JPH09205013A - Bond magnet having rust-resistant coat layer and its rust-resistant coating method - Google Patents

Bond magnet having rust-resistant coat layer and its rust-resistant coating method

Info

Publication number
JPH09205013A
JPH09205013A JP8032657A JP3265796A JPH09205013A JP H09205013 A JPH09205013 A JP H09205013A JP 8032657 A JP8032657 A JP 8032657A JP 3265796 A JP3265796 A JP 3265796A JP H09205013 A JPH09205013 A JP H09205013A
Authority
JP
Japan
Prior art keywords
magnet
coating
bonded
rust
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8032657A
Other languages
Japanese (ja)
Inventor
Harumi Hiraoka
春美 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIDOO DENSHI KK
Original Assignee
DAIDOO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIDOO DENSHI KK filed Critical DAIDOO DENSHI KK
Priority to JP8032657A priority Critical patent/JPH09205013A/en
Publication of JPH09205013A publication Critical patent/JPH09205013A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase corrosion-resistant performance by a method wherein metal powders are firmly embedded in a clearance part among magnetic particles of a porous surface structure of a bond magnet and flattened to the same degree as a surface of a magnetic body, and the entire surface is coated with a thin resinous coat layer. SOLUTION: Particles 1 of magnetic powders of a bond magnet have a flat stacked structure with respect to each other along the face, and a plurality of clearance parts 2 exist inside a magnet body and on the face among these particles 1. Soft metal powders are projected into the clearance part 2 on the face of this magnet body. Alternatively, a impact is added by rotation, shaking, oscillation or stirring from outwardly, the metal powders are compressed while filling and coating, a compression body part 3 of metal powders for being filled with the clearance part 2 and the face of the magnet body is flattened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁石粉末をバイン
ダで結合した多孔質なボンド磁石の防錆技術に関し、そ
の代表的な希土類ボンド磁石の円筒状、円盤状、リング
状など各種の形状をなすボンド磁石の成形時の寸法精度
を確保し、極めて薄い防錆被覆層を有するボンド磁石
と、その防錆処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rust preventive technique for a porous bonded magnet in which magnet powders are bound with a binder, and a typical rare earth bonded magnet having various shapes such as a cylindrical shape, a disk shape, and a ring shape. The present invention relates to a bond magnet having an extremely thin rust preventive coating layer that secures dimensional accuracy during molding of the formed bond magnet, and a rust preventive treatment method thereof.

【0002】[0002]

【従来の技術】電子機器、特にコンピュータ、通信機器
等の小型化・高性能化に伴うモータ、センサーの小型化
が進み、これらモータ等に用いるプラッスチックボンド
磁石(以下ボンド磁石と称す)も小型化・高性能化を求
められている。従来のボンド磁石はフェライト磁性材を
用いたボンド磁石が主流であったが、今日では、さらに
高い磁気特性の希土類系ボンド磁石が開発されて、磁石
の小型化・高性能化が大きく進んでいる。特にR−Fe
−B系磁性材料を用いるR−Fe−B系ボンド磁石は希
土類ボンド磁石の代表的存在となっている。しかし、こ
のR−Fe−B系ボンド磁石の原料成分は、いずれも極
めて酸化しやすい性質を有しており、特にFe成分が多
量であるために、磁石の素地表面だけでは腐食されやす
い問題があった。更に、この酸化しやすい原料成分の磁
性粉にバインダー成分を加えて、圧縮成形して製品形状
とするボンド磁石の製造上の特徴から、磁石表面は多孔
質であるため空隙部を介して内部と外気が連通するの
で、素地状態のみでは非常に腐食されやすい問題を有す
る磁石である。
2. Description of the Related Art As electronic devices, especially computers, communication devices, etc. have become smaller and higher in performance, motors and sensors have become smaller, and plastic bond magnets (hereinafter referred to as bond magnets) used in these motors have also become smaller. -Higher performance is required. Conventional bonded magnets were mainly bonded magnets using ferrite magnetic materials, but today, rare-earth bonded magnets with even higher magnetic properties have been developed, and the size and performance of magnets have greatly advanced. . Especially R-Fe
An R—Fe—B based bonded magnet using a —B based magnetic material has become a representative of rare earth bonded magnets. However, all the raw material components of the R-Fe-B based bonded magnet have a property of being extremely easily oxidized, and in particular, since a large amount of Fe component is present, there is a problem that they are easily corroded only by the base surface of the magnet. there were. Furthermore, because of the manufacturing characteristics of the bonded magnet, in which a binder component is added to the magnetic powder, which is a raw material component that easily oxidizes, and compression-molded into a product shape, the magnet surface is porous so that the inside of Since the outside air communicates with the magnet, the magnet has a problem that it is very easily corroded only in the green state.

【0003】この腐食の問題に対して、樹脂被膜等によ
って表面を被覆して防錆する種々の表面処理方法が用い
られ、製品磁石として実用化されている。代表的な表面
処理方法としてはボンド磁石の表面に種々の樹脂塗装を
施すことであり、一般にスプレー塗装、電着塗装、浸漬
塗装(特開平1-166519号公報、特開平1-245504号公報参
照)などが採用されている。しかしながら、スプレー塗
装においては、適切な樹脂塗料の選択と重ね塗りを施す
ことによって、耐食性は実用上ほぼ満足できる水準にあ
るが、複雑な製品形状によっては塗装被膜が肥大化しや
すく、薄い被膜では膜厚の均一性を保持することが困難
で、寸法精度が低くなりやすい。しかも塗料のロスが多
く、被塗装物の反転作業の必要性から工程が多くなり、
コスト高になる傾向が大である。
To cope with this corrosion problem, various surface treatment methods of coating the surface with a resin coating or the like to prevent rusting have been used and have been put to practical use as product magnets. A typical surface treatment method is to apply various resin coatings to the surface of the bonded magnet, and generally spray coating, electrodeposition coating, dip coating (see JP-A 1-166519 and JP-A 1-245504). ) Is adopted. However, in spray coating, the corrosion resistance is practically satisfactory by selecting an appropriate resin coating and applying multiple coatings. It is difficult to maintain the thickness uniformity, and the dimensional accuracy tends to be low. Moreover, there is a lot of paint loss, and the number of processes increases due to the need to reverse the work to be coated,
The cost tends to be high.

【0004】電着塗装においては、スプレー塗装よりも
耐食性は優れており、膜厚も15〜30μm程度の膜厚塗装
ではスプレー塗装よりも均一である。しかし、被膜形成
上10μm以下の薄膜塗装は電着塗装の原理的な面から極
めて困難である。更に被塗装物たる磁石を個々に電極に
セット・リセットする作業工程、及び、塗装後の電極の
接触跡を個別にタッチアップ塗装する工程が必要であ
り、特に小径のリング形状のボンド磁石に薄い被膜を施
すには適さない問題がある。更に、浸漬塗装法は前述の
塗装方法と比較して、耐食性は劣るが、安価、且つ少な
い工程で済むという有利な方法であり、薄い被膜の被覆
処理をしても5μm程度から可能である。しかし、均一
な被膜層を形成させるのは困難で膜厚は不均一になり易
く、表面に空孔、溝等の空隙部多いボンド磁石では、そ
れらを完全に封孔・充填できず、後工程の硬化・乾燥処
理時にて内部ガスの膨張、噴出による膨れ、ピンホール
が発生し、磁石の寸法精度が低下する。更に膨れ等によ
って被塗装物たる磁石同士が相互に固着するなどのトラ
ブルが発生しやすいという問題もある。
Corrosion resistance in electrodeposition coating is superior to that in spray coating, and film thickness coating having a film thickness of about 15 to 30 μm is more uniform than spray coating. However, in terms of film formation, thin film coating of 10 μm or less is extremely difficult from the principle of electrodeposition coating. Furthermore, work steps to set / reset the magnets to be coated on the electrodes individually and touch-up coating individually on the contact traces of the electrodes after coating are required, especially for small-diameter ring-shaped bond magnets. There is a problem that is not suitable for applying the coating. Further, the dip coating method is inferior to the above-mentioned coating method in corrosion resistance, but it is an advantageous method that is inexpensive and requires a small number of steps. Even if a thin coating is applied, it can be performed from about 5 μm. However, it is difficult to form a uniform coating layer, and the film thickness tends to be non-uniform, and with bonded magnets with many voids such as voids and grooves on the surface, it is not possible to completely seal and fill them. During the curing and drying treatment of, the internal gas expands, expands due to jetting, and pinholes are generated, and the dimensional accuracy of the magnet deteriorates. Further, there is also a problem that problems such as sticking of magnets to be coated to each other due to swelling are likely to occur.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来方法での浸漬処理方法の問題点を改善
するためにボンド磁石表面の空孔、溝等の空隙部に対し
て、直接金属粉末を圧縮して充填・被覆し封孔した後
に、減圧雰囲気下で樹脂浸漬処理を施すことによって得
られる、薄膜で膜厚の均一性、製品の寸法精度に優れ
た、従来のボンド磁石よりも高い耐食性能を有するボン
ド磁石を提案することである。また、係るボンド磁石を
得ると共に、公知の種々のボンド磁石の防錆処理方法よ
りも工程を簡素化し、低コストで省力化された、環境上
も良好なボンド磁石の表面処理方法をも提案しようとす
るものである。
The problem to be solved by the present invention is to solve the problems of the dipping treatment method in the conventional method with respect to voids such as holes and grooves on the surface of the bonded magnet. A conventional bonded magnet with a thin film, excellent in film thickness uniformity and product dimensional accuracy, obtained by directly compressing metal powder, filling / covering and sealing, and then performing resin dipping treatment in a reduced pressure atmosphere. It is to propose a bonded magnet having higher corrosion resistance performance. Further, in addition to obtaining such a bonded magnet, we will propose a surface treatment method for a bond magnet which is simpler in process than various known rustproofing methods for bond magnets, low-cost and labor-saving, and environmentally friendly. It is what

【0006】[0006]

【課題を解決するための手段】本発明は前記の課題を解
決するため、ボンド磁石の多孔質な表面組織の特徴であ
る磁石粒子間の空隙部を磁石本体の表面と同等程度まで
強固に埋め合わせ平坦化することにより、それらの表面
全体に極めて薄い樹脂の被膜層を被覆することで、前記
課題を解決しようとした。先ず、ボンド磁石表面の空隙
部を磁石本体の表面と同等程度まで埋めるため、ショッ
ト等のブラストメディアと、これに対し比較的軟質の金
属粉末を同時にボンド磁石に投射するか、或いは、これ
らショット、金属粉末及びボンド磁石を容器内に入れ、
容器全体を回転や振動することでボンド磁石の表面を平
坦化するようにした。次に、係るボンド磁石の表面全体
に均一で薄い樹脂の被膜層を被覆し、且つ、その表面に
残存している微小な隙間内にも樹脂成分が浸透するよ
う、減圧雰囲気下で前記ボンド磁石をエポキシ等の樹脂
溶液中に浸漬するようにした。
In order to solve the above-mentioned problems, the present invention firmly fills the voids between the magnet particles, which is a characteristic of the porous surface texture of the bonded magnet, to the same extent as the surface of the magnet body. By flattening the surfaces, an entire thin surface thereof is covered with an extremely thin resin coating layer to solve the above problems. First, in order to fill the voids on the surface of the bond magnet to the same extent as the surface of the magnet body, blast media such as shots and relatively soft metal powder are simultaneously projected onto the bond magnet, or these shots, Put the metal powder and bond magnet in the container,
The surface of the bonded magnet was made flat by rotating or vibrating the entire container. Next, the bonded magnet is coated under a reduced pressure atmosphere so that the entire surface of the bonded magnet is coated with a uniform and thin resin coating layer, and the resin component also penetrates into the minute gaps remaining on the surface. Was immersed in a resin solution such as epoxy.

【0007】上記の二つの点に着目してなされた本発明
のボンド磁石は、表面に連通する空隙部を有する多孔質
な磁石本体と、少なくとも上記空隙部内に充填・被覆さ
れた金属粉末の圧縮体部と、上記圧縮体部を含む磁石本
体の表面全体に被覆されたエポキシ等の樹脂層とからな
る防錆被覆層を有するボンド磁石である。前記防錆被覆
層の厚さは平均10μm以下(少なくとも3μm、厚くて
も12μm程度)であることをも特徴とし、更に前記ボン
ド磁石はR-Fe-B系ボンド磁石であることをも特徴と
する。更に、前記ボンド磁石を得るための本発明の防錆
被覆処理方法は、内部及び表面に空隙部を有する多孔質
な磁石本体の、少なくとも表面に連通する上記磁石の空
隙部内に金属粉末を圧縮しつつ充填・被覆し圧縮体部を
形成する工程と、上記圧縮体部を含む磁石本体の表面全
体に、エポキシ等の樹脂層を減圧雰囲気下で被覆する工
程とを含むことを特徴とする。
The bonded magnet of the present invention made by paying attention to the above two points is a porous magnet main body having a void portion communicating with the surface, and compression of the metal powder filled / covered in at least the void portion. A bonded magnet having a rust preventive coating layer including a body portion and a resin layer such as epoxy coated on the entire surface of the magnet body including the compressed body portion. The rust preventive coating layer has an average thickness of 10 μm or less (at least 3 μm, at most about 12 μm), and the bond magnet is an R—Fe—B type bond magnet. To do. Furthermore, the rust preventive coating treatment method of the present invention for obtaining the bonded magnet comprises compressing a metal powder in the voids of the magnet communicating with at least the surface of the porous magnet body having voids in the inside and the surface. Meanwhile, the method is characterized by including a step of filling and coating to form a compressed body portion, and a step of coating the entire surface of the magnet body including the compressed body portion with a resin layer such as epoxy under a reduced pressure atmosphere.

【0008】[0008]

【発明の実施の形態】以下に、本発明の理解を容易にす
るため、図と共に実施の形態を説明する。ボンド磁石
は、磁石粉末同士をバインダで結合しつつプレス等で圧
縮成形されているので、磁石粉末の粒子1は表面に沿っ
て扁平状に互いに積み重なった組織を有している(図1
(A)参照、以下同じ)。これらの磁石粉末の粒子1間に
は、空孔、溝等の空隙部2が磁石本体内部及び表面に多
数存在している。係る空隙部2のうち、磁石本体の表面
の空隙部2内に、Zn,Cu,Al,Sn等の比較的軟
質の金属粉末をショット等のブラストメディアを併用し
て投射するか、または、外部から回転、揺動、振動、又
は、撹拌することによって打撃力を加えて、金属粉末を
圧縮しつつ充填・被覆し、上記空隙部2を封孔する金属
粉末の圧縮体部3を設け、磁石本体の表面を平坦化する
(図1(B))。ここで用いる軟質金属とは、磁石粉末粒子や
メディアの双方に比べて軟質である金属を指す。係る金
属粉末充填被覆の後処理として、磁石本体の表面に過剰
で弱く付着した軟質金属の圧縮粉を洗浄により除去する
(図1(C))。この状態では磁石粉末の粒子1の表面は一部
が露出している部分もある。次いで、上記圧縮体部3に
よって平坦化された磁石本体の表面全体に防錆機能を果
たす樹脂層4を被覆するが、磁石本体の表面には上記圧
縮体部3の周囲等に微細な隙間が残存しているため、こ
の微細な隙間にも樹脂成分が浸透し、空隙部2の封孔を
確実にするよう、減圧雰囲気下のエポキシ樹脂溶液中へ
上記磁石を浸漬する(図1(D))。係る浸漬処理の後、常法
により加熱し樹脂層4の硬化処理を行い、平均10μm以
下の薄くて均一な防錆被覆層5を得る(図1(E))。尚、樹
脂成分は減圧雰囲気によって、磁石内部の空隙部2内に
も浸透し、磁石表面の空隙部2の封孔性を更に高めるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments will be described below with reference to the drawings in order to facilitate understanding of the present invention. Since the bonded magnet is compression-molded by pressing while binding the magnet powders together with the binder, the particles 1 of the magnet powder have a structure in which they are stacked flatly along the surface (Fig. 1).
(See (A), and so on). Between the particles 1 of the magnet powder, a large number of voids 2 such as holes and grooves exist inside and on the surface of the magnet body. The relatively soft metal powder such as Zn, Cu, Al, and Sn is projected into the voids 2 on the surface of the magnet body among the voids 2 by using blast media such as shots together or externally. From the magnet, a striking force is applied by rotating, rocking, vibrating, or agitating to fill and coat the metal powder while compressing the metal powder, and the metal powder compression body 3 for sealing the void 2 is provided. Flatten the surface of the body
(Figure 1 (B)). The soft metal used here refers to a metal that is softer than both the magnetic powder particles and the media. As a post-treatment for such a metal powder filling coating, the soft metal compressed powder that adheres excessively and weakly to the surface of the magnet body is removed by washing.
(Figure 1 (C)). In this state, the surface of the magnet powder particle 1 is partially exposed. Next, the entire surface of the magnet body flattened by the compression body portion 3 is coated with the resin layer 4 having an anticorrosion function, but a fine gap is formed around the compression body portion 3 on the surface of the magnet body. Since it remains, the resin component also penetrates into these minute gaps, so that the magnet is immersed in an epoxy resin solution under a reduced pressure atmosphere so as to ensure the sealing of the void 2 (Fig. 1 (D)). ). After such dipping treatment, the resin layer 4 is cured by heating in a conventional manner to obtain a thin and uniform rust preventive coating layer 5 having an average thickness of 10 μm or less (FIG. 1 (E)). It should be noted that the resin component can also penetrate into the voids 2 inside the magnet by the reduced pressure atmosphere, and further improve the sealing property of the voids 2 on the magnet surface.

【0009】[0009]

【実施例】次に、本発明の具体的な実施例について説明
する。 実施例1 85at%Fe−10at%Nd−5at%B系合金の溶湯を超急冷法
によって製造した平均粒径100μmのFe-Nd−B非晶
質合金の磁石粉末に、バインダー成分としてエポキシ樹
脂を2.5重量%を添加して混練したものを、金型内に装
入し7.5t/cm2の圧力で圧縮成形を施し、外径6.0mm×内
径5.0mm×長さ10.0mmの円筒状ボンド磁石を得た(図2、
ステップ1;S1、以下同じ)。この磁石を約150℃で約60分
間加熱処理し前記エポキシ樹脂成分を硬化させた(図2,S
2)。得られた円筒状ボンド磁石のうち 500個をそれぞれ
の端部のバリを除くため、容積5リットルの回転する容器内
に、容積2リットルの直径3mmの球状アルミナメディアと純
水1リットルを共に装入し、毎分20回転で約20分間表面を研
磨した(図2,S3)。研磨後の円筒状ボンド磁石を純水中に
て超音波洗浄を施した(図2,S4)後、約80℃に加熱し乾燥
させた(図2,S5)。このボンド磁石8を500個,図3に示す
3リットルのブラスト被覆処理用容器10に装入し、この容器
10を毎分10回転で回転させながら、容器開口部側のノズ
ル12より、直径1.5mmのステンレス球14と、このステン
レス球14の見掛け容積1リットルに対して5gの割合で鱗片
状のアルミニウム粉末16(厚さ0.1〜1μm,平均粒径50
μm)を混合したブラスト被覆媒体18を用いて、空気圧
を併用した0.5kg/cm2のショット吹付け圧力で吹付被覆
処理を10分間実施した(図2,S6)。尚、図3中の20はオー
バーフローした上記被覆媒体18の回収部分を示す。
Next, specific examples of the present invention will be described. Example 1 A magnetic powder of Fe-Nd-B amorphous alloy having an average particle size of 100 μm, which was produced by melt quenching a melt of 85 at% Fe-10 at% Nd-5 at% B alloy, was coated with an epoxy resin as a binder component. 2.5% by weight was added and kneaded, then charged into a mold and compression-molded at a pressure of 7.5 t / cm 2 , and a cylindrical bonded magnet with an outer diameter of 6.0 mm × an inner diameter of 5.0 mm × a length of 10.0 mm. Was obtained (Fig. 2,
Step 1; S1, the same hereafter). This magnet was heat-treated at about 150 ° C for about 60 minutes to cure the epoxy resin component (Fig. 2, S
2). In order to remove the burr at each end, 500 pieces of the obtained cylindrical bonded magnet were placed in a rotating container having a volume of 5 liters together with spherical alumina media having a diameter of 3 mm and a diameter of 3 mm and 1 liter of pure water. Then, the surface was polished at 20 rpm for about 20 minutes (FIG. 2, S3). The polished cylindrical bonded magnet was subjected to ultrasonic cleaning in pure water (FIG. 2, S4), then heated to about 80 ° C. and dried (FIG. 2, S5). 500 pieces of these bond magnets 8 were placed in a blast coating container 10 of 3 liters shown in FIG.
While rotating 10 at 10 revolutions per minute, from the nozzle 12 on the container opening side, a stainless ball 14 with a diameter of 1.5 mm and a scale-like aluminum at a rate of 5 g per 1 liter of apparent volume of the stainless ball 14 Powder 16 (Thickness 0.1 to 1 μm, average particle size 50
Spray coating was carried out for 10 minutes at a shot spray pressure of 0.5 kg / cm 2 combined with air pressure, using the blast coating medium 18 mixed with (μm) (FIG. 2, S6). In addition, 20 in FIG. 3 indicates a recovery portion of the coating medium 18 which has overflowed.

【0010】次に金属被覆されたボンド磁石8をステン
レス球14と分離した後、MEK(メチルエチルケトン)
の溶液中にて籠ざるによる揺動洗浄を2分間行い、不完
全に付着したアルミニウム粉末を洗浄除去した(図2,S
7)。ここで用いたMEKは過剰なアルミ粉末等の除去を
促進する界面活性作用を果たす。その後、約80℃に加熱
し乾燥させた(図2,S8)。次いで2液性エポキシ樹脂;1
00部に対して触媒型硬化剤;3部を混合した、エポキシ
成分10重量%含有MEK溶液中にこのボンド磁石を浸漬
し、0.15Torrの減圧雰囲気下で含浸処理を施した(図2,S
9)。ここでMEKを用いたのは、磁石粉末粒子の濡れ性
を高め樹脂との密着性を高めるためである。また、減圧
雰囲気の圧力は上記溶液が沸騰しない0.1Torr以上で、
且つ大気圧未満の範囲が望ましい。その後約140℃のオ
ーブン中において60分間硬化処理を施した(図2,S10)。
Next, the metal-coated bond magnet 8 is separated from the stainless balls 14, and then MEK (methyl ethyl ketone) is used.
Swing cleaning was performed for 2 minutes using a basket in the above solution to remove incompletely adhered aluminum powder by cleaning (Fig. 2, S
7). The MEK used here has a surface activating effect that promotes the removal of excess aluminum powder and the like. Then, it was heated to about 80 ° C. and dried (FIG. 2, S8). Then two-component epoxy resin; 1
This bond magnet was immersed in a MEK solution containing 10 parts by weight of an epoxy component and mixed with 3 parts of a catalyst type curing agent to 00 parts, and impregnated under a reduced pressure atmosphere of 0.15 Torr (Fig. 2, S
9). The reason why MEK is used here is to increase the wettability of the magnet powder particles and the adhesion to the resin. The pressure of the reduced pressure atmosphere is 0.1 Torr or more at which the above solution does not boil,
Moreover, the range below atmospheric pressure is desirable. After that, curing treatment was performed in an oven at about 140 ° C. for 60 minutes (FIG. 2, S10).

【0011】実施例2 前記実施例1と同様にして得られた500個のボンド磁石2
2について、バリ取り研磨を施した後、超音波洗浄を施
し、加熱乾燥した。これらのボンド磁石22を図4に示す
に見掛け容積2リットルの、表面に30μm以上の硬質Niめっ
きを施した直径3mmのスチール球24と、3gの鱗片状アル
ミニウム粉末26(厚さ0.3〜1μm、平均粒径50μm)と
共に3リットル容積の加振容器28内に装入し、図4に示す構
造の加振装置30に加振容器28を装着して、振幅5mm、60
Hzの振動条件によって、ボンド磁石22にスチール球24と
アルミニウム粉末26との衝突圧力による金属粉末被覆処
理を20分間行った。次にこの金属被覆したボンド磁石22
を、スチール球24と分離した後、水道水中にて籠ざるに
よる揺動洗浄を2分間行い、表面に不完全に付着したア
ルミニウム粉末26を洗浄除去した。その後約80℃の温風
乾燥を10分間行い、以後前記実施例1と同様のエポキシ
成分10重量%MEK溶液中にこのボンド磁石22を浸漬
し、0.15Torrの減圧雰囲気下で含浸処理を施した。その
後約140℃のオーブン中において60分間硬化処理を施し
た。尚、前記図4中において、32は加振容器28の下方に
設けたモータ、34は該容器28とモータ32を共に振動させ
るため、モータ32の回転軸の下端に固定した偏心用ウェ
イト、36は振動を所定範囲内に保持するためベース40か
ら直立されたコイルバネ、38は該バネ36内に垂直に挿入
されたガイドピンを示す。
Example 2 500 bonded magnets 2 obtained in the same manner as in Example 1
Regarding No. 2, after deburring and polishing, ultrasonic cleaning was performed and heating and drying were performed. As shown in FIG. 4, these bonded magnets 22 have a apparent volume of 2 liters, steel balls 24 having a diameter of 3 mm and hard Ni plating of 30 μm or more on the surface, and 3 g of scale-like aluminum powder 26 (thickness 0.3 to 1 μm, The average particle diameter is 50 μm) and the mixture is placed in a vibration vessel 28 having a volume of 3 liters, and the vibration vessel 28 is attached to the vibration device 30 having the structure shown in FIG.
Under the vibration condition of Hz, the bond magnet 22 was subjected to the metal powder coating treatment by the collision pressure between the steel ball 24 and the aluminum powder 26 for 20 minutes. Next, this metal coated bond magnet 22
After being separated from the steel balls 24, rocking washing by tapping was performed in tap water for 2 minutes to wash and remove the aluminum powder 26 imperfectly attached to the surface. Thereafter, warm air drying at about 80 ° C. was performed for 10 minutes, and thereafter, this bond magnet 22 was immersed in a 10% by weight MEK solution of the epoxy component similar to that of Example 1 and impregnated under a reduced pressure atmosphere of 0.15 Torr. . After that, curing treatment was performed for 60 minutes in an oven at about 140 ° C. In FIG. 4, 32 is a motor provided below the vibration container 28, 34 is an eccentric weight fixed to the lower end of the rotation shaft of the motor 32 for vibrating both the container 28 and the motor 32, and 36. Is a coil spring that stands upright from the base 40 to keep vibration within a predetermined range, and 38 is a guide pin vertically inserted into the spring 36.

【0012】実施例3 前記実施例1と同様にして得られた500個のボンド磁石
に、バリ取り研磨を施した後、超音波洗浄を施し、更に
磁石表面の濡れ性を向上させるためシラン系カップリン
グ剤を2%含む水溶液中に2分間浸漬した。次に約80℃
で加熱乾燥した後、前記実施例2で用いた加振容器28内
にて実施例2と同じ条件の金属粉末被覆処理をボンド磁
石に施した。更に金属被覆したボンド磁石を金属球と分
離した後、水道水中にて籠ざるによる揺動洗浄を2分間
行い、表面に不完全に付着した金属粉を洗浄除去した
後、再度前記のカップリング剤を含む水溶液中に2分間
浸漬した。その後約80℃の温風乾燥を10分間行い、以下
前記実施例1と同様のエポキシ成分10重量%含有MEK
溶液中にこのボンド磁石を浸漬し、0.15Torrの減圧雰囲
気下で含浸処理を施した。最後に約140℃のオーブン中
において60分間硬化処理を施した。
Example 3 500 bond magnets obtained in the same manner as in Example 1 were deburred and polished, and then ultrasonically cleaned to further improve the wettability of the magnet surface. It was dipped in an aqueous solution containing 2% of a coupling agent for 2 minutes. Next about 80 ℃
After being dried by heating in, the bonded magnet was subjected to the metal powder coating treatment under the same conditions as in Example 2 in the vibration vessel 28 used in Example 2. Further, after separating the metal-coated bonded magnet from the metal spheres, rocking washing with a colander in tap water is carried out for 2 minutes to wash and remove the metal powder that is incompletely attached to the surface, and then the above coupling agent is again used. It was immersed for 2 minutes in an aqueous solution containing. Thereafter, warm air drying at about 80 ° C. was performed for 10 minutes, and the same MEK containing 10% by weight of the epoxy component as in Example 1 was used.
The bonded magnet was immersed in the solution and impregnated under a reduced pressure atmosphere of 0.15 Torr. Finally, it was cured in an oven at about 140 ° C. for 60 minutes.

【0013】比較例1 前記実施例1と同様にして得られたボンド磁石500個
に、バリ取り研磨を施した後、超音波洗浄を施し、約80
℃に加熱し乾燥した。次に市販の熱硬化型エポキシ塗料
原液20重量%に専用の薄め液(シンナー)80重量%を加え
てエポキシ塗料浸漬液とし、この中にボンド磁石を常圧
下で5分間浸漬した。更に、ボンド磁石を籠ざるに取っ
て充分浸漬液を液切りした後、約140℃のオーブン中に
おいて60分間硬化処理を施した。この比較例1のボンド
磁石の表面組織を図5に基づいて説明すると、同図(A)
は磁石粉末の粒子1が磁石表面に沿って互いに扁平状に
積み重なった組織を呈し、上記のバリ取り、洗浄及び乾
燥を経た直後の状態を示す。図5(B)は、上記浸漬によっ
て磁石の表面にエポキシの樹脂層4を被覆した状態を示
し、その膜厚は約20〜40μmであった。更に上記硬化処
理を施すと、図5(C)に示すように樹脂層4の厚さは5〜1
5μmになるが、磁石内部の空孔中のガスが膨張し、磁石
の表面側へ放出されるため、表面の空隙部2を通り樹脂
層4を破って外方へ噴出しようとする。この際表面の空
隙部2の付近に、図示の膨れ6やピンホール7が形成さ
れ、このピンホール7を介して磁石内部と外部が連通状
態となる。
Comparative Example 1 500 bond magnets obtained in the same manner as in Example 1 were deburred and polished, and then ultrasonically cleaned to obtain about 80
It was heated to ° C and dried. Next, 80% by weight of a dedicated diluting solution (thinner) was added to 20% by weight of a commercially available thermosetting epoxy coating stock solution to prepare an epoxy coating solution, and the bond magnet was immersed in this for 5 minutes under normal pressure. Further, the bonded magnet was placed in a basket and the immersion liquid was sufficiently drained off, and then cured in an oven at about 140 ° C. for 60 minutes. The surface texture of the bonded magnet of Comparative Example 1 will be described with reference to FIG.
Shows a structure in which particles 1 of the magnet powder are flatly stacked on each other along the surface of the magnet and immediately after the above deburring, washing and drying. FIG. 5 (B) shows a state in which the surface of the magnet is coated with the epoxy resin layer 4 by the above dipping, and the film thickness is about 20 to 40 μm. When the above curing treatment is further applied, the resin layer 4 has a thickness of 5 to 1 as shown in FIG. 5 (C).
Although it becomes 5 μm, the gas in the holes inside the magnet expands and is released to the surface side of the magnet, so that the resin layer 4 passes through the void portion 2 on the surface and tries to be ejected to the outside. At this time, a bulge 6 and a pinhole 7 are formed in the vicinity of the void portion 2 on the surface, and the inside and outside of the magnet are in communication with each other through the pinhole 7.

【0014】そして、前記実施例1,2,3、及び比較
例1の各処理によって得られたボンド磁石の各50個に対
して、円筒形の内径と外径の寸法測定を行い、未処理状
態の磁石との寸法差から膜厚を求めると共に、真円度及
び同軸度も真円度測定機と表面粗さ計を用いて測定し、
未処理状態の磁石と比較した。それらの結果を表1及び
表2に示す。
Then, with respect to each of 50 bonded magnets obtained by each of the treatments of Examples 1, 2, and 3 and Comparative Example 1, the cylindrical inner diameter and outer diameter were measured, and untreated. In addition to determining the film thickness from the dimensional difference with the magnet in the state, roundness and coaxiality are also measured using a roundness measuring machine and a surface roughness meter,
Compared to untreated magnet. The results are shown in Tables 1 and 2.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】これらの結果から、内・外径の膜厚及び真
円度、同軸度それぞれについて、実施例1,2,3は、
比較例1の従来法による浸漬塗装処理品と比較していず
れも優れた寸法・形状安定性を示し、磁石本来の成形時
の寸法精度が確保される、薄膜で均一性の優れた被膜を
有するものであった。特に実施例3は、前記カップリン
グ剤を用いたため、磁石粉末の粒子と金属粉末やエポキ
シ樹脂との密着性・親和性が良好となり、寸法精度の点
で最も優れていた。
From these results, Examples 1, 2 and 3 are as follows for the inner and outer diameters of the film thickness, the roundness and the concentricity.
Compared with the conventional dip coating treated product of Comparative Example 1, all have excellent dimensional and shape stability, and have a thin film with excellent uniformity that ensures the dimensional accuracy of the original magnet molding. It was a thing. In particular, since the coupling agent was used in Example 3, the adhesion and affinity between the particles of the magnet powder and the metal powder or the epoxy resin were good, and the dimensional accuracy was the best.

【0018】次に、前記実施例1,2,3、及び比較例
1の処理によって得られたボンド磁石、加えて未処理品
(素地)の各20個を、それぞれエポキシ樹脂系接着剤の
溶液中に80℃に保温した状態で60分間浸漬した。その
後、磁石表面の接着剤成分を拭き取り、浸漬前後の重量
差を求めてこれを接着剤の吸収量として測定した。ま
た、実施例1,2,3、及び比較例1の処理によって得
られたボンド磁石、加えて未処理品(素地)の各20個に
ついて、円筒形状の軸方向に対して垂直方向からロード
セルによって応力荷重(〜10kg/cm2)を加え、破壊強度を
測定した。それらの結果を表3に示す。尚、この実験は
ボンド磁石は一般に接着剤にてケーシング等に固定され
るため、その接着力への影響を確認するものである。
Next, 20 pieces of each of the bonded magnets obtained by the treatments of Examples 1, 2, 3 and Comparative Example 1 and untreated products (bases) were respectively dissolved in an epoxy resin adhesive solution. It was immersed for 60 minutes in a state of being kept warm at 80 ° C. After that, the adhesive component on the surface of the magnet was wiped off, the difference in weight before and after immersion was determined, and this was measured as the amount of absorbed adhesive. Further, with respect to each of the bonded magnets obtained by the processing of Examples 1, 2, 3 and Comparative Example 1, and 20 pieces of each untreated product (base material), a load cell was applied from a direction perpendicular to the axial direction of the cylindrical shape. A stress load (~ 10 kg / cm 2 ) was applied and the fracture strength was measured. Table 3 shows the results. In this experiment, since the bonded magnet is generally fixed to the casing or the like with an adhesive, its effect on the adhesive force is confirmed.

【0019】[0019]

【表3】 [Table 3]

【0020】上記の結果から、接着剤吸収量において、
実施例1,2,3は未処理品(素地)と比較して10%で
あり、比較例1と比較しても50%以下の吸収量となって
いた。また、破壊強度については、実施例1,2,3は
未処理品と比較して約2倍となり、比較例1と比べても
約1.5倍の破壊強度を有していることが判明した。これ
らから、本発明によるボンド磁石は前記空隙部への圧縮
体部による封孔作用によって、接着剤が組織内部に吸収
されにくく、磁石表面に強固に付着するため、接着剤本
来の接着力が得られると共に、外力に対しても強い抵抗
力を得られたものと理解される。
From the above results, in the adhesive absorption amount,
In Examples 1, 2, and 3, the amount was 10% compared with the untreated product (base material), and compared with Comparative Example 1, the absorption amount was 50% or less. Regarding the breaking strength, Examples 1, 2 and 3 were about twice as much as the untreated product, and it was found that the breaking strength was about 1.5 times as much as Comparative Example 1. did. From these, in the bonded magnet according to the present invention, the adhesive is not easily absorbed inside the tissue due to the sealing function of the compressed body portion in the void portion, and the adhesive adheres firmly to the magnet surface, so that the original adhesive force of the adhesive is obtained. It is understood that he was able to obtain strong resistance to external forces as well.

【0021】更に、実施例1,2,3、及び比較例1の
処理によって得られたボンド磁石、加えて未処理品(素
地)の各50個について、容積100mミリリットルのシャーレに5
%食塩水を60ミリリットル入れ、25℃に保温した状態の食塩水
中にそれぞれ浸漬して、この食塩水が淡い茶赤色に変色
する時間を測定した。これは、食塩水に含まれる塩素イ
オンと磁石成分の鉄が反応して、塩化鉄が生成したこと
によって茶赤色の変色を示すもので、磁石表面がミクロ
的に腐食を開始し始めたものと判断した。その結果を表
4に示す(表中の○は変色がなかったことを表す)。
Furthermore, for each of 50 bonded magnets obtained by the treatments of Examples 1, 2, 3 and Comparative Example 1, and 50 untreated products (bases), 5 pieces were added to a petri dish having a volume of 100 ml.
% Saline was added and each was immersed in saline kept at 25 ° C., and the time required for the saline to turn pale brown red was measured. This is because the chlorine ions contained in the saline solution react with the iron of the magnet component to produce iron chloride, which causes a brown-red discoloration, and it is said that the magnet surface begins to microscopically corrode. It was judged. The results are shown in Table 4 (◯ in the table means that there was no discoloration).

【0022】[0022]

【表4】 [Table 4]

【0023】表4から実施例1,2は、比較例1のエポ
キシ樹脂塗料の浸漬塗装品と比べて2倍以上、実施例3
では、3倍以上の耐食性を示した。なお、未処理状態
(素地)のものは1時間以内に茶赤色の変色を示した。
この結果から本発明によるボンド磁石は、前記圧縮体部
の封孔作用と樹脂層の内部への浸透を伴う強固な防錆被
覆層によって、耐食性の点においても格段に優れている
ことが容易に理解することができる。
From Table 4, Examples 1 and 2 are more than twice as much as the epoxy resin paint of Comparative Example 1 by immersion coating, and Example 3
In, the corrosion resistance of 3 times or more was shown. The untreated state (base material) showed a brown-red discoloration within 1 hour.
From this result, it is easy for the bonded magnet according to the present invention to be remarkably excellent in terms of corrosion resistance due to the strong anticorrosive coating layer accompanied with the sealing function of the compression body portion and the penetration into the inside of the resin layer. I can understand.

【0024】尚、本発明は以上の実施例に限らず種々な
態様によっても実施可能である。前記金属粉末被覆処理
の前処理としての洗浄や乾燥工程は、必須ではなく用い
る磁石の性状によっては省略することもできる。また、
前記金属粉末被覆処理工程についても、前記の各実施例
の他に、例えばボンド磁石群をベルトコンベア上にて移
動させ、それらの上方からショット等のブラストメディ
アと共に金属粉末を高圧で投射し、途中で各ボンド磁石
を反転させて更に投射することによっても可能である。
且つ、用いる金属粉末もブラストメディア等に対し比較
的軟質であればZn,Cu,Al,Snに限らず、黄銅、鉛、ハン
ダや鱗片状のステンレス、Ni、青銅等種々の金属粉末を
採用することができる。また、ブラストメディアも直径
1〜4mmの前記スチール球やステンレス球に加え、Ni球
や銅球、更にこれらの表面に硬質NiメッキやCrメッキを
施したものや、アルミナ、ムライト(SiO2)やこれらを主
成分とするセラミック球も用いることができる。
The present invention is not limited to the above embodiments, but can be implemented in various modes. The washing and drying steps as the pretreatment of the metal powder coating treatment are not essential and may be omitted depending on the properties of the magnet used. Also,
Also in the metal powder coating treatment step, in addition to the above-described respective examples, for example, the bonded magnet group is moved on the belt conveyor, and the metal powder is projected at a high pressure together with a blasting medium such as shot from above, on the way. It is also possible to reverse each bond magnet and project further.
Moreover, the metal powder used is not limited to Zn, Cu, Al, and Sn as long as it is relatively soft with respect to the blast media, etc., and various metal powders such as brass, lead, solder or scale stainless, Ni, bronze are adopted. be able to. In addition to the steel balls and stainless spheres with a diameter of 1 to 4 mm, blast media also have Ni spheres, copper spheres, hard Ni plating or Cr plating on their surfaces, alumina, mullite (SiO 2 ), Ceramic spheres containing these as the main components can also be used.

【0025】更に、ボンド磁石の表面に被覆する樹脂も
エポキシ系に限らず、フェノール系、アクリル系、ポリ
アミド系、ナイロン系、ポリ塩化ビニル系、フタル酸エ
ステル系、ポリエステル系、ポリプロピレン系、ポリオ
レフィン系等の樹脂も適用する磁石や被覆に用いる金属
粉末により、希釈液を併用して使用することができる。
また、前記カップリング剤もシラン系に限らず、チタネ
ート系、アルミニウム系等を用いることもできる。そし
て、適用されるR-Fe-B系ボンド磁石も、前記実施例
を含む8〜18at%R−73〜88%Fe−4〜9%B範囲内のもの
であり、希土類元素もNdの他、Y,La,Ce,Pr,Sm,Eu,Gd,T
b,Dyの1種又は2種以上を併用したり、更にFeの一部
をAl,Co,Nb等の遷移金属で置換したものも含まれる。
Further, the resin coated on the surface of the bond magnet is not limited to the epoxy type, but may be phenol type, acrylic type, polyamide type, nylon type, polyvinyl chloride type, phthalate type, polyester type, polypropylene type, polyolefin type. A diluting liquid can be used in combination depending on the magnet to which the resin such as the above is applied and the metal powder used for the coating.
Further, the coupling agent is not limited to the silane type, but a titanate type, an aluminum type or the like can be used. The R-Fe-B based bonded magnet to be applied is also in the range of 8 to 18 at% R-73 to 88% Fe-4 to 9% B including the above-mentioned embodiment, and the rare earth element is Nd other than Nd. , Y, La, Ce, Pr, Sm, Eu, Gd, T
It also includes those in which one or more of b and Dy are used in combination, and further, a part of Fe is substituted with a transition metal such as Al, Co and Nb.

【0026】[0026]

【発明の効果】以上にて説明したように、本発明のボン
ド磁石はその表面に極めて薄くて均一な皮膜、より具体
的には平均10μm以下の防錆被覆層を保有することによ
って、磁石本来の成形時の寸法精度を高精度にて確保で
き、磁石本来の磁気特性も低下させず、且つ磁石本体の
強度の向上も図れると共に、耐食性も格段に高めること
ができる。また、本発明の防錆処理方法によれば、上記
のような優れた性能のボンド磁石を少数の簡素な工程
で、安定した品質の処理を低コストで可能とし、しかも
一般的な処理剤・処理液等しか用いる必要がないため、
環境上の点からも極めて好ましい処理方法を提供でき
る。
As described above, the bonded magnet of the present invention has an extremely thin and uniform film on its surface, more specifically, an anticorrosion coating layer having an average thickness of 10 μm or less. The dimensional accuracy at the time of molding can be ensured with high accuracy, the original magnetic characteristics of the magnet are not deteriorated, the strength of the magnet main body can be improved, and the corrosion resistance can be significantly improved. Further, according to the rust preventive treatment method of the present invention, it is possible to treat the bonded magnet having excellent performance as described above with a small number of simple steps at a stable quality at a low cost, and further, a general treatment agent Since it is necessary to use only the processing liquid,
From the environmental point of view, a very preferable treatment method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多孔質ボンド磁石の表面組織の拡大模
式図である。
FIG. 1 is an enlarged schematic view of a surface texture of a porous bonded magnet of the present invention.

【図2】本発明の防錆処理方法の実施例の工程を示すフ
ローチャートである。
FIG. 2 is a flow chart showing steps of an embodiment of the rustproofing method of the present invention.

【図3】本発明の金属被覆処理に用いるピーニング被覆
装置の側断面図である。
FIG. 3 is a side sectional view of a peening coating apparatus used for the metal coating treatment of the present invention.

【図4】本発明の金属被覆処理に用いる加振容器と加振
装置の側断面図である。
FIG. 4 is a side sectional view of a vibration container and a vibration device used for the metal coating treatment of the present invention.

【図5】比較例のボンド磁石の表面組織の拡大模式図で
ある。
FIG. 5 is an enlarged schematic view of a surface texture of a bonded magnet of a comparative example.

【符号の説明】[Explanation of symbols]

1 磁石粉末粒子 2 空隙部 3 圧縮体部 4 樹脂層 5 防錆被覆層 1 Magnet Powder Particles 2 Voids 3 Compressed Body 4 Resin Layer 5 Anticorrosion Coating Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に連通する空隙部を有する多孔質な
磁石本体と、 少なくとも上記空隙部内に充填・被覆された金属粉末の
圧縮体部と、 上記圧縮体部を含む磁石本体の表面全体に被覆されたエ
ポキシ等の樹脂層とからなる防錆被覆層を有するボンド
磁石。
1. A porous magnet body having a void portion communicating with the surface, a compressed body portion of metal powder filled and coated in at least the void portion, and a magnet body including the compressed body portion on the entire surface of the magnet body. A bonded magnet having a rust preventive coating layer comprising a coated resin layer such as epoxy.
【請求項2】 前記防錆被覆層の厚さが平均10μm以下で
ある請求項1に記載のボンド磁石。
2. The bonded magnet according to claim 1, wherein the thickness of the anticorrosion coating layer is 10 μm or less on average.
【請求項3】 前記ボンド磁石がR-Fe-B系ボンド磁石
である請求項1又は2に記載のボンド磁石。
3. The bonded magnet according to claim 1, wherein the bonded magnet is an R—Fe—B based bonded magnet.
【請求項4】 内部及び表面に空隙部を有する多孔質な
磁石本体の、少なくとも表面に連通する空隙部内に金属
粉末を圧縮しつつ充填・被覆し圧縮体部を形成する工程
と、 上記圧縮体部を含む磁石本体の表面全体に、エポキシ等
の樹脂層を減圧雰囲気下で被覆する工程とを含むボンド
磁石の防錆処理方法。
4. A step of forming a compressed body part by compressing and filling a metal powder into a void part communicating with at least the surface of a porous magnet body having a void part inside and on the surface thereof, and the above-mentioned compressed body. And a step of coating a resin layer of epoxy or the like on the entire surface of the magnet body including the portion under a reduced pressure atmosphere.
JP8032657A 1996-01-25 1996-01-25 Bond magnet having rust-resistant coat layer and its rust-resistant coating method Withdrawn JPH09205013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032657A JPH09205013A (en) 1996-01-25 1996-01-25 Bond magnet having rust-resistant coat layer and its rust-resistant coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032657A JPH09205013A (en) 1996-01-25 1996-01-25 Bond magnet having rust-resistant coat layer and its rust-resistant coating method

Publications (1)

Publication Number Publication Date
JPH09205013A true JPH09205013A (en) 1997-08-05

Family

ID=12364944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032657A Withdrawn JPH09205013A (en) 1996-01-25 1996-01-25 Bond magnet having rust-resistant coat layer and its rust-resistant coating method

Country Status (1)

Country Link
JP (1) JPH09205013A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1024506A1 (en) * 1999-01-27 2000-08-02 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
JP2001327119A (en) * 2000-05-16 2001-11-22 Daido Electronics Co Ltd Weight for vibration motor and its manufacturing method
US6423369B1 (en) * 1999-04-26 2002-07-23 Sumitomo Special Metals Co., Ltd. Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
EP1455368A1 (en) * 2001-11-20 2004-09-08 Shin-Etsu Chemical Company, Ltd. CORROSION−RESISTANT RARE EARTH ELEMENT MAGNET
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
US7169468B2 (en) 1998-10-16 2007-01-30 Minebea Co., Ltd Resin bonded rare earth magnet
CN100398615C (en) * 2005-06-07 2008-07-02 武汉材料保护研究所 Coating process for neodymium-iron-boron permanent magnetic material
CN100447910C (en) * 2001-06-14 2008-12-31 信越化学工业株式会社 Corrosion-resistance rare earth magnet and its making method
WO2012118001A1 (en) * 2011-03-02 2012-09-07 日立金属株式会社 Rare-earth bond magnet manufacturing method
JP2014232777A (en) * 2013-05-28 2014-12-11 日本電産サンキョー株式会社 Rare-earth magnet, rotor, and manufacturing method of rare-earth magnet

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169468B2 (en) 1998-10-16 2007-01-30 Minebea Co., Ltd Resin bonded rare earth magnet
US6399150B1 (en) 1999-01-27 2002-06-04 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
EP1024506A1 (en) * 1999-01-27 2000-08-02 Sumitomo Special Metals Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
US7053745B2 (en) 1999-01-27 2006-05-30 Neomax Co., Ltd. Rare earth metal-based permanent magnet, and process for producing the same
US6423369B1 (en) * 1999-04-26 2002-07-23 Sumitomo Special Metals Co., Ltd. Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP2001327119A (en) * 2000-05-16 2001-11-22 Daido Electronics Co Ltd Weight for vibration motor and its manufacturing method
CN100447910C (en) * 2001-06-14 2008-12-31 信越化学工业株式会社 Corrosion-resistance rare earth magnet and its making method
WO2003038157A1 (en) * 2001-10-29 2003-05-08 Sumitomo Special Metals Co., Ltd. Method for forming electroplated coating on surface of article
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
EP1455368A1 (en) * 2001-11-20 2004-09-08 Shin-Etsu Chemical Company, Ltd. CORROSION−RESISTANT RARE EARTH ELEMENT MAGNET
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
EP1455368A4 (en) * 2001-11-20 2005-03-23 Shinetsu Chemical Co Corrosion-resistant rare earth element magnet
CN100398615C (en) * 2005-06-07 2008-07-02 武汉材料保护研究所 Coating process for neodymium-iron-boron permanent magnetic material
JP2006148157A (en) * 2006-01-26 2006-06-08 Daido Electronics Co Ltd Rare-earth bonded magnet
WO2012118001A1 (en) * 2011-03-02 2012-09-07 日立金属株式会社 Rare-earth bond magnet manufacturing method
CN103403821A (en) * 2011-03-02 2013-11-20 日立金属株式会社 Rare-earth bond magnet manufacturing method
US20130323109A1 (en) * 2011-03-02 2013-12-05 Hitachi Metals, Ltd. Rare-earth bond magnet manufacturing method
JP5884820B2 (en) * 2011-03-02 2016-03-15 日立金属株式会社 Rare earth bonded magnet manufacturing method
CN103403821B (en) * 2011-03-02 2016-08-10 日立金属株式会社 The manufacture method of rare-earth bond magnet
US9666361B2 (en) 2011-03-02 2017-05-30 Hitachi Metals, Ltd. Rare-earth bond magnet manufacturing method
JP2014232777A (en) * 2013-05-28 2014-12-11 日本電産サンキョー株式会社 Rare-earth magnet, rotor, and manufacturing method of rare-earth magnet

Similar Documents

Publication Publication Date Title
JPH09205013A (en) Bond magnet having rust-resistant coat layer and its rust-resistant coating method
EP1028437B1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP3709292B2 (en) Resin bonded rare earth magnet
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH05302176A (en) Method for forming coating film
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
EP1049112A2 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP3834707B2 (en) Rust prevention treatment method for rare earth magnets
WO2004064086A1 (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JPH113811A (en) Rare earth bonded magnet and its manufacture
JPH07201620A (en) R-fe-b based bond magnet and production thereof
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3236816B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP2013143406A (en) Method of manufacturing powder magnetic core, powder magnetic core, coil, and motor
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3482225B2 (en) Film formation method
JP4077572B2 (en) Rare earth bonded magnet manufacturing method
JP2004266093A (en) Method of manufacturing rare earth bonded magnet
JP3236814B2 (en) High corrosion resistance R-Fe-B-based bonded magnet and method for producing the same
JPH05237439A (en) Method for forming film
JPH11260614A (en) Anticorrosive r-fe-b bonded magnet and manufacture of the same
JP2002248425A (en) Powder resin coating method, barrel polishing method and product made by the manufacturing method
JPH05214555A (en) Parts having film containing powder
JPH11283818A (en) High corrosion-resistant r-fe-b bonded magnet and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401