JP2000124052A - Manufacture of bonded magnet - Google Patents

Manufacture of bonded magnet

Info

Publication number
JP2000124052A
JP2000124052A JP10297871A JP29787198A JP2000124052A JP 2000124052 A JP2000124052 A JP 2000124052A JP 10297871 A JP10297871 A JP 10297871A JP 29787198 A JP29787198 A JP 29787198A JP 2000124052 A JP2000124052 A JP 2000124052A
Authority
JP
Japan
Prior art keywords
binder
magnet
cured
bonded magnet
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10297871A
Other languages
Japanese (ja)
Inventor
Yuji Akao
赤尾  祐司
Atsushi Sato
佐藤  惇司
Hideharu Miyauchi
秀晴 宮内
Eikichi Sashita
栄吉 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP10297871A priority Critical patent/JP2000124052A/en
Publication of JP2000124052A publication Critical patent/JP2000124052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a bonded magnet, in which failures which are caused by association of components and insufficiency of strength are not generated. SOLUTION: In a manufacturing process of a bonded magnet, a molded object in which magnet powder and first binder are mixed and compression- molded is heat-treated, and a hardened object is obtained. It is vacuum- impregnated with second binder and hardened by heating, and a cubic magnet whose edge is at most 5 mm is obtained. The unwanted second binder which is stuck on the surface of the hardened object after vacuum impregnation is performed is eliminated by centrifugal force, or heating is performed while the hardened object is vibrated or made to flow in a manufacturing process for thermosetting the impregnated second binder, or heating is performed while the hardened object is vibrated or made to flow, after the unwanted second binder which is stuck on the surface of the hardened object after vacuum impregnation is performed is eliminated by centrifugal force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁石粉末と樹脂よ
りなるボンド磁石の製造方法に関し、特に樹脂を真空含
浸した後の製造過程に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bonded magnet comprising magnet powder and resin, and more particularly to a production process after vacuum impregnation of resin.

【0002】[0002]

【従来の技術】ボンド磁石は焼結磁石に比べ最大エネル
ギー積は劣るものの、加工性や製造コストが焼結磁石に
比べて優れているため近年多用化されつつある。ボンド
磁石の製造方法は一般に、磁石粉末に第一バインダを混
合したコンパウンドを圧縮成形した成形体を加熱処理し
て得られた硬化物を第二バインダで真空含浸した後加熱
硬化を行うことで磁石得る手順で行っている。
2. Description of the Related Art Bonded magnets are inferior in maximum energy product to sintered magnets, but have recently been widely used due to their superior workability and manufacturing cost compared to sintered magnets. The method of manufacturing a bonded magnet is generally performed by heat-treating a cured product obtained by compression-molding a compound obtained by mixing a first binder with magnet powder, vacuum-impregnating a cured product obtained with a second binder, and then heating and curing the magnet. The steps to get it done.

【0003】本出願人は、電子式時計等の精密機械に使
用するための部品サイズが極めて小さい部品を製造する
ためにボンド磁石の製造方法として特願平8−1200
79、特開平9−260134、電子時計用ロータおよ
びその製造方法として特願平10−113043を提案
しており、製造工程の第二バインダを真空含浸させた
後、バインダを加熱硬化させるまでの段階で、第二バイ
ンダで真空含浸させた後、そのまま加熱硬化させるか、
または、硬化体の周囲に付着した余分な樹脂をエタノー
ルを用いて洗浄し、加熱硬化する方法をとっている。従
来のボンド磁石の製造方法の流れ図を図5に示す。
The applicant of the present invention has proposed a method for manufacturing a bonded magnet in order to manufacture a component having an extremely small component size for use in a precision machine such as an electronic timepiece or the like, as Japanese Patent Application No. 8-1200.
79, Japanese Patent Application Laid-Open No. 9-260134, and Japanese Patent Application No. 10-113043 proposed as a rotor for an electronic timepiece and a method for manufacturing the same, in which the steps from vacuum impregnation of a second binder in the manufacturing process to heat curing of the binder are performed. Then, after being impregnated with a second binder under vacuum, heat-cured as it is,
Alternatively, a method is employed in which excess resin adhering to the periphery of the cured body is washed with ethanol and cured by heating. FIG. 5 is a flowchart of a conventional method for manufacturing a bonded magnet.

【0004】[0004]

【発明が解決しようとする課題】しかし、この様な方法
でボンド磁石を加熱硬化させると、真空含浸後そのまま
加熱硬化させた場合には硬化体の周囲に付着した第二バ
インダが接着剤となり数個がまとまって硬化して不良品
を生産してしまったり、エタノールで洗浄した場合に
は、硬化体中に含浸した第二バインダも除去してしまう
ため、加熱硬化後の強度が低下して、不良品を生産して
しまうといった問題がある。この様な現象は通常の部品
サイズの場合にはあまり大きな問題とはならないが、時
計部品のような例えば一辺が5mmの立方体空間から出
ないような大きさの小さなボンド磁石を製造したときに
現れる現象で、特に砂粒の様な小粒子に従来の方法を適
用すると全体が一塊りになったり、真空含浸の効果が無
くなってしまったりする現象となって現れてしまう。
However, when the bond magnet is cured by heating in such a manner, the second binder adhered to the periphery of the cured body becomes an adhesive when cured by heating after vacuum impregnation. If the pieces are cured together to produce defective products, or washed with ethanol, the second binder impregnated in the cured product will also be removed, so the strength after heat curing will decrease, There is a problem that defective products are produced. Such a phenomenon does not cause a serious problem in the case of a normal component size, but appears when a small bonded magnet such as a watch component is manufactured so as to have a size such that one side does not come out of a cubic space with a side of 5 mm. In particular, when the conventional method is applied to small particles such as sand particles, the whole becomes a lump or the effect of vacuum impregnation is lost.

【0005】本発明はかかる問題に鑑み、加熱硬化後に
不良品を生産することのないボンド磁石の製造方法を提
供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a bonded magnet that does not produce defective products after heat curing.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、磁石粉末に第一バインダを混合したコン
パウンドを磁場中で圧縮成形した成形体を加熱処理して
得られた硬化物に第二バインダを真空含浸した後加熱硬
化を行うことで磁石を得るボンド磁石の製造過程におい
て、真空含浸を行った後表面に付着した不要な第二バイ
ンダを遠心力により除去することを特徴とする。また
は、含浸した第二バインダを加熱硬化する製造過程にお
いて硬化物を振動または流動させながら加熱することを
特徴とする。または、真空含浸を行った後表面に付着し
た不要な第二バインダを遠心力により除去した後、硬化
物を振動または流動させながら加熱することを特徴とす
る。または、以上の製造方法において用いられる磁石の
大きさが一辺が5mmの立方体空間を出ない寸法である
ことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a cured product obtained by subjecting a compound obtained by compression molding a compound obtained by mixing a magnetic powder and a first binder in a magnetic field to a heat treatment. In the manufacturing process of a bonded magnet in which a magnet is obtained by performing heat curing after vacuum impregnation of the second binder, unnecessary vacuum binder adhered to the surface after vacuum impregnation is removed by centrifugal force. I do. Alternatively, in a manufacturing process of heating and curing the impregnated second binder, the cured product is heated while being vibrated or fluidized. Alternatively, after performing vacuum impregnation, an unnecessary second binder attached to the surface is removed by centrifugal force, and then the cured product is heated while being vibrated or fluidized. Alternatively, the size of the magnet used in the above-described manufacturing method is a size that does not leave a cubic space with one side of 5 mm.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を実施
例を基にさらに詳しく説明するが本発明は以下に示す構
成に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following configuration.

【0008】本発明における磁石粉末はSmCo系、N
dFeB系、SmFeN系のいづれでもよい。また、圧
縮成形を行うための第一バインダはエポキシ樹脂、フェ
ノール樹脂等の熱硬化性接着剤など圧縮成形を行える樹
脂であればいづれも使用できる。磁性粉末と第一バイン
ダを混合したコンパウンドを圧縮成形と加熱処理して得
られた硬化体に真空含浸させるための第二バインダは液
体であれば良く、好ましくは安価で接着強度が強く作業
性の良いエポキシ樹脂、フェノール樹脂、ウレタン樹脂
等の熱硬化性接着剤から選ばれ、含浸を行う場合には浸
透性が良く低粘度の樹脂を用いることが望ましい。
In the present invention, the magnet powder is SmCo-based, N
Any of dFeB type and SmFeN type may be used. Further, as the first binder for performing compression molding, any resin that can be subjected to compression molding such as a thermosetting adhesive such as an epoxy resin or a phenol resin can be used. The second binder for vacuum impregnation of the cured product obtained by compression molding and heat treatment of the compound obtained by mixing the magnetic powder and the first binder may be a liquid, and is preferably inexpensive, has a strong adhesive strength, and has high workability. It is selected from good thermosetting adhesives such as epoxy resin, phenol resin and urethane resin. When impregnating, it is desirable to use a resin having good permeability and low viscosity.

【0009】次にボンド磁石の製造方法について説明す
る。まず、磁石粉末に第一バインダを混合してコンパウ
ンドを得る。このコンパウンドを圧力をかけて圧縮成形
し所定の形状の成形体を得、加熱処理して硬化物を得
る。次に、約1Torrまで減圧した環境で硬化物を第
二バインダ中に浸積し、徐々に大気圧に戻し真空含浸を
完了させる。
Next, a method for manufacturing a bonded magnet will be described. First, a compound is obtained by mixing the first binder with the magnet powder. The compound is compression-molded under pressure to obtain a molded body having a predetermined shape, and a heat treatment is performed to obtain a cured product. Next, the cured product is immersed in the second binder in an environment where the pressure is reduced to about 1 Torr, and the pressure is gradually returned to the atmospheric pressure to complete the vacuum impregnation.

【0010】真空含浸後の硬化体から、ボンド磁石の製
品を得るまでの後工程は、請求項1のボンド磁石の製造
方法に於いては表面に付着した不要な第二バインダを遠
心力を用いて除去してから加熱硬化する事によってバイ
ンダを完全硬化させるようにする。請求項2のボンド磁
石の製造方法に於いては硬化物を振動または流動させる
ことで硬化体の会合を防止しながら加熱硬化する方法。
請求項3のボンド磁石の製造方法に於いては表面に付着
した不要な第二バインダを遠心力により除去した後、硬
化物を振動または流動させながら加熱する方法でボンド
磁石の製品を得ている。以上、本発明のボンド磁石の製
造方法の流れ図を図1に示す。工程に分岐がある箇所に
ついては、請求項1から請求項3を矢印の脇に1から3
の番号を記入して示した。
[0010] In the post-process until the bonded magnet product is obtained from the cured product after vacuum impregnation, in the method for manufacturing a bonded magnet according to the first aspect, an unnecessary second binder adhered to the surface is centrifugally applied. The binder is completely cured by heat curing after removal. 3. The method for producing a bonded magnet according to claim 2, wherein the cured product is heated and cured while vibrating or flowing the cured product to prevent association of the cured product.
In the method for manufacturing a bonded magnet according to the third aspect, a bonded magnet product is obtained by removing unnecessary second binder attached to the surface by centrifugal force, and then heating the cured product while vibrating or flowing. . FIG. 1 shows a flowchart of the method for manufacturing a bonded magnet of the present invention. Regarding the location where the process has a branch, claims 1 to 3 are described next to arrows 1 to 3
The number is shown.

【0011】まず、遠心力によって第二バインダを除去
する方法としては、真空含浸後の硬化体を網製容器等に
入れて遠心分離器にかける方法などがある。第二バイン
ダを遠心力で除去する条件は遠心力と、時間によって変
えることが出来るが、ボンド磁石の硬化体は強度が弱く
もろいため大きな遠心力をかけることは出来ないので時
間を変化させることで余剰の第二バインダを除去する条
件を変えている。
First, as a method of removing the second binder by a centrifugal force, there is a method of placing the cured body after vacuum impregnation in a net container or the like and placing the cured body in a centrifuge. The conditions for removing the second binder by centrifugal force can be changed by centrifugal force and time, but the hardened body of the bonded magnet is weak and brittle, so it is not possible to apply a large centrifugal force, so by changing the time The conditions for removing the excess second binder are changed.

【0012】次に、硬化体を流動する方法の例を図2に
示した流動装置の概略図を用いて説明する。図2(a)に
示した流動装置は、矢印r方向に回転する事の出来る回
転ドラム101中に第二バインダを真空含浸した硬化体
103を投入し、回転ドラム101を回転させることで
第二バインダを真空含浸した硬化体103を回転ドラム
101中で流動させるようになっている。流動効果を高
めるためには回転ドラム101の内壁に流動フィン10
5を設けると良い。流動条件は回転ドラム101の回転
速度と流動フィン105の形状とで変化させることが出
来る。第二バインダを真空含浸した硬化体103を加熱
するためには開口側面の矢印Aで示した方向から熱風を
あてる方法、回転ドラム101周面を網にし、回転ドラ
ム101の周面から(矢印B方向)熱風をあてる方法、
回転ドラム101自体を加熱する方法がある。
Next, an example of a method of flowing a cured product will be described with reference to a schematic view of a flow device shown in FIG. The fluidizing device shown in FIG. 2A puts a cured body 103 impregnated with a second binder in a rotating drum 101 that can rotate in the direction of arrow r, and rotates the rotating drum 101 to rotate the rotating drum 101. The cured body 103 impregnated with a binder in a vacuum is made to flow in the rotating drum 101. In order to enhance the flow effect, the flow fins 10
5 should be provided. The flow conditions can be changed by the rotation speed of the rotary drum 101 and the shape of the flow fins 105. In order to heat the cured body 103 in which the second binder is vacuum impregnated, hot air is blown from the direction indicated by the arrow A on the side of the opening. Direction) How to blow hot air,
There is a method of heating the rotating drum 101 itself.

【0013】図2(b)に示した流動装置は、流動槽20
1の中に投入した第二バインダを真空含浸した硬化体1
03をフィン205を矢印r方向に回転することで流動
させることが出来るものである。第二バインダを真空含
浸した硬化体103を加熱するためには開口上面の矢印
Aで示した方向から熱風をあてる方法、流動槽201を
網底にし、流動槽201の底面から(矢印B方向)熱風
をあてる方法、流動槽201自体を加熱する方法があ
る。
The fluidizing device shown in FIG.
Cured body 1 vacuum impregnated with second binder charged in 1
03 can be caused to flow by rotating the fin 205 in the direction of the arrow r. In order to heat the cured body 103 in which the second binder is vacuum impregnated, a method in which hot air is blown from the direction indicated by the arrow A on the upper surface of the opening, the fluidized vessel 201 is made into a net bottom, and from the bottom of the fluidized vessel 201 (in the direction of arrow B) There are a method of blowing hot air and a method of heating the fluidized vessel 201 itself.

【0014】図2(c)に示した流動装置は、矢印r方向
に傾けることが出来る流動バット301に第二バインダ
を真空含浸した硬化体103を投入して流動させるもの
である。流動条件は傾ける角度と速度で変化させること
が出来る。第二バインダを真空含浸した硬化体103を
加熱するためには開口上面の矢印Aで示した方向から熱
風をあてる方法、流動バット301を網底にし、流動バ
ット301の底面から(矢印B方向)熱風をあてる方
法、流動バット301自体を加熱する方法がある。
The flow device shown in FIG. 2 (c) is a device in which a cured body 103 impregnated with a second binder in a vacuum is poured into a flow vat 301 which can be tilted in the direction of arrow r to flow. Flow conditions can be varied by tilting angle and speed. In order to heat the cured body 103 in which the second binder is vacuum-impregnated, a method of blowing hot air from the direction shown by the arrow A on the upper surface of the opening is used. There are a method of blowing hot air and a method of heating the fluidized vat 301 itself.

【0015】更に、硬化体を振動する方法の例を図3に
示した振動装置の概略図を用いて説明する。図3に示し
た振動装置は、容器の水平方向と垂直方向に揺動するこ
とが出来る振動バット401に第二バインダを真空含浸
した硬化体103を投入して振動させるものである。振
動条件は振動の周期と振幅とで変化させることが出来
る。また振動させるために超音波振動子等を用いること
もできる。第二バインダを真空含浸した硬化体103を
加熱するためには矢印Aで示した開口上面の方向から熱
風をあてる方法、振動バット401を網底にし、振動バ
ット401の底面から(矢印B方向)熱風をあてる方
法、振動バット401を加熱する方法がある。なお、以
上の加熱条件は温度と時間で変化させることが出来る。
Further, an example of a method of vibrating the cured body will be described with reference to a schematic diagram of a vibration device shown in FIG. The vibration device shown in FIG. 3 is a device in which a cured body 103 impregnated with a second binder in a vacuum is put into a vibration bat 401 capable of swinging in the horizontal and vertical directions of the container and vibrated. The vibration condition can be changed by the period and the amplitude of the vibration. In addition, an ultrasonic vibrator or the like can be used to vibrate. In order to heat the cured body 103 vacuum impregnated with the second binder, a method of blowing hot air from the direction of the upper surface of the opening indicated by the arrow A, the vibrating bat 401 is made into a net bottom, and from the bottom of the vibrating bat 401 (in the direction of the arrow B) There are a method of blowing hot air and a method of heating the vibration bat 401. The above heating conditions can be changed by temperature and time.

【0016】熱硬化性樹脂は加熱することで活性化エネ
ルギーを得れば硬化反応が進行する。この硬化反応が完
全に進行し、これ以上反応が進行しなくなった状態が完
全硬化である。予備加熱硬化というのは完全に硬化する
前の段階で加熱を停止させて硬化反応の中間段階で一時
停止させるものである。硬化反応前の第二バインダは液
体であるが、硬化反応が完全硬化状態の50%程度進行
した状態では樹脂はすでに固体となっている。この状態
になればもはや硬化途中のボンド磁石がふれあっていた
としても、会合することはない。このため完全に硬化反
応を進めるための加熱処理は、予備硬化した硬化体をカ
ップなどにまとめて投入しても支障はない。ボンド磁石
の製造過程で求められる歩留まりとしては95%以上が
必要条件となっている。
If the thermosetting resin obtains activation energy by heating, the curing reaction proceeds. The state in which the curing reaction has completely progressed and the reaction no longer progresses is complete curing. In the preheating curing, the heating is stopped at a stage before the curing is completed, and the heating is temporarily stopped at an intermediate stage of the curing reaction. Before the curing reaction, the second binder is liquid, but when the curing reaction has progressed about 50% of the completely cured state, the resin is already solid. In this state, no association occurs even if the bonded magnet being cured is in contact. For this reason, the heat treatment for completely proceeding the curing reaction does not cause any problem even if the preliminarily cured body is put into a cup or the like at once. The yield required in the production process of the bonded magnet is 95% or more.

【0017】(実施例1から9)磁石粉末にビスフェノ
ールAとアミン系硬化剤からなる第一バインダを1重量
部添加してコンパウンドを作成し、圧力7から12t/
cm2 をかけて外径1.25mm×内径0.36mm
×厚み0.52mmの円筒状に圧縮成形を行い成形体を
得た。成形体を180度90分間加熱して硬化体を得
た。この硬化体にビスフェノールFとテトラヒドロメチ
ル無水フタル酸と2−エチル−4メチルイミダゾールと
からなる第二バインダを用いて真空含浸を行った。真空
含浸は部品の脱気を0.3Torrで5分行い、同様の
圧力を保持した状態で第二バインダをそそぎ込み30分
間含浸させた。続いて、十分に第二バインダを硬化体に
含浸するため5気圧に10分間保持した後、大気圧に戻
した。次に真空含浸した硬化物をそれぞれ1000個を
1500G、2500G、3500Gの遠心力で10
分、20分、30分間それぞれ遠心分離器で余剰の第二
バインダを除去したのち180℃の恒温槽で2時間加熱
硬化させてボンド磁石を作成した。評価は、熱硬化時に
会合し、不良品になった割合である会合率と、会合して
いない所定の形状をしている製品に対しての強度試験を
行い、1.5kg以下の強度しかない割合である強度不
良率とを測定し、歩留まりを求めた。
(Examples 1 to 9) A compound was prepared by adding 1 part by weight of a first binder composed of bisphenol A and an amine-based curing agent to a magnet powder, and a compound having a pressure of 7 to 12 t /
cm2, outer diameter 1.25mm x inner diameter 0.36mm
× compression molding into a cylindrical shape having a thickness of 0.52 mm to obtain a molded body. The molded body was heated at 180 degrees for 90 minutes to obtain a cured body. This cured product was subjected to vacuum impregnation using a second binder composed of bisphenol F, tetrahydromethylphthalic anhydride and 2-ethyl-4-methylimidazole. Vacuum impregnation was performed by degassing the parts at 0.3 Torr for 5 minutes, and pouring the second binder under the same pressure while impregnating the parts for 30 minutes. Subsequently, the pressure was maintained at 5 atm for 10 minutes to sufficiently impregnate the cured body with the second binder, and then returned to the atmospheric pressure. Next, 1000 pieces of each of the cured products impregnated with the vacuum were centrifuged at 1500 G, 2500 G, and 3500 G for 10 times.
The excess second binder was removed by a centrifugal separator for 20 minutes, 20 minutes, and 30 minutes, respectively, and then heat-cured in a thermostat at 180 ° C. for 2 hours to prepare a bonded magnet. The evaluation is performed by associating at the time of thermosetting and forming an inferior product, and a strength test is performed on a product having a predetermined shape that is not associated, and has a strength of 1.5 kg or less. The percentage of strength failure, which is a ratio, was measured, and the yield was determined.

【0018】なお、ここで図4を用いて強度の測定方法
を説明する。図4(a)に強度測定の説明図を示す。強
度を測定するには、荷重計503と荷重計503に取り
付けられたテーパーピン501を矢印方向に一定速度で
移動させ、ボンド磁石505の中心の穴にテーパーピン
501を挿入してゆき、ボンド磁石501が破壊したと
きのテーパーピン501に加わった最大荷重を強度とし
ている。強度の値は荷重計503の指示値を読むことで
知ることが出来る。本実施例に用いたテーパーピン50
1の形状を図4(b)に示す。荷重計503とテーパー
ピン501を移動させる速度は1分当たり1mmの速度
で移動させた。
The method of measuring the intensity will be described with reference to FIG. FIG. 4A is an explanatory diagram of the intensity measurement. In order to measure the strength, the load meter 503 and the taper pin 501 attached to the load meter 503 are moved at a constant speed in the direction of the arrow, and the taper pin 501 is inserted into the center hole of the bond magnet 505. The strength is defined as the maximum load applied to the tapered pin 501 when the 501 is broken. The value of the strength can be known by reading the indicated value of the load cell 503. Tapered pin 50 used in this embodiment
The shape of No. 1 is shown in FIG. The speed at which the load meter 503 and the tapered pin 501 were moved was 1 mm per minute.

【0019】この結果、遠心力を2500G、3500
Gかけて第二バインダを除去したボンド磁石の中にはい
づれの場合も会合は見あたらなかった。また強度を測定
したところいづれの場合も1.5kg以上の値を示した
ので不良は見あたらないため歩留まりは100%であっ
た。遠心力を1500Gかけて第二バインダを除去した
ボンド磁石の場合は、20分および30分間除去を行っ
たものはいづれの場合も会合は見あたらなかった。また
強度を測定したところいづれの場合も1.5kg以上の
値を示したので不良は見あたらないため歩留まりは10
0%であった。これに対し、10分間除去を行ったボン
ド磁石は、製品の3.4%が会合を発生していた。会合
していないボンド磁石について強度を測定したところす
べて1.5kg以上の値示した。遠心条件が1500
G、10分間の場合は歩留まり96.6%であったが、
その他の場合は100%であった。この結果いづれの場
合も目標とする歩留まりに達していた。(表1にまとめ
る。)
As a result, the centrifugal force was increased to 2500 G, 3500
No meeting was found in any of the bonded magnets from which the second binder was removed over G. When the strength was measured, in each case, the value was 1.5 kg or more, and no defect was found. Therefore, the yield was 100%. In the case of the bonded magnet from which the second binder was removed by applying a centrifugal force of 1500 G, no association was found in any of the bonded magnets which were removed for 20 minutes and 30 minutes. When the strength was measured, in any case, the value was 1.5 kg or more, and no defect was found.
It was 0%. In contrast, 3.4% of the bonded magnets that had been removed for 10 minutes had associated. When the strength of the unbonded bond magnet was measured, all values were 1.5 kg or more. Centrifugation condition is 1500
G, the yield was 96.6% for 10 minutes,
In other cases, it was 100%. As a result, in each case, the target yield was achieved. (Summary in Table 1.)

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例10)真空含浸まで実施例1と同
様の方法で真空含浸した硬化体を得た。次に真空含浸後
の硬化物を1000個とり、図2(a)に示した流動装
置を用いて加熱硬化させた。回転ドラムの直径は20c
mの網状のものを使用し、180℃の熱風を側面から当
て加熱した。ドラムの回転速度は2rpmで行った。
(回転数を10rpm以上にすると真空含浸した硬化体
が崩れることを実験により確認した)ドラム内には高さ
8mm、角度30度の流動フィンを4枚装着した。処理
は2時間加熱硬化してボンド磁石を作成した。評価は実
施例1と同様の方法で行ったところ、製品の会合率は
3.8%で、会合していないボンド磁石の強度不良率は
0%、歩留まりは96.2%であった。この結果、目標
とする歩留まりに達していた。
Example 10 A cured product impregnated with vacuum in the same manner as in Example 1 until vacuum impregnation was obtained. Next, 1000 cured products after vacuum impregnation were taken and cured by heating using the flow device shown in FIG. The diameter of the rotating drum is 20c
m, and heated with 180 ° C. hot air applied from the side. The rotation speed of the drum was set at 2 rpm.
(It was confirmed by experiments that the cured body impregnated in vacuum was broken when the rotation speed was 10 rpm or more.) Four flow fins having a height of 8 mm and an angle of 30 degrees were mounted in the drum. The treatment was heat-cured for 2 hours to produce a bonded magnet. The evaluation was performed in the same manner as in Example 1. As a result, the association rate of the product was 3.8%, the strength failure rate of the unassociated bond magnet was 0%, and the yield was 96.2%. As a result, the target yield was reached.

【0022】(実施例11)流動槽の直径が10cmで
高さが10mm、角度30度の2枚のフィンを回転速度
2rpmで回転させ、A方向から180℃の熱風を吹き
付けて処理時間2時間で、図2(b)に示した流動装置
を用いて加熱硬化させた他は実施例10と同様の方法で
ボンド磁石を作成した。評価は実施例1と同様の方法で
行ったところ、製品の会合率は4.2%で、会合してい
ないボンド磁石の強度不良率は0%、歩留まりは95.
8%であった。この結果、目標とする歩留まりに達して
いた。
Example 11 Two fins having a diameter of 10 cm, a height of 10 mm, and an angle of 30 ° were rotated at a rotation speed of 2 rpm, and hot air of 180 ° C. was blown from the A direction for a processing time of 2 hours. A bonded magnet was prepared in the same manner as in Example 10, except that the mixture was heated and cured using the flow device shown in FIG. 2 (b). The evaluation was performed in the same manner as in Example 1. As a result, the association rate of the product was 4.2%, the strength failure rate of the unassociated bond magnet was 0%, and the yield was 95.
8%. As a result, the target yield was reached.

【0023】(実施例12)一辺が10cmの正方形の
流動バットを左右に45度づつ交互に1分間に2回傾け
て真空含浸した硬化体を流動させ、A方向から180℃
の熱風を吹き付けて処理時間2時間で、図2(c)に示
した流動装置を用いて加熱硬化させた他は実施例10と
同様の方法でボンド磁石を作成した。評価は実施例1と
同様の方法で行ったところ、製品の会合率は4.0%
で、会合していないボンド磁石の強度不良率は0%、歩
留まりは96.0%であった。この結果、目標とする歩
留まりに達していた。
(Example 12) A square flowing vat having a side of 10 cm was alternately tilted to the left and right at 45 ° alternately twice twice a minute to flow the cured product impregnated with vacuum, and 180 ° C. from the direction A.
The bonded magnet was prepared in the same manner as in Example 10 except that the hot air was blown and the treatment time was 2 hours, and the mixture was heated and cured using the fluidizing device shown in FIG. 2C. Evaluation was performed in the same manner as in Example 1, and the product association rate was 4.0%.
The non-associated bonded magnet had a strength failure rate of 0% and a yield of 96.0%. As a result, the target yield was reached.

【0024】(実施例13)一辺が10cmの正方形の
振動バットを水平及び垂直方向に振動させ真空含浸した
硬化体が流動した状態にし、A方向から180℃の熱風
を吹き付けて処理時間2時間で、図3に示した振動装置
を用いて加熱硬化させた他は実施例10と同様の方法で
ボンド磁石を作成した。評価は実施例1と同様の方法で
行ったところ、製品の会合率は4.8%で、会合してい
ないボンド磁石の強度不良率は0%、歩留まりは95.
2%であった。この結果、目標とする歩留まりに達して
いた。
(Example 13) A vibrating bat having a square shape of 10 cm on a side is vibrated in the horizontal and vertical directions to make the cured body impregnated with a vacuum flow, and hot air of 180 ° C is blown from the A direction for a processing time of 2 hours. A bond magnet was prepared in the same manner as in Example 10, except that the heat hardening was performed using the vibration device shown in FIG. The evaluation was performed in the same manner as in Example 1. As a result, the association rate of the product was 4.8%, the strength failure rate of the unassociated bond magnet was 0%, and the yield was 95.
2%. As a result, the target yield was reached.

【0025】(実施例14から21)真空含浸まで実施
例1と同様の方法で真空含浸した硬化体を得た。次に真
空含浸した硬化物をそれぞれ1000個を1500Gで
5分および10分間遠心分離器で余剰の第二バインダを
除去した後、実施例10から実施例13で実施した流動
または振動させながら熱硬化処理を行った。得られたボ
ンド磁石を評価したところいづれの場合も製品に会合は
なく、強度不良も発生しなかったたため、歩留まりは1
00%であった。この結果、遠心力による第二バインダ
の除去と振動または流動させながら加熱硬化する処理を
順次行うことで、遠心力で第二バインダを除去する時間
を短縮でき、更に歩留まりを向上させることが出来た。
(表2にまとめる。)
(Examples 14 to 21) A cured product vacuum-impregnated was obtained in the same manner as in Example 1 up to vacuum impregnation. Next, 1000 pieces of the vacuum-impregnated cured products are each centrifuged at 1500 G for 5 minutes and 10 minutes to remove the excess second binder, and then thermally cured while flowing or vibrating as in Examples 10 to 13. Processing was performed. When the obtained bonded magnet was evaluated, in any case, there was no association between the products and no strength defect occurred, so that the yield was 1
00%. As a result, by sequentially performing the removal of the second binder by centrifugal force and the process of heating and hardening while vibrating or flowing, the time for removing the second binder by centrifugal force can be reduced, and the yield can be further improved. .
(Summary in Table 2.)

【0026】[0026]

【表2】 [Table 2]

【0027】(実施例22から29)流動または振動さ
せながら熱硬化処理する時間を10分に短縮し、実施例
14から21と同様の方法で真空含浸した硬化体を処理
した後、更に180℃の恒温槽で1時間50分加熱硬化
処理を行った。得られたボンド磁石を評価したところい
づれの場合も製品に会合はなく、強度不良も発生しなか
ったたため、歩留まりは100%であった。この結果、
遠心力による第二バインダの除去と振動または流動させ
ながら加熱硬化する処理を併用する場合に、振動または
流動させながら加熱硬化する段階で予備硬化を行った状
態で処理を停止し、残る硬化を恒温槽で行うことによっ
て振動または流動しながら加熱する装置の処理時間を短
縮することが出来た。すなわち、恒温槽は製品を容器に
重ねて大量に処理が可能であるので恒温槽までの前処理
時間を短縮できたので、処理能力を向上させることが出
来た。(表3にまとめる。)
(Examples 22 to 29) The time for the heat curing treatment while flowing or vibrating was shortened to 10 minutes, and the cured product impregnated with vacuum was treated in the same manner as in Examples 14 to 21. Was subjected to a heat curing treatment for 1 hour and 50 minutes in a constant temperature bath. When the obtained bonded magnet was evaluated, in any case, there was no association between the products, and no strength failure occurred, so that the yield was 100%. As a result,
If the removal of the second binder by centrifugal force and the process of heating and curing while vibrating or flowing are used together, the process is stopped in the state of pre-curing at the stage of heating and curing while vibrating or flowing, and the remaining curing is kept at a constant temperature By performing the treatment in a tank, the processing time of the apparatus that heats while vibrating or flowing can be shortened. That is, since the thermostatic bath can process a large amount of products by stacking the products on the container, the pretreatment time up to the thermostatic bath could be shortened, so that the processing capacity could be improved. (Summary in Table 3)

【0028】[0028]

【表3】 [Table 3]

【0029】(比較例1)真空含浸まで実施例1と同様
の方法で真空含浸した1000個の硬化体を得た。次に
真空含浸した硬化物を180℃の恒温槽で2時間加熱硬
化してボンド磁石を作成した。ボンド磁石の評価を行っ
たところ、製品の会合率は24.1%で、会合していな
いボンド磁石の強度不良率は0%、歩留まりは75.9
%であった。
(Comparative Example 1) 1000 pieces of cured products vacuum-impregnated in the same manner as in Example 1 until vacuum impregnation were obtained. Next, the cured product impregnated in vacuum was heated and cured in a thermostat at 180 ° C. for 2 hours to prepare a bonded magnet. When the bond magnet was evaluated, the product association rate was 24.1%, the strength failure rate of the unassociated bond magnet was 0%, and the yield was 75.9.
%Met.

【0030】(比較例2)真空含浸まで実施例1と同様
の方法で真空含浸した1000個の硬化体を得た。次に
真空含浸した硬化物をエタノール中に浸漬、振動させ余
剰な第二バインダを除去した。続いて、180℃の恒温
槽で2時間加熱硬化してボンド磁石を作成した。ボンド
磁石の評価を行ったところ、製品の会合率は0%で、会
合していないボンド磁石の強度不良率は62.0%、歩
留まりは38.0%であった。
(Comparative Example 2) 1000 cured products were vacuum-impregnated in the same manner as in Example 1 until vacuum impregnation. Next, the cured product impregnated in vacuum was immersed in ethanol and vibrated to remove an excessive second binder. Subsequently, the mixture was cured by heating in a thermostat at 180 ° C. for 2 hours to form a bonded magnet. When the bond magnet was evaluated, the product association rate was 0%, the strength failure rate of the non-associated bond magnet was 62.0%, and the yield was 38.0%.

【0031】[0031]

【発明の効果】以上、本発明によれば、ボンド磁石の製
造過程に於いて、第二バインダを真空含浸した硬化体を
遠心力によって余剰の第二バインダを除去し、あるい
は、振動または流動させながら加熱硬化処理を行うた
め、一辺が5mmの立方体以内の磁石を得るボンド磁石
を製造しても歩留まり良く製造することが出来るように
なった。また遠心力により余剰の第二バインダを除去す
る工程と振動または流動させながら加熱硬化処理を行う
ことで遠心力による第二バインダの除去処理時間を短縮
でき更に歩留まりを向上することが出来た。振動または
流動処理に於いて予備硬化まで行なった後、完全硬化す
る加熱処理を行うことで遠心装置および振動または流動
装置を使用する時間が大幅に低減したため処理能力が向
上した。また処理能力が向上したことで製造コストを低
減することが出来た。
As described above, according to the present invention, in the manufacturing process of the bonded magnet, the hardened body impregnated with the second binder in a vacuum is removed by centrifugal force to remove the excess second binder, or vibrated or flowed. Since the heat hardening treatment is performed while performing the heat hardening treatment, it is possible to manufacture the bonded magnet with a good yield even when manufacturing a bonded magnet that obtains a magnet within a cube having a side of 5 mm. In addition, by performing the step of removing the excess second binder by centrifugal force and the heat-curing treatment while vibrating or flowing, the processing time for removing the second binder by centrifugal force can be reduced, and the yield can be further improved. After performing pre-curing in the vibration or flow treatment, a heat treatment for complete curing was performed, so that the time required for using the centrifugal device and the vibration or flow device was greatly reduced, so that the processing capacity was improved. In addition, the improvement in the processing capacity has reduced the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のボンド磁石の製造方法を説明するため
の流れ図である。
FIG. 1 is a flowchart for explaining a method for manufacturing a bonded magnet of the present invention.

【図2】本発明に使用する流動装置の概略図である。FIG. 2 is a schematic view of a flow device used in the present invention.

【図3】本発明に使用する振動装置の概略図である。FIG. 3 is a schematic view of a vibration device used in the present invention.

【図4】強度の測定方法を説明するための図である。FIG. 4 is a diagram for explaining a method of measuring intensity.

【図5】従来のボンド磁石の製造方法を説明するための
流れ図である。
FIG. 5 is a flowchart for explaining a conventional method for manufacturing a bonded magnet.

【符号の説明】[Explanation of symbols]

101 回転ドラム 103 第二バインダを真空含浸した硬化体 105 流動フィン 201 流動槽 205 フィン 301 流動バット 401 振動バット 501 テーパーピン 503 荷重計 505 ボンド磁石 Reference Signs List 101 rotating drum 103 cured body in which second binder is vacuum impregnated 105 fluid fin 201 fluid tank 205 fin 301 fluid bat 401 vibrating butt 501 taper pin 503 load meter 505 bonded magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 指田 栄吉 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 Fターム(参考) 5E062 CD05 CE04 CG01 CG02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eikichi Sashida 6-11-12, Honcho, Tanashi-shi, Tokyo F-term (reference) in Citizen Watch Co., Ltd. Tanashi Works 5E062 CD05 CE04 CG01 CG02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁石粉末に第一バインダを混合したコン
パウンドを圧縮成形した成形体を加熱処理して得られた
硬化物に第二バインダを真空含浸した後加熱硬化を行う
ことで磁石を得るボンド磁石の製造過程において、真空
含浸を行った後表面に付着した不要な第二バインダを遠
心力により除去することを特徴とするボンド磁石の製造
方法。
1. A bond for obtaining a magnet by subjecting a cured product obtained by heat-treating a compact obtained by compression-molding a compound obtained by mixing a first binder to a magnet powder to a second binder under vacuum and then heating and curing. A method for manufacturing a bonded magnet, comprising removing unnecessary second binder adhered to a surface by centrifugal force after performing vacuum impregnation in a magnet manufacturing process.
【請求項2】 磁石粉末に第一バインダを混合したコン
パウンドを圧縮成形した成形体を加熱処理して得られた
硬化物に第二バインダを真空含浸した後加熱硬化を行う
ことで磁石を得るボンド磁石の製造過程において、含浸
した第二バインダを加熱硬化する製造過程において硬化
物を振動または流動させながら加熱することを特徴とす
るボンド磁石の製造方法。
2. A bond for obtaining a magnet by heat impregnating a cured product obtained by compression-molding a compound obtained by compression molding a compound obtained by mixing a magnetic powder and a first binder with a second binder and then performing heat curing. A method for manufacturing a bonded magnet, wherein a cured product is heated while vibrating or flowing in a manufacturing process of heating and curing an impregnated second binder in a manufacturing process of the magnet.
【請求項3】 磁石粉末に第一バインダを混合したコン
パウンドを圧縮成形した成形体を加熱処理して得られた
硬化物に第二バインダを真空含浸した後加熱硬化を行う
ことで磁石を得るボンド磁石の製造過程において、真空
含浸を行った後表面に付着した不要な第二バインダを遠
心力により除去した後、硬化物を振動または流動させな
がら加熱することを特徴とするボンド磁石の製造方法。
3. A bond for obtaining a magnet by subjecting a cured product obtained by compressing and molding a compound obtained by mixing a first binder to a magnet powder to a cured product obtained by vacuum impregnation of a second binder and then heating and curing. In a manufacturing process of a magnet, after performing vacuum impregnation, an unnecessary second binder adhering to a surface is removed by centrifugal force, and then the cured product is heated while being vibrated or fluidized.
【請求項4】 前記磁石は一辺が5mmの立方体空間か
ら出ない寸法であることを特徴とする請求項1または請
求項2または請求項3に記載するボンド磁石の製造方
法。
4. The method for producing a bonded magnet according to claim 1, wherein the magnet has a dimension not protruding from a cubic space having a side of 5 mm.
JP10297871A 1998-10-20 1998-10-20 Manufacture of bonded magnet Pending JP2000124052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10297871A JP2000124052A (en) 1998-10-20 1998-10-20 Manufacture of bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10297871A JP2000124052A (en) 1998-10-20 1998-10-20 Manufacture of bonded magnet

Publications (1)

Publication Number Publication Date
JP2000124052A true JP2000124052A (en) 2000-04-28

Family

ID=17852213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10297871A Pending JP2000124052A (en) 1998-10-20 1998-10-20 Manufacture of bonded magnet

Country Status (1)

Country Link
JP (1) JP2000124052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098238A1 (en) * 2005-03-14 2006-09-21 Neomax Co., Ltd. Method for producing rare earth magnet and impregnation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098238A1 (en) * 2005-03-14 2006-09-21 Neomax Co., Ltd. Method for producing rare earth magnet and impregnation apparatus

Similar Documents

Publication Publication Date Title
JP6660875B2 (en) Method for curing thermoplastics with microwave energy
US3010153A (en) Construction of paraboloid surfaces
EP0540504B1 (en) Method for making a resin bonded magnet article
US2860961A (en) Method for making abrasive articles
CN102543774B (en) Method for packaging chip based on epoxy resin type adhesive
JP2000124052A (en) Manufacture of bonded magnet
US4795496A (en) Method of removing adherent foreign matter from work pieces
CN107216064A (en) A kind of granolith composite and preparation method thereof
JPH09205013A (en) Bond magnet having rust-resistant coat layer and its rust-resistant coating method
KR100400658B1 (en) the method foaming of ball ceramic
JPS60194509A (en) Manufacture of resin-bonded type magnet
JP3675452B2 (en) Method for manufacturing bonded magnet
JP2004036675A (en) Balance weight
JP4082165B2 (en) Manufacturing method of matching member and ultrasonic sensor using the same
US6689420B2 (en) Method for achieving ornamental dispersion of particles in a resin molded article
JPS63191608A (en) Molding method of reactively curing liquid resin
CN103117233B (en) Rotate and solidify
JPH0453716A (en) Casting material for simplified resin mold
JPH09129466A (en) Manufacture of bond magnet
JP2005341069A (en) Manufacturing method of matching member, matching member, and ultrasonic sensor
JPH0347800B2 (en)
JP2694288B2 (en) Thermosetting resin material used for encapsulation molding of electronic parts and manufacturing method thereof
JP2000144207A (en) Centrifugally forming body, centrifugally formed sintered body, and their manufacture
KR100340595B1 (en) A Method for Forming Adhesive Layer of Ultrasonic Sensor by using Spin-Coating and Low Tempreature Hardenig
KR20240097618A (en) Rare earth sintered magnets, and manufacturing method and device of the same