JPH11260614A - Anticorrosive r-fe-b bonded magnet and manufacture of the same - Google Patents

Anticorrosive r-fe-b bonded magnet and manufacture of the same

Info

Publication number
JPH11260614A
JPH11260614A JP10083012A JP8301298A JPH11260614A JP H11260614 A JPH11260614 A JP H11260614A JP 10083012 A JP10083012 A JP 10083012A JP 8301298 A JP8301298 A JP 8301298A JP H11260614 A JPH11260614 A JP H11260614A
Authority
JP
Japan
Prior art keywords
bonded magnet
magnet
coating layer
plating
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083012A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshimura
吉村  公志
Takeshi Nishiuchi
武司 西内
Fumiaki Kikui
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10083012A priority Critical patent/JPH11260614A/en
Priority to EP98950380A priority patent/EP1028437B1/en
Priority to DE69834567T priority patent/DE69834567T2/en
Priority to PCT/JP1998/004829 priority patent/WO1999023675A1/en
Priority to CNB988114569A priority patent/CN1205626C/en
Priority to KR10-2000-7004631A priority patent/KR100374398B1/en
Publication of JPH11260614A publication Critical patent/JPH11260614A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an anticorrsive R-Fe-B bonded magnet, including an optimum industrial process, for providing an anticorrosive coating with high contact strength and good dimensional accuracy on the surface of a porous R-Fe-B bonded magnet, where a plating solution and a cleaning solution are prevented from entering and remaining. SOLUTION: A R-Fe-B bonded magnet is subjected to barrel abrasion by a barrel device using a dry method using Al fine pieces such as spherical, block- like, or needle-like (wire) shapes having predetermined dimensions as a medium, and the crushed Al fine pieces are applied under pressures to a resin surface and a sealing hole part on the surface of the bonded magnet. The Al fine pieces are also applied to the magnetic powder surface, and zinc substitution processing is carried out for preventing the dissolution of Al at the subsequent electroplating. Thus, high conductivity can be imparted by forming an Al coating film on the surface of the R-Fe-B bonded magnet, so that a fine electrolytic plating layer having no pin hole can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、清浄性の高い金
属被膜にて耐食性を改善したリング形状や円板状の種々
の形状からなるR−Fe−B系ボンド磁石に係り、Al
微片の金属メディアによる乾式バレル研磨により、磨砕
されたAl微片をボンド磁石表面の樹脂面および空孔部
に圧入、被覆し、また磁粉面にAl微片を被覆し、その
後さらに亜鉛置換処理することにより、磁石表面に十分
な導電性を付与して、無電解めっきすることなく直接電
気めっき処理を実施可能とし、めっきの密着性に優れた
高耐食性R−Fe−B系ボンド磁石を得る製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ring-shaped or disk-shaped bonded R-Fe-B magnet having improved corrosion resistance with a metal film having high cleanliness.
By dry barrel polishing of fine particles with metal media, the crushed Al fine particles are pressed and coated on the resin surface and holes of the bonded magnet surface, and the magnetic particles are coated with Al fine particles, and then further substituted with zinc. The treatment gives sufficient conductivity to the magnet surface, enables direct electroplating without electroless plating, and provides a high corrosion resistant R-Fe-B bonded magnet with excellent plating adhesion. The production method to be obtained.

【0002】[0002]

【従来の技術】今日、リング状や円板状の種々の形状か
らなるゴム磁石あるいはプラスチック磁石と呼ばれるボ
ンド磁石には、従来の等方性ボンド磁石から異方性ボン
ド磁石へ、また、フェライト系ボンド磁石からより高磁
力の希土類系ボンド磁石へと高性能化が進み、さらに、
焼結磁石では最大エネルギー積が50MGOe以上の高
磁気特性を発揮するR−Fe−B系磁性材を用いるR−
Fe−B系ボンド磁石へと高性能化が図られてきた。
2. Description of the Related Art Today, bonded magnets called rubber magnets or plastic magnets having various shapes such as a ring shape and a disk shape include conventional isotropic bonded magnets, anisotropic bonded magnets, and ferrite-based bonded magnets. Higher performance has progressed from bonded magnets to rare earth-based bonded magnets with higher magnetic force.
In the case of sintered magnets, R-Fe-B based magnetic materials that exhibit high magnetic properties with a maximum energy product of 50 MGOe or more are used.
Higher performance has been achieved for Fe-B based bonded magnets.

【0003】R−Fe−B系ボンド磁石は、その磁粉組
成に極めて酸化しやすい成分相及びFeを多量に含むた
めに錆びやすい問題があり、表面に種々組成からなる樹
脂層を電着塗装、スプレー法、浸漬法、含浸法等で被着
していた(例えば、特開平1−166519号、特開平
1−245504号)。
[0003] R-Fe-B bonded magnets have a problem that they are easily rusted due to the fact that the magnetic powder composition contains a very easily oxidizable component phase and a large amount of Fe. It was applied by a spray method, an immersion method, an impregnation method or the like (for example, JP-A-1-166519, JP-A-1-245504).

【0004】これまでR−Fe−B系ボンド磁石の耐食
性向上のために用いられてきた樹脂塗装法、例えば、ス
プレー法ではリング状ボンド磁石の場合、塗料のロスが
大きく、裏、表を反転する必要があるため工数が多く、
また、膜厚の均一性も劣る問題があった。
[0004] In the case of a resin coating method which has been used to improve the corrosion resistance of R-Fe-B bonded magnets, for example, in the case of a ring method, a paint loss is large in the case of a ring-shaped bonded magnet. Many man-hours,
There is also a problem that the uniformity of the film thickness is poor.

【0005】また、電着塗装法では、膜厚は均一である
が、磁石の1個にそれぞれ電極に取り付ける必要があ
り、さらに塗装後に外した電極部跡の補修、すなわちタ
ッチアップが必要であり、多大の工数を要して特に小物
には不適であるという問題がある。
Further, in the electrodeposition coating method, although the film thickness is uniform, it is necessary to attach each of the magnets to an electrode, and it is necessary to repair the trace of the electrode portion removed after coating, that is, to perform touch-up. However, there is a problem that it requires a large number of man-hours and is particularly unsuitable for small items.

【0006】浸漬法では、一定の均一な膜厚の塗膜を得
るにはタレ等の問題により困難であり、またポーラスな
ボンド磁石では空孔部が十分に埋まらず、乾燥時に膨れ
たり、製品同士の付着等の問題がある。
[0006] In the immersion method, it is difficult to obtain a coating film having a uniform thickness by a problem such as sagging. In a porous bonded magnet, the pores are not sufficiently filled, and the pores may swell when dried, or the product may be swelled. There is a problem such as adhesion between them.

【0007】金属被膜の生成方法については量産性を考
慮すると、焼結R−Fe−B磁石で行われている電気金
属めっきを施すこと(特開昭60−54406号、特開
昭62−120003号)が考えられるが、R−Fe−
B系ボンド磁石表面はポーラスでかつ導電性の低い樹脂
部分が露出しているため、めっき液が残存したり、樹脂
部にめっき被膜が十分に生成せずピンホール(無めっき
部)が生じて、発錆が起こる。
Regarding the method of forming the metal film, in consideration of mass productivity, electrometal plating performed with a sintered R-Fe-B magnet is applied (Japanese Patent Application Laid-Open Nos. 60-54406 and 62-120003). No.) is considered, but R-Fe-
Since the surface of the B-based bonded magnet has a porous and low-conductivity resin portion exposed, a plating solution remains or a pinhole (unplated portion) occurs due to insufficient formation of a plating film on the resin portion. , Rust occurs.

【0008】そこで、ポーラスなボンド磁石に侵入、残
留しても無害なめっき液を選定する方法(特開平4−2
76092号)や下地に樹脂コーティングを施した後に
めっきする方法(特開平3−11714号、特開平4−
276095号)が提案されている。
Therefore, a method of selecting a plating solution which is harmless even if it enters and remains in a porous bonded magnet (Japanese Patent Laid-Open No. 4-2)
No. 76092) or a method of plating after applying a resin coating to the base (Japanese Patent Application Laid-Open Nos.
No. 276095).

【0009】しかし、めっき液のpH調整や完全な無害
化は困難であり、かつ成膜効率のよいめっき浴は見出さ
れてなく、また、下地の厚みのばらつきがめっき層の不
安定要素となり、十分な厚みの下地コーティングを施す
のであれば、表面のめっき層は不要になるという矛盾が
ある。
However, it is difficult to adjust the pH of the plating solution or completely render it harmless, and no plating bath with good film forming efficiency has been found, and the variation in the thickness of the underlayer becomes an unstable factor of the plating layer. If a sufficient thickness of the undercoating is applied, there is a contradiction that the plating layer on the surface becomes unnecessary.

【0010】また、R−Fe−B系ボンド磁石に成膜効
率のよいNiめっきを施す方法として、特定組成のめっ
き浴が提案(特開平4−99192号)されているが、
やはりボンド磁石に侵入、残留して発錆させる恐れがあ
る。
A plating bath having a specific composition has been proposed (Japanese Patent Laid-Open No. 4-99192) as a method for applying Ni plating with high film-forming efficiency to an R-Fe-B-based bonded magnet.
Also, there is a possibility that it may enter the bonded magnet, remain, and rust.

【0011】一方、構造材などにおいて、Niめっき前
に通常行われているCuストライクめっきは強アルカリ
性か強酸性のいずれかであり、R−Fe−B系ボンド磁
石への処理としては不適である。
On the other hand, in structural materials and the like, Cu strike plating usually performed before Ni plating is either strongly alkaline or strongly acidic, and is unsuitable as a treatment for R—Fe—B based bonded magnets. .

【0012】また、電子部品に耐磨耗性を付与するた
め、あるいは自動車用鋼板等の防錆処理として、高温酸
性浴タイプのNiPめっき処理が実用化されているが、
R−Fe−B系ボンド磁石に適用するには、磁石内部を
腐食させるため不適である。
A high-temperature acid bath type NiP plating process has been put to practical use to impart abrasion resistance to electronic parts or as a rust preventive treatment for steel plates for automobiles.
When applied to an R—Fe—B bonded magnet, it is unsuitable because it corrodes the inside of the magnet.

【0013】[0013]

【発明が解決しようとする課題】そこで、めっき液や洗
浄液などがポーラスなR−Fe−B系ボンド磁石に侵
入、残留するのを防止して、効率よく電気Niめっき等
のめっき層が形成でき、耐食性を向上させ得る構成から
なるR−Fe−B系ボンド磁石の製造方法として、 (1) R−Fe−B系ボンド磁石の表面に樹脂と導電
性粉末との混合物を塗装し素材表面に導電性被膜層を形
成する方法。 (2) R−Fe−B系ボンド磁石の表面に粘着性を有
する樹脂層を形成し、金属粉体を付着させて素材表面に
導電性被膜層を形成する方法(特開平5−302176
号)。 (3) R−Fe−B系ボンド磁石の表面に樹脂と導電
性粉末との混合物を塗装して導電性被膜層を形成した
後、表面平滑処理を施す方法(特開平9−186016
号)。が提案されている。
Therefore, it is possible to prevent a plating solution, a cleaning solution, and the like from penetrating and remaining in the porous R-Fe-B-based bonded magnet, and to efficiently form a plating layer such as electric Ni plating. A method for manufacturing an R—Fe—B-based bonded magnet having a configuration capable of improving corrosion resistance is as follows: (1) A mixture of resin and conductive powder is coated on the surface of the R—Fe—B-based bonded magnet, and the surface of the material is coated. A method for forming a conductive coating layer. (2) A method in which an adhesive resin layer is formed on the surface of an R—Fe—B-based bonded magnet, and a metal powder is adhered to form a conductive coating layer on the surface of the material (JP-A-5-302176).
issue). (3) A method of applying a mixture of a resin and a conductive powder on the surface of an R—Fe—B-based bonded magnet to form a conductive coating layer, and then performing a surface smoothing treatment (Japanese Patent Application Laid-Open No. 9-186016).
issue). Has been proposed.

【0014】しかし上記3つの方法は素材の気孔部を封
孔するために種々の樹脂を用いており、必然的に樹脂の
塗布(含侵)、硬化(平滑化処理)と工程が煩雑になり
好ましくない。
However, in the above three methods, various resins are used to seal the pores of the material, and the application (impregnation) and curing (smoothing treatment) of the resin are inevitably complicated. Not preferred.

【0015】また、素材の樹脂を塗布(含侵)する方法
では、樹脂を素材表面に均一に塗布することは困難であ
り、たとえ後工程でバレル研磨を行っても寸法精度に優
れためっき品を得ることは難しい。さらに前記導電被膜
層は樹脂層の中に導電性物質あるいは金属粉を含有させ
たものであり、表面においてボンド磁石の樹脂露出部は
R−Fe−B系ボンド磁石素材に比べると改善されてい
るものの、製法上被膜樹脂露出部が少なからず存在し、
表面に導電性の低い部分が存在することから、均一な良
好な導電性の表面を得るのは困難であり、電気めっき時
にピンホールが生じ易くなるなどの問題がある。
Further, in the method of applying (impregnating) the resin of the material, it is difficult to uniformly apply the resin to the surface of the material, and even if barrel polishing is performed in a later step, a plated product having excellent dimensional accuracy is obtained. It is difficult to get. Further, the conductive coating layer is a resin layer containing a conductive substance or metal powder, and the resin exposed portion of the bonded magnet is improved on the surface as compared with the R-Fe-B based bonded magnet material. However, due to the manufacturing method, there are not a few coating resin exposed parts,
Since there is a portion with low conductivity on the surface, it is difficult to obtain a uniform and good conductivity surface, and there is a problem that pinholes are easily generated during electroplating.

【0016】さらに最近においては、コンピューターの
HDDユニットに使用するR−Fe−B系ボンド磁石に
は極めて高い表面洗浄性が求められ、従来の樹脂塗膜で
は対応できず、清浄性の高い金属被膜が求められてい
る。
More recently, R-Fe-B-based bonded magnets used in HDD units of computers have been required to have extremely high surface cleaning properties. Is required.

【0017】この発明は、R−Fe−B系ボンド磁石に
電気めっきを施す方法における種々の問題を解消し、清
浄性の高い金属被膜にて耐食性を改善したリング形状や
円板状の種々の形状からなるR−Fe−B系ボンド磁石
を効率よく製造するため、ボンド磁石表面に導電性膜を
密着性良く、均一に高効率で形成して、容易に電気めっ
きが可能な高耐食性R−Fe−B系ボンド磁石とその製
造方法の提供を目的としている。
The present invention solves various problems in the method of electroplating R-Fe-B-based bonded magnets, and improves the corrosion resistance of a ring-shaped or disk-shaped metal magnet with high cleanliness by using a highly clean metal coating. In order to efficiently manufacture R-Fe-B based bonded magnets with a shape, a conductive film is formed on the surface of the bonded magnet with good adhesion, uniformity and high efficiency, and high corrosion resistance R- which can be easily electroplated. An object is to provide an Fe-B based bonded magnet and a method for manufacturing the same.

【0018】[0018]

【課題を解決するための手段】発明者らは、耐食性およ
び表面清浄性を向上させるためのR−Fe−B系ボンド
磁石の電気めっき技術においては、素材表面にきわめて
均一に導電性を付与することが重要であることに着目
し、その導電性膜の形成方法について種々検討した結
果、R−Fe−B系ボンド磁石を、所要寸法の球状、塊
状あるいは針状(ワイヤー)等の不定形Al微片をメデ
ィアとして用いて、バレル装置にて乾式法にてバレル研
磨を施すことにより、磨砕されたAl微片がボンド磁石
表面の樹脂面および空孔部に圧入、被覆され、また磁粉
面にもAl微片が被覆され、さらに後続の電気めっき時
にAl溶出防止のため、亜鉛置換処理することによっ
て、R−Fe−B系ボンド磁石表面に極めて均一に導電
性膜が付与でき、良好な電気めっきが可能となり、耐食
性に優れ、磁気特性劣化の少ないめっき被膜を有したR
−Fe−B系ボンド磁石を得られることを知見し、この
発明を完成した。
Means for Solving the Problems In the electroplating technique of R-Fe-B based bonded magnets for improving corrosion resistance and surface cleanliness, the present inventors provide a material surface with a very uniform conductivity. The results of various investigations on the method of forming the conductive film are described as follows. As a result, an R-Fe-B-based bonded magnet is formed into a spherical, massive or needle-shaped (wire) amorphous Al having a required size. Using the fine particles as a medium, barrel grinding is performed by a dry method in a barrel device, so that the crushed Al fine particles are pressed into the resin surface and the holes of the bonded magnet surface, covered, and the magnetic powder surface. Al particles are coated on the surface of the R-Fe-B bonded magnet surface by applying a zinc substitution treatment to prevent the elution of Al during the subsequent electroplating. Enables air plating, excellent corrosion resistance, it had less plating film magnetic properties deteriorate R
-It has been found that an Fe-B based bonded magnet can be obtained, and the present invention has been completed.

【0019】すなわち、この発明は、R−Fe−B系ボ
ンド磁石の表面を構成する樹脂面及び空孔部にAl微片
が圧入かつ被覆され、また表面を構成する磁粉面にAl
微片が被覆されて形成された当該磁石表面のAl被覆層
と、このAl被覆表面にZn被覆層を介して形成された
電解めっき層とを有することを特徴とする高耐食性R−
Fe−B系ボンド磁石である。
That is, according to the present invention, Al fine particles are press-fitted and coated on the resin surface and the pores constituting the surface of the R—Fe—B-based bonded magnet, and Al particles are adhered on the surface of the magnetic powder constituting the surface.
A high corrosion resistance R- characterized by having an Al coating layer on the surface of the magnet formed by coating fine particles and an electrolytic plating layer formed on the Al coating surface via a Zn coating layer.
It is an Fe-B based bonded magnet.

【0020】また、この発明は、上記構成の高耐食性R
−Fe−B系ボンド磁石において、磁粉面上に被覆され
るAl被覆層の厚さが1μm以下であること、樹脂面及
び空孔部に形成されたAl圧入被覆層の厚みが、0.1
μm以上2μm以下であること、Al被覆層表面に形成
のZn層厚は0.1μm以下であること、をそれぞれ特
徴とする高耐食性R−Fe−B系ボンド磁石である。
Further, the present invention provides a high corrosion resistance R having the above structure.
-In the Fe-B-based bonded magnet, the thickness of the Al coating layer coated on the magnetic powder surface is 1 μm or less, and the thickness of the Al press-fit coating layer formed on the resin surface and the pores is 0.1 μm.
A high corrosion resistant R-Fe-B-based bonded magnet characterized by being not less than 2 µm and not more than 2 µm, and having a Zn layer formed on the surface of the Al coating layer having a thickness of not more than 0.1 µm.

【0021】さらに、この発明は、バレル装置にR−F
e−B系ボンド磁石と不定形Al微片を装入して乾式法
にてバレル研磨を施し、R−Fe−B系ボンド磁石の表
面を構成する樹脂面および空孔部に磨砕されたAl微片
を圧入かつ被覆し、また表面を構成する磁粉面にAl微
片を被覆し、当該磁石表面にAl被覆層を形成した後、
この導電性のAl被覆層に亜鉛置換処理を施して形成し
たZn被覆層を介して、電解めっき層を形成することを
特徴とする高耐食性R−Fe−B系ボンド磁石の製造方
法である。
Further, according to the present invention, an R-F
The EB-based bonded magnet and the amorphous Al microparticles were charged and subjected to barrel polishing by a dry method, and ground into a resin surface and a hole constituting the surface of the R-Fe-B-based bonded magnet. After press-fitting and covering Al fine particles, and coating Al fine particles on the surface of the magnetic powder constituting the surface, and forming an Al coating layer on the magnet surface,
This is a method for producing a highly corrosion-resistant R-Fe-B-based bonded magnet, characterized in that an electrolytic plating layer is formed via a Zn coating layer formed by subjecting the conductive Al coating layer to a zinc substitution treatment.

【0022】また、この発明は、上記構成の高耐食性R
−Fe−B系ボンド磁石の製造方法において、不定形A
l微片が大きさ0.1mm〜10mmの球状、塊状ある
いは針状であること、バレル研磨にて磨砕されたAl微
片の大きさは長径5μm以下であること、回転、振動ま
たは遠心バレルを用いて、磁石とAl微片の容積比率
(磁石/Al)を3以下にてバレル研磨を行うこと、を
それぞれ特徴とする高耐食性R−Fe−B系ボンド磁石
の製造方法である。
Further, according to the present invention, the high corrosion resistance R
In the method for producing a Fe-B based bonded magnet, the amorphous A
lSpherical, lump or needle-like particles having a size of 0.1 mm to 10 mm, Al particles fined by barrel polishing having a major axis of 5 μm or less, rotation, vibration or centrifugal barrel And performing barrel polishing at a volume ratio (magnet / Al) of the magnet and the Al fine particles of 3 or less, respectively, using R.Fe.

【0023】[0023]

【発明の実施の形態】この発明において、R−Fe−B
系ボンド磁石は等方性、異方性ボンド磁石のいずれも対
象とし、例えば圧縮成型の場合は、所要組成、性状の磁
性粉末の熱硬化性樹脂、カップリング剤、潤滑剤を添加
混練した後、圧縮成型し加熱して樹脂を硬化して得ら
れ、射出成型、押し出し成型、圧延成型の場合は、磁性
粉末に熱可塑性樹脂、カップリング剤、潤滑剤を添加混
練したのち、射出成型、押し出し成型、圧延成型のいず
れかの方法にて成型して得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, R-Fe-B
The system-bonded magnet is intended for both isotropic and anisotropic bonded magnets. For example, in the case of compression molding, after adding and kneading a thermosetting resin, a coupling agent, and a lubricant of the required composition and properties of magnetic powder. In the case of injection molding, extrusion molding, and rolling molding, thermoplastic resin, a coupling agent, and a lubricant are added and kneaded, and then injection molding and extrusion are performed. It is obtained by molding by any method of molding and rolling molding.

【0024】R−Fe−B系磁性材粉には、所要のR−
Fe−B系合金を溶解し鋳造後に粉砕する溶解粉砕法、
Ca還元にて直接粉末を得る直接還元拡散法、所要のR
−Fe−B系合金を溶解ジェットキャスターでリボン箔
を得てこれを粉砕・焼鈍する急冷合金法、所要のR−F
e−B系合金を溶解し、これをガスアトマイズで粉末化
して熱処理するガスアトマイズ法、所要原料金属を粉末
化したのち、メカニカルアロイングにて微粉末化して熱
処理するメカニカルアロイ法及び所要のR−Fe−B系
合金を水素中で加熱して分解並びに再結晶させる方法
(HDDR法)などの各種製法で得た等方性、異方性粉
末が利用できる。
The R-Fe-B-based magnetic material powder contains a required R-
A melting and pulverizing method in which an Fe-B alloy is melted and pulverized after casting,
Direct reduction diffusion method to obtain powder directly by Ca reduction, required R
A quenching alloy method in which a ribbon foil is obtained by melting a Fe-B-based alloy with a jet caster, and this is pulverized and annealed.
A gas atomizing method in which an EB-based alloy is melted and powdered by gas atomization and heat treatment is performed. Isotropic and anisotropic powders obtained by various methods such as a method of decomposing and recrystallizing a -B-based alloy by heating in hydrogen (HDDR method) can be used.

【0025】この発明において、R−Fe−B系磁石粉
末に用いる希土類元素Rは、組成の10原子%〜30原
子%を占めるが、Nd,Pr,Dy,Ho,Tbのうち
少なくとも1種、あるいはさらに、La,Ce,Sm,
Gd,Er,Eu,Tm,Yb,Lu,Yのうち少なく
とも1種を含むものが好ましい。また、通常Rのうち1
種をもって足りるが、実用上は2種以上の混合物(ミッ
シュメタル、シジム等)を入手上の便宜等の理由により
用いることができる。なお、このRは純希土類元素でな
くてもよく、工業上入手可能な範囲で製造上不可避な不
純物を含有するものでも差し支えない。
In the present invention, the rare earth element R used in the R—Fe—B based magnet powder occupies 10 to 30 atomic% of the composition, and at least one of Nd, Pr, Dy, Ho, and Tb is used. Alternatively, La, Ce, Sm,
A material containing at least one of Gd, Er, Eu, Tm, Yb, Lu, and Y is preferable. Also, one of the normal Rs
Although seeds are sufficient, in practice, a mixture of two or more kinds (mish metal, sijim, etc.) can be used for reasons such as convenience in obtaining. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0026】Rは、上記系磁石粉末における必須元素で
あって、10原子%未満では結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、30原子%を超えるとRリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下してすぐれた
特性の永久磁石が得られない。よって、Rは、10原子
%〜30原子%の範囲が望ましい。
R is an essential element in the above system magnet powder, and if it is less than 10 atomic%, the crystal structure becomes a cubic structure having the same structure as α-iron, so that high magnetic properties, particularly high coercive force, cannot be obtained. , More than 30 atomic%, the R-rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is desirably in the range of 10 at% to 30 at%.

【0027】Bは、上記系磁石粉末における必須元素で
あって、2原子%未満では菱面体構造が主相となり、高
い保磁力(iHc)は得られず、28原子%を超えると
Bリッチな非磁性相が多くなり、残留磁束密度(Br)
が低下するため、すぐれた永久磁石が得られない。よっ
て、Bは2原子%〜28原子%の範囲が望ましい。
B is an essential element in the above-mentioned system magnet powder. If it is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force (iHc) cannot be obtained. Increase in non-magnetic phase, residual magnetic flux density (Br)
, The excellent permanent magnet cannot be obtained. Therefore, B is desirably in the range of 2 to 28 atomic%.

【0028】Feは、上記系磁石粉末において必須元素
であり、65原子%未満では残留磁束密度(Br)が低
下し、80原子%を超えると高い保磁力が得られないの
で、Feは65原子%〜80原子%の含有が望ましい。
Fe is an essential element in the above-mentioned system magnet powder. When the content is less than 65 atomic%, the residual magnetic flux density (Br) decreases. When the content exceeds 80 atomic%, a high coercive force cannot be obtained. % To 80 atomic%.

【0029】また、Feの一部をCoで置換すること
は、得られる磁石の磁気特性を損なうことなく、温度特
性を改善することができるが、Co置換量がFeの20
%を超えると、逆に磁気特性が劣化するため、好ましく
ない。Coの置換量がFeとCoの合計量で5原子%〜
15原子%の場合は、(Br)は置換しない場合に比較
して増加するため、高磁束密度を得るために好ましい。
Further, by substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet.
%, It is not preferable because the magnetic properties are deteriorated. The substitution amount of Co is 5 atomic% or more in total amount of Fe and Co.
In the case of 15 atomic%, since (Br) increases as compared with the case where no substitution is made, it is preferable to obtain a high magnetic flux density.

【0030】また、R,B,Feのほか、工業的生産上
不可避的不純物の存在を許容でき、例えば、Bの一部を
4.0wt%以下のC、2.0wt%以下のP、2.0
wt%以下のS、2.0wt%以下のCuのうち少なく
とも1種、合計量で2.0wt%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
In addition to R, B, and Fe, the presence of impurities that are inevitable in industrial production can be tolerated. For example, a part of B may be 4.0 wt% or less of C, 2.0 wt% or less of P, .0
By replacing at least one of S by wt% or less and Cu by 2.0 wt% or less with a total amount of 2.0 wt% or less, it is possible to improve the productivity and reduce the cost of the permanent magnet.

【0031】さらに、Al,Ti,V,Cr,Mn,B
i,Nb,Ta,Mo,W,Sb,Ge,Ga,Sn,
Zr,Ni,Si,Zn,Hfのうち少なくとも1種
は、磁石粉末に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。なお、添加量の上限は、ボンド
磁石の(BH)maxや(Br)値を所要値とするに必
要な該条件を満たす範囲が望ましい。
Further, Al, Ti, V, Cr, Mn, B
i, Nb, Ta, Mo, W, Sb, Ge, Ga, Sn,
At least one of Zr, Ni, Si, Zn, and Hf is added to the magnet powder because it is effective for improving the coercive force and the squareness of the demagnetization curve or improving the productivity and reducing the price. be able to. The upper limit of the addition amount is desirably a range that satisfies the conditions necessary for setting the (BH) max and (Br) values of the bonded magnet to required values.

【0032】またこの発明において、バインダーには射
出成形では、樹脂として6Pa、12Pa、PPS、P
BT、EVA等、又押出成形、カレンダーロール、圧延
成形ではPVC、NBR、CPE、NR、ハイパロン
等、又圧縮成形には、エポキシ樹脂、DAP、フェノー
ル樹脂等が利用でき、必要に応じて、公知の金属バイン
ダーを用いることができる。さらに、助材には成形を容
易にする滑剤や樹脂と無機フィラーの結合剤、シラン
系、チタン系等のカップリング剤などを用いることがで
きる。
In the present invention, 6 Pa, 12 Pa, PPS, P
BT, EVA, etc., PVC, NBR, CPE, NR, Hypalon, etc. for extrusion molding, calender roll, roll molding, and epoxy resin, DAP, phenolic resin, etc. for compression molding. Metal binder can be used. Further, a lubricant that facilitates molding, a binder between a resin and an inorganic filler, a silane-based or titanium-based coupling agent, or the like can be used as the auxiliary material.

【0033】この発明において、乾式バレルには、回転
式、振動式、遠心式等の公知のバレルが使用できる。A
l微片の形状については球状、塊状あるいは針状(ワイ
ヤー)等の不定形Alが使用できる。Al微片の大きさ
は、0.1mm未満では十分な圧入、被覆に長時間を要
して実用的でなく、また10mmを越えると表面凹凸が
大きくなり、表面全体にAlを被覆することができない
ため、Alの大きさは0.1mm〜10mmが望まし
く、さらに好ましい範囲は0.5mm〜5mmである。
In the present invention, a known barrel such as a rotary type, a vibration type, and a centrifugal type can be used as the dry barrel. A
Regarding the shape of 1 minute piece, amorphous Al such as a sphere, a lump or a needle (wire) can be used. If the size of the Al fines is less than 0.1 mm, sufficient press-fitting and coating takes a long time, which is not practical, and if it exceeds 10 mm, the surface unevenness increases, and the entire surface can be coated with Al. Therefore, the size of Al is desirably 0.1 mm to 10 mm, and a more preferred range is 0.5 mm to 5 mm.

【0034】また、この発明において、乾式バレル内に
装入されるAl微片は同一形状、寸法でもよく、異形
状、異寸法のものを混合してもよい。また不定形Al微
片にAl微粉を混入してもよい。
In the present invention, the Al fines charged in the dry barrel may have the same shape and size, or may mix different shapes and sizes. Also, Al fine powder may be mixed into irregular Al fine pieces.

【0035】また、乾式バレル研磨に投入する比率、磁
石とAl微片の容積比率(磁石/Al)を3以下に限定
したのは、3を越えるとAl微片の圧入、被覆に時間を
要して実用的でなく、またボンド磁石表面からの磁粉の
脱粒が生じるため、3以下とした。またバレル研磨機内
に装入するボンド磁石及びAl微片の量は研磨機内容積
の20%〜90%が好ましく、20%未満では処理量が
少なすぎて実用的でなく、90%を越えると撹拌が不十
分で、十分な研磨ができない問題がある。
Further, the ratio of the amount charged in the dry barrel polishing and the volume ratio of the magnet and the Al fine particles (magnet / Al) are limited to 3 or less. If the ratio exceeds 3, it takes time for press-fitting and coating of the Al fine particles. Therefore, the particle size is not practical, and the magnetic powder is degranulated from the surface of the bonded magnet. Also, the amount of the bonded magnet and Al fines to be charged into the barrel polishing machine is preferably 20% to 90% of the internal volume of the polishing machine. If it is less than 20%, the processing amount is too small to be practical, and if it exceeds 90%, stirring occurs. Is insufficient and sufficient polishing cannot be performed.

【0036】磁石の表面を構成する樹脂面及び空孔部に
圧入、被覆されるAl微片は微粉末又は針状片でその大
きさについては、長径5μmを越えると、磁石表面との
密着性が良くなく、電解めっき時に密着不良、剥離等が
生じるため長径5μm以下とした。好ましい範囲は長径
2μm以下である。
The Al fine particles to be pressed into and coated on the resin surface and the pores constituting the surface of the magnet are fine powders or needle-like pieces. Was poor, and poor adhesion and peeling occurred during electrolytic plating. A preferred range is 2 μm or less in major axis.

【0037】この発明において、Al微片の圧入、被覆
に関し、Al微片はボンド磁石表面の柔らかい樹脂面及
び空孔部には圧入、被覆され、磁粉面には被覆される。
樹脂面及び空孔部に圧入される量は表面ほど多く、樹脂
層内部に漸次的に含有量が減少している。樹脂面及び空
孔部のAlの圧入層の厚さを0.1μm以上2μm以下
に限定したのは、0.1μm未満では充分な導電性が得
られず、2μmを越えると性能上の問題はないが作業に
時間を要して実用的でない。また、ボンド磁石表面の磁
粉面のAlの被覆層の厚さを1μm以下に限定したの
は、磁粉面表面とAl微片の反応は一種のメカノケミカ
ル的反応であり、1μmを越えると密着性が劣るためで
ある。
In the present invention, regarding the press-fitting and coating of Al fine particles, the Al fine particles are press-fitted and coated on the soft resin surface and the void portion of the bonded magnet surface, and are coated on the magnetic powder surface.
The amount press-fitted into the resin surface and the holes is larger at the surface, and the content gradually decreases inside the resin layer. The reason why the thickness of the Al press-fit layer on the resin surface and the void portion is limited to 0.1 μm or more and 2 μm or less is that sufficient conductivity cannot be obtained if the thickness is less than 0.1 μm, and if it exceeds 2 μm, there is a problem in performance. Not practical, but time consuming and impractical. The reason why the thickness of the Al coating layer on the magnetic powder surface of the bonded magnet surface is limited to 1 μm or less is that the reaction between the magnetic powder surface and the Al particles is a kind of mechanochemical reaction. Is inferior.

【0038】この発明において、ボンド磁石表面の平滑
性が求められる場合には、この発明の処理を行う前に、
研磨材と植物性媒体の混合物、研磨材と無機質粉体にて
表面を改質された植物性媒体の混合物をメディアとして
乾式法によるバレル研磨を行う等の処理を行うことによ
り、平滑性が向上し、耐食性がさらにすぐれたR−Fe
−B系ボンド磁石を得ることができる。
In the present invention, when the surface of the bonded magnet is required to be smooth, before performing the treatment of the present invention,
Improves smoothness by performing a process such as barrel polishing by a dry method using a mixture of an abrasive and a vegetable medium, and a mixture of an abrasive and a vegetable medium whose surface has been modified with inorganic powder as a medium. R-Fe with even better corrosion resistance
-A B-based bonded magnet can be obtained.

【0039】この発明による乾式法バレル研磨の場合の
回転数は、回転バレルの場合は回転数20〜50rp
m、遠心バレルの場合は回転数70〜200rpm、ま
た振動バレル研磨法の場合は振動振幅0.5〜50mm
が好ましい。
The number of revolutions in the case of the dry method barrel polishing according to the present invention is 20 to 50 rpm in the case of a rotating barrel.
m, in the case of a centrifugal barrel, the number of rotations is 70 to 200 rpm, and in the case of the vibration barrel polishing method, the vibration amplitude is 0.5 to 50 mm.
Is preferred.

【0040】この発明において、亜鉛置換は後続の電気
めっき時のAlの溶出を防止するためであり、亜鉛置換
方法としては洗浄→亜鉛置換→洗浄の処理が好ましく、
Al表面に汚れ等付着物がある場合には炭酸ナトリウ
ム、三リン酸ナトリウムの溶液で浸漬脱脂して洗浄を行
うのがよい。
In the present invention, the zinc replacement is for preventing the elution of Al during the subsequent electroplating, and the zinc replacement method is preferably a washing → zinc replacement → washing process.
When there is a deposit such as dirt on the Al surface, it is preferable to perform cleaning by immersion and degreasing with a solution of sodium carbonate and sodium triphosphate.

【0041】亜鉛置換処理自体は、酸化亜鉛、水酸化ナ
トリウム、塩化第二鉄、ロッセル塩等を含む溶液内に浸
漬、例えば、10℃〜25℃、10秒〜2分間浸漬して
行うのが好ましい。形成されるZn層は極表面層はZn
X(X=0〜1)の形に生成され、形成されたZn層
厚は0.1μm以下であるが、層厚が0.1μmを超え
ると密着不良を生ずるので好ましくない。
The zinc substitution treatment itself is preferably carried out by immersion in a solution containing zinc oxide, sodium hydroxide, ferric chloride, Rossell salt, etc., for example, at 10 ° C. to 25 ° C. for 10 seconds to 2 minutes. preferable. The Zn layer to be formed has a very surface layer of Zn.
The thickness of the Zn layer formed and formed in the form of O x (X = 0 to 1) is 0.1 μm or less. However, if the layer thickness exceeds 0.1 μm, poor adhesion occurs, which is not preferable.

【0042】この発明において、電気めっき方法には、
Ni,Cu,Sn,Co,Zn,Cr,Ag,Au,P
b,Pt等から選ばれた少なくとも1種の金属またはそ
れらの合金にB,S,Pが含有されるめっき法が好まし
く、特にNiめっきが好ましい。めっき厚は50μm以
下、好ましくは10〜30μmである。この発明では前
述の金属微粉の圧入、被覆が有効な作用をするため一般
的なめっき可能であり、優れた密着性、耐食性が得られ
る。
In the present invention, the electroplating method includes:
Ni, Cu, Sn, Co, Zn, Cr, Ag, Au, P
A plating method in which B, S, and P are contained in at least one metal selected from b, Pt, or the like or an alloy thereof is preferable, and Ni plating is particularly preferable. The plating thickness is 50 μm or less, preferably 10 to 30 μm. In the present invention, general plating is possible because the press-fitting and coating of the metal fine particles described above are effective, and excellent adhesion and corrosion resistance are obtained.

【0043】Niめっき浴のめっき方法としては、洗浄
→電気めっき→洗浄→乾燥の工程で行うのがよく、乾燥
は70℃以上の処理が好ましい。
The plating method of the Ni plating bath is preferably performed in the steps of washing → electroplating → washing → drying, and drying is preferably performed at 70 ° C. or more.

【0044】めっき浴槽にはボンド磁石の形状に応じて
種々の浴槽を使用することができ、リング形状のボンド
磁石の場合、ひっかけめっき処理、バレルめっき処理が
好ましい。
Various bathtubs can be used for the plating bath depending on the shape of the bond magnet. In the case of a ring-shaped bond magnet, trapping plating and barrel plating are preferred.

【0045】めっき浴槽にはボンド磁石の形状に応じて
種々の浴槽を使用することができ、リング形状のボンド
磁石の場合、ひっかけめっき処理、バレルめっき処理が
好ましい。
Various bathtubs can be used for the plating bath depending on the shape of the bond magnet. In the case of a ring-shaped bond magnet, trapping plating and barrel plating are preferable.

【0046】[0046]

【実施例】実施例1 超急冷法で作製したNd12at%、Fe77at%、
B6at%、Co5at%の組成からなる平均粒径15
0μmの合金粉末にエポキシ樹脂2wt%を加えて混練
し、7ton/cm2の圧力で圧縮成型した後、170
℃で2時間キュアーし、外径20mm×内径17mm×
高さ6mmのリング状ボンド磁石を作製した。得られた
ボンド磁石の特性は、Br6.9kG、iHc9.4k
Oe、(BH)max9.6MGOeであった。
EXAMPLES Example 1 Nd 12 at%, Fe 77 at%, produced by a rapid quenching method
B6 at%, Co 5 at% composition, average particle size 15
After adding 2 wt% of epoxy resin to the 0 μm alloy powder and kneading, compression-molding at a pressure of 7 ton / cm 2 , 170
Cure at 2 ℃ for 2 hours, outer diameter 20mm × inner diameter 17mm ×
A ring-shaped bonded magnet having a height of 6 mm was produced. The characteristics of the obtained bonded magnet were Br 6.9 kG, iHc 9.4 k
Oe, (BH) max 9.6 MGOe.

【0047】得られたボンド磁石を振動バレルに入れ、
直径0.8mm、長さ1mmの短円柱状Al微片を用
い、乾式バレル研磨処理を行い、Al微片による導電被
覆層を形成した。Al微片の樹脂面での圧入被覆深さは
約0.9μm、磁粉面での被覆厚さは0.5μmであっ
た。
The obtained bonded magnet is put in a vibration barrel,
Dry barrel polishing was performed using a short columnar Al piece having a diameter of 0.8 mm and a length of 1 mm to form a conductive coating layer of the Al piece. The press-fitting coating depth of the Al particles on the resin surface was about 0.9 μm, and the coating thickness on the magnetic powder surface was 0.5 μm.

【0048】なお、バレル研磨の処理条件は、容積50
lの振動バレルに、200ケのボンド磁石(見かけ容積
0.7l、重量450g)と前記寸法のAl微片(見か
け容積20l、重量100kg)を装入し、5時間の処
理を行った。
The processing conditions for barrel polishing are as follows:
Into 1 vibrating barrel, 200 bonded magnets (apparent volume 0.7 l, weight 450 g) and Al fine particles of the above dimensions (apparent volume 20 l, weight 100 kg) were charged and treated for 5 hours.

【0049】その後洗浄を行い、亜鉛置換処理を行った
後、ひっかけめっき方式でNiめっきを行った。めっき
後の膜厚は内径側19μm、外径側21μmであった。
得られたリング状ボンド磁石を80℃、相対湿度90
%、500時間にて環境試験(耐湿試験)を行った。そ
の結果及び膜厚寸法精度を表1〜表3に示す。
After washing and zinc substitution, Ni plating was carried out by a hook plating method. The film thickness after plating was 19 μm on the inner diameter side and 21 μm on the outer diameter side.
The obtained ring-shaped bonded magnet was heated to 80 ° C. and 90% relative humidity.
%, An environmental test (moisture resistance test) was performed at 500 hours. The results and the film thickness dimensional accuracy are shown in Tables 1 to 3.

【0050】なお、亜鉛置換処理の処理条件は、処理時
間1分、浴温20℃であり、液組成は水酸化ナトリウム
280g/l、酸化亜鉛50g/l、塩化第二鉄1g/
l、ロッセル塩25g/lであった。膜厚は0.02μ
mであった。
The conditions of the zinc substitution treatment were as follows: treatment time: 1 minute, bath temperature: 20 ° C., liquid composition: sodium hydroxide 280 g / l, zinc oxide 50 g / l, ferric chloride 1 g / l
1 and 25 g / l of Rossell salt. Thickness is 0.02μ
m.

【0051】また、電気Niめっきの条件は、電流密度
2A/dm2、めっき時間60分、pH4.1、浴温5
5℃であり、めっき液組成は硫酸ニッケル250g/
l、塩化ニッケル55g/l、炭酸ニッケル適量(pH
調整)、ほう酸36g/lであった。
The conditions for the electric Ni plating were as follows: current density 2 A / dm 2 , plating time 60 minutes, pH 4.1, bath temperature 5
5 ° C. and the plating solution composition was nickel sulfate 250 g /
l, nickel chloride 55g / l, appropriate amount of nickel carbonate (pH
Adjustment), boric acid 36 g / l.

【0052】比較例1 実施例1と同様方法で得たリング状ボンド磁石を洗浄
後、無電解銅めっきを行った。めっき厚は7μmであっ
た。無電解銅めっき後、実施例1と同一の条件でNiめ
っきを行った。得られたリング状ボンド磁石を80℃、
相対湿度90%、500時間にて環境試験(耐湿試験)
を行った。その結果を表1〜表3に示す。
Comparative Example 1 A ring-shaped bonded magnet obtained in the same manner as in Example 1 was washed, and then subjected to electroless copper plating. The plating thickness was 7 μm. After the electroless copper plating, Ni plating was performed under the same conditions as in Example 1. The obtained ring-shaped bonded magnet was heated at 80 ° C.
Environmental test at 90% relative humidity for 500 hours (moisture resistance test)
Was done. The results are shown in Tables 1 to 3.

【0053】なお、無電解銅めっきの条件は、めっき時
間30分、pH11.7、浴温22℃であり、めっき液
組成は硫酸銅31g/l、炭酸ナトリウム27g/l、
酒石酸塩160g/l、水酸化ナトリウム40g/l、
37%ホルムアルデヒド140mlであった。
The conditions for the electroless copper plating were a plating time of 30 minutes, a pH of 11.7 and a bath temperature of 22 ° C. The plating solution composition was copper sulfate 31 g / l, sodium carbonate 27 g / l,
Tartrate 160 g / l, sodium hydroxide 40 g / l,
140 ml of 37% formaldehyde.

【0054】比較例2 実施例1と同様方法で得たリング状ボンド磁石を洗浄
後、フェノール樹脂とNi粉を混合して8μmの導電被
膜を形成した。処理後、実施例1と同一の条件でNiめ
っきを行った。得られたリング状ボンド磁石を80℃、
相対湿度90%、500時間にて環境試験(耐湿試験)
を行った。その結果を表1〜表3に示す。
Comparative Example 2 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 1, a phenol resin and Ni powder were mixed to form an 8 μm conductive film. After the treatment, Ni plating was performed under the same conditions as in Example 1. The obtained ring-shaped bonded magnet was heated at 80 ° C.
Environmental test at 90% relative humidity for 500 hours (moisture resistance test)
Was done. The results are shown in Tables 1 to 3.

【0055】なお、導電被膜処理条件は、処理時間25
分、処理液組成はフェノール樹脂5wt%、Ni粉(粒
径0.7μm以下)4wt%、MEK(メチルエチルケ
トン)91wt%あった。
The conductive film processing conditions were as follows:
The composition of the treatment liquid was 5 wt% of phenol resin, 4 wt% of Ni powder (particle diameter 0.7 μm or less), and 91 wt% of MEK (methyl ethyl ketone).

【0056】比較例3 実施例1と同様方法で得たリング状ボンド磁石を洗浄
後、浸漬法にて接着層としたフェノール樹脂層を予め形
成後、Ag粉(粒径0.7μm以下)を表面に付着させ
た後、振動バレルにて10μmの導電被覆層を形成し
た。振動バレル処理後、実施例1と同一の条件でNiめ
っきを行った。得られたリング状ボンド磁石を80℃、
相対湿度90%、500時間にて環境試験(耐湿試験)
を行った。その結果を表1〜表3に示す。
Comparative Example 3 After washing the ring-shaped bonded magnet obtained in the same manner as in Example 1, a phenol resin layer serving as an adhesive layer was previously formed by an immersion method, and then Ag powder (particle diameter 0.7 μm or less) was added. After adhering to the surface, a conductive coating layer of 10 μm was formed with a vibration barrel. After the vibration barrel treatment, Ni plating was performed under the same conditions as in Example 1. The obtained ring-shaped bonded magnet was heated at 80 ° C.
Environmental test at 90% relative humidity for 500 hours (moisture resistance test)
Was done. The results are shown in Tables 1 to 3.

【0057】なお、振動バレル処理条件は、容積3.5
lの振動バレルを用い、50ケのボンド磁石を装入し、
見かけ容積が2lの2mm径のスチールボールをメディ
アとして、4時間の処理を行った。
The vibration barrel processing conditions were a volume of 3.5.
Using 50 vibrating barrels and loading 50 bonded magnets,
The treatment was performed for 4 hours using a 2 mm steel ball having an apparent volume of 2 l as a medium.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】表1〜表3より明らかなごとく、比較例1
は約120時間後に点錆が認められ、比較例2は270
時間後、比較例3においても約300時間後に点錆が認
められたが、これに対して実施例1は500時間後にお
いても30倍の顕微鏡で認められる点錆はなかった。
As is clear from Tables 1 to 3, Comparative Example 1
In about 120 hours, spot rust was observed after about 120 hours.
After a lapse of time, Comparative Example 3 also showed spot rust after about 300 hours, whereas Example 1 did not show any spot rust even after 500 hours under a microscope of 30 times magnification.

【0062】[0062]

【発明の効果】この発明は、R−Fe−B系ボンド磁石
を所要寸法の球状、塊状あるいは針状(ワイヤー)等の
不定形Al微片をメディアとして用いてバレル装置にて
乾式法にてバレル研磨を施し、磨砕されたAl微片を空
孔部および樹脂面に圧入、被覆し、また磁粉面にAl微
片を被覆することにより、R−Fe−B系ボンド磁石表
面にAl被覆膜を形成後、さらに亜鉛置換処理すること
により、R−Fe−B系ボンド磁石表面に前記金属被覆
膜を形成して極めて高い導電性を付与することができ、
そのため緻密でピンホールのない電解めっき層を形成可
能となり、極めて優れた耐食性を有するR−Fe−B系
ボンド磁石を得ることができる。
According to the present invention, an R-Fe-B based bonded magnet is formed by a dry method in a barrel apparatus using spherical, massive or needle-shaped (wire) or other irregular shaped aluminum fine particles as a medium. Barrel polishing is performed, and the finely ground Al fines are pressed into the holes and the resin surface and coated, and the magnetic fine particles are coated with the Al fines, so that the R-Fe-B-based bonded magnet surface is coated with Al. After forming the covering film, by further performing zinc substitution treatment, it is possible to form the metal covering film on the surface of the R—Fe—B-based bonded magnet and to impart extremely high conductivity,
Therefore, it is possible to form a dense electrolytic plating layer without pinholes, and it is possible to obtain an R—Fe—B-based bonded magnet having extremely excellent corrosion resistance.

【0063】特に、この発明のボンド磁石は、優れた表
面清浄度、寸法精度を要求されるコンピューターのHD
Dユニット等には有効である。
In particular, the bonded magnet of the present invention can be used in a computer HD that requires excellent surface cleanliness and dimensional accuracy.
This is effective for D units and the like.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系ボンド磁石の表面を構成
する樹脂面及び空孔部にAl微片が圧入かつ被覆され、
また表面を構成する磁粉面にAl微片が被覆されて形成
された当該磁石表面のAl被覆層と、このAl被覆層表
面にZn層を介して形成される電解めっき層とを有する
高耐食性R−Fe−B系ボンド磁石。
An Al fine particle is press-fitted and coated on a resin surface and a void portion constituting a surface of an R—Fe—B-based bonded magnet,
Further, a high corrosion resistance R having an Al coating layer on the surface of the magnet formed by coating Al particles on the surface of the magnetic powder constituting the surface and an electrolytic plating layer formed on the surface of the Al coating layer via a Zn layer. -Fe-B based bonded magnet.
【請求項2】 請求項1において、磁粉面上に被覆され
るAl被覆層の厚さが1μm以下である高耐食性R−F
e−B系ボンド磁石。
2. The high corrosion resistance RF according to claim 1, wherein the thickness of the Al coating layer coated on the surface of the magnetic powder is 1 μm or less.
e-B bond magnet.
【請求項3】 請求項1において、樹脂面及び空孔部に
形成されたAl被覆層の厚みが、0.1μm以上2μm
以下である高耐食性R−Fe−B系ボンド磁石。
3. The method according to claim 1, wherein the thickness of the Al coating layer formed on the resin surface and the hole is 0.1 μm or more and 2 μm or more.
The following high corrosion resistance R-Fe-B-based bonded magnets.
【請求項4】 請求項1において、Zn層厚は0.1μ
m以下である高耐食性R−Fe−B系ボンド磁石。
4. The method according to claim 1, wherein the Zn layer has a thickness of 0.1 μm.
m or less, a high corrosion-resistant R-Fe-B-based bonded magnet.
【請求項5】 バレル装置にR−Fe−B系ボンド磁石
と不定形Al微片を装入して乾式法にてバレル研磨を施
し、R−Fe−B系ボンド磁石の表面を構成する樹脂面
および空孔部に磨砕されたAl微片を圧入かつ被覆し、
また表面を構成する磁粉面にAl微片を被覆し、当該磁
石表面にAl被覆層を形成した後、この導電性のAl被
覆層に亜鉛置換処理を施して形成したZn被覆層を介し
て、電解めっき層を形成する高耐食性R−Fe−B系ボ
ンド磁石の製造方法。
5. A resin constituting the surface of an R-Fe-B-based bonded magnet, wherein an R-Fe-B-based bonded magnet and amorphous Al fines are charged into a barrel device and subjected to barrel polishing by a dry method. Press-fit and cover the Al particles crushed into the surface and the holes,
In addition, after coating the Al particles on the surface of the magnetic powder constituting the surface and forming an Al coating layer on the magnet surface, the conductive Al coating layer is subjected to a zinc substitution treatment through a Zn coating layer formed thereon. A method for producing a high corrosion-resistant R-Fe-B-based bonded magnet for forming an electrolytic plating layer.
【請求項6】 請求項5において、不定形Al微片が大
きさ0.1mm〜10mmの球状、塊状あるいは針状で
ある高耐食性R−Fe−B系ボンド磁石の製造方法。
6. The method according to claim 5, wherein the amorphous Al fine particles are spherical, massive, or acicular having a size of 0.1 mm to 10 mm, and have high corrosion resistance.
【請求項7】 請求項5において、バレル研磨にて磨砕
されたAl微片の大きさは長径5μm以下である高耐食
性R−Fe−B系ボンド磁石の製造方法。
7. The method according to claim 5, wherein the Al fine particles ground by barrel polishing have a major axis of 5 μm or less in size.
【請求項8】 請求項5において、回転、振動または遠
心バレルを用いて、磁石とAl微片の容積比率(磁石/
Al)を3以下としてバレル研磨を行う高耐食性R−F
e−B系ボンド磁石の製造方法。
8. The volume ratio of magnet to Al fines (magnet / magnet / rotation) using a rotation, vibration or centrifugal barrel.
Al) 3 or less, high corrosion resistance RF with barrel polishing
A method for producing an e-B bonded magnet.
JP10083012A 1997-10-30 1998-03-12 Anticorrosive r-fe-b bonded magnet and manufacture of the same Pending JPH11260614A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10083012A JPH11260614A (en) 1998-03-12 1998-03-12 Anticorrosive r-fe-b bonded magnet and manufacture of the same
EP98950380A EP1028437B1 (en) 1997-10-30 1998-10-23 HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
DE69834567T DE69834567T2 (en) 1997-10-30 1998-10-23 CORROSION-RESISTANT R-FE-B COMPOSITE MAGNET AND MANUFACTURING METHOD
PCT/JP1998/004829 WO1999023675A1 (en) 1997-10-30 1998-10-23 HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
CNB988114569A CN1205626C (en) 1997-10-30 1998-10-23 High corrosion-resistant R-Fe-B-base bonded magnet and method of manufacturing the same
KR10-2000-7004631A KR100374398B1 (en) 1997-10-30 1998-10-23 HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083012A JPH11260614A (en) 1998-03-12 1998-03-12 Anticorrosive r-fe-b bonded magnet and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH11260614A true JPH11260614A (en) 1999-09-24

Family

ID=13790345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083012A Pending JPH11260614A (en) 1997-10-30 1998-03-12 Anticorrosive r-fe-b bonded magnet and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH11260614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031388A2 (en) * 1999-02-26 2000-08-30 Sumitomo Special Metals Co., Ltd. Surface-treatment of hollow work, and ring-shaped bonded magnet produced by the process
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1031388A2 (en) * 1999-02-26 2000-08-30 Sumitomo Special Metals Co., Ltd. Surface-treatment of hollow work, and ring-shaped bonded magnet produced by the process
EP1031388A3 (en) * 1999-02-26 2001-03-14 Sumitomo Special Metals Co., Ltd. Surface-treatment of hollow work, and ring-shaped bonded magnet produced by the process
US6355313B1 (en) 1999-02-26 2002-03-12 Sumitomo Special Metals Co., Ltd. Process for surface treatment of hollow work having hole communicating with outside
US6819211B2 (en) 1999-02-26 2004-11-16 Neomax Co. Ltd Process for surface-treatment of hollow work having hole communicating with outside, and ring-shaped bonded magnet produced by the process
US7449100B2 (en) 2001-10-29 2008-11-11 Hitachi Metals, Ltd. Method for forming electroplating film on surfaces of articles
KR100921874B1 (en) 2001-10-29 2009-10-13 히타치 긴조쿠 가부시키가이샤 Method for forming electroplated coating on surface of article

Similar Documents

Publication Publication Date Title
US7053745B2 (en) Rare earth metal-based permanent magnet, and process for producing the same
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP3709292B2 (en) Resin bonded rare earth magnet
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
WO1999023676A1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP3236816B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH11260614A (en) Anticorrosive r-fe-b bonded magnet and manufacture of the same
EP1049112A2 (en) Process for sealing pores in molded product, and bonded magnet with pores sealed by the process
JP3236814B2 (en) High corrosion resistance R-Fe-B-based bonded magnet and method for producing the same
JPH11283818A (en) High corrosion-resistant r-fe-b bonded magnet and its manufacture
JPH11238641A (en) Highly corrosion resistant r-fe-b bonded magnet and its manufacture
JPH11260613A (en) Anticorrosive r-fe-b bonded magnet and manufacture of the same
JPH0613211A (en) Permanent magnet having excellent corrosion resistance and manufacture thereof
JPH0927433A (en) Manufacture of highly acticorrosive r-fe-b bond magnet
JP3232037B2 (en) High corrosion resistance R-Fe-B bonded magnet with excellent crushing strength
JP2004266093A (en) Method of manufacturing rare earth bonded magnet
JPH0646603B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JP2003100536A (en) Method for sealing cavity of bond magnet
JP2002134342A (en) Rare-earth permanent magnet and its manufacturing method
JPH0545045B2 (en)
JPH0666173B2 (en) Permanent magnet having excellent corrosion resistance and method of manufacturing the same
JPH0569283B2 (en)