JPS61238938A - Sintering method for permanent magnet alloy - Google Patents

Sintering method for permanent magnet alloy

Info

Publication number
JPS61238938A
JPS61238938A JP60080645A JP8064585A JPS61238938A JP S61238938 A JPS61238938 A JP S61238938A JP 60080645 A JP60080645 A JP 60080645A JP 8064585 A JP8064585 A JP 8064585A JP S61238938 A JPS61238938 A JP S61238938A
Authority
JP
Japan
Prior art keywords
permanent magnet
vacuum
sintering
gas
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080645A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Takeshi Mizuhara
水原 猛
Makoto Takano
誠 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60080645A priority Critical patent/JPS61238938A/en
Publication of JPS61238938A publication Critical patent/JPS61238938A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet alloy having high maximum energy product and excelling in magnetic properties by subjecting an alloy containing as essential components rare earth elements, B and Fe to crushing, compacting, heating and holding under specific conditions and then cooling. CONSTITUTION:The alloy consisting of, as essential components, about 8-30atom% R (at least one element among rare earth elements including Y), about 2-28atom% B, and the balance Fe with inevitable impurities is crushed to about 0.34-80mu average grain size and compacted under a pressure of about 0.5-10t/cm<2>. The green compact is subjected to temp. raise from ordinary temp. in vacuum or in an inert gas (Ar etc.) or reducing gas (H2 etc.) and then to heating and holding at 900-1,200 deg.C in an H2 gas atmosphere, followed by cooling in vacuum or in an inert gas (Ar etc.) at a rate of about 0.5-100 deg.C/min.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、R−B−Fe系の永久磁石合金の焼結方法に
関し、特に最大エネルギ積(BH)maxの向上に有効
な永久磁石合金の焼結方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for sintering an R-B-Fe-based permanent magnet alloy, and in particular to a method for sintering a permanent magnet alloy that is effective in improving the maximum energy product (BH) max. The present invention relates to a sintering method.

(従来の技術) 近年、高価なamおよびCoを含まずに、従来合金であ
るSm−Go系永久磁石合金の磁気特性を上廻る特性を
有する磁石合金すなわちR−B−Fe系永久磁石合金が
発明された。特開昭59−46008号公報および特開
昭59−217504号公報によれば、原子チとして、
8〜50チのR,2〜28チのBおよび不可避の不純物
を含むFeからなる合金粉末を加圧式形し、還元性また
は非酸化性雰囲気下にて、900〜1200°0で焼結
することが開示されている。例えば、1O−2TOrr
以下の真空中あるいは1〜760’rorrの圧力下で
純度99.9容積チ以上の不活性ガスないし還元性ガス
の雰囲気中で、900〜1200℃の温度で所定時間焼
結する。なお焼結雰囲気の実施例としては200〜76
0’rorrでのArガスのみを開示している。
(Prior Art) In recent years, magnetic alloys, that is, R-B-Fe-based permanent magnet alloys, have been developed that do not contain expensive am and Co and have magnetic properties that exceed those of conventional Sm-Go-based permanent magnet alloys. Invented. According to JP-A-59-46008 and JP-A-59-217504, as an atom,
An alloy powder consisting of 8 to 50 inches of R, 2 to 28 inches of B, and Fe containing unavoidable impurities is pressurized and sintered at 900 to 1200°0 in a reducing or non-oxidizing atmosphere. This is disclosed. For example, 1O-2 TOrr
Sintering is carried out at a temperature of 900 to 1200° C. for a predetermined period of time in the following vacuum or under a pressure of 1 to 760'rorr in an atmosphere of an inert gas or reducing gas with a purity of 99.9 volume or more. In addition, as an example of the sintering atmosphere, 200 to 76
Only Ar gas at 0'rorr is disclosed.

(発明の解決しようとする問題点) しかし、これら従来の方法による焼結方法では4 ニー
H曲線の角型性が悪く磁気特性の点で十分満足のできる
特性、特に最大エネルギー積((BH)MAX )が得
られるには至ってない。
(Problems to be Solved by the Invention) However, with these conventional sintering methods, the squareness of the knee H curve is poor and the characteristics are sufficiently satisfactory in terms of magnetic properties, especially the maximum energy product ((BH) MAX) has not yet been achieved.

本発明は上述した従来技術の問題点を解消し最大エネル
ギー積が高く、磁気特性の優れたR−B −Fe系の永
久磁石合金を得ることのできる焼結方法を提供すること
を目的とするものである。
It is an object of the present invention to provide a sintering method capable of solving the problems of the prior art described above and obtaining an R-B-Fe-based permanent magnet alloy with a high maximum energy product and excellent magnetic properties. It is something.

(問題点を解決するための手段) 本発明の永久磁石合金の焼結方法は必須元素としてR(
Yを含む希土類元素の少くとも1種)BおよびFeから
なる永久磁石合金を粉砕および成形した後、常温からの
昇温を真空中、AI−などの不活性ガス中あるいはH2
などの還元性ガス中で行い、900〜1200°Oの加
熱保持をH2ガス雰囲気中で行い、加熱保持後の冷却を
真空中あるいはArなどの不活性ガス中で行うことを特
徴とするものである。
(Means for Solving the Problems) The method for sintering a permanent magnet alloy of the present invention includes R(
After pulverizing and forming a permanent magnetic alloy consisting of B and Fe (at least one rare earth element containing Y), the temperature is raised from room temperature in a vacuum, in an inert gas such as AI-, or in H2
It is characterized by being heated and held at 900 to 1200°O in a H2 gas atmosphere, and then cooled down after being heated and held in a vacuum or in an inert gas such as Ar. be.

(作用) 以下、詳述すると所定成分を有するR−B−Fe系永久
磁石合金の合金粉末(平均粒径0.3〜80μm)が、
浴解−鋳造および公知の粉砕手段(例えばン1−クラッ
シャー、ブラウンミル。
(Function) To explain in detail below, alloy powder (average particle size 0.3 to 80 μm) of R-B-Fe-based permanent magnet alloy having predetermined components,
Bath melting-casting and known crushing means (e.g. 1-crusher, Brown mill).

ジェットミAI)にて準備されるう 0.3μm未満で
は残留磁束密度Brが低下し80μmを越えると保磁力
Heが低下するためである。合金粉末グ組成は、原子百
分比で8〜30%のR(Yを含む希土類金属)、2〜2
8%のB、および不可避の不純物を含むFeを必須成分
とし、かつ下記所定−以下のへ元素の1種以上(ただし
、2種以上含む場合のA元素の合量は、当該含有へ元素
の内、最大値を有するものの値以下)を含むものである
This is because if the thickness is less than 0.3 μm, the residual magnetic flux density Br decreases, and if it exceeds 80 μm, the coercive force He decreases. The composition of the alloy powder is 8 to 30% R (rare earth metal containing Y), 2 to 2% by atomic percentage.
8% B and Fe containing unavoidable impurities are essential components, and one or more of the following specified elements (however, if two or more types are included, the total amount of element A is determined by the amount of the element in question) (within the maximum value).

希土類元素Rは保磁力の点から8チ以上必要であり、ま
た燃えやすく、工業的取扱い、製造上の困難のためまだ
高価であることから30チ以下とする。Bは2%未満で
は保磁力が得られず、28チを越えるとBrが低下する
ため2〜28チとされる。なお、所定チ以下のA元素の
添加(ただし2種以上含む場合のへ元素の含量は、当該
含有A元素の内、最大値を有するものの値以下)は本発
明の効果を損うものではない。
The rare earth element R needs to be at least 8 inches in terms of coercive force, and is combustible and still expensive due to industrial handling and manufacturing difficulties, so it is set at less than 30 inches. If B is less than 2%, coercive force cannot be obtained, and if it exceeds 28 inches, Br decreases, so the range is set to 2 to 28 inches. In addition, the addition of less than the specified amount of element A (however, when two or more types of elements are included, the content of element A is less than or equal to the value of the one with the maximum value among the contained A elements) does not impair the effects of the present invention. .

以上述べた合金粉を圧縮プレスなどにて成形−圧密化す
る。
The alloy powder described above is molded and compacted using a compression press or the like.

なお、上記成形−圧密化は、0 、5−10 t/c!
It9成形圧力が良く、必要に応じ成形時において、磁
界(5KOe以上)を印加することにより、磁気特性は
向上する。一連の成形−圧密化は湿式あるいは乾式でよ
く、常温以外の高温度にて行っても良い。雰囲気は非酸
化性雰囲気が望ましく、例えば真空中、不活性ガス中あ
るいは還元性ガス中にて行っても良い。得られた成形体
を900〜1200°0の温度にて焼結する。900 
’O未満では、密度があがらないためBrが十分でなく
1200℃を越えるとBrおよび角形性が低下する理由
による。900〜1200℃での加熱保持における雰囲
気としては、H2ガスが良い。H2ガスを使用すること
により、成形体に存在する酸化物が還元されると同時に
合金粒子の表面が化学的に活性化し、#密化が一層促進
するため磁気特性が向上するものと思われる。
In addition, the above-mentioned molding-consolidation is 0,5-10 t/c!
The It9 molding pressure is good, and the magnetic properties can be improved by applying a magnetic field (5 KOe or more) during molding if necessary. The series of molding and compaction may be performed wet or dry, and may be performed at a high temperature other than room temperature. The atmosphere is preferably a non-oxidizing atmosphere, and may be carried out, for example, in a vacuum, an inert gas, or a reducing gas. The obtained molded body is sintered at a temperature of 900 to 1200°0. 900
This is because if the temperature is less than 'O, the density does not increase, so Br is not sufficient, and if the temperature exceeds 1200°C, Br and squareness deteriorate. H2 gas is preferable as the atmosphere for heating and holding at 900 to 1200°C. It is thought that by using H2 gas, the oxides present in the compact are reduced and at the same time the surfaces of the alloy particles are chemically activated, further promoting densification and thus improving the magnetic properties.

なお室温から昇温速度は特に規定しないが、昇温途中2
00−800 ’0の温度範囲で少くともo、5時間保
持することにより、被加熱部の温度均一性を改善したり
、真空中において脱ガス処理を行うことも可変となる。
Note that the rate of temperature rise from room temperature is not particularly specified, but
By holding the temperature in the temperature range of 00-800'0 for at least 5 hours, it becomes possible to improve the temperature uniformity of the heated part and to perform degassing treatment in a vacuum.

あるいは潤滑剤として用いるステアリン酸塩などのクラ
ンキング(水素化熱分解法)も、水素ガス雰囲気中で行
い得る。従って、昇温における雰囲気としては、真空あ
るいは不活性ガス(例えばAr )あるいは還元性ガス
(例えばH))などの非酸化性雰囲気が良い。加熱保持
後の冷却速度は、特に規定しないが、0.5〜1000
/分が良く、一般的には1−10゛0/分が良い。遅く
することにより、その後の熱処理による磁気特性のバラ
ツキが少なくなるためである。また冷却は一度常温まで
冷却することも良くあるいは、500°0値迄行い、次
の熱処理のため再度昇温するように、焼結と熱処理を連
続的に行っても良い。しかしながら、900〜1200
℃での加熱保持を本発明の如(Hzガス雰囲気中で行っ
た場合、冷却過程においては。
Alternatively, cranking (hydrothermal decomposition method) of stearate used as a lubricant can also be performed in a hydrogen gas atmosphere. Therefore, the atmosphere for raising the temperature is preferably a vacuum or a non-oxidizing atmosphere such as an inert gas (for example, Ar) or a reducing gas (for example, H). The cooling rate after heating and holding is not particularly specified, but is 0.5 to 1000
/min is good, generally 1-10゛0/min is good. This is because by slowing down, variations in magnetic properties due to subsequent heat treatment are reduced. Further, cooling may be performed once to room temperature, or sintering and heat treatment may be performed continuously, such as cooling to 500° 0 value and raising the temperature again for the next heat treatment. However, 900-1200
In the case of heating and holding at ℃ as in the present invention (in a Hz gas atmosphere, during the cooling process.

少くとも脱H2処理が行い得る雰囲気すなわち真空ある
いはArなどの不活性ガスとせねばならない。
At least the atmosphere must be such that the H2 removal process can be performed, that is, a vacuum or an inert gas such as Ar.

この理由は、希土類FeCo化合物が水素ガスを吸蔵し
やすいことによる。冷却時にH2ガスを使用すると、焼
結体が、水素ガスを吸蔵し、冷却後崩壊することになる
The reason for this is that the rare earth FeCo compound easily absorbs hydrogen gas. If H2 gas is used during cooling, the sintered body will absorb hydrogen gas and collapse after cooling.

以上の焼結後、さらに磁気特性を向上せしめるため55
00〜700℃で時効処理を行うが、必要に応じ時効処
理前にSOO〜1000℃で保持−徐冷という中間熱処
理を行うことにより一層磁気特性が向上する。上記本発
明による焼結方法を行うことにより、従来の方法に比較
し、磁気特性とくに最大エネルギー積(BH)msが向
上する。
After the above sintering, in order to further improve the magnetic properties, 55
Aging treatment is performed at 00 to 700°C, but if necessary, an intermediate heat treatment of holding and slow cooling at SOO to 1000°C is performed before aging to further improve the magnetic properties. By carrying out the above-described sintering method according to the present invention, the magnetic properties, particularly the maximum energy product (BH) ms, are improved compared to conventional methods.

(実施例) 以下、本発明の詳細な説明するが、下記実施例は本発明
を限定するものではない、実施例 純度99.’Wtチの電解鉄、  99wtチのB、9
9.7% ノNdを使用し原子組成Nd (Fe0.0
1 Bo、09)5.8なる合金インゴットを得た。上
記インゴットをジ璽−クラッシャー、ブラウン、ミルに
て粗粉砕し、さらにジェット、ミルにて平均粒径55μ
mの微粉砕粉とした。得られた微粉を成形用原料として
、ダイスおよび上下パンチで形成する成形空間内に充て
んし、3t/dの成形圧力で、磁場中(1oxoe)プ
レスした。得られた成形体を第1表および第1〜第6図
に示す焼結方法にて焼結後、900°0X2Hrの加熱
保持後2′C/夕で室温まで徐冷し、再度600℃×2
Hrの加熱保持後、室温まで急冷(油冷)し、磁気測定
に供した。試料形状は10X10X10−である。焼結
以外の熱処理は全てArガス中で行った。
(Example) The present invention will be described in detail below, but the following examples do not limit the present invention.Example Purity: 99. 'Wt Chi's electrolytic iron, 99wt Chi's B, 9
Using 9.7% Nd, the atomic composition was Nd (Fe0.0
An alloy ingot of 1 Bo, 09) 5.8 was obtained. The above ingot was coarsely crushed using a Jian crusher, a brown crusher, and a mill, and then a jet and a mill with an average particle size of 55 μm.
m finely pulverized powder. The obtained fine powder was used as a molding raw material and filled into a molding space formed by a die and upper and lower punches, and pressed in a magnetic field (1 oxoe) at a molding pressure of 3 t/d. The obtained molded body was sintered by the sintering method shown in Table 1 and Figures 1 to 6, heated at 900° for 2 hours, slowly cooled to room temperature at 2'C/night, and heated again at 600°C. 2
After being heated and maintained at Hr, it was rapidly cooled to room temperature (oil cooling) and subjected to magnetic measurement. The sample shape is 10x10x10-. All heat treatments other than sintering were performed in Ar gas.

磁気特性の結果を第1表に示す。The results of magnetic properties are shown in Table 1.

試料−1(比較例1)は、焼結方法(第1図)として、
5°0/分で昇温後1080°0X2Hrの処理後、4
゛C/分で冷却したもので、雰囲気は従来方法であるA
rガスである。
Sample-1 (Comparative Example 1) was sintered using the following sintering method (Fig. 1):
After heating at 5°0/min and processing at 1080°0X2Hr, 4
It was cooled at ゛C/min, and the atmosphere was the same as the conventional method A.
It is r gas.

以下余白 表1から分る如((BH)MAX=38.8MGOeで
あった。
As can be seen from Margin Table 1 below ((BH) MAX = 38.8 MGOe.

試料−2(比較例2)は、第2図の如く焼結温度を10
50”0 とした以外は全て−1と同様である。第1表
に示す如((BH)MAX=37.IMGOaであり焼
結温度低下に伴い磁気特性も低下した。
Sample-2 (Comparative Example 2) was prepared at a sintering temperature of 10% as shown in Figure 2.
Everything was the same as -1 except that it was set to 50"0. As shown in Table 1, ((BH) MAX = 37.IMGOa, and as the sintering temperature decreased, the magnetic properties also decreased.

試料−3(実施例1)は、第3図に示す如く−2に比較
し、昇温、保持の雰囲気をArからH2に変更した以外
は同様である。−2の特性に比較し、磁気特性は(BH
)MAX41.5MGOeと向上した。−4(比較例5
)は、lX4図に示す如く−6に比較し、冷却時の雰囲
気をArからH2に変更した以外は同様である。114
は焼結後の時点で、所定の形状を保ち得なかった。−5
(実施例2)は、第5図に示す如く、Ik3に比較し、
昇温時の雰囲気をH2から真空(10””’ Torr
 )に変更した以外は同様であり、  (BH)MAX
=4Q、8MGOeを示した。階6(実施例6)は第6
図に示す如く、−2に比較し、保持での雰囲気をArか
らH2に変更した以外は同様でちるが、 (BH)MA
Xハ37.1カラ40,5MGOe ト向上L*。
Sample-3 (Example 1) is the same as Sample-2, as shown in FIG. 3, except that the atmosphere for heating and holding was changed from Ar to H2. -2, the magnetic properties are (BH
) Improved to MAX41.5MGOe. -4 (Comparative example 5
) is the same as -6 except that the atmosphere during cooling was changed from Ar to H2, as shown in Figure 1X4. 114
could not maintain the desired shape after sintering. -5
(Example 2), as shown in FIG. 5, compared to Ik3,
The atmosphere during temperature rise was changed from H2 to vacuum (10””’ Torr).
) is the same except that it is changed to (BH)MAX
=4Q, 8MGOe was shown. Floor 6 (Example 6) is the 6th
As shown in the figure, compared to -2, it is the same except that the holding atmosphere was changed from Ar to H2, but (BH)MA
Xha 37.1 Kara 40.5MGOe To improvement L*.

以上の如く1本発明法(実施例1,2.3)によれば、
とくに(BH) MAXが、4 Q MGOeを上廻る
As described above, according to the method of the present invention (Example 1, 2.3),
In particular, (BH) MAX exceeds 4 Q MGOe.

(発明の効果) 本発明の焼結方法によって得られた永久磁石合金の磁気
特性は従来方法のものに比較し、最大エネルギー積(B
H)MAXが極めて大きく、その工業的価値は大である
(Effect of the invention) The magnetic properties of the permanent magnet alloy obtained by the sintering method of the present invention are higher than those of the conventional method, and the maximum energy product (B
H) MAX is extremely large and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図は従来の焼結方法によるパター
ンを示す図、第5、第5図および第6図は、本発明によ
る焼結方法のパターンを示す図である。 ゛・ミリ・ 第1己 878於12N 第5目 第5図 塾2圓 ta、ncx;s 鳥41月 tlj7j ’cメ2H あり因
1, 2, and 4 are diagrams showing patterns according to the conventional sintering method, and FIGS. 5, 5, and 6 are diagrams showing patterns according to the sintering method according to the present invention.゛・Milli・1st self878\12N 5th eye 5th figure 2モta, ncx;s Bird 41 month tlj7j 'cme 2H Cause

Claims (1)

【特許請求の範囲】 1、必須元素としてR(Yを含む希土類元素の少くとも
1種)、BおよびFeからなる合金を粉砕および成形し
た後、常温からの昇温を真空中あるいは不活性ガス中あ
るいは還元性ガス中で行い、900〜1200℃の加熱
保持をH_2ガス雰囲気中で行い加熱保持後の冷却を真
空中あるいは不活性ガス中で行うことを特徴とする永久
磁石合金の焼結方法。 2、不活性ガスとしてArを用いることを特徴とする特
許請求の範囲第1項記載の永久磁石合金の焼結方法。
[Claims] 1. After pulverizing and forming an alloy consisting of R (at least one rare earth element including Y), B, and Fe as essential elements, the temperature is raised from room temperature in a vacuum or under an inert gas. A method for sintering a permanent magnet alloy, the method comprising: heating and holding at 900 to 1200°C in an H_2 gas atmosphere; and cooling after heating and holding in a vacuum or inert gas. . 2. A method for sintering a permanent magnet alloy according to claim 1, characterized in that Ar is used as the inert gas.
JP60080645A 1985-04-16 1985-04-16 Sintering method for permanent magnet alloy Pending JPS61238938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080645A JPS61238938A (en) 1985-04-16 1985-04-16 Sintering method for permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080645A JPS61238938A (en) 1985-04-16 1985-04-16 Sintering method for permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS61238938A true JPS61238938A (en) 1986-10-24

Family

ID=13724103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080645A Pending JPS61238938A (en) 1985-04-16 1985-04-16 Sintering method for permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS61238938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262803A (en) * 1987-04-21 1988-10-31 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered magnet
WO1995021452A1 (en) * 1994-02-04 1995-08-10 Ybm Technologies, Inc. Rare earth element-metal-hydrogen-boron permanent magnet and method of production
CN108172390A (en) * 2018-01-30 2018-06-15 宁波铄腾新材料有限公司 It is a kind of to promote preparation method of the driving motor with rich cerium magnet performance uniformity
CN108417372A (en) * 2018-01-30 2018-08-17 宁波铄腾新材料有限公司 A kind of preparation method of rich cerium magnet for driving motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262803A (en) * 1987-04-21 1988-10-31 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered magnet
WO1995021452A1 (en) * 1994-02-04 1995-08-10 Ybm Technologies, Inc. Rare earth element-metal-hydrogen-boron permanent magnet and method of production
US5454998A (en) * 1994-02-04 1995-10-03 Ybm Technologies, Inc. Method for producing permanent magnet
US5567891A (en) * 1994-02-04 1996-10-22 Ybm Technologies, Inc. Rare earth element-metal-hydrogen-boron permanent magnet
CN108172390A (en) * 2018-01-30 2018-06-15 宁波铄腾新材料有限公司 It is a kind of to promote preparation method of the driving motor with rich cerium magnet performance uniformity
CN108417372A (en) * 2018-01-30 2018-08-17 宁波铄腾新材料有限公司 A kind of preparation method of rich cerium magnet for driving motor

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
US4541877A (en) Method of producing high performance permanent magnets
EP0516264A1 (en) Producing method for high coercive rare earth-iron-boron magnetic particles
US3970484A (en) Sintering methods for cobalt-rare earth alloys
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS61238938A (en) Sintering method for permanent magnet alloy
JPS6181603A (en) Preparation of rare earth magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS61208808A (en) Manufacture of sintered magnet
JPS5848608A (en) Production of permanent magnet of rare earths
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH10321451A (en) Rare earth sintered magnet manufacturing method
JPH0318329B2 (en)
JPS61214402A (en) Manufacture of sintered magnet
JPS61208809A (en) Manufacture of sintered magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JPH1064712A (en) R-fe-b rare earth sintered magnet
JPS6119084B2 (en)
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
USRE32714E (en) Method of producing high performance permanent magnets
JPH01127606A (en) Production of raw material powder for permanent magnet material
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet