JP4677942B2 - Method for producing R-Fe-B rare earth sintered magnet - Google Patents

Method for producing R-Fe-B rare earth sintered magnet Download PDF

Info

Publication number
JP4677942B2
JP4677942B2 JP2006098671A JP2006098671A JP4677942B2 JP 4677942 B2 JP4677942 B2 JP 4677942B2 JP 2006098671 A JP2006098671 A JP 2006098671A JP 2006098671 A JP2006098671 A JP 2006098671A JP 4677942 B2 JP4677942 B2 JP 4677942B2
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
earth element
heavy rare
magnet body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098671A
Other languages
Japanese (ja)
Other versions
JP2007273815A (en
Inventor
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006098671A priority Critical patent/JP4677942B2/en
Publication of JP2007273815A publication Critical patent/JP2007273815A/en
Application granted granted Critical
Publication of JP4677942B2 publication Critical patent/JP4677942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、R2Fe14B型化合物結晶粒(Rは希土類元素)を主相として有するR−Fe−B系希土類焼結磁石の製造方法に関し、特に、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有し、かつ、軽希土類元素RLの一部が重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)によって置換されているR−Fe−B系希土類焼結磁石の製造方法に関している。 The present invention relates to a method for producing an R—Fe—B rare earth sintered magnet having R 2 Fe 14 B type compound crystal grains (R is a rare earth element) as a main phase, and in particular, light rare earth elements RL (of Nd and Pr). At least one kind) as a main rare earth element R, and a part of the light rare earth element RL is substituted by a heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb) The present invention relates to a method for producing an R—Fe—B rare earth sintered magnet.

Nd2Fe14B型化合物を主相とするR−Fe−B系の希土類焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。R−Fe−B系希土類焼結磁石をモータ等の各種装置に使用する場合、高温での使用環境に対応するため、耐熱性に優れ、高保磁力特性を有することが要求される。 R-Fe-B rare earth sintered magnets with Nd 2 Fe 14 B type compound as the main phase are known as the most powerful magnets among permanent magnets, and are voice coil motors (VCM) for hard disk drives. In addition, it is used in various motors such as motors for mounting on hybrid vehicles, and home appliances. When R-Fe-B rare earth sintered magnets are used in various devices such as motors, they are required to have excellent heat resistance and high coercive force characteristics in order to cope with high temperature use environments.

R−Fe−B系希土類焼結磁石の保磁力を向上する手段として、重希土類元素RHを原料として配合し、溶製した合金を用いることが行われている。この方法によると、希土類元素Rとして軽希土類元素RLを含有するR2Fe14B相の希土類元素Rが重希土類元素RHで置換されるため、R2Fe14B相の結晶磁気異方性(保磁力を決定する本質的な物理量)が向上する。しかし、R2Fe14B相中における軽希土類元素RLの磁気モーメントは、Feの磁気モーメントと同一方向であるのに対して、重希土類元素RHの磁気モーメントは、Feの磁気モーメントと逆方向であるため、軽希土類元素RLを重希土類元素RHで置換するほど、残留磁束密度Brが低下してしまうことになる。 As a means for improving the coercive force of an R—Fe—B rare earth sintered magnet, an alloy prepared by melting and melting heavy rare earth element RH as a raw material is used. According to this method, since the rare earth element R in the R 2 Fe 14 B phase containing the light rare earth element RL as the rare earth element R is replaced with the heavy rare earth element RH, the magnetocrystalline anisotropy of the R 2 Fe 14 B phase ( The essential physical quantity that determines the coercivity is improved. However, the magnetic moment of the light rare earth element RL in the R 2 Fe 14 B phase is in the same direction as the magnetic moment of Fe, whereas the magnetic moment of the heavy rare earth element RH is opposite to the magnetic moment of Fe. Therefore, as the light rare earth element RL is replaced with the heavy rare earth element RH, the residual magnetic flux density Br decreases.

一方、重希土類元素RHは希少資源であるため、その使用量の削減が望まれている。これらの理由により、軽希土類元素RLの全体を重希土類元素RHで置換する方法は好ましくない。   On the other hand, since the heavy rare earth element RH is a rare resource, it is desired to reduce the amount of use thereof. For these reasons, the method of replacing the entire light rare earth element RL with the heavy rare earth element RH is not preferable.

比較的少ない量の重希土類元素RHを添加することにより、重希土類元素RHによる保磁力向上効果を発現させるため、重希土類元素RHを多く含む合金・化合物などの粉末を、軽希土類RLを多く含む主相系母合金粉末に添加し、成形・焼結させることが提案されている。この方法によると、重希土類元素RHがR2Fe14B相の粒界近傍に多く分布することになるため、主相外殻部におけるR2Fe14B相の結晶磁気異方性を効率よく向上させることが可能になる。R−Fe−B系希土類焼結磁石の保磁力発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部(粒界近傍)に重希土類元素RHが多く分布することにより、結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、保磁力が向上する。また、保磁力向上に寄与しない結晶粒の中心部では、重希土類元素RHによる置換が生じないため、残留磁束密度Brの低下を抑制することもできる。 By adding a relatively small amount of heavy rare earth element RH, the effect of improving the coercive force due to heavy rare earth element RH is exhibited, so that powders of alloys / compounds containing a lot of heavy rare earth element RH contain a lot of light rare earth element RL. It has been proposed to add it to the main phase mother alloy powder and form and sinter it. According to this method, since that would heavy rare-earth element RH is distributed more in the vicinity of grain boundaries of the R 2 Fe 14 B phase, efficiently magnetocrystalline anisotropy of the R 2 Fe 14 B phase in the outer periphery of the main phase It becomes possible to improve. Since the coercive force generation mechanism of the R-Fe-B rare earth sintered magnet is a nucleation type (nucleation type), a large amount of heavy rare earth elements RH are distributed in the main phase shell (near the grain boundary). The crystal magnetic anisotropy of the entire crystal grains is increased, and the nucleation of the reverse magnetic domain is prevented. As a result, the coercive force is improved. Further, since the substitution with the heavy rare earth element RH does not occur at the center of the crystal grains that do not contribute to the improvement of the coercive force, it is possible to suppress the decrease in the residual magnetic flux density Br .

しかしながら、実際にこの方法を実施してみると、焼結工程(工業規模で1000℃から1200℃で実行される)で重希土類元素RHの拡散速度が大きくなるため、重希土類元素RHが結晶粒の中心部にも拡散してしまう結果、期待していた組織構造を得ることは容易でない。   However, when this method is actually carried out, the diffusion rate of the heavy rare earth element RH increases in the sintering process (executed at 1000 ° C. to 1200 ° C. on an industrial scale). As a result, it is difficult to obtain the expected structure.

さらにR−Fe−B系希土類焼結磁石の別の保磁力向上手段として、焼結磁石の段階で重希土類元素RHを含む金属、合金、化合物等を磁石表面に被着後、熱処理、拡散させることによって、残留磁束密度をそれほど低下させずに保磁力を回復または向上させることが検討されている(特許文献1、特許文献2、及び特許文献3)。   Further, as another means for improving the coercive force of the R—Fe—B rare earth sintered magnet, a metal, alloy, compound, or the like containing heavy rare earth element RH is deposited on the magnet surface at the stage of the sintered magnet, and then heat treated and diffused. Thus, it has been studied to recover or improve the coercive force without significantly reducing the residual magnetic flux density (Patent Document 1, Patent Document 2, and Patent Document 3).

特許文献1は、Ti、W、Pt、Au、Cr、Ni、Cu、Co、Al、Ta、Agのうち少なくとも1種を1.0原子%〜50.0原子%含有し、残部R´(R´はCe、La、Nd、Pr、Dy、Ho、Tbのうち少なくとも1種)からなる合金薄膜層を焼結磁石体の被研削加工面に形成することを開示している。   Patent Document 1 contains 1.0 atomic% to 50.0 atomic% of at least one of Ti, W, Pt, Au, Cr, Ni, Cu, Co, Al, Ta, and Ag, and the balance R ′ ( R ′ discloses that an alloy thin film layer made of Ce, La, Nd, Pr, Dy, Ho, and Tb is formed on the ground surface of the sintered magnet body.

特許文献2は、小型磁石の最表面に露出している結晶粒子の半径に相当する深さ以上に金属元素R(このRは、Y及びNd、Dy、Pr、Ho、Tbから選ばれる希土類元素の1種又は2種以上)を拡散させ、それによって加工変質損傷部を改質して(BH)maxを向上させることを開示している。   Patent Document 2 states that a metal element R (the R is a rare earth element selected from Y and Nd, Dy, Pr, Ho, and Tb) exceeds the depth corresponding to the radius of the crystal grains exposed on the outermost surface of the small magnet. 1 type or 2 types or more) is diffused, thereby modifying the damaged part of work-affected damage and improving (BH) max.

特許文献3は、厚さ2mm以下の磁石の表面に希土類元素を主体とする化学気相成長膜を形成し、磁石特性を回復させることを開示している。   Patent Document 3 discloses that a chemical vapor deposition film mainly composed of rare earth elements is formed on the surface of a magnet having a thickness of 2 mm or less to recover the magnet characteristics.

特許文献4は、R−Fe−B系微小焼結磁石や粉末の保磁力を回復するため、希土類元素の収着法を開示している。この方法では、収着金属(Yb、Eu、Smなどの沸点が比較的低い希土類金属)をR−Fe−B系微小焼結磁石や粉末と混合した後、攪拌しながら真空中で均一に加熱するための熱処理が行われる。この熱処理により、希土類金属が磁石表面に被着するとともに、内部に拡散する。沸点の高い希土類金属(例えばDy)を収着させる実施形態では、高周波加熱方式により、Dyなどを選択的に高温に加熱しているが、例えばDyの沸点は2560℃であり、沸点1193℃のYbを800〜850℃に加熱していることから、Dyは少なくとも1000℃を超える温度に加熱しているものと考えられる。さらに、R−Fe−B系微小焼結磁石や粉末は700〜850℃に保つことが好ましいと記載されている。
特開昭62−192566号公報 特開2004−304038号公報 特開2005−285859号公報 特開2004−296973号公報
Patent Document 4 discloses a rare earth element sorption method in order to recover the coercive force of an R—Fe—B micro sintered magnet or powder. In this method, a sorption metal (a rare earth metal having a relatively low boiling point such as Yb, Eu, Sm) is mixed with an R—Fe—B micro-sintered magnet or powder and then heated uniformly in a vacuum with stirring. A heat treatment is performed. By this heat treatment, the rare earth metal is deposited on the magnet surface and diffuses inside. In an embodiment where a rare earth metal having a high boiling point (for example, Dy) is sorbed, Dy or the like is selectively heated to a high temperature by a high-frequency heating method. For example, the boiling point of Dy is 2560 ° C. Since Yb is heated to 800 to 850 ° C., Dy is considered to be heated to a temperature exceeding at least 1000 ° C. Furthermore, it is described that it is preferable to keep the R—Fe—B based fine sintered magnet and powder at 700 to 850 ° C.
JP-A-62-192566 JP 2004-304038 A JP 2005-285859 A JP 2004-296773 A

特許文献1、特許文献2及び特許文献3に開示されている従来技術は、いずれも、加工劣化した焼結磁石表面の回復を目的としているため、表面から内部に拡散される金属元素の拡散範囲は、焼結磁石の表面近傍に限られている。このため、厚さ3mm以上の磁石では、保磁力の向上効果がほとんど得られない。   The conventional techniques disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 are all intended to recover the surface of a sintered magnet that has been deteriorated by processing. Is limited to the vicinity of the surface of the sintered magnet. For this reason, the effect of improving the coercive force is hardly obtained with a magnet having a thickness of 3 mm or more.

一方、特許文献4に開示されている従来技術では、Ybなどの低沸点の希土類金属を対象とした実施形態において、確かに個々のR−Fe−B系微小磁石の保磁力は回復するが、拡散熱処理時にR−Fe−B系磁石と収着金属が融着したり、処理後お互いを分離することが困難であり、焼結磁石体表面に未反応の収着金属(RH)の残存が事実上避けられない。これは、磁石成形体における磁性成分比率を下げ磁石特性の低減を招くのみならず、希土類金属は本来非常に活性で酸化しやすいため、実用環境において未反応収着金属が腐食の起点になりやすく好ましくない。また、混合攪拌するための回転と真空熱処理を同時に行う必要があるため、耐熱性、圧力(気密度)を維持しながら回転機構を組み込んだ特別な装置が必要になり、量産製造時に設備投資や品質安定製造の観点で課題がある。また、収着原料に粉末を使用した場合は安全性の問題(発火や人体への有害性)や作製工程に手間がかかりコストアップ要因となる。   On the other hand, in the prior art disclosed in Patent Document 4, in the embodiment directed to a low-boiling-point rare earth metal such as Yb, the coercivity of individual R—Fe—B-based micromagnets certainly recovers. R-Fe-B magnet and sorption metal are fused during diffusion heat treatment, or it is difficult to separate them from each other after treatment, and unreacted sorption metal (RH) remains on the surface of the sintered magnet body. Virtually inevitable. This not only lowers the magnetic component ratio in the magnet compact and leads to a reduction in magnet properties, but rare earth metals are inherently very active and susceptible to oxidation, so unreacted sorbed metals are likely to be the starting point of corrosion in practical environments. It is not preferable. Moreover, since it is necessary to perform rotation for mixing and stirring and vacuum heat treatment at the same time, a special device incorporating a rotation mechanism is required while maintaining heat resistance and pressure (gas density). There is a problem in terms of stable quality manufacturing. In addition, when powder is used as the sorption raw material, it takes time for safety problems (ignition and harmfulness to human body) and the production process, which increases costs.

また、Dyを含む高沸点希土類金属を対象とした実施形態においては、高周波によって収着原料と磁石の双方を加熱するため、希土類金属のみを充分な温度に加熱し磁石を低温に保持することは容易ではなく、磁石は、誘導加熱されにくい粉末の状態か極微小なものに限られてしまう。   Further, in the embodiment targeting high boiling point rare earth metal containing Dy, both the sorption raw material and the magnet are heated by high frequency, so that only the rare earth metal is heated to a sufficient temperature to keep the magnet at a low temperature. It is not easy, and the magnet is limited to a powder state that is difficult to be induction-heated or a very small magnet.

また、特許文献1から4の方法のいずれも、重希土類元素RHの膜(RH膜)を焼結磁石体の表面に形成した後、焼結磁石体の内部に拡散させるが、具体的製法において、RH膜を焼結磁石体上に成長させる過程で、成膜装置内部の磁石以外の部分(例えば真空チャンバーの内壁)にも多量に希土類金属が堆積するため、貴重資源である重希土類元素の省資源化に反することになる。   In any of the methods disclosed in Patent Documents 1 to 4, a heavy rare earth element RH film (RH film) is formed on the surface of the sintered magnet body and then diffused into the sintered magnet body. In the process of growing the RH film on the sintered magnet body, a large amount of rare earth metal is deposited on portions other than the magnet inside the film forming apparatus (for example, the inner wall of the vacuum chamber). It is against resource saving.

本発明は、上記課題を解決するためになされたものであり、その目的とするところは、少ない量の重希土類元素RHを効率よく活用し、主相結晶粒の外殻部に重希土類元素RHを拡散させるR−Fe−B系希土類焼結磁石の製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and the object of the present invention is to efficiently utilize a small amount of heavy rare earth element RH, and to form heavy rare earth element RH in the outer shell portion of the main phase crystal grain. An object of the present invention is to provide a method for producing an R—Fe—B rare earth sintered magnet for diffusing.

本発明によるR−Fe−B系希土類焼結磁石の製造方法は、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有する複数のR−Fe−B系希土類焼結磁石体であって、そのうちの少なくとも1つは重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する複数のR−Fe−B系希土類焼結磁石体を用意する工程(A)と、前記複数のR−Fe−B系希土類焼結磁石体のうちの重希土類元素RHの濃度が異なる2つのR−Fe−B系希土類焼結磁石体を接触させた状態で処理室内に配置する工程(B)と、前記処理室内に配置されたR−Fe−B系希土類焼結磁石体を加熱することにより、重希土類元素RHの濃度が相対的に高いR−Fe−B系希土類焼結磁石体から重希土類元素RHの濃度が相対的に低いR−Fe−B系希土類焼結磁石体に重希土類元素RHを拡散させる工程(C)とを包含する。   A method for producing an R—Fe—B based rare earth sintered magnet according to the present invention includes a plurality of R—Fe—B based rare earth sintered containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R. A plurality of R—Fe—B rare earth sintered magnet bodies containing at least one heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb). And preparing two R-Fe-B rare earth sintered magnet bodies having different concentrations of the heavy rare earth element RH among the plurality of R-Fe-B rare earth sintered magnet bodies. The step (B) of placing in the processing chamber in a heated state and heating the R—Fe—B rare earth sintered magnet body disposed in the processing chamber results in a relatively high concentration of heavy rare earth element RH. -Fe-B rare earth sintered magnet body Comprising a step (C) the concentration of RH Shigeru Luo rare-earth element to diffuse the heavy rare-earth element RH at a relatively low R-Fe-B rare earth sintered magnet body.

好ましい実施形態において、前記工程(C)において、前記R−Fe−B系希土類焼結磁石体の加熱温度を700℃以上1000℃以下の範囲内に設定する。   In a preferred embodiment, in the step (C), the heating temperature of the R—Fe—B rare earth sintered magnet body is set in the range of 700 ° C. or more and 1000 ° C. or less.

好ましい実施形態において、前記工程(C)は、前記処理室内を真空または不活性雰囲気で満たした状態で加熱処理を行う。   In a preferred embodiment, in the step (C), heat treatment is performed in a state where the processing chamber is filled with a vacuum or an inert atmosphere.

好ましい実施形態において、前記工程(B)において前記処理室内に配置される複数のR−Fe−B系希土類焼結磁石体のうち、重希土類元素RHの濃度が最も高いR−Fe−B系希土類焼結磁石体は、5質量%以上12質量%以下の重希土類元素RHを含有している。   In a preferred embodiment, among the plurality of R—Fe—B rare earth sintered magnets arranged in the processing chamber in the step (B), the R—Fe—B rare earth having the highest concentration of the heavy rare earth element RH. The sintered magnet body contains a heavy rare earth element RH of 5% by mass or more and 12% by mass or less.

本発明では、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)の濃度が相対的に高いR−Fe−B系希土類焼結磁石から、重希土類元素RHの濃度が相対的に低いR−Fe−B系希土類焼結磁石に対して重希土類元素RHを拡散することにより、重希土類元素RHの濃度が相対的に高いR−Fe−B系希土類焼結磁石に含まれる余剰の重希土類元素RHを活用し、重希土類元素RHの濃度が相対的に低いR−Fe−B系希土類焼結磁石の特性を効率的に向上させることが可能になる。   In the present invention, from the R—Fe—B rare earth sintered magnet having a relatively high concentration of the heavy rare earth element RH (at least one selected from the group consisting of Dy, Ho, and Tb), R-Fe-B rare earth sintered magnet having a relatively high concentration of heavy rare earth element RH by diffusing heavy rare earth element RH to an R-Fe-B rare earth sintered magnet having a relatively low concentration It is possible to efficiently improve the characteristics of the R—Fe—B based rare earth sintered magnet having a relatively low concentration of the heavy rare earth element RH by utilizing the excess heavy rare earth element RH contained in.

本発明者は、原料合金溶製の段階でDyを添加したR−Fe−B系希土類焼結磁石において、Dyの含有量を約5質量%より増大させた場合に保磁力向上効果が鈍化することに着目した。Dy濃度の増加に応じて保磁力が向上しない理由は、多量に添加されたDyが、保磁力向上の効果をもたらす主相外殻部のみならず、保磁力向上に寄与しない粒界相内部にも高い濃度で存在するようになるからである。   In the R-Fe-B rare earth sintered magnet to which Dy is added at the stage of melting the raw material alloy, the inventor reduces the coercive force improvement effect when the Dy content is increased from about 5% by mass. Focused on that. The reason why the coercive force does not improve in accordance with the increase in Dy concentration is that not only the main phase outer shell part that causes the coercive force improvement effect but also the inside of the grain boundary phase where Dy added in a large amount does not contribute to the coercive force improvement. This is because it becomes present at a high concentration.

本発明では、過剰に存在する重希土類元素RHを以下の方法により有効に活用し、保磁力を効果的に向上させることが可能になる。なお、重希土類元素RHは、Dy、Ho、およびTbからなる群から選択された少なくとも1種である。   In the present invention, excessively existing heavy rare earth element RH can be effectively utilized by the following method, and the coercive force can be effectively improved. The heavy rare earth element RH is at least one selected from the group consisting of Dy, Ho, and Tb.

本発明では、まず、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有する複数のR−Fe−B系希土類焼結磁石体であって、そのうちの少なくとも1つは重希土類元素RHを含有する複数のR−Fe−B系希土類焼結磁石体を用意する工程(A)を行う。そして、これらの複数のR−Fe−B系希土類焼結磁石体のうちの重希土類元素RHの濃度が異なる2つのR−Fe−B系希土類焼結磁石体を接触させた状態で処理室内に配置する工程(B)を行う。次に、処理室内に配置されたR−Fe−B系希土類焼結磁石体を加熱することにより、重希土類元素RHの濃度が相対的に高いR−Fe−B系希土類焼結磁石体から重希土類元素RHの濃度が相対的に低いR−Fe−B系希土類焼結磁石体に重希土類元素RHを拡散させる工程(C)を行う。   In the present invention, first, a plurality of R—Fe—B rare earth sintered magnets containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R, of which at least one is A step (A) of preparing a plurality of R—Fe—B rare earth sintered magnet bodies containing the heavy rare earth element RH is performed. The two R-Fe-B rare earth sintered magnet bodies having different concentrations of the heavy rare earth element RH among the plurality of R-Fe-B rare earth sintered magnet bodies are in contact with each other in the processing chamber. Step (B) of arranging is performed. Next, by heating the R—Fe—B rare earth sintered magnet body arranged in the processing chamber, the R—Fe—B rare earth sintered magnet body having a relatively high concentration of the heavy rare earth element RH is heated. A step (C) of diffusing the heavy rare earth element RH into the R—Fe—B rare earth sintered magnet body having a relatively low concentration of the rare earth element RH is performed.

本発明の製造方法では、重希土類元素RHの金属層を希土類焼結磁石体の表面に堆積する工程が不要であり、そのような堆積工程中に重希土類元素RHが無駄に消費されるという従来の問題を解決することができる。   In the manufacturing method of the present invention, a process of depositing a metal layer of heavy rare earth element RH on the surface of the rare earth sintered magnet body is unnecessary, and the heavy rare earth element RH is consumed wastefully during such deposition process. Can solve the problem.

また、本発明では、相対的に高い濃度で重希土類元素RHを含有するR−Fe−B系希土類焼結磁石体の内部において、主相外殻の置換に用いられなかった重希土類元素RHを効率的に再利用し、相対的に低い濃度で重希土類元素RHを含有するR−Fe−B系希土類焼結磁石体あるいは重希土類元素RHを含有しないR−Fe−B系希土類焼結磁石体の保磁力を高めるため、少ない量の重希土類元素RHにより、効率的に磁石特性を向上させることが可能になる。   Further, in the present invention, the heavy rare earth element RH that has not been used to replace the outer shell of the main phase is contained inside the R—Fe—B rare earth sintered magnet body containing the heavy rare earth element RH at a relatively high concentration. R-Fe-B rare earth sintered magnet body that is recycled efficiently and contains heavy rare earth element RH at a relatively low concentration, or R-Fe-B rare earth sintered magnet body that does not contain heavy rare earth element RH In order to increase the coercive force, it is possible to efficiently improve the magnet characteristics with a small amount of heavy rare earth element RH.

重希土類元素RHを含有するR−Fe−B系希土類焼結磁石体の内部では、一部の重希土類元素RHが主相の外殻で軽希土類元素RLと置換しているが、残りの重希土類元素RHは粒界相や主相内部に存在し、保磁力向上に寄与していない。このように磁石特性向上に役立たない重希土類元素RHのうち、粒界相内に位置する重希土類元素RHは、熱処理により他のR−Fe−B系希土類焼結磁石体に拡散させることが可能であり、それによって拡散源となる焼結磁石体(重希土類元素RHが相対的に高い)の特性を低下させることなく、他の焼結磁石体(重希土類元素RHが相対的に低い)の磁石特性を効果的に高めることが可能になる。   In the R—Fe—B rare earth sintered magnet body containing the heavy rare earth element RH, a part of the heavy rare earth element RH is replaced with the light rare earth element RL in the outer shell of the main phase. The rare earth element RH exists in the grain boundary phase and the main phase and does not contribute to the improvement of the coercive force. Of the heavy rare earth elements RH that are not useful for improving the magnet properties, the heavy rare earth elements RH located in the grain boundary phase can be diffused into other R—Fe—B rare earth sintered magnet bodies by heat treatment. Thus, without degrading the characteristics of the sintered magnet body (relatively high rare earth element RH) serving as a diffusion source, other sintered magnet bodies (relatively low heavy rare earth element RH) can be used. The magnet characteristics can be effectively improved.

従来技術では、前述のように重希土類元素RHの膜(RH膜)を焼結磁石体の表面に形成した後、焼結磁石体の内部に拡散させるが、RH膜を焼結磁石体上に成長させる過程で、重希土類元素RHの成膜材料供給源を極めて非効率的に消費してしまうことになる。例えばスパッタリング法によってRH膜を焼結磁石体上に堆積する場合、重希土類元素RHのターゲットを焼結磁石体に対向する位置に配置した状態でスパッタリングする必要がある。このとき、ターゲットからスパッタされた重希土類元素RHは、スパッタ装置内において焼結磁石体が存在しない部分にも衝突し、そこにも堆積してゆく。同様のことが、重希土類元素RHの他の薄膜堆積技術(蒸着法など)を用いる場合にも生じる。すなわち、従来の薄膜堆積技術による場合、焼結磁石体に薄膜を堆積する工程で重希土類元素RHの多く(例えば80〜90%)が無駄に消費されてしまうという問題がある。これに対し、本発明では、複数の焼結磁石体に相互に接触させた状態で加熱処理を行うことにより、極めて効率的に重希土類元素RHを磁石体の内部に拡散させることが可能になる。   In the prior art, as described above, a heavy rare earth element RH film (RH film) is formed on the surface of the sintered magnet body and then diffused into the sintered magnet body. However, the RH film is formed on the sintered magnet body. In the process of growth, the deposition material supply source of the heavy rare earth element RH is consumed extremely inefficiently. For example, when an RH film is deposited on a sintered magnet body by a sputtering method, it is necessary to perform sputtering in a state where a target of the heavy rare earth element RH is disposed at a position facing the sintered magnet body. At this time, the heavy rare earth element RH sputtered from the target collides with a portion where the sintered magnet body does not exist in the sputtering apparatus and is deposited there. The same thing occurs when other thin film deposition techniques (such as vapor deposition) are used. That is, according to the conventional thin film deposition technique, there is a problem that a large amount (for example, 80 to 90%) of the heavy rare earth element RH is wasted in the process of depositing the thin film on the sintered magnet body. On the other hand, in the present invention, it is possible to diffuse the heavy rare earth element RH extremely efficiently into the magnet body by performing the heat treatment in a state where the sintered magnet bodies are in contact with each other. .

重希土類元素RHの濃度が相対的に高いR−Fe−B系焼結磁石体は、5〜12質量%の重希土類元素RHを含有していることが好ましい。一方、重希土類元素RHの濃度が相対的に低いR−Fe−B系焼結磁石体は、5質量%以下の低濃度の重希土類元素RHを含有しているか、あるいは、重希土類元素RHを含有していないことが好ましい。   The R—Fe—B based sintered magnet body having a relatively high concentration of heavy rare earth element RH preferably contains 5 to 12% by mass of heavy rare earth element RH. On the other hand, the R—Fe—B based sintered magnet body having a relatively low concentration of heavy rare earth element RH contains heavy rare earth element RH at a low concentration of 5 mass% or less, or contains heavy rare earth element RH. It is preferable not to contain.

重希土類元素RHの濃度が異なる複数の焼結磁石体は、そのままの状態で積層してもよいが、種々の効果を得るために、磁石体間にAl、Zn、Snなどの低融点金属の箔を挟んだり、これらの金属の被膜を磁石体表面に形成しておいてもよい。これらの金属の中でも、Alは、重希土類元素RHによる保磁力向上効果を助長するため、好ましい働きをする。焼結磁石体の接触面は、実効的な接触面積を増加させるという観点から、高い平滑性を有していることが好ましい。また、焼結磁石体の接触面には、拡散にとって障害となるような層(厚い酸化物層)が存在しないことが好ましい。このため、積層配置の前に、個々の磁石体の表面に対して硝酸等を用いる酸洗浄などの前処理を行うことが好ましい。   A plurality of sintered magnet bodies having different concentrations of the heavy rare earth element RH may be laminated as they are, but in order to obtain various effects, a low melting point metal such as Al, Zn, Sn or the like is interposed between the magnet bodies. A foil may be sandwiched or a film of these metals may be formed on the surface of the magnet body. Among these metals, Al works favorably because it promotes the effect of improving the coercive force by the heavy rare earth element RH. The contact surface of the sintered magnet body preferably has high smoothness from the viewpoint of increasing the effective contact area. Moreover, it is preferable that there is no layer (thick oxide layer) that hinders diffusion on the contact surface of the sintered magnet body. For this reason, it is preferable to perform a pretreatment such as acid cleaning using nitric acid or the like on the surface of each magnet body before the stacked arrangement.

重希土類元素RHの含有量が異なる焼結磁石体の積層数は、2層に限定されず、3層以上であってもよい。3層以上の焼結磁石体を積層する場合、それらの焼結磁石体における重希土類元素RHの含有量(濃度)は、2種類に限られず、3種類以上であってもよい。   The number of laminated sintered magnet bodies having different heavy rare earth element RH contents is not limited to two, and may be three or more. When laminating three or more layers of sintered magnet bodies, the content (concentration) of heavy rare earth element RH in these sintered magnet bodies is not limited to two types, and may be three or more types.

積層した焼結磁石体に対して行う拡散のための熱処理は、処理室の雰囲気全体を加熱する方法で行っても良い。高周波誘導加熱等の方法により、焼結磁石体を直接加熱する方法で行っても良い。処理室内の加熱温度は700℃以上1000℃以下の範囲内に設定することが好ましく、850℃以上950℃以下の範囲内に設定することが更に好ましい。このような温度範囲内に設定すれば、重希土類元素RHの濃度が相対的に高い焼結磁石体から重希土類元素RHの濃度が相対的に低い焼結磁石体へ、粒界相を介して効率よく重希土類元素RHを拡散させることができる。この拡散に際して、重希土類元素RHの濃度が相対的に低い焼結磁石体から重希土類元素RHの濃度が相対的に高い焼結磁石体へ、軽希土類元素RLが拡散することになる(相互拡散)。   The heat treatment for diffusion performed on the laminated sintered magnet body may be performed by a method of heating the entire atmosphere of the processing chamber. The sintered magnet body may be directly heated by a method such as high frequency induction heating. The heating temperature in the treatment chamber is preferably set in the range of 700 ° C. or higher and 1000 ° C. or lower, and more preferably set in the range of 850 ° C. or higher and 950 ° C. or lower. If set within such a temperature range, a sintered magnet body having a relatively high concentration of heavy rare earth element RH to a sintered magnet body having a relatively low concentration of heavy rare earth element RH via a grain boundary phase. The heavy rare earth element RH can be diffused efficiently. During this diffusion, the light rare earth element RL diffuses from a sintered magnet body having a relatively low concentration of heavy rare earth element RH to a sintered magnet body having a relatively high concentration of heavy rare earth element RH (interdiffusion). ).

熱処理時における処理室内は不活性雰囲気であることが好ましい。不活性雰囲気であれば、真空でもAr雰囲気でもよい。処理室内の真空度は重希土類元素RHの拡散量、すなわち保磁力の向上度には大きく影響しない。   The inside of the treatment chamber during the heat treatment is preferably an inert atmosphere. As long as it is an inert atmosphere, a vacuum or an Ar atmosphere may be used. The degree of vacuum in the processing chamber does not greatly affect the diffusion amount of the heavy rare earth element RH, that is, the degree of improvement in coercive force.

熱処理時間は、拡散の対象となる磁石体の厚さに依存して決定される。例えば個々の厚さが1mm〜5mmの磁石体を用いる場合、熱処理時間は30分〜5時間程度の範囲内に設定することが好ましい。熱処理時間が30分に満たないと、重希土類元素RHは充分に拡散しない。また、厚さが5mmの磁石体の場合、5時間以内に拡散は終了するため、5時間以上もの間、熱処理を継続しても保磁力は顕著には向上しない。厚さ1mm程度の磁石体の場合、3時間程度の熱処理により、磁石体の全体に重希土類元素RHを拡散することができる。   The heat treatment time is determined depending on the thickness of the magnet body to be diffused. For example, when using a magnet body having an individual thickness of 1 mm to 5 mm, the heat treatment time is preferably set within a range of about 30 minutes to 5 hours. If the heat treatment time is less than 30 minutes, the heavy rare earth element RH does not diffuse sufficiently. In addition, in the case of a magnet body having a thickness of 5 mm, since the diffusion is completed within 5 hours, the coercive force is not significantly improved even if the heat treatment is continued for 5 hours or more. In the case of a magnet body having a thickness of about 1 mm, the heavy rare earth element RH can be diffused throughout the magnet body by a heat treatment for about 3 hours.

熱処理時には、磁石体の界面における実効的な接触面積を拡大させるため、磁石体に荷重を印加することが好ましい。特に10mm角程度の小物積層磁石の場合、このような荷重の印加は特に好ましいが、それよりも大きな積層磁石の場合は、自重で十分に広い接触面積を確保できる。   During heat treatment, it is preferable to apply a load to the magnet body in order to increase the effective contact area at the interface of the magnet body. In particular, in the case of a small laminated magnet of about 10 mm square, application of such a load is particularly preferable, but in the case of a laminated magnet larger than that, a sufficiently large contact area can be secured by its own weight.

熱処理後における積層された焼結磁石体は、重希土類元素RHおよび軽希土類元素RLの層が界面に形成され、それによって磁石体間で接合が生じる。接合によって結合した磁石体は、そのまま積層磁石としても使用してもよいし、個々に分離したり、あるいは、所望の形状および大きさを有する磁石片に加工しても良い。   In the laminated sintered magnet body after the heat treatment, a layer of heavy rare earth element RH and light rare earth element RL is formed at the interface, thereby joining the magnet bodies. The magnet bodies coupled by joining may be used as laminated magnets as they are, or may be individually separated or processed into magnet pieces having a desired shape and size.

このようにして作製された積層磁石は、磁石体界面に希土類金属層(重希土類元素RHおよび軽希土類元素RLを含有する層)を有するため、これらの界面を横切るような渦電流が発生しにくくなり、全体として渦電流による発熱が抑制される。このため、モータに実装して使用される場合、優れた磁石特性を発揮することが可能になる。   Since the laminated magnet manufactured in this way has a rare earth metal layer (a layer containing heavy rare earth element RH and light rare earth element RL) at the magnet body interface, eddy currents that cross these interfaces are unlikely to occur. Thus, heat generation due to eddy current is suppressed as a whole. For this reason, when it mounts and uses for a motor, it becomes possible to exhibit the outstanding magnet characteristic.

本発明の積層磁石に含まれる重希土類元素RHの総量と同一量の重希土類元素RHを合金溶製段階で配合した場合に得られる焼結磁石に比べ、本発明の磁石では、より高い保磁力の向上効果を得ることができる。すなわち、同じ保磁力の磁石を得るために必要な重希土類元素RHの総量を本発明で低減することが可能であり、貴重資源である重希土類元素RHの省資源化を実現することができる。   The magnet of the present invention has a higher coercive force than the sintered magnet obtained when the same amount of the heavy rare earth element RH contained in the laminated magnet of the present invention is blended in the alloy melting stage. The improvement effect can be obtained. That is, the total amount of heavy rare earth elements RH necessary to obtain a magnet having the same coercive force can be reduced by the present invention, and resource saving of heavy rare earth elements RH, which is a valuable resource, can be realized.

本発明によれば、成膜のためにRH供給源をスパッタリングしたり、蒸発させる必要がないため、重希土類元素RHを磁石体の内部に効率よく拡散させることが可能であり、貴重資源である重希土類元素RHの省資源化に大いに寄与することとなる。さらに、同じ容積内での積載効率が高いので、生産効率が高い。また、大掛かりな装置を作製する必要が無く、一般的な真空熱処理炉が活用できるため、コストメリットがあり実用的である。   According to the present invention, since it is not necessary to sputter or evaporate the RH supply source for film formation, the heavy rare earth element RH can be efficiently diffused into the magnet body, which is a valuable resource. This will greatly contribute to resource saving of the heavy rare earth element RH. Furthermore, since the loading efficiency within the same volume is high, the production efficiency is high. In addition, since it is not necessary to manufacture a large-scale apparatus and a general vacuum heat treatment furnace can be used, there is a cost merit and it is practical.

本発明における拡散処理によれば、相対的にRH濃度が低い磁石体中において、R2Fe14B主相結晶粒の軽希土類元素RLの一部を重希土類元素RHで置換し、R2Fe14B主相の外殻部に重希土類元素RHが相対的に濃縮した層(厚さは例えば1nm)を形成することができる。 According to the diffusion treatment in the present invention, in the magnet body having a relatively low RH concentration, a part of the light rare earth element RL of the R 2 Fe 14 B main phase crystal grains is substituted with the heavy rare earth element RH, and R 2 Fe A layer (thickness is, for example, 1 nm) in which heavy rare earth element RH is relatively concentrated can be formed in the outer shell of the 14 B main phase.

R−Fe−B系希土類焼結磁石の保磁力発生機構はニュークリエーション型であるため、主相外殻部における結晶磁気異方性が高められると、主相における粒界相の近傍で逆磁区の核生成が抑制される結果、主相全体の保磁力HcJが効果的に向上する。本発明では、焼結磁石体の表面に近い領域だけでなく、磁石表面から奥深い領域においても重希土類置換層を主相外殻部に形成することができるため、磁石全体にわたって結晶磁気異方性が高められ、磁石全体の保磁力HcJが充分に向上することになる。したがって、本発明によれば、消費する重希土類元素RHの量が少なくとも、焼結体の内部まで重希土類元素RHを拡散・浸透させることができ、主相外殻部で効率良くRH2Fe14Bを形成することにより、残留磁束密度Brの低下を抑制しつつ保磁力HcJを向上させることが可能になる。 Since the coercive force generation mechanism of the R—Fe—B rare earth sintered magnet is a nucleation type, if the magnetocrystalline anisotropy in the outer shell of the main phase is increased, a reverse magnetic domain is formed in the vicinity of the grain boundary phase in the main phase. As a result, the coercive force H cJ of the entire main phase is effectively improved. In the present invention, since the heavy rare earth substitution layer can be formed on the outer shell of the main phase not only in the area close to the surface of the sintered magnet body but also in the area deep from the magnet surface, The coercive force H cJ of the whole magnet is sufficiently improved. Therefore, according to the present invention, the amount of consumed heavy rare earth element RH can be diffused and penetrated at least into the sintered body, and RH 2 Fe 14 can be efficiently produced in the outer shell portion of the main phase. by forming the B, it is possible to improve the coercive force H cJ while suppressing the decrease in remanence B r.

なお、Tb2Fe14Bの結晶磁気異方性は、Dy2Fe14Bの結晶磁気異方性よりも高く、Nd2Fe14Bの結晶磁気異方性の約3倍の大きさを有している。このため、主相外殻部で軽希土類元RLと置換させるべき重希土類元素RHとしては、DyよりもTbが好ましい。 The crystal magnetic anisotropy of Tb 2 Fe 14 B is higher than the crystal magnetic anisotropy of Dy 2 Fe 14 B, and is about three times as large as that of Nd 2 Fe 14 B. is doing. For this reason, Tb is preferable to Dy as the heavy rare earth element RH to be replaced with the light rare earth element RL in the main phase outer shell.

上記説明から明らかなように、本発明では、重希土類元素RHの濃度が相対的に低い焼結磁石体を製造する場合、原料合金の段階で希土類元素RHを添加しておく必要はない。一方、重希土類元素RHの濃度が相対的に高い焼結磁石体を製造する場合、重希土類元素RHの添加方法や添加タイミングは任意であり、原料合金中に希土類元素RHを添加しておいても良い。   As is apparent from the above description, in the present invention, when producing a sintered magnet body having a relatively low concentration of heavy rare earth element RH, it is not necessary to add rare earth element RH at the stage of the raw material alloy. On the other hand, when producing a sintered magnet body having a relatively high concentration of heavy rare earth element RH, the addition method and timing of addition of heavy rare earth element RH are arbitrary, and rare earth element RH is added to the raw material alloy. Also good.

主相の内部に位置する重希土類元素RHは、RH濃度の低い焼結磁石体への拡散に利用にしくいため、RH濃度の高い焼結磁石体では、重希土類元素RHが粒界相に偏って存在していることが好ましい。重希土類元素RHを主として粒界相に存在させるためには、原料合金の段階で重希土類元素RHを添加せずに焼結磁石体を作製した後、重希土類元素RHを焼結磁石体内に拡散してもよい。なお、本願発明者は、重希土類元素RHを焼結磁石体に効率良く導入する方法として、重希土類元素RHのバルク体を焼結磁石体の近接に配置したり、重希土類元素RHの箔や粉末を焼結磁石体に接触させた状態で熱処理を行うことにより、重希土類元素RHを焼結磁石体の内部に拡散させる発明を完成し、特願2006−58555および特願2006−81066に開示している。重希土類元素RHの濃度が高い焼結磁石体は、このような方法によって作製しても良い。   Since the heavy rare earth element RH located inside the main phase is difficult to be used for diffusion into the sintered magnet body having a low RH concentration, the heavy rare earth element RH is biased to the grain boundary phase in the sintered magnet body having a high RH concentration. Preferably present. In order to make the heavy rare earth element RH mainly exist in the grain boundary phase, after the sintered magnet body is produced without adding the heavy rare earth element RH at the stage of the raw material alloy, the heavy rare earth element RH is diffused in the sintered magnet body. May be. In addition, as a method for efficiently introducing the heavy rare earth element RH into the sintered magnet body, the inventor of the present application arranges a bulk body of the heavy rare earth element RH in the vicinity of the sintered magnet body, The invention in which heavy rare earth elements RH are diffused into the sintered magnet body by heat treatment while the powder is in contact with the sintered magnet body is completed, and disclosed in Japanese Patent Application Nos. 2006-58555 and 2006-81066. is doing. A sintered magnet body having a high concentration of heavy rare earth element RH may be produced by such a method.

なお、本明細書における「処理室」は、接触する複数の焼結磁石体を配置した空間を広く含むものであり、熱処理炉の処理室を意味する場合もあれば、そのような処理室内に収容される処理容器を意味する場合もある。   In addition, the “processing chamber” in the present specification includes a wide space in which a plurality of sintered magnet bodies that are in contact are arranged, and may mean a processing chamber of a heat treatment furnace. It may also mean a processing container to be accommodated.

本発明では、焼結磁石体どうしが接触し、その間で重希土類元素RHが拡散するため、気化したRH金属が焼結磁石体処理室内の壁面などに付着することも起きない。このため、貴重資源である重希土類元素RHの無駄な消費を抑制することができる。   In the present invention, the sintered magnet bodies are in contact with each other and the heavy rare earth element RH diffuses between them, so that the vaporized RH metal does not adhere to the wall surface in the sintered magnet body processing chamber. For this reason, useless consumption of the heavy rare earth element RH which is a valuable resource can be suppressed.

さらに、焼結磁石体以外に特別の拡散源や蒸着源が不要であるため、同じ容積を有する処理室内に搭載可能な焼結磁石体の量が増え、積載効率が高い。また、大掛かりな装置を必要としないため、一般的な真空熱処理炉が活用でき、製造コストの上昇を避けることが可能であり、実用的である。   Furthermore, since no special diffusion source or vapor deposition source is required in addition to the sintered magnet body, the amount of the sintered magnet body that can be mounted in the processing chamber having the same volume increases, and the loading efficiency is high. Moreover, since a large-scale apparatus is not required, a general vacuum heat treatment furnace can be used, and an increase in manufacturing cost can be avoided, which is practical.

熱処理時における処理室内は不活性雰囲気であることが好ましい。本明細書における「不活性雰囲気」とは、真空、また不活性ガスで満たされた状態を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、RHバルク体および焼結磁石体との間で化学的に反応しないガスであれば、「不活性ガス」に含まれ得る。不活性ガスの圧力は、大気圧よりも低い値を示すように減圧される。   The inside of the treatment chamber during the heat treatment is preferably an inert atmosphere. The “inert atmosphere” in this specification includes a state filled with a vacuum or an inert gas. Further, the “inert gas” is a rare gas such as argon (Ar), for example, but if it is a gas that does not chemically react between the RH bulk body and the sintered magnet body, the “inert gas” is designated as “inert gas”. May be included. The pressure of the inert gas is reduced to show a value lower than the atmospheric pressure.

RH濃度が高い焼結磁石体に含まれるRHは、磁石体界面におけるRH濃度の差を駆動力として、粒界相中を低濃度磁石体の内部に向かって拡散する。このとき、R2Fe14B相中の軽希土類元素RLの一部が、磁石表面から拡散浸透してきた重希土類元素RHによって置換される。その結果、R2Fe14B相の外殻部に重希土類元素RHが濃縮された層が形成される。このようなRH濃縮層の形成により、主相外殻部の結晶磁気異方性が高められ、保磁力HcJが向上することになる。すなわち、少ないRH金属の使用により、磁石内部の奥深くにまで重希土類元素RHを拡散浸透させ、主相外殻部のみを効率的にRH2Fe14Bに変換するため、残留磁束密度Brの低下を抑制しつつ、磁石全体にわたって保磁力HcJを向上させることが可能になる。 The RH contained in the sintered magnet body having a high RH concentration diffuses in the grain boundary phase toward the inside of the low-concentration magnet body using the difference in the RH concentration at the magnet body interface as a driving force. At this time, a part of the light rare earth element RL in the R 2 Fe 14 B phase is replaced by the heavy rare earth element RH diffused and penetrated from the magnet surface. As a result, a layer enriched with heavy rare earth elements RH is formed in the outer shell of the R 2 Fe 14 B phase. By forming such an RH enriched layer, the magnetocrystalline anisotropy of the outer shell portion of the main phase is increased and the coercive force H cJ is improved. That is, by using a small amount of RH metal, the heavy rare earth element RH is diffused and penetrated deep inside the magnet, and only the main phase outer shell portion is efficiently converted to RH 2 Fe 14 B. Therefore, the residual magnetic flux density Br The coercive force H cJ can be improved over the entire magnet while suppressing the decrease.

なお、実験によると、重希土類元素RHの拡散浸透に伴って軽希土類元素RLは焼結磁石体内部から表面に向かって拡散し、磁石体表面にRL濃化層を形成することがわかった。このため、焼結磁石体内部における希土類元素の総量(主相の体積比率)は、ほとんど変化せず、残留磁束密度の低下が抑制される。   According to the experiment, it was found that the light rare earth element RL diffuses from the inside of the sintered magnet body to the surface as the heavy rare earth element RH diffuses and penetrates, thereby forming an RL concentrated layer on the surface of the magnet body. For this reason, the total amount of rare earth elements inside the sintered magnet body (volume ratio of the main phase) hardly changes, and a decrease in residual magnetic flux density is suppressed.

前述のように、R−Fe−B系焼結磁石は、ニュークリエーションによる保磁力発生機構を有しているため、主相外殻部における結晶磁気異方性が高められることにより、主相の粒界相近傍における逆磁区の核生成が抑制され、保磁力HcJが高まる。なお、Tb2Fe14Bにおける結晶磁気異方性はNd2Fe14Bにおける結晶磁気異方性の約3倍であるため、希土類元素RHとしては、DyよりもTbを用いる方が保磁力向上効果を高めることが可能である。 As described above, since the R—Fe—B based sintered magnet has a coercive force generation mechanism by nucleation, the crystal magnetic anisotropy in the main phase outer shell is increased, so that the main phase Nucleation of reverse magnetic domains in the vicinity of the grain boundary phase is suppressed, and the coercive force H cJ is increased. Since the magnetocrystalline anisotropy of Tb 2 Fe 14 B is about three times the magnetocrystalline anisotropy of Nd 2 Fe 14 B, the coercivity is improved when Tb is used as the rare earth element RH rather than Dy. It is possible to increase the effect.

また、拡散するRHの含有量は、磁石全体の重量比で0.1%以上1.5%以下の範囲に設定することが好ましい。1.5%を超えると、残留磁束密度Brの低下を抑制できなくなる可能性があり、0.1%未満では、保磁力HcJの向上効果が不充分だからである。上記の温度領域で、30〜180分熱処理することにより、0.1%〜1.5%の拡散量が達成できる。 Moreover, it is preferable to set the content of RH to diffuse in the range of 0.1% to 1.5% by weight ratio of the whole magnet. Exceeds 1.5%, may not be able to suppress a decrease in remanence B r, is less than 0.1%, is because insufficient effect of improving the coercivity H cJ. A diffusion amount of 0.1% to 1.5% can be achieved by heat treatment in the above temperature range for 30 to 180 minutes.

焼結磁石の表面状態はRHが拡散浸透しやすいよう、より金属状態に近い方が好ましく、事前に酸洗浄やブラスト処理等の活性化処理を行った方がよい。   The surface state of the sintered magnet is preferably closer to a metallic state so that RH can easily diffuse and penetrate, and it is better to perform an activation treatment such as acid cleaning or blasting in advance.

本発明によれば、主として粒界相を介して重希土類元素RHを拡散させることができるため、処理時間を調節することにより、磁石内部のより深い位置へ効率的に重希土類元素RHを拡散させることが可能である。   According to the present invention, since the heavy rare earth element RH can be diffused mainly through the grain boundary phase, the heavy rare earth element RH is efficiently diffused to a deeper position inside the magnet by adjusting the processing time. It is possible.

本発明によれば、例えば厚さ3mm以上の厚物磁石に対しても、僅かな量の重希土類元素RHを用いて残留磁束密度Brおよび保磁力HcJの両方を高め、高温でも磁気特性が低下しない高性能磁石を提供することができる。このような高性能磁石は、超小型・高出力モータの実現に大きく寄与する。粒界拡散を利用した本発明の効果は、個々の磁石体の厚さが10mm以下の場合に特に顕著に発現する。 According to the present invention, for example, even for a thickness of 3mm or more thick material magnet, increasing both the remanence B r and coercivity H cJ with the heavy rare-earth element RH in small amounts, the magnetic properties at high temperatures It is possible to provide a high performance magnet that does not deteriorate. Such a high-performance magnet greatly contributes to the realization of an ultra-small and high-power motor. The effect of the present invention using the grain boundary diffusion is particularly prominent when the thickness of each magnet body is 10 mm or less.

以下、本発明によるR−Fe−B系希土類焼結磁石を製造する方法の好ましい実施形態を説明する。   Hereinafter, a preferred embodiment of a method for producing an R—Fe—B rare earth sintered magnet according to the present invention will be described.

[原料合金]
本実施形態では、Dy濃度が異なる複数の焼結磁石体を作製するため、Dy濃度の異なる合金を用意し、それぞれの合金を粉砕し、焼結する工程を実施する。
[Raw material alloy]
In this embodiment, in order to produce a plurality of sintered magnet bodies having different Dy concentrations, an alloy having different Dy concentrations is prepared, and each alloy is pulverized and sintered.

まず、25質量%以上40質量%以下の軽希土類元素RLと、0.6質量%以上〜1.6質量%のB(硼素)と、残部Fe及び不可避的不純物とを含有する合金を用意する一方、重希土類元素RHとしてDyを添加した合金をも用意する。   First, an alloy containing a light rare earth element RL of 25% by mass or more and 40% by mass or less, B (boron) of 0.6% by mass to 1.6% by mass, the remainder Fe and inevitable impurities is prepared. On the other hand, an alloy to which Dy is added as the heavy rare earth element RH is also prepared.

上記の合金中のBの一部はC(炭素)によって置換されていてもよいし、Feの一部(50原子%以下)は、他の遷移金属元素(例えばCoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01〜1.0質量%程度含有していてもよい。   Part of B in the above alloy may be substituted by C (carbon), and part of Fe (50 atomic% or less) is substituted by another transition metal element (for example, Co or Ni). May be. This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01 to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.

上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。   The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.

まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶融し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕前に例えば1〜10mmの大きさのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。   First, a raw material alloy having the above composition is melted by high frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into flakes having a size of 1 to 10 mm, for example, before the next hydrogen pulverization. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.

[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」と称する場合がある)工程を行なう。水素粉砕後の粗粉砕合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性が向上するからである。
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement process (hereinafter sometimes referred to as “hydrogen pulverization process”) is performed inside the hydrogen furnace. When the coarsely pulverized alloy powder after hydrogen pulverization is taken out from the hydrogen furnace, it is preferable to perform the take-out operation in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. This is because the coarsely pulverized powder is prevented from oxidizing and generating heat, and the magnetic properties of the magnet are improved.

水素粉砕によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすれば良い。   By the hydrogen pulverization, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization, the embrittled raw material alloy is preferably crushed more finely and cooled. In the case where the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.

[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度(典型的には3〜5μm)の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 to 20 μm (typically 3 to 5 μm) can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.

[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.5〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm3程度になるように設定される。
[Press molding]
In this embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1.5 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .

[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば1000〜1200℃)で焼結を更に進める工程とを順次行なうことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結後、必要に応じて、時効処理(500〜1000℃)が行われる。
[Sintering process]
With respect to said powder molded object, the process hold | maintained for 10 to 240 minutes at the temperature within the range of 650-1000 degreeC, and sintering further by the temperature (for example, 1000-1200 degreeC) higher than said holding temperature after that. It is preferable to sequentially perform the proceeding steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After sintering, an aging treatment (500 to 1000 ° C.) is performed as necessary.

こうして、重希土類元素RHの濃度が異なる複数の焼結磁石体を得ることができる。   Thus, a plurality of sintered magnet bodies having different concentrations of the heavy rare earth element RH can be obtained.

[拡散工程]
次に、重希土類元素RHの濃度が異なる焼結磁石体を相互に接触させた状態で処理室内に配置し、加熱により、一方から他方の焼結磁石体に重希土類元素RHを拡散させる。
[Diffusion process]
Next, the sintered magnet bodies having different concentrations of the heavy rare earth element RH are arranged in the processing chamber in contact with each other, and the heavy rare earth element RH is diffused from one to the other sintered magnet body by heating.

本実施形態における拡散工程では、焼結磁石体の温度を700℃以上1000℃以下の範囲内に設定することが好ましい。   In the diffusion step in the present embodiment, it is preferable to set the temperature of the sintered magnet body within a range of 700 ° C. or higher and 1000 ° C. or lower.

(実施例1)
まず、Nd:31.8、B:1.0、Co:0.9、Cu:0.1、Al:0.2、残部:Fe(質量%)の組成を有するように配合した合金のインゴットをストリップキャスト装置により溶融し、冷却することによって凝固した。こうして、厚さ0.2〜0.3mmの合金薄片を作製した。
Example 1
First, an alloy ingot blended to have a composition of Nd: 31.8, B: 1.0, Co: 0.9, Cu: 0.1, Al: 0.2, balance: Fe (mass%) Was melted by a strip casting apparatus and solidified by cooling. Thus, alloy flakes having a thickness of 0.2 to 0.3 mm were produced.

次に、この合金薄片を容器内に充填し、水素処理装置内に収容した。そして、水素処理装置内に圧力500kPaの水素ガス雰囲気で満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15〜0.2mmの不定形粉末を作製した。   Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with a hydrogen gas atmosphere at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such a hydrogen treatment, the alloy flakes were embrittled to produce an amorphous powder having a size of about 0.15 to 0.2 mm.

上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.05wt%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を製作した。   After adding 0.05 wt% zinc stearate as a grinding aid to the coarsely pulverized powder produced by the hydrogen treatment described above and mixing, a pulverization step using a jet mill device is performed, so that the powder particle size is about 3 μm. Powder was produced.

こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1020℃で4時間の焼結工程を行った。こうして、15mm角の立方体形状を有する焼結体ブロックを作製したあと、この焼結体ブロックを機械的に加工することにより、厚さ(磁化方向サイズ)1mm×縦7mm×横7mmの焼結磁石体と、厚さ(磁化方向サイズ)3mm×縦7mm×横7mmの焼結磁石体を複数個作製した(焼結磁石体1、Dy濃度:0質量%)。   The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus and subjected to a sintering process at 1020 ° C. for 4 hours in a vacuum furnace. Thus, after producing a sintered body block having a cubic shape of 15 mm square, the sintered body block is mechanically processed to obtain a sintered magnet having a thickness (magnetization direction size) of 1 mm × length of 7 mm × width of 7 mm. And a plurality of sintered magnet bodies having a thickness (magnetization direction size) of 3 mm × length of 7 mm × width of 7 mm were produced (sintered magnet body 1, Dy concentration: 0 mass%).

焼結磁石体1と同様の工程により、Nd:29.6、Dy:2.5、B:1.0、Co:0.9、Cu:0.1、Al:0.2、残部:Fe(質量%)の組成を有する合金インゴットから作製した焼結磁石体を作製した(焼結磁石体2、Dy濃度:2.5質量%)。また、焼結磁石体1と同様の工程により、Nd:26.8、Dy:5.0、B:1.0、Co:0.9、Cu:0.1、Al:0.2、残部:Fe(質量%)の組成を有する合金インゴットから作製した焼結磁石体を作製した(焼結磁石体3、Dy濃度:5.0質量%)。   By the same process as the sintered magnet body 1, Nd: 29.6, Dy: 2.5, B: 1.0, Co: 0.9, Cu: 0.1, Al: 0.2, balance: Fe A sintered magnet body produced from an alloy ingot having a composition of (mass%) was produced (sintered magnet body 2, Dy concentration: 2.5 mass%). Moreover, Nd: 26.8, Dy: 5.0, B: 1.0, Co: 0.9, Cu: 0.1, Al: 0.2, the remainder by the process similar to the sintered magnet body 1 A sintered magnet body produced from an alloy ingot having a composition of Fe (mass%) was produced (sintered magnet body 3, Dy concentration: 5.0 mass%).

次に、図1に示すようにDy濃度が異なる焼結磁石体を積層した後、真空熱処理炉にて900〜950℃で30〜180分の熱処理(拡散処理)を行った。真空熱処理炉内の圧力は1.0×10-2Paに設定した。この後、500℃で60分の時効処理を2Paの圧力のもとで行った。図1に示す「A」〜「F」は、それぞれ、サンプルA〜Fの積層構造を模式的に示している。 Next, after laminating sintered magnet bodies having different Dy concentrations as shown in FIG. 1, heat treatment (diffusion treatment) was performed at 900 to 950 ° C. for 30 to 180 minutes in a vacuum heat treatment furnace. The pressure in the vacuum heat treatment furnace was set to 1.0 × 10 −2 Pa. Thereafter, an aging treatment at 500 ° C. for 60 minutes was performed under a pressure of 2 Pa. “A” to “F” shown in FIG. 1 schematically show the stacked structures of the samples A to F, respectively.

こうして得られたサンプルA〜Fの特性(残留磁束密度:Br、保磁力:HcJ)をB−Hトレーサによって測定した。Dyの拡散状況はEPMA(島津製作所製EPM−810)によって評価した。図2は、磁石特性の測定結果を示すグラフである。 The characteristics (residual magnetic flux density: B r , coercive force: H cJ ) of the samples A to F thus obtained were measured with a BH tracer. The diffusion state of Dy was evaluated by EPMA (EPM-810 manufactured by Shimadzu Corporation). FIG. 2 is a graph showing measurement results of magnet characteristics.

図2からわかるように、Dy濃度に差のある複数の焼結磁石体を重ね合わせて熱処理を行うことにより、それら複数の焼結磁石体の全体としての保磁力HcJが向上する。図2には、比較例として、焼結磁石体1、焼結磁石体2、焼結磁石体3の各々について、拡散処理を行わない場合の残留磁束密度Br、保磁力HcJも示されている。 As can be seen from FIG. 2, the coercive force H cJ as a whole of the plurality of sintered magnet bodies is improved by superposing the plurality of sintered magnet bodies having different Dy concentrations and performing the heat treatment. 2 shows, as a comparative example, the sintered magnet body 1, the sintered magnet bodies 2, for each of the sintered magnet body 3, the residual magnetic flux density B r of case without diffusion treatment, is also shown the coercive force H cJ ing.

焼結磁石体3(Dy濃度:5.0%)を含む組み合わせ(サンプルB、C、E、F)では、特に保磁力向上効果が顕著であった、これは、Dy濃度5.0%の焼結磁石体の粒界相には余剰のDyが高い濃度で存在するため、Dy濃度の低い焼結磁石体と接触する界面においてDyの濃度勾配が大きくなり、その勾配を駆動力としてDy濃度の低い焼結磁石体の粒界相へDyが速やかに拡散したためであると考えられる。   In the combination (samples B, C, E, and F) including the sintered magnet body 3 (Dy concentration: 5.0%), the coercive force improving effect was particularly remarkable. This is because the Dy concentration is 5.0%. Since excess Dy is present in the grain boundary phase of the sintered magnet body at a high concentration, the Dy concentration gradient becomes large at the interface contacting the sintered magnet body having a low Dy concentration, and this gradient is used as the driving force for the Dy concentration. This is presumably because Dy rapidly diffused into the grain boundary phase of the sintered magnet body having a low thickness.

図3は、一例としてサンプルDについて、熱処理(900℃、30分および500℃、60分)を行った後の断面EPMA分析結果を示している。サンプルDでは、焼結磁石体2から焼結磁石体1へDyが拡散したことを確認した。   FIG. 3 shows a cross-sectional EPMA analysis result after heat treatment (900 ° C., 30 minutes and 500 ° C., 60 minutes) of Sample D as an example. In sample D, it was confirmed that Dy diffused from the sintered magnet body 2 to the sintered magnet body 1.

(実施例2)
図4に示すように焼結磁石体を積層したサンプルD、E、Fを用意した。ただし、本実施例では、焼結磁石体の間にAl箔(ニラコ製99%、7mm×7mm×0.002mm)、Cu箔(ニラコ製99.9%、7mm×7mm×0.002mm)、またはAu箔(ニラコ製99.9%、7mm×7mm×0.0025mm)を挟んだ後、真空熱処理炉にて900〜1000℃、30〜180分、1.0×10-2Paの条件で熱処理を行った。また、その後、500℃、60分、2Paの条件で時効処理を行った。
(Example 2)
As shown in FIG. 4, samples D, E, and F on which sintered magnet bodies were laminated were prepared. However, in this example, between the sintered magnet bodies, Al foil (99% made by Nilaco, 7 mm × 7 mm × 0.002 mm), Cu foil (99.9% made by Nilaco, 7 mm × 7 mm × 0.002 mm), Or after sandwiching Au foil (99.9% made by Nilaco, 7 mm x 7 mm x 0.0025 mm), in a vacuum heat treatment furnace at 900-1000 ° C, 30-180 minutes, 1.0 x 10 -2 Pa Heat treatment was performed. Thereafter, an aging treatment was performed under the conditions of 500 ° C., 60 minutes and 2 Pa.

B−Hトレーサを用いて、上記サンプルの磁石特性(残留磁束密度:Br、保磁力:HcJ)を測定した。測定結果を図5に示す。 The magnetic properties (residual magnetic flux density: B r , coercive force: H cJ ) of the sample were measured using a BH tracer. The measurement results are shown in FIG.

本実施例でも、Dy濃度差のあるサンプルを重ね合わせて熱処理することにより、保磁力が向上することを確認した。特に焼結磁石体3(Dy5.0%)を含むサンプルE、Fで、その効果が顕著であった。その理由は、実施例1について説明した通りである。   Also in this example, it was confirmed that the coercive force was improved by stacking samples having a difference in Dy concentration and performing heat treatment. In particular, the effect was remarkable in the samples E and F containing the sintered magnet body 3 (Dy 5.0%). The reason is as described for the first embodiment.

図6は、各サンプルの全体における平均のDy濃度と磁石特性との関係を示すグラフである。焼結磁石体の間にAl箔を挟んで熱処理を行うことにより、さらに保磁力が向上する。このため、全体としての平均Dy濃度が3.75%の場合(サンプルE)、Dy濃度5.0%の焼結磁石体3の保磁力と、ほぼ同等の保磁力を得ることができる。残留磁束密度(Br)は、焼結磁石体3に比べて高くなるため、焼結磁石体3よりも磁気特性に優れた磁石が得られたと言える。 FIG. 6 is a graph showing the relationship between the average Dy concentration and the magnet characteristics in each sample. The coercive force is further improved by performing heat treatment with an Al foil sandwiched between the sintered magnet bodies. For this reason, when the average Dy concentration as a whole is 3.75% (sample E), a coercive force substantially equal to the coercive force of the sintered magnet body 3 having a Dy concentration of 5.0% can be obtained. Since the residual magnetic flux density (B r ) is higher than that of the sintered magnet body 3, it can be said that a magnet having better magnetic properties than the sintered magnet body 3 was obtained.

(実施例3)
図7に示すように焼結磁石体を積層したサンプルD、E、Fを用意した。ただし、本実施例では、焼結磁石体1〜3の表面にEB(電子線加熱蒸着)法により、10kV、1.6A、30分の条件でAlコーティングを施した後、図7に示すように積層した。サンプルD、E、Fに対して、真空熱処理炉にて900〜950℃、30〜180分、1.0×10-2Paの条件で熱処理した後、500℃、60分、2Paの条件で時効処理を行った。
(Example 3)
Samples D, E, and F on which sintered magnet bodies were laminated as shown in FIG. 7 were prepared. However, in this example, after applying Al coating on the surfaces of the sintered magnet bodies 1 to 3 under the conditions of 10 kV, 1.6 A and 30 minutes by the EB (electron beam heating vapor deposition) method, as shown in FIG. Laminated. Samples D, E, and F were heat-treated in a vacuum heat treatment furnace at 900 to 950 ° C. for 30 to 180 minutes and 1.0 × 10 −2 Pa, and then at 500 ° C. for 60 minutes and 2 Pa. An aging treatment was performed.

こうして得られたサンプルD〜Fの特性(残留磁束密度:Br、保磁力:HcJ)をB−Hトレーサによって測定した。図8は、磁石特性の測定結果を示すグラフである。 The characteristics (residual magnetic flux density: B r , coercive force: H cJ ) of the samples D to F thus obtained were measured with a BH tracer. FIG. 8 is a graph showing measurement results of magnet characteristics.

図8からわかるように、Alコーティングした状態で、Dy濃度差のあるサンプルを重ね合わせて熱処理を行うことにより磁石全体としての保磁力が向上することがわかる。特に焼結磁石体3(Dy:5.0%)の含まれる組み合わせ(サンプルE、F)において、その効果が顕著である理由は前述の通りである。   As can be seen from FIG. 8, the coercive force of the entire magnet is improved by performing heat treatment by superposing samples having a difference in Dy concentration in an Al-coated state. In particular, in the combination (samples E and F) in which the sintered magnet body 3 (Dy: 5.0%) is included, the reason why the effect is remarkable is as described above.

図9は、横軸にトータルDy濃度をとって磁石特性を示す。Alコーティングを施し熱処理することにより、さらに保磁力の向上度合いが大きくなり、トータルDy濃度3.75%(サンプルE)において、焼結磁石体3(Dy濃度5.0%)の保磁力と同等以上の保磁力レベルに到達することが明らかとなった。残留磁束密度(Br)は焼結磁石体3よりも高いため、全体として磁気特性が向上した。 FIG. 9 shows the magnet characteristics with the total Dy concentration on the horizontal axis. By applying Al coating and heat treatment, the degree of improvement in coercive force is further increased, and is equivalent to the coercive force of sintered magnet body 3 (Dy concentration 5.0%) at a total Dy concentration of 3.75% (sample E). It became clear that the above coercive force level was reached. Since the residual magnetic flux density (B r ) is higher than that of the sintered magnet body 3, the magnetic characteristics as a whole are improved.

図9は、各サンプルの全体における平均Dy濃度と磁石特性との関係を示すグラフである。焼結磁石体の間にAlコーティング層を挟んで熱処理を行った場合でも、Al箔を挟んだ場合と同様の効果が得られた。   FIG. 9 is a graph showing the relationship between the average Dy concentration and the magnet characteristics in each sample. Even when the heat treatment was performed with the Al coating layer sandwiched between the sintered magnet bodies, the same effect as when the Al foil was sandwiched was obtained.

本発明によれば、重希土類元素RHを無駄に消費することなく、焼結磁石体の内部にも効率よく粒界相に広く拡散し、主相結晶粒の外殻部に重希土類元素RHが濃縮することができるため、高い残留磁束密度と高い保磁力とを兼ね備えた高性能磁石を提供することができる。   According to the present invention, the heavy rare earth element RH is efficiently diffused widely into the grain boundary phase inside the sintered magnet body without wastefully consuming the heavy rare earth element RH, and the heavy rare earth element RH is formed in the outer shell portion of the main phase crystal grain. Since it can be concentrated, a high-performance magnet having both a high residual magnetic flux density and a high coercive force can be provided.

サンプルA〜Fについて、積層される複数の焼結磁石体の配置関係を示す模式断面図である。It is a schematic cross section which shows the arrangement | positioning relationship of the some sintered magnet body laminated | stacked about sample AF. 本発明の実施例1におけるサンプルA〜Fおよび比較例について得られた磁石特性を示すグラフである。It is a graph which shows the magnet characteristic obtained about sample AF in Example 1 of this invention, and a comparative example. 実施例1におけるサンプルDについて得られた断面EPMA分析結果を示す写真である。2 is a photograph showing a cross-sectional EPMA analysis result obtained for Sample D in Example 1. FIG. 実施例2におけるサンプルD〜Fについて、積層される複数の焼結磁石体の配置関係を示す模式断面図である。It is a schematic cross section which shows the arrangement | positioning relationship of the some sintered magnet body laminated | stacked about the samples DF in Example 2. FIG. 本発明の実施例2におけるサンプルD〜Fおよび比較例について得られた磁石特性を示すグラフである。It is a graph which shows the magnet characteristic acquired about samples DF and the comparative example in Example 2 of this invention. 本発明の実施例2におけるサンプルD〜Fおよび比較例について得られた磁石特性のDy量依存性を示すグラフである。It is a graph which shows the Dy amount dependence of the magnet characteristic obtained about sample DF and the comparative example in Example 2 of this invention. 本発明の実施例3におけるサンプルD〜Fについて、積層される複数の焼結磁石体の配置関係を示す模式断面図である。It is a schematic cross section which shows the arrangement | positioning relationship of the some sintered magnet body laminated | stacked about the samples DF in Example 3 of this invention. 本発明の実施例3におけるサンプルD〜Fおよび比較例について得られた磁石特性を示すグラフである。It is a graph which shows the magnet characteristic acquired about samples DF and the comparative example in Example 3 of this invention. 本発明の実施例3におけるサンプルD〜Fおよび比較例について得られた磁石特性のDy量依存性を示すグラフである。It is a graph which shows the Dy amount dependence of the magnet characteristic obtained about the samples DF in Example 3 of this invention, and a comparative example.

Claims (4)

軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有する複数のR−Fe−B系希土類焼結磁石体であって、そのうちの少なくとも1つは重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有する複数のR−Fe−B系希土類焼結磁石体を用意する工程(A)と、
前記複数のR−Fe−B系希土類焼結磁石体のうちの重希土類元素RHの濃度が異なる2つのR−Fe−B系希土類焼結磁石体を接触させた状態で処理室内に配置する工程(B)と、
前記処理室内に配置されたR−Fe−B系希土類焼結磁石体を加熱することにより、重希土類元素RHの濃度が相対的に高いR−Fe−B系希土類焼結磁石体から重希土類元素RHの濃度が相対的に低いR−Fe−B系希土類焼結磁石体に重希土類元素RHを拡散させる工程(C)と、
を包含するR−Fe−B系希土類焼結磁石の製造方法。
A plurality of R—Fe—B rare earth sintered magnets containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R, at least one of which is a heavy rare earth element RH (Dy A step (A) of preparing a plurality of R—Fe—B rare earth sintered magnet bodies containing at least one selected from the group consisting of H, Tb, and Tb;
A step of arranging two R-Fe-B rare earth sintered magnet bodies having different concentrations of heavy rare earth elements RH among the plurality of R-Fe-B rare earth sintered magnet bodies in a state where they are in contact with each other. (B) and
By heating the R—Fe—B rare earth sintered magnet body disposed in the processing chamber, the R—Fe—B rare earth sintered magnet body having a relatively high concentration of the heavy rare earth element RH is converted into a heavy rare earth element. A step (C) of diffusing a heavy rare earth element RH into an R—Fe—B rare earth sintered magnet having a relatively low concentration of RH;
Method of R-Fe-B rare earth sintered magnet including
前記工程(C)において、前記R−Fe−B系希土類焼結磁石体の加熱温度を700℃以上1000℃以下の範囲内に設定する、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   2. The R—Fe—B based rare earth sintering according to claim 1, wherein in the step (C), the heating temperature of the R—Fe—B based rare earth sintered magnet body is set within a range of 700 ° C. or more and 1000 ° C. or less. A manufacturing method of a magnet. 前記工程(C)は、前記処理室内を真空または不活性雰囲気で満たした状態で加熱処理を行う、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   The said process (C) is a manufacturing method of the R-Fe-B type rare earth sintered magnet of Claim 1 which heat-processes in the state with which the said process chamber was satisfy | filled with the vacuum or the inert atmosphere. 前記工程(B)において前記処理室内に配置される複数のR−Fe−B系希土類焼結磁石体のうち、重希土類元素RHの濃度が最も高いR−Fe−B系希土類焼結磁石体は、5質量%以上12質量%以下の重希土類元素RHを含有している、請求項1に記載のR−Fe−B系希土類焼結磁石の製造方法。   Among the plurality of R—Fe—B rare earth sintered magnet bodies arranged in the processing chamber in the step (B), the R—Fe—B rare earth sintered magnet body having the highest concentration of the heavy rare earth element RH is The manufacturing method of the R-Fe-B type rare earth sintered magnet of Claim 1 containing 5 to 12 mass% of heavy rare earth elements RH.
JP2006098671A 2006-03-31 2006-03-31 Method for producing R-Fe-B rare earth sintered magnet Active JP4677942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098671A JP4677942B2 (en) 2006-03-31 2006-03-31 Method for producing R-Fe-B rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098671A JP4677942B2 (en) 2006-03-31 2006-03-31 Method for producing R-Fe-B rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2007273815A JP2007273815A (en) 2007-10-18
JP4677942B2 true JP4677942B2 (en) 2011-04-27

Family

ID=38676287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098671A Active JP4677942B2 (en) 2006-03-31 2006-03-31 Method for producing R-Fe-B rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4677942B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273039B2 (en) * 2007-04-13 2013-08-28 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
BRPI0813821B1 (en) * 2007-07-02 2018-08-07 Hitachi Metals, Ltd. R-Fe-B Rare Earth Synchronized Magnet and Method for Its Production
WO2009016815A1 (en) * 2007-07-27 2009-02-05 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET
CN101582317B (en) * 2008-05-15 2012-09-19 三环瓦克华(北京)磁性器件有限公司 Novel sintered neodymium-iron-boron permanent-magnet material and manufacture method thereof
EP2535907B1 (en) * 2010-02-10 2017-04-05 Hitachi Metals, Ltd. Magnetic force characteristics computing method, magnetic force characteristics computing device, and computer program
WO2011122667A1 (en) * 2010-03-30 2011-10-06 Tdk株式会社 Rare earth sintered magnet, method for producing the same, motor, and automobile
JP5854304B2 (en) * 2011-01-19 2016-02-09 日立金属株式会社 Method for producing RTB-based sintered magnet
JP5146552B2 (en) * 2011-01-20 2013-02-20 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
EP2498267B1 (en) * 2011-03-09 2017-06-14 Siemens Aktiengesellschaft Layered magnet
JP2013225533A (en) * 2012-03-19 2013-10-31 Hitachi Metals Ltd Method of manufacturing r-t-b-based sintered magnet
JP2013207134A (en) * 2012-03-29 2013-10-07 Hitachi Metals Ltd Bulk rh diffusion source
JP6464552B2 (en) 2013-10-04 2019-02-06 大同特殊鋼株式会社 RFeB magnet and method for producing the same
CN111742379B (en) * 2017-12-19 2023-01-31 Abb瑞士股份有限公司 Multi-component magnet assembly for an electric machine
JP7180479B2 (en) * 2019-03-20 2022-11-30 トヨタ自動車株式会社 Motor core manufacturing method
CN113571279B (en) * 2021-07-23 2024-05-03 包头天和磁材科技股份有限公司 Magnet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (en) * 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd Production of permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219548A (en) * 1987-03-10 1988-09-13 Namiki Precision Jewel Co Ltd Production of permanent magnet

Also Published As

Publication number Publication date
JP2007273815A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4677942B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP4831074B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4788427B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4748163B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP5532922B2 (en) R-Fe-B rare earth sintered magnet
JP4811143B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP3960966B2 (en) Method for producing heat-resistant rare earth magnet
JP4962198B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2010113465A1 (en) Alloy for sintered r-t-b-m magnet and method for producing same
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
TWI738932B (en) R-Fe-B series sintered magnet and its manufacturing method
JP5146552B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP5644170B2 (en) Method for producing RTB-based sintered magnet
JP5187411B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP2011060965A (en) Method and apparatus for manufacturing r2fe14b rare earth sintered magnet
JP4650218B2 (en) Method for producing rare earth magnet powder
WO2012029748A1 (en) R-fe-b rare earth sintered magnets and method for manufacturing same, manufacturing device, motor or generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Ref document number: 4677942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350