晶になりやすく、2粒子粒界を押し拡げる(2粒子間にR化合物の瘤のようなものが存在し、いわゆる動脈瘤のような組織形状となる)。磁石を着磁した際、結晶粒の2粒子間に存在するR化合物は低磁界での逆磁区の発生の起点になり、結晶粒と2粒子間に存在するR化合物の存在によって磁石の着磁性が大きく変ってくると考えられる。) The R 2 O 3 compound existing between the two grains of the crystal grains tends to become granular crystals and expands the grain boundary of the two grains (there is an R 2 O 3 compound lumps between the two grains, so-called The tissue shape looks like an aneurysm). When the magnet is magnetized, the R 2 O 3 compound existing between the two grains of the crystal grains becomes the starting point of the occurrence of a reverse magnetic domain in a low magnetic field, and the R 2 O 3 compound existing between the crystal grains and the two grains It is thought that the magnetism of the magnet changes greatly depending on the existence. )

結晶粒全数に対してR化合物が存在していない結晶粒の数の割合が50%以上である場合、50%未満と比べて同じ強度の着磁磁界に対する着磁性が良好となる。 When the ratio of the number of crystal grains in which no R 2 O 3 compound is present to the total number of crystal grains is 50% or more, the magnetization with respect to the magnetizing magnetic field having the same strength is better than when the ratio is less than 50%.

好ましくは、結晶粒全数に対してR化合物が存在していない結晶粒の数の割合が70%以上100%以下である。 Preferably, the ratio of the number of crystal grains in which no R 2 O 3 compound is present to the total number of crystal grains is 70% or more and 100% or less.

[組成]
R−T−B系焼結磁石の組成の内、RはYを含む希土類元素であって、27.3質量%以上31.2質量%以下であることが好ましい。、重希土類元素RHであるDy、Tbの単独または両方を必要に応じて含有できる。Rが27.3質量%未満であると、焼結困難になるとともに、軟磁性相が生成しR−T−B系焼結磁石の保磁力を低下させる可能性がある。一方、Rが31.2質量%を超えると、R−T−B系焼結磁石の残留磁束密度が低下する。
[composition]
Among the compositions of the RTB-based sintered magnet, R is a rare earth element including Y, and is preferably 27.3 mass% or more and 31.2 mass% or less. , Dy, Tb, which are heavy rare earth elements RH, or both can be contained as required. When R is less than 27.3 mass%, sintering becomes difficult and a soft magnetic phase is generated, which may reduce the coercivity of the R-T-B system sintered magnet. On the other hand, if R exceeds 31.2% by mass, the residual magnetic flux density of the RTB-based sintered magnet is lowered.

Bは0.92質量%以上1.15質量%以下の範囲であることが好ましい。Bの量が0.92質量%未満では、軟磁性相が生成しR−T−B系焼結磁石の保磁力を低下させる可能性がある。一方、Bが1.15質量%を超えると、R−T−B系焼結磁石の残留磁束密度が低下する。   B is preferably in the range of 0.92% by mass to 1.15% by mass. If the amount of B is less than 0.92% by mass, a soft magnetic phase may be generated and the coercive force of the RTB-based sintered magnet may be reduced. On the other hand, when B exceeds 1.15 mass%, the residual magnetic flux density of the RTB-based sintered magnet is lowered.

Tは、残部であり、FeまたはFeおよびCoの1種または2種であり、Co含有量は20質量%以下が好ましい。TのうちCoが20質量%を超えると、R−T−B系焼結磁石の残留磁束密度が低下する。   T is the balance and is one or two of Fe, Fe and Co, and the Co content is preferably 20% by mass or less. When Co exceeds 20 mass% in T, the residual magnetic flux density of the RTB-based sintered magnet decreases.

添加元素Mとして、Al、Si、Ti、V、Cr、Mn、Ni、Zn、Zr、Nb、Mo、In、Ga、Sn、Hf、Ta、Cu、Wのうち少なくとも1種が含まれていても良い。添加量は2.0質量%以下が好ましい。   The additive element M includes at least one of Al, Si, Ti, V, Cr, Mn, Ni, Zn, Zr, Nb, Mo, In, Ga, Sn, Hf, Ta, Cu, and W. Also good. The addition amount is preferably 2.0% by mass or less.

以下に、本発明によるR−T−B系焼結磁石の製造方法について詳述する。   Below, the manufacturing method of the RTB system sintered magnet by this invention is explained in full detail.

[原料合金]
原料合金は、通常のインゴット鋳造法、ストリップキャスト法、直接還元法などの方法で得ることができる。ここで、焼結磁石において、結晶粒の2粒子間へのR化合物の生成を抑制するためには、R−T−B系合金作製直後の含有酸素量は少なくするのが好ましい。
[Raw material alloy]
The raw material alloy can be obtained by an ordinary ingot casting method, strip casting method, direct reduction method or the like. Here, in the sintered magnet, in order to suppress the formation of the R 2 O 3 compound between two grains of crystal grains, it is preferable to reduce the oxygen content immediately after the preparation of the R—T—B system alloy.

[粗粉砕]
原料合金の粗粉砕は、水素脆化処理が好ましい。これは、水素吸蔵に伴う合金の脆化現象と体積膨張現象を利用して合金に微細なクラックを生じさせ粉砕する方法である。本発明の原料合金では、主相とRリッチ相との水素吸蔵量の差、即ち体積変化量の差がクラック発生の要因となることから、主相の粒界で割れる確率が高くなる。これにより微粉砕工程での負荷が低減され、酸素を含む不純物の取り込みが抑制される。
[Coarse grinding]
The rough pulverization of the raw material alloy is preferably a hydrogen embrittlement treatment. This is a method in which fine cracks are generated in the alloy and pulverized using the embrittlement phenomenon and volume expansion phenomenon of the alloy accompanying hydrogen storage. In the raw material alloy of the present invention, the difference in the hydrogen storage amount between the main phase and the R-rich phase, that is, the difference in the volume change amount causes cracks, so the probability of cracking at the grain boundary of the main phase increases. Thereby, the load in the pulverization process is reduced, and the uptake of impurities including oxygen is suppressed.

水素脆化処理は、加圧水素に一定時間暴露することで行う。さらに、その後、温度を400℃以上800℃以下に上げて過剰な水素を放出させる処理を行う場合がある。水素脆化処理後の粗粉末は、多数のクラックを内包し、比表面積が大幅に増大していることもあって、非常に活性であり、大気中の取り扱いでは酸素量の増大が著しくなるので、He,
Arまたはこれらの混合ガスなどの不活性ガス中で取り扱うことが望ましい。また、高温では窒化反応も生じる可能性があるため、可能であればAr雰囲気中での取り扱いが好ましい。
The hydrogen embrittlement treatment is performed by exposing to pressurized hydrogen for a certain period of time. Furthermore, after that, the temperature may be raised to 400 ° C. or higher and 800 ° C. or lower so that excessive hydrogen is released. The coarse powder after hydrogen embrittlement treatment is very active because it contains many cracks and the specific surface area is greatly increased, and the amount of oxygen increases significantly when handled in the atmosphere. , He,
It is desirable to handle in an inert gas such as Ar or a mixed gas thereof. Further, since a nitriding reaction may occur at a high temperature, it is preferable to handle in an Ar atmosphere if possible.

[微粉砕]
微粉砕工程は、気流式粉砕機による乾式粉砕を用いることができる。この場合、一般には、酸化を抑制するために窒素または窒素を含む不活性ガスを用いるが、磁気特性の低下を防ぐことを目的に、酸化と窒化の両方を抑制するために窒素を含まないHe,Arまたはこれらの混合ガスを用いることが好ましい。
[Fine grinding]
In the fine pulverization step, dry pulverization using an airflow pulverizer can be used. In this case, in general, nitrogen or an inert gas containing nitrogen is used to suppress oxidation, but He does not contain nitrogen to suppress both oxidation and nitridation in order to prevent deterioration of magnetic properties. , Ar or a mixed gas thereof is preferably used.

他の微粉砕方法として、湿式粉砕法がある。具体的には、ボールミルやアトライターを用いることができる。この場合、酸素や炭素などの不純物を所定量以上取り込まないよう、粉砕媒体の選定や溶媒の選定、雰囲気の選定をすることができる。例えば、非常に小径のボールを用いて高速攪拌するビーズミルでは、短時間で微細化が可能であるため、不純物の影響を小さくでき、本発明に用いる微粉砕粉を得るには好ましい。   Another fine pulverization method is a wet pulverization method. Specifically, a ball mill or an attritor can be used. In this case, it is possible to select a grinding medium, a solvent, and an atmosphere so that impurities such as oxygen and carbon are not taken in over a predetermined amount. For example, a bead mill that stirs at a high speed using a very small-diameter ball can be miniaturized in a short time, so that the influence of impurities can be reduced, which is preferable for obtaining finely pulverized powder used in the present invention.

さらに、一旦気流式粉砕機により粗く乾式粉砕し、その後ビーズミルによる湿式粉砕を行うと、短時間での粉砕が可能なため粉末に取り込まれる酸素量を少なく抑えることができる。   Furthermore, once coarsely dry pulverizing with an airflow pulverizer and then wet pulverizing with a bead mill, the amount of oxygen taken into the powder can be reduced because pulverization is possible in a short time.

湿式粉砕で用いる溶媒は、原料合金との反応性、酸化抑止力、さらに焼結前の除去の容易さを考慮して選択する。例えば、有機溶剤、特にパラフィンなどの飽和炭化水素が好ましい。   The solvent used in the wet pulverization is selected in consideration of the reactivity with the raw material alloy, the oxidation deterrence, and the ease of removal before sintering. For example, organic solvents, particularly saturated hydrocarbons such as paraffin are preferred.

微粉砕粉の粒度分布が広いと均一な組織からなる焼結体が得られず、R化合物が発生しやすくなる恐れがある。従って、粒度は標準偏差(σ)で1μm以下であることが好ましい。 If the particle size distribution of the finely pulverized powder is wide, a sintered body having a uniform structure cannot be obtained, and the R 2 O 3 compound may be easily generated. Accordingly, the particle size is preferably 1 μm or less in terms of standard deviation (σ).

微粉砕工程後の搬送、保存では粉末の酸化抑制が重要である。これを実行するため、粉砕粉を油などの溶媒中に回収したり、酸素量が極めて少なくなるよう不活性ガス(He,Arまたはこれらの混合ガス)で制御した容器内で微粉砕粉を管理するのがよい。   In the conveyance and storage after the pulverization process, it is important to suppress oxidation of the powder. To do this, the pulverized powder is collected in a solvent such as oil, or the finely pulverized powder is managed in a container controlled with an inert gas (He, Ar, or a mixed gas thereof) so that the amount of oxygen is extremely small. It is good to do.

本発明では、成分の異なる複数種類のR−T−B系合金を用いて焼結磁石を作製する場合、成分の異なる複数種類のR−T−B系合金は別々に微粉砕し粉末にしてもよいし、粗粉砕後に成分の異なる複数種類のR−T−B系合金を混合してから微粉砕し粉末にしてもよい。   In the present invention, when a sintered magnet is produced using a plurality of types of R-T-B type alloys having different components, a plurality of types of R-T-B type alloys having different components are separately pulverized into powder. Alternatively, a plurality of types of RTB-based alloys having different components may be mixed after coarse pulverization and then finely pulverized into powder.

本実施形態では、前記粉砕方法で作製されたR−T−B系合金粉末を、例えばロッキングミキサー内で、ステアリン酸亜鉛等の酸化防止剤を適量添加・混合し、酸化防止剤で合金粉末粒子の表面を被覆することが好ましい。   In this embodiment, the RTB-based alloy powder produced by the pulverization method is added and mixed with an appropriate amount of an antioxidant such as zinc stearate in a rocking mixer, for example, and the alloy powder particles are added with the antioxidant. It is preferable to coat the surface.

[成形]
本発明の成形方法は、既知の方法を用いることができる。例えば、磁界中で前記微粉砕粉を金型にて加圧成形する方法である。酸素や炭素の取り込みを最小限とするため、潤滑剤等の使用は最小限にとどめることが望ましい。潤滑剤を用いる際は、焼結工程、またはその前に脱脂可能な、揮発性の高い潤滑剤を、公知のものから選択して用いてもよい。
[Molding]
A known method can be used for the molding method of the present invention. For example, it is a method in which the finely pulverized powder is pressure-molded with a mold in a magnetic field. In order to minimize the uptake of oxygen and carbon, it is desirable to minimize the use of lubricants. When the lubricant is used, a highly volatile lubricant that can be degreased before or during the sintering step may be selected from known ones.

微粉砕粉の酸化を抑制する方策として、微粉砕粉を溶媒に混合してスラリーを形成し、そのスラリーを磁界中成形に供することが好ましい。この場合、溶媒の揮発性を考慮し、次の焼結過程において、例えば250℃以下の真空中で完全に揮発させることが可能な、低分子量の炭化水素を選ぶことができる。特に、パラフィンなどの飽和炭化水素が好ましい。また、スラリーを形成する場合は、微粉砕粉を直接溶媒中に回収してスラリーとしてもよい。   As a measure for suppressing the oxidation of the finely pulverized powder, it is preferable that the finely pulverized powder is mixed with a solvent to form a slurry, and the slurry is subjected to molding in a magnetic field. In this case, considering the volatility of the solvent, a low molecular weight hydrocarbon that can be completely volatilized in a vacuum of, for example, 250 ° C. or lower in the subsequent sintering process can be selected. In particular, saturated hydrocarbons such as paraffin are preferable. When forming a slurry, the finely pulverized powder may be directly collected in a solvent to form a slurry.

[焼結]
焼結工程における雰囲気は、真空中または大気圧以下の不活性ガス雰囲気とする。ここでの不活性ガスとは、Ar及びまたはHeガスを指す。
[Sintering]
The atmosphere in the sintering process is an inert gas atmosphere in vacuum or at atmospheric pressure or lower. The inert gas here refers to Ar and / or He gas.

微粉砕工程や成形工程で用いた潤滑剤や溶媒を十分に除去するためには、300℃以下の温度域で30分以上8時間以下の時間、真空中または大気圧以下の不活性ガス中で保持し、脱脂処理を行った後、焼結することが好ましい。前記脱脂処理は、焼結工程とは独立に行うこともできるが、処理の効率、酸化防止等の観点から、脱脂処理後、連続して焼結を行うことが好ましい。前記脱脂工程では、前記大気圧以下の不活性ガス雰囲気で行うことが、脱脂効率上好ましい。また、さらに脱脂処理を効率的に行うため、水素雰囲気中の熱処理を行うこともできる。   In order to sufficiently remove the lubricant and solvent used in the pulverization process and the molding process, the temperature is 300 ° C. or less, the time is 30 minutes or more and 8 hours or less, in a vacuum or in an inert gas at atmospheric pressure or less. It is preferable to sinter after holding and degreasing. The degreasing treatment can be performed independently of the sintering step, but it is preferable to continuously sinter after the degreasing treatment from the viewpoints of processing efficiency, oxidation prevention and the like. In the degreasing step, it is preferable in terms of degreasing efficiency to be performed in an inert gas atmosphere at or below the atmospheric pressure. Moreover, in order to perform a degreasing process efficiently, the heat processing in a hydrogen atmosphere can also be performed.

焼結工程では、成形体の昇温過程で、成形体からのガス放出現象が認められる。前記ガス放出は、主に水素脆化処理工程で導入された水素ガスの放出である。前記水素ガスが放出されて初めて液相が生成するので、水素ガスの放出を充分行わせることが好ましく、例えば昇温過程の途中で700℃以上850℃以下の温度範囲で30分以上4時間以下の保持をすることが好ましい。   In the sintering process, a gas release phenomenon from the molded body is observed during the temperature rising process of the molded body. The gas release is mainly the release of hydrogen gas introduced in the hydrogen embrittlement treatment step. Since the liquid phase is generated only after the hydrogen gas is released, it is preferable to release the hydrogen gas sufficiently. For example, in the course of the temperature rising process, the temperature ranges from 700 ° C. to 850 ° C. for 30 minutes to 4 hours. It is preferable to hold.

焼結時の保持温度は例えば960℃以上1100℃以下とする。960℃未満では、前記水素ガスの放出が不充分で焼結反応に必要な液相が充分得られず、本発明の組成では焼結反応が進行しない。即ち、7.5Mg/m以上の焼結密度が得られない。 The holding temperature at the time of sintering is, for example, 960 ° C. or higher and 1100 ° C. or lower. If it is less than 960 ° C., the release of the hydrogen gas is insufficient and a liquid phase necessary for the sintering reaction cannot be obtained sufficiently, and the sintering reaction does not proceed with the composition of the present invention. That is, a sintered density of 7.5 Mg / m 3 or more cannot be obtained.

ここで焼結体の酸素量は、0.10質量%以下が好ましい。0.10質量%以下であると、焼結工程において液相成分に多く存在する希土類元素が酸素との親和力を持つため、優先的に酸素と結合して、R化合物となって粒界に残存する数が抑制されるからである。なお、酸素量は0.05質量%以下が好ましい。 Here, the oxygen content of the sintered body is preferably 0.10% by mass or less. When the content is 0.10% by mass or less, rare earth elements present in a large amount in the liquid phase component in the sintering process have an affinity for oxygen. Therefore, the rare earth elements are preferentially bonded to oxygen and become R 2 O 3 compounds. This is because the number remaining in the boundary is suppressed. The oxygen amount is preferably 0.05% by mass or less.

[熱処理]
焼結工程終了後、一旦300℃以下にまで冷却した後、再度400℃以上、焼結温度以下の範囲で熱処理を行い、保磁力を高めることができる。この熱処理は、同一温度、または温度を変えて複数回行ってもよい。また、熱処理温度で保持後、徐冷することで保磁力が向上する場合もある。
[Heat treatment]
After completion of the sintering process, after cooling to 300 ° C. or less, heat treatment can be performed again in the range of 400 ° C. or more and sintering temperature or less to increase the coercive force. This heat treatment may be performed multiple times at the same temperature or at different temperatures. In addition, the coercive force may be improved by slow cooling after holding at the heat treatment temperature.

[加工]
本発明のR−T−B系焼結磁石には、所定の形状、寸法を得るため、一般的な切断、研削等の機械加工を施すことができる。
[processing]
In order to obtain a predetermined shape and size, the RTB-based sintered magnet of the present invention can be subjected to general machining such as cutting and grinding.

[表面処理]
本発明のR−T−B系焼結磁石には、好ましくは防錆のための表面コーティング処理を施す。例えば、Niめっき、Snめっき、Znめっき、Al蒸着膜、Al系合金蒸着膜、樹脂塗装などを行うことができる。
[surface treatment]
The RTB-based sintered magnet of the present invention is preferably subjected to a surface coating treatment for rust prevention. For example, Ni plating, Sn plating, Zn plating, Al vapor deposition film, Al alloy vapor deposition film, resin coating, etc. can be performed.

[着磁]
着磁は、パルス磁界を印加する方法や、静的な磁界を印加する方法が適用できる。なお、焼結磁石の着磁は、取り扱い上の容易さを考慮して、通常は磁気回路を組み立てた後、前記方法で着磁するが、もちろん磁石単体で着磁することもできる。
[Magnetic]
For magnetization, a method of applying a pulsed magnetic field or a method of applying a static magnetic field can be applied. In consideration of ease of handling, the sintered magnet is usually magnetized by the above-mentioned method after assembling the magnetic circuit. Of course, the magnet can be magnetized by itself.

[実施例1]
純度99.5質量%以上のNd、純度99.9質量%以上のTb、Dy、電解鉄、低炭素フェロボロン合金を主として、その他目的元素を純金属またはFeとの合金の形で添加して目的組成の合金を溶解し、ストリップキャスト法で鋳造し、厚さ0.3mmから0.4mmの板状合金A、Bを得た。このR−T−B系合金に850℃の熱処理を真空雰囲気中で1時間行った。。
[Example 1]
Nd with a purity of 99.5% by mass or more, Tb, Dy, electrolytic iron, low carbon ferroboron alloy with a purity of 99.9% by mass or more, and other target elements are added in the form of an alloy with pure metal or Fe. The alloy having the composition was melted and cast by a strip casting method to obtain plate alloys A and B having a thickness of 0.3 mm to 0.4 mm. This RTB-based alloy was heat-treated at 850 ° C. in a vacuum atmosphere for 1 hour. .

この合金A、Bを原料として混合し、水素加圧雰囲気で水素脆化させた後、600℃まで真空中で加熱、冷却した後、合金粗粉を得た。この粗粉に対し、質量比で0.05%のステアリン酸亜鉛を添加、混合した。   The alloys A and B were mixed as raw materials and hydrogen embrittled in a hydrogen pressurized atmosphere, and then heated and cooled in vacuum to 600 ° C. to obtain alloy coarse powder. 0.05% zinc stearate by mass ratio was added to and mixed with the coarse powder.

R−T−B系合金Aは、組成が質量%でNd 30.0%、B 0.94%、Co 0.87%、Ga0.09%、Al 0.12%、Cu 0.09%残部鉄からなる。また、R−T−B系合金Bは、主な組成が質量%でNd 20.4%、Dy 10% B 0.96%、Co 0.89%、Ga0.09%、Al 0.09%、Cu0.09% 残部鉄からなる。   The RTB-based alloy A has a composition of Nd 30.0%, B 0.94%, Co 0.87%, Ga 0.09%, Al 0.12%, and Cu 0.09% balance in mass%. Made of iron. The R-T-B alloy B has a main composition of Nd 20.4% by mass%, Dy 10% B 0.96%, Co 0.89%, Ga 0.09%, Al 0.09%. , Cu 0.09% The balance iron.

前記合金Aと前記合金Bとを、9:1の比率に混合した。なお、混合の際に潤滑剤を適量添加した。混合した合金は、飽和炭化水素からなる溶媒中に回収する。回収中には雰囲気を酸素量と窒素量とが極めて少なくなるよう制御したArガスを流気した。   The alloy A and the alloy B were mixed at a ratio of 9: 1. An appropriate amount of lubricant was added during mixing. The mixed alloy is recovered in a solvent composed of saturated hydrocarbons. During the recovery, Ar gas whose atmosphere was controlled so that the amount of oxygen and the amount of nitrogen were extremely reduced was flowed.

次いで、気流式粉砕機(ジェットミル装置)を用いて、ArとHeからなる混合ガス気流中で乾式粉砕し、標準偏差(σ)を1μmかつ粒径D50が3.0μmとなるR−T−B系合金A、Bを作製した。このとき、粉砕ガス中の酸素濃度を50ppm以下に制御している。なお、この粒径D50は、気流分散法によるレーザー回折法で得られた値である。   Next, dry pulverization is performed in a mixed gas flow of Ar and He using an airflow pulverizer (jet mill device), and the standard deviation (σ) is 1 μm and the particle diameter D50 is 3.0 μm. B-based alloys A and B were prepared. At this time, the oxygen concentration in the pulverized gas is controlled to 50 ppm or less. The particle diameter D50 is a value obtained by a laser diffraction method using an airflow dispersion method.

こうして作製した混合粉末を磁界中で湿式成形して成形体を作製した。このときの磁界はおよそ0.8MA/mの静磁界で、加圧力は5MPaとした。なお、磁界印加方向と加圧方向とは直交している。   The mixed powder thus prepared was wet-molded in a magnetic field to prepare a compact. The magnetic field at this time was a static magnetic field of approximately 0.8 MA / m, and the applied pressure was 5 MPa. The magnetic field application direction and the pressing direction are orthogonal to each other.

次に、この成形体を、真空中、1020℃の温度範囲で2時間焼結した。焼結後の密度は7.5Mg/mであった。得られた焼結磁石に対し、Ar雰囲気中にで、600℃で1時間の熱処理を行い、冷却した。 Next, this compact was sintered in a vacuum at a temperature range of 1020 ° C. for 2 hours. The density after sintering was 7.5 Mg / m 3 . The obtained sintered magnet was heat-treated at 600 ° C. for 1 hour in an Ar atmosphere and cooled.

その後、この焼結磁石を機械的に加工することにより、5mm×10mm×10mmの寸法の磁石の試料を得た。配向方向は5mmの方向である。   Thereafter, the sintered magnet was mechanically processed to obtain a magnet sample having dimensions of 5 mm × 10 mm × 10 mm. The orientation direction is 5 mm.

焼結磁石の組成を調べたところ、組成が質量%でNd 28.6%、Dy 1.0% B 0.94%、Co 0.88%、Ga0.08%、Al 0.1%、Cu 0.09%残部鉄からなり、平均結晶粒径(円相当径)は3.3μmであった。また、酸素量は980ppmであった。   When the composition of the sintered magnet was examined, the composition was Nd 28.6% in mass%, Dy 1.0% B 0.94%, Co 0.88%, Ga 0.08%, Al 0.1%, Cu The balance was 0.09% iron, and the average crystal grain size (equivalent circle diameter) was 3.3 μm. The oxygen content was 980 ppm.

作製した試料の表面をGaイオンを用いたFIBにて加工し、SEM(Carl Zeiss製 ULTRA55)にて加速電圧2kVにて3000倍に拡大し、図1のように観察したところ、複数視野の総面積5.0mmの視野に含まれる結晶粒全数に対してR化合物が存在していない結晶粒の数の割合が60%であった。ここで、2粒子間にR化合物が存在しているか否かの判断は目視で行った。2粒子間にR化合物が存在する場合には存在しない場合に比べて2粒子間の幅が広がりかつ変動していることを確認した。存在する場合は2粒子間の幅は15nmから30nmであり、最大100nmの部分もあった。前記化合物が存在しない場合は5nm未満であった。 The surface of the prepared sample was processed with FIB using Ga ions, magnified 3000 times at an acceleration voltage of 2 kV with an SEM (ULTRA55 made by Carl Zeiss), and observed as shown in FIG. The ratio of the number of crystal grains in which no R 2 O 3 compound was present to the total number of crystal grains included in the visual field having an area of 5.0 mm 2 was 60%. Here, whether or not the R 2 O 3 compound is present between the two particles was visually determined. When the R 2 O 3 compound was present between the two particles, it was confirmed that the width between the two particles was widened and varied as compared with the case where the R 2 O 3 compound was not present. When present, the width between the two particles was 15 nm to 30 nm, and there was a portion of maximum 100 nm. When the compound was not present, it was less than 5 nm.

着磁性の評価は、空芯コイルにてパルス電流により生成させた所定の着磁磁界によって、試料を着磁した後、試料の磁束をサーチコイルで測定する方法によった。着磁磁界1591kA/mでの着磁率を100%として、636kA/m、955kA/m、1273kA/m、1591kA/mでの着磁率を調べてみたところ、636kA/mで20%、955kA/mで80%、1273kA/mで97%、1591kA/mで100%の着磁率となっていた。また、残留磁束密度、保磁力をB−Hトレーサーにて測定したところ残留磁束密度は1.43T、保磁力は1250kA/mだった。   The evaluation of the magnetization was based on a method in which the magnetic flux of the sample was measured with a search coil after the sample was magnetized with a predetermined magnetic field generated by a pulse current in an air-core coil. The magnetization rate at 636 kA / m, 955 kA / m, 1273 kA / m, and 1591 kA / m was examined by setting the magnetization rate at a magnetization magnetic field of 1591 kA / m to 100%, and found to be 20% at 636 kA / m and 955 kA / m. The magnetization rate was 80%, 97% at 1273 kA / m, and 100% at 1591 kA / m. Further, when the residual magnetic flux density and the coercive force were measured with a BH tracer, the residual magnetic flux density was 1.43 T and the coercive force was 1250 kA / m.

[実施例2]
実施例1の合金Aの組成を質量%でNd 30.9%、Pr 0.1%、B 0.93%、Co 0.87% Ga0.07%、Al 0.08%、Cu 0.07%残部鉄とし、合金Bの組成を質量%でNd 21.2%、Dy 9.9%、B 0.94%、Co 0.88%、Ga0.07%、Al 0.06%、Cu 0.09%残部鉄とし、焼結磁石の組成を質量%でNd 29.2%、Pr 0.2%、Dy 1.1% B 0.93%、Co 0.87% Ga0.08%、Al 0.09%、Cu 0.07%、残部鉄としたことを除き、あとは実施例と同様に作製した試料の表面をFIBにて加工し、SEMにて加速電圧2kVにて3000倍に拡大し観察したところ、図2のように結晶粒全体に対してR化合物が存在していない結晶粒の数の割合が80%であった。
[Example 2]
The composition of the alloy A of Example 1 was Nd 30.9% by mass, Pr 0.1%, B 0.93%, Co 0.87% Ga 0.07%, Al 0.08%, Cu 0.07. % Balance iron, and the composition of alloy B is Nd 21.2%, Dy 9.9%, B 0.94%, Co 0.88%, Ga 0.07%, Al 0.06%, Cu 0 by mass%. 0.09% balance iron, and the composition of the sintered magnet is Nd 29.2% by mass, Pr 0.2%, Dy 1.1% B 0.93%, Co 0.87% Ga 0.08%, Al Except for 0.09%, Cu 0.07%, and the remaining iron, the surface of the sample prepared in the same manner as in the example was processed with FIB and expanded 3000 times with SEM at an acceleration voltage of 2 kV. When observed, the ratio of the number of crystal grains in which no R 2 O 3 compound is present to the whole crystal grains as shown in FIG. Was 80%.

なお、平均結晶粒径(円相当径)は3.2μmであった。また、酸素量は770ppmであった。ここで、2粒子間にR化合物が存在しているか否かの判断は目視で行った。2粒子間にR化合物が存在する場合には存在しない場合に比べて2粒子間の幅が広がりかつ変動していることを確認した。存在する場合は2粒子間の幅は15nmから30nmであり、最大100nmの部分もあった。前記化合物が存在しない場合は10nm以下であった。 The average crystal grain size (equivalent circle diameter) was 3.2 μm. The oxygen content was 770 ppm. Here, whether or not the R 2 O 3 compound is present between the two particles was visually determined. When the R 2 O 3 compound was present between the two particles, it was confirmed that the width between the two particles was widened and varied as compared with the case where the R 2 O 3 compound was not present. When present, the width between the two particles was 15 nm to 30 nm, and there was a portion of maximum 100 nm. When the compound was not present, the thickness was 10 nm or less.

636kA/m、955kA/m、1273kA/m、1591kA/mでの着磁率を調べてみたところ、636kA/mで20%、955kA/mで80%、1273kA/mで98%、1591kA/mで100%の着磁率となっていた。   When the magnetization rates at 636 kA / m, 955 kA / m, 1273 kA / m, and 1591 kA / m were examined, 20% at 636 kA / m, 80% at 955 kA / m, 98% at 1273 kA / m, and 1591 kA / m. The magnetization rate was 100%.

また、残留磁束密度、保磁力をB−Hトレーサーにて測定したところ残留磁束密度は1.44T、保磁力は1240kA/mだった。   Further, when the residual magnetic flux density and the coercive force were measured with a BH tracer, the residual magnetic flux density was 1.44 T and the coercive force was 1240 kA / m.

[実施例3]
焼結後の組成がNd 28.6.%、Dy 1.0% B 0.94%、Ga0.08%、Al 0.1%、残部鉄となる1種類のR−T−B系合金粉末を用い、かつ焼結体の酸素量を500ppm以下にするために、溶解室内を無酸素雰囲気とし、酸素を含む不純物混合を防ぐため内部をボロンナイトライドでコーティングしたアルミナ坩堝で溶解したことを除き、あとは実施例1と同様に作製した試料の表面をFIBにて加工し、SEMにて加速電圧2kVにて3000倍に拡大し観察したところ、結晶粒全体に対してR化合物が存在していない結晶粒の数の割合が100%であった。焼結磁石の酸素量は400ppmであった。平均結晶粒径(円相当径)3.3μmであった。2粒子間の幅は5nm未満であった。
[Example 3]
The composition after sintering is Nd 28.6. %, Dy 1.0% B 0.94%, Ga 0.08%, Al 0.1%, one type of RTB-based alloy powder that becomes the balance iron, and the oxygen content of the sintered body In order to make it 500 ppm or less, it was produced in the same manner as in Example 1 except that the melting chamber was made an oxygen-free atmosphere and the inside was melted with an alumina crucible coated with boron nitride to prevent mixing of impurities containing oxygen. When the surface of the sample was processed with FIB and observed with an SEM at a magnification of 3000 times at an acceleration voltage of 2 kV, the ratio of the number of crystal grains in which no R 2 O 3 compound was present to the entire crystal grains was 100%. The oxygen content of the sintered magnet was 400 ppm. The average crystal grain size (equivalent circle diameter) was 3.3 μm. The width between the two particles was less than 5 nm.

次に試料の焼結磁石を切断し、断面から焼結磁石の2粒子間をEELS mapによるTEM解析にて確認したところ、図3のように2粒子間ではR化合物が確認されなかった。 Next, the sintered magnet of the sample was cut, and when two particles of the sintered magnet were confirmed by TEM analysis by EELS map from the cross section, no R 2 O 3 compound was confirmed between the two particles as shown in FIG. It was.

[比較例1]
実施例1のR−T−B系合金に熱処理を行わず、窒素ガスで乾式粉砕する以外は実施例1と同様に焼結磁石を作製した。焼結磁石の組成を調べたところ、組成が質量%でNd 28.7%、Dy 1.0% B 0.94%、Co 0.87%、Ga0.09%、Al 0.11%、Cu 0.09%残部鉄からなり、平均結晶粒径(円相当径)は3.3μmであった。また、酸素量は1900ppmであった。実施例1と同様に作製した試料の表面をFIBにて加工し、SEMにて加速電圧2kVにて3000倍に拡大し観察したところ、図4のように結晶粒全数に対してR化合物が存在していない結晶粒の数の割合が10%であった。大部分の2粒子粒界の厚みが15nmから25nmであり、幅が変動したものであった。
[Comparative Example 1]
A sintered magnet was prepared in the same manner as in Example 1 except that the RTB-based alloy of Example 1 was not subjected to heat treatment and was dry pulverized with nitrogen gas. When the composition of the sintered magnet was examined, the composition was Nd 28.7% in mass%, Dy 1.0% B 0.94%, Co 0.87%, Ga 0.09%, Al 0.11%, Cu The balance was 0.09% iron, and the average crystal grain size (equivalent circle diameter) was 3.3 μm. The oxygen content was 1900 ppm. When the surface of the sample produced in the same manner as in Example 1 was processed with FIB and observed with an SEM at a magnification of 3000 times at an acceleration voltage of 2 kV, R 2 O 3 with respect to the total number of crystal grains as shown in FIG. The ratio of the number of crystal grains in which no compound was present was 10%. Most of the grain boundary thicknesses were 15 nm to 25 nm, and the width varied.

また、636kA/m、955kA/m、1273kA/m、1591kA/mでの着磁率を調べてみたところ、636kA/mで15%、955kA/mで65%、1273kA/mで85%、1591kA/mで100%の着磁率となっていた。また、残留磁束密度、保磁力をB−Hトレーサーにて測定したところ残留磁束密度は1.42T、保磁力は1178kA/mだった。   Further, when the magnetization rates at 636 kA / m, 955 kA / m, 1273 kA / m, and 1591 kA / m were examined, 15% at 636 kA / m, 65% at 955 kA / m, 85% at 1273 kA / m, and 1591 kA / m. The magnetization rate was 100% at m. Further, when the residual magnetic flux density and the coercive force were measured with a BH tracer, the residual magnetic flux density was 1.42 T and the coercive force was 1178 kA / m.

焼結磁石を切断し、断面から焼結磁石の2粒子界面をEELS mapによるTEM解析にて確認したところ、図5において円で囲んでいる部位にR化合物があることが観察された。 When the sintered magnet was cut and the two-particle interface of the sintered magnet was confirmed from the cross section by TEM analysis using EELS map, it was observed that there was an R 2 O 3 compound in a circled region in FIG. .

本発明は、低着磁磁界でも大きな着磁性を達成できる着磁性のよいR−T−B系焼結磁石を作製する。   The present invention produces an RTB-based sintered magnet with good magnetization that can achieve high magnetization even with a low magnetization field.

Claims (2)

R−T−B系焼結磁石において、
焼結磁石を構成する結晶粒全数に対して、隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数の割合が50%から100%であるR−T−B系焼結磁石。
In the R-T-B system sintered magnet,
The ratio of the number of crystal grains in which no R 2 O 3 compound is present in any of the two adjacent crystal grains to the total number of crystal grains constituting the sintered magnet is 50% to 100%. -TB sintered magnet.
前記割合が70%から100%である請求項1に記載のR−T−B系焼結磁石。   The RTB-based sintered magnet according to claim 1, wherein the ratio is 70% to 100%.
JP2009233839A 2009-10-07 2009-10-07 R-t-b-based sintered magnet Pending JP2011082365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233839A JP2011082365A (en) 2009-10-07 2009-10-07 R-t-b-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233839A JP2011082365A (en) 2009-10-07 2009-10-07 R-t-b-based sintered magnet

Publications (1)

Publication Number Publication Date
JP2011082365A true JP2011082365A (en) 2011-04-21

Family

ID=44076105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233839A Pending JP2011082365A (en) 2009-10-07 2009-10-07 R-t-b-based sintered magnet

Country Status (1)

Country Link
JP (1) JP2011082365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157448A1 (en) * 2013-03-29 2014-10-02 日立金属株式会社 R-t-b-based sintered magnet
JP2014209546A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
JP2015023285A (en) * 2013-07-17 2015-02-02 煙台首鋼磁性材料株式有限公司 R-t-m-b-based sintered magnet and production method therefor
JP2015135935A (en) * 2013-03-28 2015-07-27 Tdk株式会社 Rare earth based magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
JP2002025810A (en) * 2000-07-06 2002-01-25 Hitachi Metals Ltd Anisotropic rare earth sintered magnet and its manufacturing method
JP2009016853A (en) * 2008-08-08 2009-01-22 Tdk Corp Manufacturing method of rare earth sintered magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
JP2002025810A (en) * 2000-07-06 2002-01-25 Hitachi Metals Ltd Anisotropic rare earth sintered magnet and its manufacturing method
JP2009016853A (en) * 2008-08-08 2009-01-22 Tdk Corp Manufacturing method of rare earth sintered magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209546A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
JP2015135935A (en) * 2013-03-28 2015-07-27 Tdk株式会社 Rare earth based magnet
US10096412B2 (en) 2013-03-28 2018-10-09 Tdk Corporation Rare earth based magnet
WO2014157448A1 (en) * 2013-03-29 2014-10-02 日立金属株式会社 R-t-b-based sintered magnet
CN105190793A (en) * 2013-03-29 2015-12-23 日立金属株式会社 R-T-B-based sintered magnet
EP2980808A4 (en) * 2013-03-29 2016-12-14 Hitachi Metals Ltd R-t-b-based sintered magnet
JPWO2014157448A1 (en) * 2013-03-29 2017-02-16 日立金属株式会社 R-T-B sintered magnet
JP2015023285A (en) * 2013-07-17 2015-02-02 煙台首鋼磁性材料株式有限公司 R-t-m-b-based sintered magnet and production method therefor

Similar Documents

Publication Publication Date Title
JP4831253B2 (en) R-T-Cu-Mn-B sintered magnet
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP5561170B2 (en) Method for producing RTB-based sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
CN109983553B (en) Method for producing R-T-B sintered magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6142794B2 (en) Rare earth magnets
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP6798546B2 (en) Manufacturing method of RTB-based sintered magnet
JPWO2009107397A1 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP6213697B1 (en) Method for producing RTB-based sintered magnet
JP6142793B2 (en) Rare earth magnets
WO2021200873A1 (en) R-t-b-based permanent magnet and method for producing same, motor, and automobile
JP2011082365A (en) R-t-b-based sintered magnet
JP6511844B2 (en) RTB based sintered magnet
JP2015135935A (en) Rare earth based magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2020161811A (en) R-t-b based permanent magnet
CN108389674B (en) R-T-B sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2016207679A (en) R-t-b series sintered magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140221