JP2011086830A - R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME - Google Patents

R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME Download PDF

Info

Publication number
JP2011086830A
JP2011086830A JP2009239695A JP2009239695A JP2011086830A JP 2011086830 A JP2011086830 A JP 2011086830A JP 2009239695 A JP2009239695 A JP 2009239695A JP 2009239695 A JP2009239695 A JP 2009239695A JP 2011086830 A JP2011086830 A JP 2011086830A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
magnet body
sintered magnet
heavy rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009239695A
Other languages
Japanese (ja)
Inventor
Katsumi Takahashi
勝美 高橋
Genichi Nakamura
元一 中村
Takeshi Takano
豪 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2009239695A priority Critical patent/JP2011086830A/en
Publication of JP2011086830A publication Critical patent/JP2011086830A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an R-Fe-B-based rare-earth sintered magnet by which grain boundary diffusion is completed in a shorter period of time than before, the amount of a heavy rare-earth element RH to be vaporized is reduced by shortening the time of the grain boundary diffusion, consequently the grain boundary diffusion of the heavy rare-earth element RH is efficiently carried out, and to provide the R-Fe-B-based rare-earth sintered magnet produced by the method. <P>SOLUTION: An R-Fe-B-based rare-earth sintered magnet body is prepared which contains, as a main phase, an R<SB>2</SB>Fe<SB>14</SB>B type compound crystal grains containing a light rare-earth element RL (at least one of Nd and Pr) as a main rare-earth element R. A pulverized body which contains the heavy rare-earth element RH (at least one selected from among Dy and Tb) and is pulverized by a hydrogen absorption method is disposed in a processing chamber together with the R-Fe-B-based rare-earth sintered magnet body, and heated to diffuse the heavy rare-earth element RH into the R-Fe-B-based rare-earth sintered magnet body while supplying the heavy rare-earth element RH to a surface of the R-Fe-B-based rare-earth sintered magnet body from the pulverized body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、R2Fe14B型化合物結晶粒(Rは希土類元素)を主相として有するR-Fe-B系希土類焼結磁石及びその製造方法に関する。特に、軽希土類元素RL(Nd及びPrの少なくとも1種)を主たる希土類元素Rとして含有し、かつ、軽希土類元素RLの一部が重希土類元素RH(Dy、Tbからなる群から選択された少なくとも1種)によって置換されているR-Fe-B系希土類焼結磁石及びその製造方法に関する。 The present invention relates to an R—Fe—B based rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains (R is a rare earth element) as a main phase and a method for producing the same. In particular, the light rare earth element RL (at least one of Nd and Pr) is contained as the main rare earth element R, and at least a part of the light rare earth element RL is selected from the group consisting of heavy rare earth elements RH (Dy, Tb) The present invention relates to an R-Fe-B rare earth sintered magnet substituted by 1 type) and a method for producing the same.

前記R2Fe14B型化合物結晶粒を主相とするR-Fe-B系希土類焼結磁石は優れた磁気特性を有するため、ますますその用途が広がっている。特に近年、環境問題への対応から家電をはじめ、産業機器、電気自動車、風力発電への磁石の応用が広がったことに伴い、R-Fe-B系希土類焼結磁石の更なる高性能化が要求されている。 The R-Fe-B rare earth sintered magnet having the R 2 Fe 14 B-type compound crystal grains as the main phase has excellent magnetic properties, and thus its application is increasingly widespread. Especially in recent years, with the expansion of magnet applications in home appliances, industrial equipment, electric vehicles, and wind power generation in response to environmental problems, the performance of R-Fe-B rare earth sintered magnets has been further improved. It is requested.

R-Fe-B系希土類焼結磁石は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車用モータ等の各種モータ、及び家電製品等に使用されている。R-Fe-B系希土類焼結磁石をモータ等の各装置に使用する場合、高温での使用環境に対応するため耐熱性に優れ、高保磁力特性を有することが求められる。   R-Fe-B rare earth sintered magnets are known as the most powerful magnets among permanent magnets. Various motors such as voice coil motors (VCM) for hard disk drives and motors for hybrid vehicles, and home appliances Etc. are used. When the R-Fe-B rare earth sintered magnet is used in each device such as a motor, it is required to have excellent heat resistance and high coercive force characteristics in order to cope with a high temperature use environment.

R-Fe-B系希土類焼結磁石の保磁力HcJを向上させる手段として、重希土類元素RHを原料に配合し溶製した合金を磁石材として用いる方法がある。この方法によると、希土類元素Rとして軽希土類元素RLを含有するR2Fe14B相の希土類元素Rが重希土類元素RHで置換されるため、R2Fe14B相の結晶磁気異方性が向上する。しかし、R2Fe14B相中の軽希土類元素RLの磁気モーメントはFeの磁気モーメントと同一方向であるのに対し、重希土類元素RHの磁気モーメントはFeの磁気モーメントと逆方向であるため、軽希土類元素RLを重希土類元素RHで置換するほど、残留磁束密度Brが低下してしまうという問題があった。 As a means for improving the coercive force HcJ of the R-Fe-B rare earth sintered magnet, there is a method of using an alloy prepared by melting a heavy rare earth element RH as a raw material as a magnet material. According to this method, since the rare earth element R of the R 2 Fe 14 B phase containing the light rare earth element RL as the rare earth element R is replaced by the heavy rare earth element RH, the magnetocrystalline anisotropy of the R 2 Fe 14 B phase is improves. However, the magnetic moment of the light rare earth element RL in the R 2 Fe 14 B phase is in the same direction as the magnetic moment of Fe, whereas the magnetic moment of the heavy rare earth element RH is opposite to the magnetic moment of Fe, There is a problem that the residual magnetic flux density Br decreases as the light rare earth element RL is replaced with the heavy rare earth element RH.

また重希土類元素RHは希少資源であるため使用量の削減が望まれている。これらの理由により、軽希土類元素RL全体を重希土類元素RHで置換する方法は好ましくない。   Further, since the rare earth element RH is a rare resource, it is desired to reduce the amount of use. For these reasons, the method of replacing the entire light rare earth element RL with the heavy rare earth element RH is not preferable.

そこで比較的少ない量の重希土類元素RHで保磁力HcJを向上させる方法として、重希土類元素RHを含有するバルク体からDyなどを昇華により気化させ、R-Fe-B系希土類焼結磁石体表面から粒界へと拡散させる製造方法が提案されている(例えば、特許文献1を参照)。この方法では、まず軽希土類元素RL(Nd及びPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR-Fe-B系希土類焼結磁石体(以下、必要に応じて、単に「磁石体」と記載する)を用意する。更に、重希土類元素RH(Dy、Ho、及びTbからなる群から選択された少なくとも1種)を含有するバルク体を、磁石体と共に処理室内に配置し、処理室内を700℃以上1000℃以下に加熱する。以上の工程により、バルク体から重希土類元素RHを磁石体の表面に供給しつつ、重希土類元素RHを磁石体の内部に拡散させる。 Therefore, as a method for improving the coercive force H cJ with a relatively small amount of heavy rare earth element RH, Dy etc. is vaporized by sublimation from a bulk body containing heavy rare earth element RH, and R-Fe-B rare earth sintered magnet body. A manufacturing method for diffusing from the surface to the grain boundary has been proposed (see, for example, Patent Document 1). In this method, first, an R—Fe—B rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase. A body (hereinafter simply referred to as a “magnet body” if necessary) is prepared. Furthermore, a bulk body containing a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) is disposed in the processing chamber together with the magnet body, and the processing chamber is set to 700 ° C. or higher and 1000 ° C. or lower. Heat. Through the above steps, the heavy rare earth element RH is diffused into the magnet body while supplying the heavy rare earth element RH from the bulk body to the surface of the magnet body.

以上の製造方法では、主相粒内への粒内拡散よりも、粒界相への粒界拡散を優先的に発生させるため、重希土類元素RHがR2Fe14B相の粒界近傍に多く分布する。このため、粒界近傍である主相外殻部におけるR2Fe14B相の結晶磁気異方性を効率よく向上させることが可能となる。 In the above manufacturing method, the heavy rare earth element RH is present in the vicinity of the grain boundary of the R 2 Fe 14 B phase in order to preferentially generate grain boundary diffusion into the grain boundary phase rather than intragranular diffusion into the main phase grains. Many are distributed. Therefore, it is possible to efficiently improve the magnetocrystalline anisotropy of the R 2 Fe 14 B phase in the main phase outer shell near the grain boundary.

R-Fe-B系希土類焼結磁石の保磁力発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部に重希土類元素RHが多く分布することにより、結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられる。その結果、保磁力HcJが向上する。また保磁力HcJ向上に寄与しない結晶粒の中心部では、重希土類元素RHによる置換が生じないため、残留磁束密度Brの低下を抑制することも可能となる。 The coercive force generation mechanism of R-Fe-B rare earth sintered magnets is the nucleation type (nucleation type), so that a large amount of heavy rare earth elements RH are distributed in the outer shell of the main phase. Magnetic anisotropy is increased and nucleation of reverse magnetic domains is prevented. As a result, the coercive force H cJ is improved. In addition, since the substitution with the heavy rare earth element RH does not occur at the center of the crystal grains that do not contribute to the improvement of the coercive force HcJ, it is possible to suppress the decrease in the residual magnetic flux density Br.

特許4241900号公報Japanese Patent No. 4241900

しかしながら、特許文献1記載のR-Fe-B系希土類焼結磁石の製造方法では、重希土類元素RHをバルク体から気化させるため、重希土類元素RHが気化しにくく、所定の粒界拡散処理を完了するために長時間を費やすと云う課題があった。   However, in the method for producing an R—Fe—B rare earth sintered magnet described in Patent Document 1, since the heavy rare earth element RH is vaporized from the bulk body, the heavy rare earth element RH is hardly vaporized, and a predetermined grain boundary diffusion treatment is performed. There was a problem of spending a long time to complete.

本発明は上記課題を解決するためになされたものであり、その目的は、重希土類元素RHを気化しやすい形態で粒界拡散処理を行うことで、従来に比べてより短時間で粒界拡散処理を完了させると共に、粒界拡散処理を短時間とすることで気化させる重希土類元素RHの量を削減して、重希土類元素RHを効率よく粒界拡散させるR-Fe-B系希土類焼結磁石の製造方法と、その製造方法で製造したR-Fe-B系希土類焼結磁石を提供することである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to perform grain boundary diffusion treatment in a form that facilitates vaporization of the heavy rare earth element RH, thereby enabling grain boundary diffusion in a shorter time than conventional. R-Fe-B rare earth sintering that diffuses heavy rare earth elements RH efficiently by reducing the amount of heavy rare earth elements RH to be vaporized by completing the grain boundary diffusion treatment in a short time A magnet manufacturing method and an R-Fe-B rare earth sintered magnet manufactured by the manufacturing method are provided.

本発明の請求項1に記載のR-Fe-B系希土類焼結磁石の製造方法は、
軽希土類元素RL(Nd、Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相とするR-Fe-B系希土類焼結磁石体を用意すると共に、
重希土類元素RH(Dy、Tbから選択される少なくとも1種)を含有し、且つ、水素吸蔵法により粉砕された粉砕物を、前記R-Fe-B系希土類焼結磁石体と共に処理室内に配置、加熱して、
前記粉砕物から前記重希土類元素RHを前記R-Fe-B系希土類焼結磁石体表面に供給しつつ、前記重希土類元素RHを前記R-Fe-B系希土類焼結磁石体の内部に拡散させるR-Fe-B系希土類焼結磁石の製造方法である。
The method for producing an R—Fe—B rare earth sintered magnet according to claim 1 of the present invention includes:
In addition to preparing an R-Fe-B rare earth sintered magnet body containing R 2 Fe 14 B type compound crystal grains containing light rare earth elements RL (at least one of Nd and Pr) as the main rare earth element R ,
A pulverized material containing a heavy rare earth element RH (at least one selected from Dy and Tb) and pulverized by a hydrogen storage method is placed in a processing chamber together with the R-Fe-B rare earth sintered magnet body. Heating
While supplying the heavy rare earth element RH from the pulverized product to the surface of the R-Fe-B rare earth sintered magnet body, the heavy rare earth element RH is diffused inside the R-Fe-B rare earth sintered magnet body. This is a method for producing an R—Fe—B rare earth sintered magnet.

また、請求項2に記載のR-Fe-B系希土類焼結磁石は、
請求項1に記載の製造方法により製造され、
軽希土類元素RL(Nd, Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有し、
重希土類元素RH(Dy, Ho, Tbから選択される少なくとも1種)を含有する、R-Fe-B系希土類焼結磁石である。
The R-Fe-B rare earth sintered magnet according to claim 2 is:
Manufactured by the manufacturing method according to claim 1,
R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase,
This is an R—Fe—B rare earth sintered magnet containing a heavy rare earth element RH (at least one selected from Dy, Ho, Tb).

本発明に依れば、R-Fe-B系希土類焼結磁石体表面への重希土類元素RH供給材をRH水素化物とすることにより、粉砕される分RHのバルク体に比べRHの気化を発生させ易くすることが出来る。従って気化しやすい分、より短時間で所定の粒界拡散処理を完了させることが可能となる。   According to the present invention, the RH hydride is used as the heavy rare earth element RH supply material on the surface of the R-Fe-B rare earth sintered magnet body, so that RH can be vaporized compared to the bulk body of RH to be pulverized. It can be easily generated. Accordingly, the predetermined grain boundary diffusion process can be completed in a shorter time because vaporization is easier.

更に、粒界拡散処理をより短時間で完了させることが出来ることに伴い、RH供給材からのRHの気化量を抑えることが出来るため、RHバルク体での粒界拡散処理に比べてよりRHの使用量を削減することが可能となる。   In addition, since the grain boundary diffusion process can be completed in a shorter time, the amount of RH vaporized from the RH supply material can be suppressed, so that it is more RH than the grain boundary diffusion process in the RH bulk body. Can be reduced.

本発明のR-Fe-B系希土類焼結磁石は、焼結処理後のR-Fe-B系希土類焼結磁石体(以下、必要に応じて、単に「磁石体」と記載する)の表面から粒界拡散によって内部に導入された重希土類元素RHを含有する。ここで、重希土類元素RHは、Dy、及びTbから選択された少なくとも1種である。前記磁石体は軽希土類元素RL(Nd、Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相とする。 The R-Fe-B rare earth sintered magnet of the present invention is a surface of a sintered R-Fe-B rare earth sintered magnet body (hereinafter simply referred to as “magnet body” as necessary). It contains heavy rare earth element RH introduced inside by grain boundary diffusion. Here, the heavy rare earth element RH is at least one selected from Dy and Tb. The magnet body has R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase.

本発明のR-Fe-B系希土類焼結磁石の原材料としては、主たる希土類元素Rとして25wt%以上40wt%以下の軽希土類元素RLと、0.6wt%〜1.6wt%のB(硼素)と、残部Fe及び不可避に混入する不純物とを含有する合金を用意する。Bの一部はC(炭素),O(酸素),N(窒素)によって置換されていてもよいし、Feの一部は、他の遷移金属元素(例えばCoまたはNi)によって置換されていてもよい。前記合金は種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、及びBiからなる群から選択された少なくとも1種の添加元素Mを0.01〜1.0wt%程度含有していてもよい。   As raw materials for the R-Fe-B rare earth sintered magnet of the present invention, the light rare earth element RL of 25 wt% to 40 wt% as the main rare earth element R, B (boron) of 0.6 wt% to 1.6 wt%, An alloy containing the remaining Fe and inevitably mixed impurities is prepared. Part of B may be substituted by C (carbon), O (oxygen), and N (nitrogen), and part of Fe is substituted by other transition metal elements (for example, Co or Ni). Also good. The alloys are Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi for various purposes. About 0.01 to 1.0 wt% of at least one additive element M selected from the group consisting of

上記の合金は、原材料合金の溶湯を、例えばストリップキャスト法によって急冷することで作製される。   The above alloy is produced by quenching a molten raw material alloy by, for example, a strip casting method.

本発明の製造方法では、重希土類元素RHを含有するバルク体を水素吸蔵法により粉砕して粉砕物(以下、必要に応じてこの粉砕物を「RH水素化物」と記載する)を形成し、このRH水素化物と前記磁石体を1000℃以下の温度範囲で加熱する。粉砕されたRH水素化物を用いることにより、バルク体に比べて重希土類元素RHの気化(昇華)をより容易に促進させる。更に、1000℃以下の温度範囲と設定することにより、磁石体表面におけるRH膜の成長速度が、RHの磁石内部への拡散速度よりも極度に大きくならない程度に抑制しつつ、磁石体表面に飛来した重希土類元素RHを速やかに磁石体内部に拡散させる。1000℃以下の温度範囲は、重希土類元素RHの気化がほとんど生じない温度であるが、R-Fe-B系希土類焼結磁石において希土類元素の拡散が活発に生じる温度でもある。このため、磁石体表面に飛来した重希土類元素RHが磁石体表面にRH膜を形成するよりも優先的に、磁石体内部への粒界拡散を促進させることが可能になる。   In the production method of the present invention, a bulk body containing the heavy rare earth element RH is pulverized by a hydrogen storage method to form a pulverized product (hereinafter, this pulverized product is referred to as “RH hydride” if necessary), The RH hydride and the magnet body are heated in a temperature range of 1000 ° C. or less. By using the pulverized RH hydride, vaporization (sublimation) of the heavy rare earth element RH is more easily promoted than the bulk body. Furthermore, by setting the temperature range to 1000 ° C or less, the growth rate of the RH film on the surface of the magnet body is suppressed to such an extent that it does not become extremely higher than the diffusion rate of RH inside the magnet, while flying to the surface of the magnet body. The heavy rare earth element RH is quickly diffused into the magnet body. The temperature range of 1000 ° C. or lower is a temperature at which the vaporization of the heavy rare earth element RH hardly occurs, but is also a temperature at which the rare earth element is actively diffused in the R—Fe—B rare earth sintered magnet. For this reason, it is possible to promote the diffusion of grain boundaries into the magnet body preferentially rather than the heavy rare earth element RH flying on the magnet body surface forming an RH film on the magnet body surface.

なお本発明では、RH水素化物から重希土類元素RHを磁石体表面に供給しつつ、重希土類RHを磁石体の表面から内部に拡散させることを、単に「蒸着拡散」と称する場合がある。本発明に依れば、磁石体表面の近傍に位置する主相の内部に重希土類元素RHが拡散して行く速度(レート)よりも高い速度で、重希土類元素RHが磁石体内部に拡散・浸透して行く。また、本発明では磁石体の表層領域においても、「粒内拡散」よりも優先的に「粒界拡散」が生じ、残留磁束密度Brの低下を抑制し、保磁力HcJを効果的に向上させることが可能になる。 In the present invention, supplying the rare earth element RH from the RH hydride to the surface of the magnet body and diffusing the heavy rare earth element RH from the surface of the magnet body to the inside may be simply referred to as “evaporation diffusion”. According to the present invention, the heavy rare earth element RH diffuses into the magnet body at a rate higher than the rate at which the heavy rare earth element RH diffuses into the main phase located near the surface of the magnet body. It penetrates. In the present invention, “grain boundary diffusion” occurs preferentially over “intragranular diffusion” even in the surface layer region of the magnet body, suppressing the decrease in residual magnetic flux density Br and effectively improving the coercive force H cJ. It becomes possible to make it.

R-Fe-B系希土類焼結磁石の保磁力発生機構はニュークリエーション型であるため、主相外殻部における結晶磁気異方性が高められると、主相における粒界相の近傍で逆磁区の核生成が抑制される。その結果、主相全体の保磁力HcJが向上する。 Since the coercive force generation mechanism of R-Fe-B rare earth sintered magnets is a nucleation type, if the magnetocrystalline anisotropy in the main phase outer shell is increased, the reverse magnetic domain is near the grain boundary phase in the main phase. Nucleation is suppressed. As a result, the coercive force H cJ of the entire main phase is improved.

更に磁石体の表面に近い領域だけでなく磁石体表面から深い領域でも、主相外殻部に重希土類置換層を形成することができるため、磁石全体にわたって結晶磁気異方性が高められ、磁石全体の残留磁束密度Brの低下を抑制しつつ保磁力HcJが向上する。 Furthermore, since the heavy rare earth substitution layer can be formed in the outer shell of the main phase not only in the region close to the surface of the magnet body but also in the region deep from the surface of the magnet body, the magnetocrystalline anisotropy is enhanced throughout the magnet, The coercive force H cJ is improved while suppressing a decrease in the overall residual magnetic flux density Br.

更に、磁石体表面への重希土類元素RH供給材を、RH水素化物とすることにより粉砕されているため、RHのバルク体に比べRHの気化を発生させ易くすることが出来る。従って気化しやすい分、より短時間で所定の粒界拡散処理を完了させることが可能となる。   Furthermore, since the heavy rare earth element RH supply material on the surface of the magnet body is pulverized by using RH hydride, RH vaporization can be easily generated as compared with a bulk body of RH. Accordingly, the predetermined grain boundary diffusion process can be completed in a shorter time because vaporization is easier.

又、粒界拡散処理をより短時間で完了させることが出来ることに伴い、RH供給材からのRHの気化量を抑えることが出来るため、RHバルク体での粒界拡散処理に比べてよりRHの使用量を削減することが可能となる。   In addition, since the grain boundary diffusion process can be completed in a shorter time, the amount of RH vaporized from the RH supply material can be suppressed, so it is more RH than the grain boundary diffusion process in the RH bulk body. Can be reduced.

主相外殻部で軽希土類元素RLと置換させるべき重希土類元素RHとしては、蒸着拡散の起こり易さ、コスト等を考慮すると、Dyが最も好ましい。ただし、Tb2Fe14Bの結晶磁気異方性はDy2Fe14Bの結晶磁気異方性よりも高くNd2Fe14Bの結晶磁気異方性の約3倍の大きさを有する。従って、Tbを蒸着拡散させると磁石体の特性の改善(残留磁束密度Brを下げずに保磁力HcJを向上させること)を最も効率的に実現できる。 As the heavy rare earth element RH to be replaced with the light rare earth element RL in the outer shell of the main phase, Dy is most preferable in consideration of easiness of vapor deposition diffusion, cost, and the like. However, the crystal magnetic anisotropy of Tb 2 Fe 14 B is higher than the crystal magnetic anisotropy of Dy 2 Fe 14 B, and is about three times the crystal magnetic anisotropy of Nd 2 Fe 14 B. Therefore, when Tb is vapor-deposited and diffused, the characteristics of the magnet body can be improved most efficiently (coercivity H cJ can be improved without lowering the residual magnetic flux density Br).

重希土類元素RHを含有するバルク体の水素吸蔵法での粉砕は次のように行う。まず、重希土類元素RH(Dy, Tbから選択される少なくとも1種)を含有し、所定分量のRHバルク体を密閉容器である水素炉の内部に収容する。次に、真空排気手段を介して水素炉内部を所定圧力に達するまで真空引きして減圧する。水素炉内部が所定圧力に達したことを確認後、水素を水素炉内部に導入し、加熱装置で水素炉を加熱して水素炉の温度を上昇させ、RHバルク体への水素吸蔵を開始する。   The bulk body containing the heavy rare earth element RH is pulverized by the hydrogen storage method as follows. First, a heavy rare earth element RH (at least one selected from Dy and Tb) is contained, and a predetermined amount of the RH bulk body is accommodated in a hydrogen furnace that is a sealed container. Next, the inside of the hydrogen furnace is evacuated and depressurized through the evacuation means until a predetermined pressure is reached. After confirming that the inside of the hydrogen furnace has reached the specified pressure, hydrogen is introduced into the hydrogen furnace, the temperature of the hydrogen furnace is increased by heating the hydrogen furnace, and hydrogen storage into the RH bulk body is started. .

水素吸蔵法による水素脆化作用で、RHバルク体が粉砕されRH水素化物が形成されて、RH水素化物が用意される。   Due to hydrogen embrittlement by the hydrogen storage method, the RH bulk body is crushed to form RH hydrides, and RH hydrides are prepared.

次に、図1を参照しながら本発明による粒界拡散処理の好ましい例を説明する。図1は、磁石体1とRH水素化物2との配置例を示している。図1に示す例では、高融点金属材料からなる処理室3の内部において、磁石体1とRH水素化物2とが所定間隔を空けて対向配置されている。磁石体1として、軽希土類元素RL(Nd、Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相とするR-Fe-B系希土類焼結磁石体を用意する。図1の処理室3は、複数の磁石体1を保持する部材を備えている。図1の例では、磁石体1と下方のRH水素化物2がNb製の網4によって保持されている。磁石体1及びRH水素化物2を保持する構成は上記の例に限定されず任意である。磁石体1とRH水素化物2の配置関係は上下でも左右でも、また互いが相対的に移動するような配置であってもよい。但し、磁石体1とRH水素化物2との間を遮断するような構成は採用するべきではない。本願における「対向」とは磁石体1とRH水素化物2が間を遮断されることなく向かい合っていることを意味する。また、「対向配置」とは、主たる表面どうしが平行となるように配置されるという意味に限定されない。 Next, a preferred example of the grain boundary diffusion treatment according to the present invention will be described with reference to FIG. FIG. 1 shows an arrangement example of the magnet body 1 and the RH hydride 2. In the example shown in FIG. 1, the magnet body 1 and the RH hydride 2 are disposed to face each other with a predetermined interval inside the processing chamber 3 made of a refractory metal material. As magnet body 1, an R—Fe—B based rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains containing light rare earth element RL (at least one of Nd and Pr) as main rare earth element R as a main phase. Prepare your body. The processing chamber 3 in FIG. 1 includes a member that holds a plurality of magnet bodies 1. In the example of FIG. 1, the magnet body 1 and the lower RH hydride 2 are held by a net 4 made of Nb. The configuration for holding the magnet body 1 and the RH hydride 2 is not limited to the above example and is arbitrary. The arrangement relationship between the magnet body 1 and the RH hydride 2 may be an arrangement in which the magnet body 1 and the RH hydride 2 move up and down, left and right, or move relative to each other. However, the structure which interrupts | blocks between the magnet body 1 and RH hydride 2 should not be employ | adopted. The “opposite” in the present application means that the magnet body 1 and the RH hydride 2 face each other without being interrupted. Further, the “facing arrangement” is not limited to the meaning that the main surfaces are arranged so as to be parallel to each other.

図1のように磁石体1とRH水素化物2を配置した後、図示しない真空排気手段を介して処理室を所定圧力に達するまで真空引きして減圧し、処理室が所定圧力に達したら図示しない加熱装置で処理室3を加熱することにより、処理室3の温度を上昇させる。このとき、処理室3の温度を段階的に上昇させ、所定の温度で一定時間保持する。これにより、RH水素化物2の脱水素処理が行われる。減圧下での処理室3内の設定温度は1000℃以下の範囲に調整する。このようにして処理室3内の温度が、粒界拡散処理の開始温度に達すると、RHバルク体2が、処理室3と略同温まで加熱されて気化を開始し、処理室3内にRHの蒸気雰囲気が形成される。   After the magnet body 1 and the RH hydride 2 are arranged as shown in FIG. 1, the processing chamber is evacuated and decompressed until reaching a predetermined pressure via a vacuum exhaust means (not shown), and when the processing chamber reaches a predetermined pressure, the processing chamber is illustrated. The temperature of the processing chamber 3 is raised by heating the processing chamber 3 with a heating device that does not. At this time, the temperature of the processing chamber 3 is raised stepwise and held at a predetermined temperature for a certain time. Thereby, dehydrogenation processing of RH hydride 2 is performed. The set temperature in the processing chamber 3 under reduced pressure is adjusted to a range of 1000 ° C. or lower. When the temperature in the processing chamber 3 reaches the start temperature of the grain boundary diffusion process in this way, the RH bulk body 2 is heated to substantially the same temperature as the processing chamber 3 and starts to vaporize. RH steam atmosphere is formed.

前述の1000℃以下の温度領域では、重希土類元素RHの蒸気圧は僅かであり、殆ど気化しない。しかしながら本発明では、RHバルク体を水素吸蔵法で細かく砕いて表面積を増やすことで、重希土類元素RHの気化をRHバルク体に比べて促進させている。従って、磁石体1とRH水素化物2とを接触させることなく、近接配置させることで、磁石体1の表面に重希土類金属RHを析出させることが可能であり、しかも磁石体1の温度をRH水素化物2の温度と同じか、それよりも高い適切な温度範囲内(1000℃以下)に調節することにより、気相から析出した重希土類金属RHを、そのまま磁石体1の内部に深く拡散させ得る。1000℃以下という温度範囲は、重希土類元素RHが磁石体1の粒界相を伝って内部へ拡散する好ましい温度領域であり、重希土類元素RHのゆっくりとした析出と磁石体内部への急速な拡散が効率的に行われることになる。   In the above temperature range of 1000 ° C. or less, the vapor pressure of the heavy rare earth element RH is slight and hardly vaporizes. However, in the present invention, the vaporization of the heavy rare earth element RH is promoted as compared with the RH bulk body by finely crushing the RH bulk body by the hydrogen storage method to increase the surface area. Therefore, it is possible to deposit heavy rare earth metal RH on the surface of the magnet body 1 by arranging the magnet body 1 and the RH hydride 2 in close proximity to each other, and the temperature of the magnet body 1 can be set to RH. By adjusting the temperature within the appropriate temperature range (1000 ° C. or lower) to be equal to or higher than the temperature of the hydride 2, the heavy rare earth metal RH deposited from the gas phase is diffused deeply into the magnet body 1 as it is. obtain. The temperature range of 1000 ° C. or less is a preferable temperature range in which the heavy rare earth element RH diffuses into the interior through the grain boundary phase of the magnet body 1, and the slow precipitation of the heavy rare earth element RH and the rapid inside the magnet body Diffusion is performed efficiently.

更に気化が生じ易い分、より短時間で所定の粒界拡散処理を完了させることが可能となる。加えて、粒界拡散処理時間の短縮に伴い、RH供給材からのRHの気化量を抑えることが出来るため、RHバルク体での粒界拡散処理に比べて、よりRHの使用量を削減することが可能となる。   Further, the predetermined grain boundary diffusion process can be completed in a shorter time because vaporization is likely to occur. In addition, since the amount of RH vaporization from the RH supply can be reduced as the grain boundary diffusion treatment time is shortened, the amount of RH used is further reduced compared to the grain boundary diffusion treatment in the RH bulk material. It becomes possible.

磁石体の表面に飛来し析出したRH金属は、雰囲気の熱及び磁石体界面におけるRH濃度の差を駆動力として、粒界相中を磁石体内部に向かって拡散する。このとき、R2Fe14B相中の軽希土類元素RLの一部が、磁石体表面から拡散浸透してきた重希土類元素RHによって置換される。その結果、R2Fe14B相の主相外殻部に重希土類元素RHが濃縮された層が形成される。 The RH metal flying and depositing on the surface of the magnet body diffuses in the grain boundary phase toward the inside of the magnet body using the difference between the heat of the atmosphere and the RH concentration at the interface of the magnet body as a driving force. At this time, a part of the light rare earth element RL in the R 2 Fe 14 B phase is replaced by the heavy rare earth element RH diffused and penetrated from the surface of the magnet body. As a result, a layer enriched with heavy rare earth elements RH is formed in the main phase outer shell of the R 2 Fe 14 B phase.

このようなRH濃縮層の形成により、主相外殻部の結晶磁気異方性が高められ、保磁力HcJが向上する。即ち、少ない重希土類元素RHの使用により、磁石体内部の奥深くにまで重希土類元素RHを拡散浸透させ、主相外殻部に効率的にRH濃化層を形成するため、残留磁束密度Brの低下を抑制しつつ、磁石体全体に亘って保磁力HcJを向上させることが可能になる。 By forming such an RH enriched layer, the magnetocrystalline anisotropy of the main phase outer shell is increased, and the coercive force H cJ is improved. That is, by using a small amount of the heavy rare earth element RH, the heavy rare earth element RH is diffused and penetrated deep inside the magnet body, and an RH concentrated layer is efficiently formed in the outer shell of the main phase. It is possible to improve the coercive force H cJ over the entire magnet body while suppressing the decrease.

更に本発明では、蒸着材料であるRHを気化させるための特別な工程や装置を必要とせず、RHバルク体を水素吸蔵法により粉砕することにより、磁石体表面にRH金属を析出させることができる。なお、本明細書における「処理室」は、磁石体1とRH水素化物2を配置した空間を広く含むものであり、熱処理炉の処理室を意味する場合もあれば、そのような処理室内に収容される処理容器を意味する場合もある。   Furthermore, in the present invention, a special process or apparatus for vaporizing RH, which is a vapor deposition material, is not required, and RH metal can be deposited on the surface of the magnet body by pulverizing the RH bulk body by a hydrogen storage method. . The “processing chamber” in this specification includes a wide space in which the magnet body 1 and the RH hydride 2 are arranged, and may mean a processing chamber of a heat treatment furnace. It may also mean a processing container to be accommodated.

RH水素化物の形状・大きさは特に限定されず、水素吸蔵法により粉砕された状態でそのまま使用すれば良い。RH水素化物は少なくとも1種の重希土類元素RHを含むRH金属またはRHを含む合金から形成されていることが好ましい。なお、RH水素化物は、一種類の元素から構成されている必要はなく、重希土類元素RH及び元素X(Xは、Y、Gd、Tb、Ho、Er、Nd、Pr、La、Ce、Al、Zn、Sn、Cu、Co、Fe、Ag、Ca、Mg、及びInからなる群から選択された少なくとも1種)の合金を含有していてもよい。   The shape and size of the RH hydride is not particularly limited, and may be used as it is after being pulverized by the hydrogen storage method. The RH hydride is preferably formed from an RH metal or an alloy containing RH containing at least one heavy rare earth element RH. The RH hydride does not need to be composed of one kind of element, but the heavy rare earth element RH and the element X (X is Y, Gd, Tb, Ho, Er, Nd, Pr, La, Ce, Al , Zn, Sn, Cu, Co, Fe, Ag, Ca, Mg, and In may be included.

又、本発明では、重希土類元素RHの気化量は少ないが、磁石体1とRH水素化物2とが非接触かつ至近距離に配置されるため、気化した重希土類元素RHが磁石体1表面に効率よく析出し、処理室3内の壁面などへの付着が少ない。更に、処理室3内の壁面がNbなどの耐熱合金やセラミックスなど、重希土類元素RHと反応しない材質で作製されていれば、壁面に付着した重希土類元素RHは再び気化し、最終的には磁石体1表面に析出する。このため、貴重資源である重希土類元素RHの無駄な消費を抑制することができる。   In the present invention, the vaporization amount of the heavy rare earth element RH is small, but since the magnet body 1 and the RH hydride 2 are disposed in a non-contact and close distance, the vaporized heavy rare earth element RH is present on the surface of the magnet body 1. It deposits efficiently, and there is little adhesion to the wall surface etc. in the processing chamber 3. Furthermore, if the wall surface in the processing chamber 3 is made of a material that does not react with the heavy rare earth element RH, such as a heat-resistant alloy such as Nb or ceramics, the heavy rare earth element RH attached to the wall surface is vaporized again, and finally Deposited on the surface of the magnet body 1. For this reason, useless consumption of the heavy rare earth element RH which is a valuable resource can be suppressed.

本発明で行う粒界拡散工程の処理温度範囲(1000℃以下)では、RH水素化物2は溶融軟化せず、その表面から重希土類元素RHが気化するため、一回の処理工程でRH水素化物2の外観に大きな変化は生じず、繰り返し使用することが可能である。   In the processing temperature range (1000 ° C. or less) of the grain boundary diffusion process performed in the present invention, the RH hydride 2 is not melt-softened, and the heavy rare earth element RH is vaporized from the surface thereof. The external appearance of 2 does not change greatly and can be used repeatedly.

更に、RH水素化物2と磁石体1とを近接配置するため、同じ容積を有する処理室3内に搭載可能な磁石体1の量を増加させることができ、積載効率が高い。また、大掛かりな装置を必要としないため、一般的な真空熱処理炉が活用でき、製造コストの上昇を避けることが可能であり、実用的である。   Furthermore, since the RH hydride 2 and the magnet body 1 are arranged close to each other, the amount of the magnet body 1 that can be mounted in the processing chamber 3 having the same volume can be increased, and the loading efficiency is high. Moreover, since a large-scale apparatus is not required, a general vacuum heat treatment furnace can be used, and an increase in manufacturing cost can be avoided, which is practical.

磁石体の表面状態は重希土類元素RHが拡散浸透し易いよう、より金属状態に近い方が好ましく、事前に酸洗浄やブラスト処理等の活性化処理を行った方がよい。但し本発明では、重希土類元素RHが気化し、活性な状態で磁石体の表面に被着すると、固体の層を形成するよりも高い速度で磁石体の内部に拡散していく。このため、磁石体の表面は、例えば焼結工程後や切断加工が完了した後の酸化が進んだ状態であってもよい。   The surface state of the magnet body is preferably closer to a metal state so that the heavy rare earth element RH can easily diffuse and penetrate, and it is better to perform an activation treatment such as acid cleaning or blasting in advance. However, in the present invention, when the heavy rare earth element RH is vaporized and deposited on the surface of the magnet body in an active state, it diffuses into the interior of the magnet body at a higher rate than the formation of a solid layer. For this reason, the surface of the magnet body may be in a state in which oxidation has progressed, for example, after the sintering process or after the cutting process is completed.

なお、本発明における粒界拡散工程は、磁石体の表面状況に敏感ではなく、拡散工程の前に磁石体の表面にAlやZnやSnからなる膜が形成されていてもよい。AlやZnやSnは、低融点金属であり、しかも、少量であれば磁石特性を劣化させず、また上記の粒界拡散の障害ともならないからである。AlやZnやSnなどの元素をRH水素化物に含有させておいても良い。   Note that the grain boundary diffusion step in the present invention is not sensitive to the surface condition of the magnet body, and a film made of Al, Zn, or Sn may be formed on the surface of the magnet body before the diffusion step. This is because Al, Zn, and Sn are low-melting-point metals, and if they are in a small amount, they do not deteriorate the magnet characteristics and do not hinder the above-mentioned grain boundary diffusion. Elements such as Al, Zn, and Sn may be included in the RH hydride.

次いで、粒界拡散処理を所定時間だけ実施した後、図示しない加熱手段の作動を停止させ、図示を省略したガス導入手段を介して不活性ガスを導入し、RH水素化物2からの気化を停止させる。そして、処理室3内の温度を一旦下げた後、不活性ガスの導入を停止して真空排気しつつ、必要に応じて、加熱手段を再度作動させ処理室3内の温度を450℃〜700℃の範囲に設定し、一層保磁力を向上または回復させるための熱処理(時効処理)を施してもよい。時効処理を行った際は、最後に、処理室3を冷却し、磁石体1を処理室3から取り出す。   Next, after performing the grain boundary diffusion treatment for a predetermined time, the operation of the heating means (not shown) is stopped, the inert gas is introduced through the gas introduction means (not shown), and the vaporization from the RH hydride 2 is stopped. Let Then, once the temperature in the processing chamber 3 is lowered, the introduction of the inert gas is stopped and evacuation is performed, and the heating means is operated again as necessary to change the temperature in the processing chamber 3 to 450 ° C. to 700 ° C. Heat treatment (aging treatment) for further improving or recovering the coercive force may be applied by setting in the range of ° C. When the aging treatment is performed, finally, the treatment chamber 3 is cooled and the magnet body 1 is taken out from the treatment chamber 3.

熱処理時における処理室3内は不活性雰囲気であることが好ましい。本明細書における「不活性雰囲気」とは、真空、または不活性ガスで満たされた状態を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、本発明ではRH水素化物2及び磁石体1との間で化学的に反応しないガスであれば、「不活性ガス」に含むものとする。不活性ガスの圧力は、大気圧よりも低い値を示すように減圧される。   The inside of the processing chamber 3 during the heat treatment is preferably an inert atmosphere. The “inert atmosphere” in this specification includes a vacuum or a state filled with an inert gas. The “inert gas” is a rare gas such as argon (Ar), for example. It is included in “gas”. The pressure of the inert gas is reduced to show a value lower than the atmospheric pressure.

実用上、蒸着拡散後の磁石体に表面処理を施すことが好ましい。表面処理は公知の表面処理でよく、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。表面処理を行う前にサンドブラスト処理、バレル処理、エッチング処理、機械研削等公知の前処理を行ってもよい。また、粒界拡散処理の後に寸法調整のための研削を行っても良い。   Practically, it is preferable to subject the magnet body after vapor diffusion to surface treatment. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al vapor deposition, electric Ni plating, or resin coating can be performed. Prior to the surface treatment, a known pretreatment such as sandblasting, barrel treatment, etching treatment or mechanical grinding may be performed. Moreover, you may perform the grinding for dimension adjustment after a grain boundary diffusion process.

以下、本発明によるR-Fe-B系希土類焼結磁石製造方法の好ましい実施例を説明する。   Hereinafter, preferred embodiments of the method for producing an R—Fe—B rare earth sintered magnet according to the present invention will be described.

<実施例1>
まず、主たる希土類元素Rとして30.11wt%の軽希土類元素RL(Nd及びPr)と、0.99wt%のBと、残部Fe及び不可避的不純物とを含有する合金を用意する。Bの一部はC,O,Nによって置換されていてもよいし、Feの一部は、他の遷移金属元素(例えばCoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、及びBiからなる群から選択された少なくとも1種の添加元素Mを0.30〜0.32wt%程度含有していてもよい。
<Example 1>
First, an alloy containing 30.11 wt% of light rare earth elements RL (Nd and Pr), 0.99 wt% of B as the main rare earth element R, the balance Fe and inevitable impurities is prepared. A part of B may be substituted by C, O, N, and a part of Fe may be substituted by other transition metal elements (for example, Co or Ni). This alloy can be used for various purposes, such as Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.30 to 0.32 wt% of at least one additive element M selected from the group consisting of Bi may be contained.

上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷することで作製される。上記ストリップキャスト法により、フレーク状に製造された合金鋳片を、水素吸蔵法による水素脆化処理により0.1mm〜数mm程度(平均粒径500μm以下)に粗粉砕し、脱水素処理後、ジェットミル装置やアトライタ装置又はボールミル装置などを用いて、0.1〜20μm程度(好ましくは2〜5μm)の粉末まで微粉砕を行う。微粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。   The above alloy is produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. The alloy cast slab produced in the flake shape by the above-mentioned strip casting method is roughly pulverized to about 0.1 mm to several mm (average particle size of 500 μm or less) by hydrogen embrittlement treatment by hydrogen storage method, and after dehydrogenation treatment, jet Using a mill device, an attritor device, or a ball mill device, the powder is finely pulverized to a powder of about 0.1 to 20 μm (preferably 2 to 5 μm). In fine pulverization, a lubricant such as zinc stearate may be used as a pulverization aid.

次に、上述の方法で作製した磁性粉末をプレス装置(縦磁場成形機、横磁場成形機、RIP法など)を用いて配向磁界中で成形する。印加する磁界の強度は、プレス装置に応じて例えば1.5〜5.5テスラ(T)である。また、成形圧力は、成形体の密度が例えば2.5〜4.5g/cm3程度になるように設定される。更に、得られた粉末成形体に対して、1000〜1200℃で焼結を行なう。なお、焼結磁石体の表面が酸化された状態でも蒸着拡散処理を施すことは可能であるため、焼結工程の後、研削を行っても良い。   Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a press device (vertical magnetic field molding machine, lateral magnetic field molding machine, RIP method, etc.). The strength of the magnetic field to be applied is, for example, 1.5 to 5.5 Tesla (T) depending on the press device. The molding pressure is set so that the density of the molded body is, for example, about 2.5 to 4.5 g / cm 3. Furthermore, it sinters at 1000-1200 degreeC with respect to the obtained powder compact. In addition, since it is possible to perform a vapor deposition diffusion process even if the surface of a sintered magnet body is oxidized, you may grind after a sintering process.

次に、RH(Dy)を含有し、純度99.9%のRHバルク体を用意すると共に、そのバルク体を密閉容器である水素炉内部に収容する。次に、真空排気手段を介して水素炉内部を1.3×10-3Paに達するまで真空引きして減圧する。水素炉内部が所定圧力に達したことを確認後、1atm(101,325Pa)の水素を水素炉内部に導入し、加熱装置で水素炉を加熱して水素炉の温度を280℃まで上昇させ、RHバルク体への水素吸蔵を開始する。 Next, an RH bulk body containing RH (Dy) and having a purity of 99.9% is prepared, and the bulk body is housed inside a hydrogen furnace that is a sealed container. Next, the inside of the hydrogen furnace is evacuated and reduced in pressure until it reaches 1.3 × 10 −3 Pa through the vacuum exhaust means. After confirming that the inside of the hydrogen furnace has reached the specified pressure, 1 atm (101,325 Pa) of hydrogen is introduced into the hydrogen furnace, and the temperature of the hydrogen furnace is increased to 280 ° C. by heating the hydrogen furnace with a heating device. Start storing hydrogen in the bulk.

なお、RHバルク体及びRH水素化物は、一種類の元素から構成されている必要はなく、重希土類元素RH及び元素X(Y、Gd、Tb、Ho、Er、Nd、Pr、La、Ce、Al、Zn、Sn、Cu、Co、Fe、Ag、Ca、Mg、及びInからなる群から選択された少なくとも1種)の合金を含有していてもよい。   The RH bulk body and RH hydride need not be composed of one kind of element, but the heavy rare earth element RH and element X (Y, Gd, Tb, Ho, Er, Nd, Pr, La, Ce, It may contain an alloy of at least one selected from the group consisting of Al, Zn, Sn, Cu, Co, Fe, Ag, Ca, Mg, and In.

水素吸蔵法による水素脆化作用で、RHバルク体が粉砕されRH水素化物が形成されて、RH水素化物が用意される。   Due to hydrogen embrittlement by the hydrogen storage method, the RH bulk body is crushed to form RH hydrides, and RH hydrides are prepared.

次に、図1に示すように、作製された磁石体1とRH水素化物2とを処理室3内部に対向配置し、所定圧力である1.3×10-3Paに達するまで真空引きして減圧し、所定圧力に達したら加熱装置で処理室3を加熱させ、処理室3の温度を段階的に上昇(本実施例では、200℃,300℃,400℃,500℃,900℃)させ脱水素処理を行いながら、一定時間(6時間)保持し、粒界拡散処理を行う。 Next, as shown in FIG. 1, the produced magnet body 1 and the RH hydride 2 are disposed opposite to each other inside the processing chamber 3, and the pressure is reduced by vacuuming until a predetermined pressure of 1.3 × 10 −3 Pa is reached. When the predetermined pressure is reached, the processing chamber 3 is heated with a heating device, and the temperature of the processing chamber 3 is increased stepwise (in this embodiment, 200 ° C., 300 ° C., 400 ° C., 500 ° C., 900 ° C.) and dehydrated. While performing the raw treatment, hold for a certain time (6 hours) and perform the grain boundary diffusion treatment.

粒界拡散処理の後、加熱手段の作動を停止させ、図示を省略したガス導入手段を介して不活性ガス(Ar)を導入し(例えば、1atm=101,325Pa)、RH水素化物2からのRH気化を停止させる。そして、不活性ガスの導入を停止して真空排気を行う。   After the grain boundary diffusion treatment, the operation of the heating means is stopped, an inert gas (Ar) is introduced through a gas introduction means (not shown) (for example, 1 atm = 101,325 Pa), and RH from the RH hydride 2 is introduced. Stop vaporization. Then, the introduction of the inert gas is stopped and evacuation is performed.

以上のようにして粒界拡散処理を施したR-Fe-B系希土類焼結磁石サンプル並びに粒界拡散処理を施す前のR-Fe-B系希土類焼結磁石サンプルの各磁石特性(残留磁束密度:Br、保磁力:HcB,HcJ、最大エネルギー積:(BH)max)を、B-Hトレーサで測定した。測定によって得た各特性を表1に示す。また、粒界拡散処理を施す前のR-Fe-B系希土類焼結磁石サンプルにおけるBrとHcJのグラフを図2に、粒界拡散処理を施したR-Fe-B系希土類焼結磁石サンプルにおけるBrとHcJのグラフを図3にそれぞれ示す。 Magnet characteristics (residual magnetic flux) of the R-Fe-B rare earth sintered magnet sample subjected to the grain boundary diffusion treatment as described above and the R-Fe-B rare earth sintered magnet sample before the grain boundary diffusion treatment. Density: Br, coercivity: H cB , H cJ , maximum energy product: (BH) max) were measured with a BH tracer. Table 1 shows the characteristics obtained by the measurement. Also, the graph of Br and H cJ in the R-Fe-B rare earth sintered magnet sample before the grain boundary diffusion treatment is shown in Fig. 2, and the R-Fe-B rare earth sintered magnet subjected to the grain boundary diffusion treatment. The graph of Br and HcJ in the sample is shown in FIG.

図2と図3のグラフの比較から分かるように、粒界拡散処理後の磁石サンプルに関して、保磁力HcJの向上が2.9(kOe)程度確認された。これは、磁石体内部へのRH拡散により、主相(Nd2Fe14B型化合物結晶)の外殻部に異方性磁界の高いDy濃化層を形成したことによるものである。 As can be seen from the comparison of the graphs in FIG. 2 and FIG. 3, an improvement in the coercive force H cJ of about 2.9 (kOe) was confirmed for the magnet sample after the grain boundary diffusion treatment. This is because a Dy concentrated layer having a high anisotropic magnetic field was formed in the outer shell of the main phase (Nd 2 Fe 14 B type compound crystal) by RH diffusion into the magnet body.

本発明によるR−Fe−B系希土類焼結磁石の製造方法に用いられる処理容器の構成と、処理容器内におけるRH水素化物と磁石体との配置関係の一例を模式的に示す説明図。Explanatory drawing which shows typically an example of the structure of the processing container used for the manufacturing method of the R-Fe-B rare earth sintered magnet by this invention, and the arrangement | positioning relationship between RH hydride and a magnet body in a processing container. 粒界拡散処理を施す前のR-Fe-B系希土類焼結磁石サンプルにおけるBr-HcJグラフ。The Br-H cJ graph in the R-Fe-B rare earth sintered magnet sample before the grain boundary diffusion treatment. 本発明に係る粒界拡散処理を施したR-Fe-B系希土類焼結磁石サンプルにおけるBr-HcJグラフ。The Br-H cJ graph in the R-Fe-B system rare earth sintered magnet sample which performed grain boundary diffusion processing concerning the present invention.

1 磁石体
2 RH水素化物
3 処理室
4 網
1 Magnet body 2 RH hydride 3 Processing chamber 4 Net

Claims (2)

軽希土類元素RL(Nd、Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相とするR-Fe-B系希土類焼結磁石体を用意すると共に、
重希土類元素RH(Dy、Tbから選択される少なくとも1種)を含有し、且つ、水素吸蔵法により粉砕された粉砕物を、前記R-Fe-B系希土類焼結磁石体と共に処理室内に配置、加熱して、
前記粉砕物から前記重希土類元素RHを前記R-Fe-B系希土類焼結磁石体表面に供給しつつ、前記重希土類元素RHを前記R-Fe-B系希土類焼結磁石体の内部に拡散させるR-Fe-B系希土類焼結磁石の製造方法。
In addition to preparing an R-Fe-B rare earth sintered magnet body containing R 2 Fe 14 B type compound crystal grains containing light rare earth elements RL (at least one of Nd and Pr) as the main rare earth element R ,
A pulverized material containing a heavy rare earth element RH (at least one selected from Dy and Tb) and pulverized by a hydrogen storage method is placed in a processing chamber together with the R-Fe-B rare earth sintered magnet body. Heating
While supplying the heavy rare earth element RH from the pulverized product to the surface of the R-Fe-B rare earth sintered magnet body, the heavy rare earth element RH is diffused inside the R-Fe-B rare earth sintered magnet body. Method for producing R-Fe-B rare earth sintered magnets.
請求項1に記載の製造方法により製造され、
軽希土類元素RL(Nd, Prの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有し、
重希土類元素RH(Dy, Tbから選択される少なくとも1種)を含有する、R-Fe-B系希土類焼結磁石。
Manufactured by the manufacturing method according to claim 1,
R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R as a main phase,
An R-Fe-B rare earth sintered magnet containing a heavy rare earth element RH (at least one selected from Dy and Tb).
JP2009239695A 2009-10-16 2009-10-16 R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME Withdrawn JP2011086830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239695A JP2011086830A (en) 2009-10-16 2009-10-16 R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239695A JP2011086830A (en) 2009-10-16 2009-10-16 R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2011086830A true JP2011086830A (en) 2011-04-28

Family

ID=44079554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239695A Withdrawn JP2011086830A (en) 2009-10-16 2009-10-16 R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2011086830A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368439A (en) * 2011-11-22 2012-03-07 严高林 Optimization process method for preparing high-coercivity permanent magnet by adding heavy rare earth hydroxide into neodymium iron boron
WO2012029748A1 (en) * 2010-08-31 2012-03-08 並木精密宝石株式会社 R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
CN104036949A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using bulk sintered neodymium iron boron (NdFeB) machining waste to prepare high-performance regenerated NdFeB magnet
CN104036946A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using magnetic steel of waste permanent magnet motor to prepare high-performance high-coercivity regenerated sintered neodymium iron boron (NdFeB) magnet
CN104036948A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using magnetic steel of waste permanent magnet motor to prepare high-performance regenerated sintered neodymium iron boron (NdFeB) magnet
US20140366991A1 (en) * 2013-06-12 2014-12-18 Vacuumschmelze Gmbh & Co.Kg Method for reducing a rare earth-based magnet
CN105234397A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing rare earth permanent magnetic material by adding liquid-phase dysprosium in waste magnetic steel
CN105234398A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing holmium-containing rare earth permanent magnetic material by adding nano metal powder in waste magnetic steel
CN105234394A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing rare earth permanent magnetic material by adding liquid-phase nano gadolinium in waste magnetic steel
CN106158339A (en) * 2016-06-22 2016-11-23 北京科技大学 Sintered NdFeB reclaims the method that waste material prepares high-performance permanent magnet through diffusion penetration
CN106920669A (en) * 2015-12-25 2017-07-04 天津三环乐喜新材料有限公司 A kind of preparation method of R-Fe-B based sintered magnets
WO2024108945A1 (en) * 2022-11-21 2024-05-30 杭州电子科技大学 Surface-enhanced r-t-b rare earth permanent magnet based on high-melting-point element grain boundary diffusion and preparation method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029748A1 (en) * 2010-08-31 2012-03-08 並木精密宝石株式会社 R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
CN102368439A (en) * 2011-11-22 2012-03-07 严高林 Optimization process method for preparing high-coercivity permanent magnet by adding heavy rare earth hydroxide into neodymium iron boron
US20140366991A1 (en) * 2013-06-12 2014-12-18 Vacuumschmelze Gmbh & Co.Kg Method for reducing a rare earth-based magnet
CN104036949A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using bulk sintered neodymium iron boron (NdFeB) machining waste to prepare high-performance regenerated NdFeB magnet
CN104036946A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using magnetic steel of waste permanent magnet motor to prepare high-performance high-coercivity regenerated sintered neodymium iron boron (NdFeB) magnet
CN104036948A (en) * 2014-06-11 2014-09-10 北京工业大学 Method for using magnetic steel of waste permanent magnet motor to prepare high-performance regenerated sintered neodymium iron boron (NdFeB) magnet
CN105234397A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing rare earth permanent magnetic material by adding liquid-phase dysprosium in waste magnetic steel
CN105234398A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing holmium-containing rare earth permanent magnetic material by adding nano metal powder in waste magnetic steel
CN105234394A (en) * 2015-11-12 2016-01-13 苏州萨伯工业设计有限公司 Method for preparing rare earth permanent magnetic material by adding liquid-phase nano gadolinium in waste magnetic steel
CN106920669A (en) * 2015-12-25 2017-07-04 天津三环乐喜新材料有限公司 A kind of preparation method of R-Fe-B based sintered magnets
CN106920669B (en) * 2015-12-25 2020-09-01 天津三环乐喜新材料有限公司 Preparation method of R-Fe-B sintered magnet
CN106158339A (en) * 2016-06-22 2016-11-23 北京科技大学 Sintered NdFeB reclaims the method that waste material prepares high-performance permanent magnet through diffusion penetration
CN106158339B (en) * 2016-06-22 2019-01-11 北京科技大学 The method that sintered NdFeB recycling waste material prepares high-performance permanent magnet through diffusion penetration
WO2024108945A1 (en) * 2022-11-21 2024-05-30 杭州电子科技大学 Surface-enhanced r-t-b rare earth permanent magnet based on high-melting-point element grain boundary diffusion and preparation method therefor

Similar Documents

Publication Publication Date Title
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP5158222B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4924547B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4788427B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5510457B2 (en) Method for producing RTB-based sintered magnet
JP4811143B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5532922B2 (en) R-Fe-B rare earth sintered magnet
JP5598465B2 (en) R-T-B-M alloy for sintered magnet and method for producing the same
JP4677942B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP5510456B2 (en) Method for producing R-Fe-B rare earth sintered magnet and steam control member
JP4788690B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4962198B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5146552B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP2017069337A (en) Method for manufacturing r-t-b magnet
JP5644170B2 (en) Method for producing RTB-based sintered magnet
JP6672753B2 (en) RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator
JP2011205117A (en) Method for manufacturing r-fe-b based rare earth sintered magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108