JPS62122108A - Manufacture of sintered rare earth magnet - Google Patents

Manufacture of sintered rare earth magnet

Info

Publication number
JPS62122108A
JPS62122108A JP60262209A JP26220985A JPS62122108A JP S62122108 A JPS62122108 A JP S62122108A JP 60262209 A JP60262209 A JP 60262209A JP 26220985 A JP26220985 A JP 26220985A JP S62122108 A JPS62122108 A JP S62122108A
Authority
JP
Japan
Prior art keywords
temperature
molded
rare earth
normally
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60262209A
Other languages
Japanese (ja)
Other versions
JPH0431164B2 (en
Inventor
Seiro Hachiman
誠朗 八幡
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60262209A priority Critical patent/JPS62122108A/en
Publication of JPS62122108A publication Critical patent/JPS62122108A/en
Publication of JPH0431164B2 publication Critical patent/JPH0431164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain excellent magnetic characteristics, particularly, high coercive force (Hc) and the maximum energy product by roasting a molded shape and applying vacuum deaeration treatment to the molded shape at a specific temperature before it is transferred to a sintering process in an inert-gas atmosphere. CONSTITUTION:Molded shaped containing rare earth metals can be manufactured according to the manufacture of all molded shaped which have been adopted in the manufacture of sintered rare earth magnets, and the molded shapes being manufactured are arranged on shelves in a furnace, and roasted for normally 30-300min at a temperature of 100-500 deg.C in a hydrogen gas current at normally approximately 1atm. The molded shapes are roasted, and vacuum deaeration treatment is executed to the molded shapes. The treatment is conducted by evacuating hydrogen gas used during roasting and holding furnace pressure of 10-120min at normally 0.001-30mmHg, and the temperature of 100-700 deg.C is preferable as an ambient temperature applied at that time, and a temperature on roasting is kept normally as it is. The molded shapes from which organic matter and carbon are removed are sintered through holding for normally 30-60min on a compound such as SmCo5 Sm2Co17 at a sintering temperature in an inert-gas atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた磁気特性、特に嶋い保磁力(Hc
)と最大エネルギー積((BH)max)をりする、品
質の安定した焼結希土類磁石の裂き方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides excellent magnetic properties, particularly low coercive force (Hc).
) and the maximum energy product ((BH)max), the method relates to a method of tearing a sintered rare earth magnet with stable quality.

〔従来の技術〕[Conventional technology]

従来、例えばSmCo B型やSm2Co1□型のよう
な焼結希土類磁石は、所定割合に配合した原料金属をア
ーク溶解または高周波溶解によって溶解した後、鋳造す
るか、あるいは希土類金属酸化物を、他の金属粉末の共
存の下に、還元することによって、所定の成分組成を有
するインゴットとし、ついでこれを保護雰囲気中、ロー
ルクラッシャで粗砕した後、ボールミル、撮動ミル、さ
らにアトライタなどを用いてトルエンまたはキシレン等
の不活性溶剤中で微粉砕し、乾燥して得た合金微粉末を
原料粉末として用い、つぎにこの原料粉末に潤滑剤また
はバインダーとしてステアリン酸、ステアリン酸アミド
、オレイン酸またはパラフィン等を添加して、磁場を印
加した金型中で成形し、そしてこの成形体をまず500
℃程度の温度で真空中、または水素またはアルゴン雰囲
気の下で焙焼して、前記不活性溶剤、潤滑剤およびバイ
ンダー:二由来する有機物を除去してから、同一炉内で
前記成形体を、そのまま、あるいは焙焼ゾーンから焼結
ゾーンに移して昇温し、真空中、あるいはアルゴンまた
はヘリウムなどの不活性ガス雰囲気中、例えば前記Sm
CoB型やSm2Co1□型磁石を製造する場合は、一
般に1000〜1250℃の範囲内の所定温度に30〜
60分間保持の条件で焼結することによって、製造され
ている。
Conventionally, sintered rare earth magnets such as SmCo B type and Sm2Co1□ type have been produced by melting raw metals in a predetermined proportion by arc melting or high frequency melting, and then casting, or by melting rare earth metal oxides into other materials. An ingot having a predetermined composition is obtained by reduction in the coexistence of metal powder, which is then coarsely crushed with a roll crusher in a protected atmosphere, and then crushed with toluene using a ball mill, a motion mill, and an attritor. Alternatively, a fine alloy powder obtained by pulverizing in an inert solvent such as xylene and drying is used as a raw material powder, and then a lubricant or binder such as stearic acid, stearamide, oleic acid, paraffin, etc. is added to this raw material powder. is added and molded in a mold to which a magnetic field is applied, and this molded body is first
After roasting in vacuum or under a hydrogen or argon atmosphere at a temperature of about 10°C to remove the organic matter derived from the inert solvent, lubricant and binder, the molded body is roasted in the same furnace. For example, the Sm
When manufacturing CoB type or Sm2Co1□ type magnets, it is generally heated to a predetermined temperature within the range of 1000 to 1250°C for 30 to 30°C.
It is manufactured by sintering under conditions of holding for 60 minutes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような焼結希土類磁石の製造法においては、前記焙
焼によっても前記有機物の除去が十分でなく、成形体中
に残留した若干の有機物は、その焙焼工程中およびそれ
1:つづく焼結工程中に分解し、それによって生成した
炭素の一部が焼結磁石中に残って、その磁性、特に保磁
力と最大エネルギー槓を低下させるとともに、この残留
する炭素の量が成形体の大きさや焼結炉内に配置された
その成形体の場所などの種々の要因で変動し、その結果
製品の野性がバラついて、その品質が一定しないという
問題があった。
In such a method for manufacturing a sintered rare earth magnet, the removal of the organic matter is not sufficient even through the roasting, and some of the organic matter remaining in the compact is removed during the roasting process and during the subsequent sintering. Some of the carbon decomposed and produced during the process remains in the sintered magnet, reducing its magnetism, especially its coercive force and maximum energy, and the amount of this remaining carbon depends on the size and size of the compact. There is a problem in that the quality of the product varies depending on various factors such as the location of the compact placed in the sintering furnace, and as a result, the quality of the product varies.

〔研究に基づく知見事項〕 そこで、本発明者等は、このような問題を解決するため
に種々研究を重ねた結果、 成形体を水素気流中100〜500℃で焙焼すると、そ
の中の有機物は大部分除去されて若干の炭素が成形体中
に残るが、その後これなアルゴンのような不活性ガス雰
囲気中で焼結する工程に移す前に、この成形体に、10
0〜700℃の間の温度において真空脱気処理を旌すと
、焼結体中に残る炭素用が著しく減少する結果、その磁
性が著しく向上し、この炭素着の減少は成形体の大きさ
や、その成形体の炉内における配置場所等に依存しない
で、比較的均一に達成されること、を見出した。
[Findings based on research] In order to solve these problems, the inventors of the present invention have conducted various studies and found that when a molded body is roasted at 100 to 500°C in a hydrogen stream, the organic matter in it is Most of the carbon is removed and some carbon remains in the compact, which is then subjected to a sintering process in an inert gas atmosphere such as argon for 10 minutes.
When vacuum degassing is performed at a temperature between 0 and 700°C, the amount of carbon remaining in the sintered body is significantly reduced, resulting in a marked improvement in its magnetism. It has been found that this can be achieved relatively uniformly, regardless of the location of the molded body in the furnace.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基づいて発明されたもので、す
ぐれた磁気特性、特に高い(i磁力と最大エネルギー積
を有する焼結希土類磁石の製造方法を提供することを目
的とし、希土類金属を含む成形体を焙焼後、焼結するこ
とによって焼結希土類磁石を製造する方法において、前
記成形体を水素気流中、100〜500℃の間の温度に
おいて焙焼した後、この成形体に、100〜700℃の
間の温度において真空脱気処理を施し、ついで前記成形
体を不活性ガス雰囲気中で焼結することを特徴とするも
のである。
This invention was invented based on the above knowledge, and aims to provide a method for manufacturing a sintered rare earth magnet having excellent magnetic properties, particularly high i magnetic force and maximum energy product, and containing a rare earth metal. In a method for manufacturing a sintered rare earth magnet by roasting and sintering a molded body, the molded body is roasted at a temperature between 100 and 500°C in a hydrogen stream, and then 100° C. It is characterized in that it is subjected to a vacuum degassing treatment at a temperature between 700° C. and 700° C., and then the molded body is sintered in an inert gas atmosphere.

〔発明の具体的な構成〕[Specific configuration of the invention]

ついで、この発明の具体的な構成について説明する。 Next, a specific configuration of the present invention will be explained.

(1)希土類金属を含む成形体 希土類金属を含む成形体は、従来焼結希土類磁石の製造
において採用されてきた、あらゆる成形体の製造法にし
たがって製造することができ、それには、例えば、所定
割合に配合された希土類金属、Co j Fe 、 N
i 、 zr等の原料金属をアーク溶解または高周波溶
解等によって、真空中または不活性ガス雰囲気中で溶解
するか、あるいは希土類金属酸化物を他の金属粉末の下
に還元することによりて所定の成分組成を有するインゴ
ットとし、つい戸 でこれをロール ラシャで粗砕した後、ボールミルによ
す、トルエンやキシレンのような不活性有機溶剤中で微
粉砕し、乾燥し、それによって得られた合金微粉末に潤
滑剤またはバインダーとして働くステアリン酸またはパ
ラフィン等を添jj口、混練したものに磁界をかけなが
ら、これを金型中、圧力=1〜2 ton /−でプレ
ス成形することによって製造される。
(1) Molded body containing rare earth metal Shaped body containing rare earth metal can be manufactured according to any molded body manufacturing method that has been conventionally adopted in manufacturing sintered rare earth magnets. Rare earth metals, Co j Fe, N
Predetermined components are melted by melting raw metals such as i, zr, etc. in vacuum or in an inert gas atmosphere by arc melting or high frequency melting, or by reducing rare earth metal oxides under other metal powders. An ingot having a composition of It is manufactured by adding stearic acid or paraffin, etc., which acts as a lubricant or binder, to the powder, kneading it, and press-molding it in a mold at a pressure of 1 to 2 tons/- while applying a magnetic field. .

(2)  焙焼工程 上記のように製造された成形体は、炉内の棚の上に並べ
られて、通常はぼ1気圧の水素気流中、100〜500
℃の間の温度において、普通30〜300分間焙焼する
が、このときの焙焼温度が100℃未満ではこの有機物
の除去が満足に達成されず、一方、これが500℃を越
えると、成形体にクラックが生ずることから、この焙焼
温度を100〜500℃の範囲に定めた。
(2) Roasting process The molded bodies produced as described above are arranged on a shelf in a furnace and roasted at 100 to 500 m
Roasting is normally carried out for 30 to 300 minutes at a temperature between 100°C and 100°C, but if the roasting temperature is less than 100°C, the removal of organic matter will not be achieved satisfactorily, while if it exceeds 500°C, the compact will The roasting temperature was set in the range of 100 to 500°C because cracks would occur in the roasting process.

(3)  真空脱気処理 前記焙焼後に成形体に施される真空脱気、処理は成形体
中に残存する有機物および炭素の計を一層減少させるの
に有効な処理であって、この処理は、焙焼中に使用した
水素ガスを真空排気して炉内圧力を通常0.001〜3
0 ttmHgに、10〜120分間保持することによ
って遂行され、そしてこのときに適用される雰囲気温度
は、通常、焙焼時の温度をそのまま維持することによっ
て形成させるのが好都合である。
(3) Vacuum degassing treatment The vacuum degassing treatment applied to the compact after the roasting is an effective treatment for further reducing the amount of organic matter and carbon remaining in the compact. , the hydrogen gas used during roasting is evacuated and the pressure inside the furnace is usually 0.001 to 3.
0 ttmHg for 10 to 120 minutes, and the ambient temperature applied at this time is usually conveniently maintained at the same temperature as during roasting.

この真空脱気中の雰囲気温度が100℃未満では、前記
有機物および炭素が十分に除去されず、一方それが70
0℃を越えると、焼結体中に許容量を越える炭素が残留
したり、あるいはそれにクラックが発生するところから
、その温度を100〜700℃と定めた。
If the ambient temperature during this vacuum degassing is less than 100°C, the organic matter and carbon will not be removed sufficiently;
If the temperature exceeds 0°C, an excessive amount of carbon may remain in the sintered body or cracks may occur in the sintered body, so the temperature was set at 100 to 700°C.

(4)焼結工程 前記の真空脱気処理によって有機物および炭素が除去さ
れた成形体は、アルゴンまたはヘリウムのような不活性
ガス雰囲気中、焼結温度、すなわち、例えばSmCo5
やSm2Co17の場合は、通常1000〜1250℃
、そしてP rCo 5の場合は、通常950〜115
0℃まで昇温され、その温度・に普通30〜60分間医
持することによって焼結される。
(4) Sintering process The molded body from which organic substances and carbon have been removed by the vacuum degassing treatment described above is heated to a sintering temperature, that is, for example, SmCo5 in an inert gas atmosphere such as argon or helium.
and Sm2Co17, it is usually 1000-1250℃
, and for PrCo 5 it is usually 950-115
Sintering is carried out by raising the temperature to 0° C. and keeping it at that temperature for usually 30 to 60 minutes.

〔実施例〕〔Example〕

ついで、この発明の実施例を比較例と対比しながら説明
する。
Next, examples of the present invention will be explained while comparing them with comparative examples.

トルエン中で粉砕することによって得られたSmCo合
金粉末に、トルエンの存在下でノルマルパラフィン0.
5 % (重量%、以下同様)とステアリン酸0,1%
を添加し、混練してから、その合金:分末をrIB場中
で成形することによって得られた、炉内空気を真空ポン
プで排気した後、炉内に水素を流入させ、水素を流しな
がら炉内雰囲気を5℃/分の昇温速度で400℃まで昇
温した後、この400℃の温度を30分間保持すること
によって、前記成形体を焙焼した。
SmCo alloy powder obtained by grinding in toluene was added with 0% normal paraffin in the presence of toluene.
5% (weight%, same below) and stearic acid 0.1%
After evacuating the air in the furnace with a vacuum pump, hydrogen was introduced into the furnace, and while the hydrogen was flowing, After the atmosphere in the furnace was heated to 400°C at a heating rate of 5°C/min, the molded body was roasted by maintaining this temperature at 400°C for 30 minutes.

ついで、炉内温度を400℃に維持したまま、炉内の水
素ガスを30分間かけて真空排気することC二よって、
成形体に真空脱気処理を旌した。
Then, while maintaining the temperature inside the furnace at 400°C, the hydrogen gas inside the furnace was evacuated for 30 minutes.
The molded body was subjected to vacuum degassing treatment.

この真空排気中の真空度は、初めの約10分間では数十
rmHgであり、真空排気開始後約30分経過した真空
排気完了時には0.01 mHgであった。
The degree of vacuum during this evacuation was several tens of rmHg for about the first 10 minutes, and 0.01 mHg when the evacuation was completed about 30 minutes after the start of evacuation.

真空脱気終了後直ちに炉内にアルゴンガスを導入し、炉
内温度を400℃から1130℃に上昇させ、この温度
を21kV f’i’l e−持して成形体を焼結し、
その後#、冷することによって本発明焼結磁石1を製造
し、その固気特性を$1表に示した。
Immediately after the completion of vacuum deaeration, argon gas is introduced into the furnace, the temperature inside the furnace is raised from 400 ° C. to 1130 ° C., and this temperature is maintained at 21 kV f'i'le- to sinter the compact,
Thereafter, the sintered magnet 1 of the present invention was manufactured by cooling it, and its solidity properties are shown in Table 1.

さらに比較のため、上記製法において採用した種々の条
件のうち、或条件を@1表の「製造条件」に変えた点を
除き、その他の条件は前記製法と全く同様にして、比較
焼結磁石1〜7を製造し、これらの固気特性も第1表に
合わせて示した。
Furthermore, for comparison, among the various conditions adopted in the above manufacturing method, a comparative sintered magnet was prepared under the same conditions as the above manufacturing method, except that one condition was changed to the "manufacturing conditions" in Table 1. Nos. 1 to 7 were manufactured, and their solid-gas properties are also shown in Table 1.

実施例2 実施例1で述べた方法と同様な方法によって得られた、
ノルマルパラフィン0.5憾とステアリン酸0.1係を
含む、Sm2Co 17の化学世論組成(Sm :25
憾、Fe: 15 %、Cu: 6%、Ni : 1.
4%、Zr:3%、残り二Coの重量割合の組成)と、
8 m X8、、+×8.filの寸法を有する立方体
状の成形体を外熱式管状炉に装入し、炉内雰囲気を水素
がスで置第    1    表 換した後、水素を流しながら炉内温度を5℃/分の昇温
速度で400℃まで昇温し、この温度を30分間保持す
ることによって、前記成形体を焙焼した。
Example 2 Obtained by a method similar to that described in Example 1,
Chemical composition of Sm2Co 17 containing 0.5 parts normal paraffin and 0.1 part stearic acid (Sm:25
Unfortunately, Fe: 15%, Cu: 6%, Ni: 1.
4%, Zr: 3%, remaining diCo (weight ratio composition),
8 m x8,,+x8. A cube-shaped compact having dimensions of fil was charged into an externally heated tubular furnace, and the atmosphere inside the furnace was replaced with hydrogen gas. The molded body was roasted by increasing the temperature to 400° C. and maintaining this temperature for 30 minutes.

ついで、水素ガスの導入を止め、炉内温度を400℃に
維持したまま水素を30分間真空排気することによって
、成形体に真空脱気処理を旌した。この真空排気中、炉
内圧力は、最初の数分間には初期の大気圧から30 r
mHgまで低下したが、その後の圧力の低下は緩慢で、
30分後に0.005mmHgl:1.、達した・ 真空脱気終了後直ちに炉内をアルゴン雰囲気に変え、成
形体を1230℃に1時間さらして焼結し、その後除冷
することによって本発明焼結磁石2を製造し、さら1=
比較のため、潤滑剤およびバインダーを添り口しないで
成形した成形体をアルゴン中、温度:550℃において
1時間焙焼した点以外は上記方法と全く同様な手順によ
って、比較焼結磁石8も製造し、これらの磁気特性を第
2表に示した。
Next, the introduction of hydrogen gas was stopped, and the hydrogen was evacuated for 30 minutes while the furnace temperature was maintained at 400° C., thereby subjecting the compact to a vacuum degassing treatment. During this evacuation, the pressure inside the furnace decreased from the initial atmospheric pressure to 30 r for the first few minutes.
The pressure decreased to mHg, but the pressure decreased slowly after that.
0.005mmHgl after 30 minutes: 1. Immediately after the completion of vacuum degassing, the inside of the furnace was changed to an argon atmosphere, the molded body was exposed to 1230° C. for 1 hour to sinter, and then slowly cooled to produce the sintered magnet 2 of the present invention, and further 1. =
For comparison, Comparative Sintered Magnet 8 was also made using the same procedure as above, except that a molded body without any lubricant or binder was roasted in argon at a temperature of 550°C for 1 hour. The magnetic properties are shown in Table 2.

第  2  表 〔発明の効果〕 第1表および第2表に示される結果から、本発明焼結磁
石1および2はいずれも磁気特性、特にHcと(BH)
maXにすぐれているのに対し、焙焼温度をこの発明の
範囲から外して製造した比較焼結磁石4および5、焙焼
温度をこの発明の範囲から外し、かつ焙焼雰囲気をこの
発明と異なる雰囲気とした比較焼結磁石2および6は、
Hcおよび(BH)maxがかなり〜著しく低く、また
潤滑剤もバインダーも使用しないで成形した成形体であ
っても、この発明の範囲から外れた条件で焙焼すること
によって製造した比較焼結磁石1および8は、粉砕工程
で使用したトルエンが残留していたために、Hcおよび
(BH)maxが若干低下し、さらに、真空脱気処理を
全く旌さないで製造した比較焼結磁石3およびこの腎明
の真空脱気処理温度を越える温度で真空脱気した比較焼
結磁石7においては磁気特性の測定中、試料がクラック
によって破損し、これらが磁石として全く役に立たない
ことがわかる。
Table 2 [Effects of the Invention] From the results shown in Tables 1 and 2, both sintered magnets 1 and 2 of the present invention have good magnetic properties, especially Hc and (BH).
Comparative sintered magnets 4 and 5 were manufactured with a roasting temperature outside the range of the present invention, but the roasting temperature was outside the range of the present invention, and the roasting atmosphere was different from that of the present invention. Comparative sintered magnets 2 and 6 were used as atmospheres.
Comparative sintered magnets with significantly to significantly low Hc and (BH)max, and which were produced by roasting under conditions outside the scope of this invention, even if they were molded without using a lubricant or binder. Comparative sintered magnets 1 and 8 had slightly lower Hc and (BH)max due to residual toluene used in the pulverization process. It can be seen that in comparison sintered magnet 7, which was vacuum degassed at a temperature exceeding the vacuum degassing temperature of Renmei, the sample was damaged by cracks during the measurement of magnetic properties, and these were completely useless as a magnet.

以上述べた悦明から明らかなように、この発明によると
、成形体や焼結体中に残留して焼結磁石の磁性を低下さ
せる有機物が効果的(−1かつ均一に除去される結果、
すぐれた磁気特性、特に高い保磁力(He)と最大エネ
ルギー積((BH)max )を有し、かつ品質の揃っ
た希土類焼結磁石を再現性よく製造できるという、産業
上有用な効果が得られる。
As is clear from the above-mentioned Etsumei, according to the present invention, the organic matter that remains in the compact or sintered body and reduces the magnetism of the sintered magnet is effectively (-1 and uniformly removed).
The industrially useful effect of manufacturing rare earth sintered magnets with excellent magnetic properties, particularly high coercive force (He) and maximum energy product ((BH)max), and uniform quality with good reproducibility, has been achieved. It will be done.

Claims (1)

【特許請求の範囲】[Claims]  希土類金属を含む成形体を焙焼後、焼結することによ
つて焼結希土類磁石を製造する方法において、前記成形
体を水素気流中、100〜500℃の間の温度において
焙焼した後、この成形体に、100〜700℃の間の温
度において真空脱気処理を施し、ついで前記成形体を不
活性ガス雰囲気中で焼結することを特徴とする、前記焼
結希土類磁石の製造方法。
In a method for producing a sintered rare earth magnet by roasting and sintering a molded body containing a rare earth metal, the molded body is roasted in a hydrogen stream at a temperature between 100 and 500°C, and then The method for manufacturing a sintered rare earth magnet, which comprises subjecting the compact to a vacuum degassing treatment at a temperature between 100 and 700°C, and then sintering the compact in an inert gas atmosphere.
JP60262209A 1985-11-21 1985-11-21 Manufacture of sintered rare earth magnet Granted JPS62122108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262209A JPS62122108A (en) 1985-11-21 1985-11-21 Manufacture of sintered rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262209A JPS62122108A (en) 1985-11-21 1985-11-21 Manufacture of sintered rare earth magnet

Publications (2)

Publication Number Publication Date
JPS62122108A true JPS62122108A (en) 1987-06-03
JPH0431164B2 JPH0431164B2 (en) 1992-05-25

Family

ID=17372591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262209A Granted JPS62122108A (en) 1985-11-21 1985-11-21 Manufacture of sintered rare earth magnet

Country Status (1)

Country Link
JP (1) JPS62122108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428303A (en) * 1987-07-24 1989-01-30 Sumitomo Metal Mining Co Production of sintered magnet alloy
CN103578734A (en) * 2013-06-14 2014-02-12 浙江东阳东磁有限公司 Sintering technique for neodymium iron boron magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272330A (en) * 1985-05-29 1986-12-02 Daido Steel Co Ltd Manufacture of magnet of rare earth element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272330A (en) * 1985-05-29 1986-12-02 Daido Steel Co Ltd Manufacture of magnet of rare earth element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428303A (en) * 1987-07-24 1989-01-30 Sumitomo Metal Mining Co Production of sintered magnet alloy
CN103578734A (en) * 2013-06-14 2014-02-12 浙江东阳东磁有限公司 Sintering technique for neodymium iron boron magnet

Also Published As

Publication number Publication date
JPH0431164B2 (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JPS6187825A (en) Manufacture of permanent magnet material
CN106683814A (en) Preparation method for neodymium-iron-boron magnet powder
JPH0424401B2 (en)
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
JPH04330702A (en) Rare-earth permanent magnet of excellent corrosion resistance
JPS62122108A (en) Manufacture of sintered rare earth magnet
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JP2007234953A (en) Lubricant removing method, and rare earth sintered magnet manufacturing method
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JP3848906B2 (en) Method for producing rare earth alloy powder for sintered magnet
JPH03167803A (en) Manufacture of rare-earth permanent magnet
JPS62122107A (en) Manufacture of sintered rare earth magnet
JPS61238938A (en) Sintering method for permanent magnet alloy
JPS6334606B2 (en)
JPS5848606A (en) Production of permanent magnet of rare earths
JPH0571641B2 (en)
JPS6236366B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH06231923A (en) Manufacture of rare earth sintered magnet, and its rare earth magnet
JPH06231924A (en) Manufacture of rare earth sintered magnet
JP2005344165A (en) Method for producing rare-earth sintered magnet, and heat treatment method