JPH1064712A - R-fe-b rare earth sintered magnet - Google Patents

R-fe-b rare earth sintered magnet

Info

Publication number
JPH1064712A
JPH1064712A JP9193803A JP19380397A JPH1064712A JP H1064712 A JPH1064712 A JP H1064712A JP 9193803 A JP9193803 A JP 9193803A JP 19380397 A JP19380397 A JP 19380397A JP H1064712 A JPH1064712 A JP H1064712A
Authority
JP
Japan
Prior art keywords
rare earth
sintered
sintered magnet
magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9193803A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
亮 菊地
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9193803A priority Critical patent/JPH1064712A/en
Publication of JPH1064712A publication Critical patent/JPH1064712A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To obtain greatly elevated magnetic characteristics by specifying the oxygen and carbon contacts of a rare earth sintered magnet and sintered compact density. SOLUTION: A starting material for an R-Fe-B rare earth sintered magnet (R is at least one of rare earth elements including Y) is weighed, dissolved and cast into ingot in a high frequency melting furnace. The ingot is roughly and finely pulverized, the obtd. powder is dipped in a mineral oil in an nitrogen atmosphere and then wet formed by the so-called lateral magnetic field type press having an orientation magnetic field perpendicular to the compressing direction. The obtd. compact is heat treated into a sintered product having an oxygen content of 3000ppm or less and nitrogen content of 0.1wt.% or less and sintering density of 7.58g/cm<3> or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁石特性に寄与し
ない非磁性化合物を形成する不可避不純物の酸素、炭素
の含有量を極力低減して主相比率を高めると同時に高密
度化を実現して従来よりも高い磁気特性を得られるよう
にしたR−Fe−B系希土類焼結磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to reduce the contents of oxygen and carbon, which are unavoidable impurities that form nonmagnetic compounds that do not contribute to the magnet properties, as much as possible to increase the ratio of the main phase and to realize a high density. The present invention relates to an R—Fe—B based rare earth sintered magnet capable of obtaining higher magnetic characteristics than before.

【0002】[0002]

【従来の技術】希土類焼結磁石は、原料金属を溶解し、
鋳型に注湯して得られたインゴットを粉砕、成形、焼
結、熱処理、加工の粉末冶金技術を用いて製造される
が、その中でR−Fe−B系希土類焼結磁石(RはYを
含む希土類元素のうち一種または二種以上)は、高性能
磁石として注目されている。しかし、インゴットを粉砕
して得られた希土類焼結磁石用合金粉末は、化学的に非
常に活性であるため、大気中において極めて急激に酸化
し、磁気特性の劣化を招いてしまう。また、希土類焼結
磁石用合金粉末は、急激な酸化により発熱するだけでな
く甚だしい場合は、発火してしまうため安全性の面でも
問題があった。従来は、このような急激な酸化を防止す
る方法として、窒素、アルゴン等の不活性ガス中に長時
間放置し表面を安定化する処理が行われていたが、処理
に長時間を要するため量産性に問題があった。更に、希
土類焼結磁石用合金粉末は吸湿性があり、大気中に放置
すると大気中の水分を吸着し、製造された希土類焼結磁
石の特性を劣化させるという問題点があった。
2. Description of the Related Art Rare earth sintered magnets dissolve raw metal,
An ingot obtained by pouring into a mold is manufactured using powder metallurgy techniques of pulverization, molding, sintering, heat treatment, and processing. Among them, R-Fe-B based rare earth sintered magnets (R is Y , One or more of the rare earth elements) has attracted attention as a high-performance magnet. However, since the alloy powder for rare earth sintered magnets obtained by pulverizing the ingot is chemically very active, it is very rapidly oxidized in the air and causes deterioration of magnetic properties. In addition, the alloy powder for a rare earth sintered magnet not only generates heat due to rapid oxidation, but also ignites in severe cases, causing a problem in terms of safety. Conventionally, as a method for preventing such rapid oxidation, a treatment for stabilizing the surface by leaving it in an inert gas such as nitrogen or argon for a long time has been performed. There was a problem with sex. Furthermore, the alloy powder for rare earth sintered magnets has a hygroscopic property, and when left in the air, there is a problem that the moisture in the atmosphere is adsorbed and the properties of the manufactured rare earth sintered magnet are deteriorated.

【0003】[0003]

【発明が解決しようとする課題】この問題に関し特開昭
61-114505号では、R−Fe−B系(RはYを
含む希土類元素のうち一種または二種以上)合金粉末と
有機溶媒との混合物を作成しこの混合物を磁場中にて圧
縮し有機溶媒をろ過して得た成形体を乾燥、焼結および
熱処理する永久磁石の製造方法が提案されている。この
製造方法によれば、湿式で成形するため酸化、水分の吸
着の問題が解決される。近年R−Fe−B系永久磁石で
より高い磁気特性を得るための検討が盛んに行われてお
り、本発明者も特開昭61-114505号の湿式成形
法を用いて検討を行った。その結果、確かに含有酸素量
の低下はなされるものの、トルエン、アルコールといっ
た有機溶媒を用いると1週間程度の比較的短時間の内に
溶媒に浸漬した微粉あるいは成形体の酸素量が増加し得
られる焼結体の磁気特性が劣化し易いという問題点があ
ることが判明した。そこで、本発明の課題は、微粉およ
び成形体の酸化や水分の吸着を防止して焼結体の酸素量
を低減するとともに磁気特性を劣化させる焼結体の炭素
量を低減することでR−Fe−B系希土類焼結磁石に占
める磁石特性に寄与しない非磁性化合物の体積比率を非
常に少なく抑え、同時に焼結体密度を実質的にR−Fe
−B系磁石の理論密度に略相当する非常に高い密度域に
緻密化することにより、従来に比べて大幅に高い磁気特
性を有したR−Fe−B系希土類焼結磁石を提供するこ
とである。
In order to solve this problem, Japanese Patent Application Laid-Open No. 61-114505 discloses an R-Fe-B (R is one or two or more rare earth elements including Y) alloy powder and an organic solvent. A method for producing a permanent magnet has been proposed in which a mixture is prepared, the mixture is compressed in a magnetic field, and an organic solvent is filtered to obtain a molded body, which is dried, sintered, and heat-treated. According to this manufacturing method, the problems of oxidation and adsorption of moisture are solved because of the wet molding. In recent years, studies for obtaining higher magnetic properties with R-Fe-B-based permanent magnets have been actively conducted, and the present inventor has also conducted studies using a wet molding method disclosed in JP-A-61-114505. As a result, although the oxygen content is certainly reduced, the use of an organic solvent such as toluene or alcohol can increase the oxygen content of the fine powder or the molded body immersed in the solvent within a relatively short time of about one week. It has been found that there is a problem that the magnetic properties of the sintered body are easily deteriorated. Therefore, an object of the present invention is to reduce the amount of oxygen in a sintered body by preventing the oxidation of fine powder and a molded body and the adsorption of moisture, and to reduce the amount of carbon in a sintered body that degrades magnetic characteristics by reducing the amount of carbon. The volume ratio of the non-magnetic compound which does not contribute to the magnet characteristics in the Fe-B based rare earth sintered magnet is extremely small, and at the same time, the density of the sintered body is substantially reduced to R-Fe.
By densifying it into a very high density region substantially corresponding to the theoretical density of -B magnets, it is possible to provide R-Fe-B rare earth sintered magnets having significantly higher magnetic properties than before. is there.

【0004】[0004]

【課題を解決するための手段】本発明者らは特開昭61
-114505号の湿式成形法における微粉および成形
体の保存性が低い原因について種々検討を行ったとこ
ろ、以下のことが判明した。即ち、アルコール、アセト
ン等の親水性有機溶媒は、ある程度の水分を含んでお
り、この水分と微粉および成形体中の希土類元素が反応
し水酸化物を生成する。これが焼結時に酸化物となり希
土類焼結磁石の特性を劣化させる原因となる。また、ト
ルエン、ヘキサン等の疎水性有機溶媒は酸素の溶解度が
高く、これらの有機溶媒中の溶存酸素が微粉および成形
体中の希土類元素と反応し酸化物を生成させ、希土類焼
結磁石の特性を劣化させる。これらの問題を解消するた
めには、疎水性の液体であることと酸素の溶解度が小さ
いことが必要となる。本発明者らは、種々の物質につい
て検討した結果、これらの条件を満足するものとして、
鉱物油または合成油が適しており、これら鉱物油および
/または合成油を用いた場合に上記課題を解決できるこ
とを知見するに至った。さらに、本発明者らは酸素量お
よび炭素量を低減することで磁石特性に寄与しない非磁
性化合物の体積比率が非常に少なく抑えられておりかつ
R−Fe−B系希土類磁石の理論密度に略相当する焼結
体密度域に緻密化されている健全な焼結体組織を有した
R−Fe−B系希土類焼結磁石が得られること、すなわ
ち含有酸素量が3000ppm以下でかつ含有炭素量が
0.1wt%以下であり、かつ焼結体密度が7.58g
/cm3以上である場合に従来に比べて格段に高い磁気
特性を有したR−Fe−B系希土類焼結磁石が得られる
ことを見出した。すなわち本発明は、R−Fe−B系
(RはYを含む希土類元素のうち一種または二種以上)
希土類焼結磁石であって、含有酸素量が3000ppm
以下、含有炭素量が0.1wt%以下であるとともに焼
結体密度が7.58g/cm3以上に高密度化されたことを
特徴とするR−Fe−B系希土類焼結磁石である。本発
明磁石は磁石特性に寄与しない非磁性化合物の体積比率
を非常に少なく抑えており、同時にR−Fe−B系磁石
の略理論密度相当の焼結体密度を具有しているので従来
に比べて格段に高い磁気特性のR−Fe−B系希土類焼
結磁石を提供することができる。また、本発明は、成形
工程においてR−Fe−B系(RはYを含む希土類元素
のうち一種または二種以上)希土類焼結磁石用原料を配
向磁場の方向が圧縮方向に対して垂直である成形用金型
のキャビティに充填し磁気異方性が付与されてなるR−
Fe−B系希土類焼結磁石であって、含有酸素量が30
00ppm以下、含有炭素量が0.1wt%以下である
とともに焼結体密度が7.58g/cm3以上に高密度化さ
れており、最大エネルギー積を40MGOe以上とした
ことを特徴とするR−Fe−B系希土類焼結磁石であ
る。本発明によれば、いわゆる横磁場成形による40M
GOe以上のR−Fe−B系希土類焼結磁石を安定に提
供可能である。また、本発明は、成形工程においてR−
Fe−B系(RはYを含む希土類元素のうち一種または
二種以上)希土類焼結磁石用原料体を配向磁場の方向が
圧縮方向に対して平行である成形用金型のキャビティに
充填し磁気異方性が付与されてなるR−Fe−B系希土
類焼結磁石であって、含有酸素量が3000ppm以
下、含有炭素量が0.1wt%以下であるとともに焼結
体密度が7.58g/cm3以上に高密度化されており、最
大エネルギー積を40MGOe以上としたことを特徴と
するR−Fe−B系希土類焼結磁石である。本発明によ
れば、いわゆる縦磁場成形による40MGOe以上のR
−Fe−B系希土類焼結磁石を安定に提供可能である。
Means for Solving the Problems The present inventors have disclosed Japanese Patent Application Laid-open No. Sho 61
Various investigations were conducted on the cause of the low preservability of the fine powder and the molded product in the wet molding method of -114505, and the following was found. That is, the hydrophilic organic solvent such as alcohol and acetone contains a certain amount of water, and the water reacts with the fine powder and the rare earth element in the compact to form a hydroxide. This becomes an oxide at the time of sintering and causes deterioration of the characteristics of the rare earth sintered magnet. In addition, hydrophobic organic solvents such as toluene and hexane have high oxygen solubility, and the dissolved oxygen in these organic solvents reacts with the fine powder and the rare earth element in the compact to form oxides. Deteriorates. In order to solve these problems, it is necessary that the liquid is a hydrophobic liquid and the solubility of oxygen is small. The present inventors have studied various substances, and as a result satisfying these conditions,
They have found that mineral oils or synthetic oils are suitable, and that these problems can be solved by using these mineral oils and / or synthetic oils. Further, the present inventors have reduced the volume ratio of non-magnetic compounds that do not contribute to the magnet properties by reducing the oxygen content and the carbon content, and have reduced the theoretical density of the R-Fe-B-based rare earth magnet to a very low level. An R—Fe—B-based rare earth sintered magnet having a sound sintered body structure densified in a corresponding sintered body density region can be obtained, that is, the oxygen content is 3000 ppm or less and the carbon content is 0.1 wt% or less, and the sintered body density is 7.58 g
/ Cm 3 or more, it has been found that an R—Fe—B based rare earth sintered magnet having much higher magnetic properties than conventional ones can be obtained. That is, the present invention provides an R—Fe—B system (R is one or more rare earth elements including Y)
Rare earth sintered magnet with oxygen content of 3000ppm
Hereinafter, an R-Fe-B rare earth sintered magnet sintered body density with carbon content is less than 0.1 wt% is characterized in that it is densified to 7.58 g / cm 3 or more. The magnet of the present invention has a very low volume ratio of non-magnetic compounds that do not contribute to the magnet properties, and at the same time has a sintered body density equivalent to the theoretical density of R-Fe-B based magnets, so that it is Thus, it is possible to provide an R-Fe-B-based rare earth sintered magnet having extremely high magnetic properties. Further, in the present invention, in the forming step, an R-Fe-B-based (R is one or more of rare earth elements including Y) rare earth sintered magnet raw material is oriented in the direction of the orientation magnetic field perpendicular to the compression direction. An R-filled into a cavity of a molding die and given magnetic anisotropy
A Fe-B based rare earth sintered magnet having an oxygen content of 30
R- is characterized by having a sintered body density of not more than 00 ppm, a carbon content of not more than 0.1 wt%, a sintered body density of not less than 7.58 g / cm 3 and a maximum energy product of not less than 40 MGOe. It is a Fe-B based rare earth sintered magnet. According to the present invention, 40M by so-called transverse magnetic field molding
R-Fe-B based rare earth sintered magnets of GOe or more can be stably provided. In addition, the present invention relates to a method for forming an R-
A Fe-B-based (R is one or two or more rare earth elements including Y) raw material for a sintered rare earth magnet is filled in a cavity of a molding die in which the direction of the orientation magnetic field is parallel to the compression direction. An R-Fe-B-based rare earth sintered magnet provided with magnetic anisotropy, having an oxygen content of 3000 ppm or less, a carbon content of 0.1 wt% or less, and a sintered body density of 7.58 g. The R-Fe-B based rare earth sintered magnet is characterized in that the density is increased to at least / cm 3 and the maximum energy product is at least 40 MGOe. According to the present invention, R of 40 MGOe or more by so-called longitudinal magnetic field molding
-It is possible to stably provide an Fe-B based rare earth sintered magnet.

【0005】以下に、本発明を詳述する。本発明におけ
る希土類焼結磁石用合金はR−Fe−B系であればよい
が、望ましくはR−Fe(Co)−B−M系が良く、R
はYを含む希土類元素のうち一種または二種以上を25
〜35重量%、Bは0.8〜1.2重量%、MはAl、
Nb、Ti、V、Zr、Mo、W、Ga、Cu、Zn、
Ge、Snのうち一種または二種以上を5重量%以下、
残部が不可避的な混入物をのぞきFeまたはFeとCo
からなる。合金系として、Nd−Fe−B−Al−N
b、Nd−Fe−Co−B−Al−Nb、Nd−Fe−
B−Al−Ga、Nd−Fe−Co−B−Al−Ga、
Nd−Dy−Fe−B−Al−Nb、Nd−Dy−Fe
−Co−B−Al−Nb、Nd−Dy−Fe−B−Al
−Ga、Nd−Fe−Dy−Co−B−Al−Ga等が
例示されるが、これらに限定されるものではない。
Hereinafter, the present invention will be described in detail. The alloy for the rare earth sintered magnet in the present invention may be an R—Fe—B system, but preferably an R—Fe (Co) —BM system.
Represents 25 or more of one or more rare earth elements including Y
~ 35 wt%, B is 0.8-1.2 wt%, M is Al,
Nb, Ti, V, Zr, Mo, W, Ga, Cu, Zn,
One or more of Ge and Sn, 5% by weight or less;
Fe or Fe and Co except for inevitable contaminants
Consists of Nd-Fe-B-Al-N as alloy system
b, Nd-Fe-Co-B-Al-Nb, Nd-Fe-
B-Al-Ga, Nd-Fe-Co-B-Al-Ga,
Nd-Dy-Fe-B-Al-Nb, Nd-Dy-Fe
-Co-B-Al-Nb, Nd-Dy-Fe-B-Al
Examples include -Ga, Nd-Fe-Dy-Co-B-Al-Ga, but are not limited thereto.

【0006】本発明磁石を製作する好適な手段は本発明
磁石用の原料微粉末を鉱物油または合成油に浸漬させて
酸化を防止する方法である。ジェットミル等による乾式
粉砕の場合は、ジェットミルの微粉の排出口に鉱物油ま
たは合成油を満たした容器を設置し、微粉を大気に触れ
させずに不活性または還元性雰囲気中で鉱物油または合
成油中に直接回収し、スラりー状の混合物とすることが
望ましい。微粉の表面は鉱物油または合成油によって大
気から遮断され、酸化が防止される。なお、鉱物油と合
成油との混合油を用いてもよいことは言うまでもない。
A preferred means of producing the magnet of the present invention is a method of preventing oxidation by immersing the raw material powder for the magnet of the present invention in mineral oil or synthetic oil. In the case of dry grinding with a jet mill, etc., install a container filled with mineral oil or synthetic oil at the outlet of the fine powder of the jet mill, and expose the fine powder to mineral oil or inert gas in an inert or reducing atmosphere without contacting the atmosphere. It is desirable that the slurry is directly recovered in the synthetic oil to form a slurry-like mixture. The surface of the fines is shielded from the atmosphere by mineral oil or synthetic oil, preventing oxidation. Needless to say, a mixed oil of a mineral oil and a synthetic oil may be used.

【0007】このようにして得られた微粉末と鉱物油ま
たは合成油との混合物を湿式成形するのに好適なプレス
装置の1例を図1に示す。図1に示すプレス装置を用い
た湿式成形の例を以下説明する。断続できる配向磁場中
に配置された金型1のキャビティ内に微粉末と鉱物油ま
たは合成油の混合物を充填し配向磁場を印加することに
より微粉末を配向させ、上パンチ5を下降させ圧力をか
けると鉱物油または合成油は、下パンチ2上に置かれた
フィルター4を通し下パンチ2に設けられた溶媒排出用
穴3を通し排出され粉末が圧縮、成形される。微粉末と
鉱物油または合成油の混合物を圧縮している間は配向磁
場を印加してもしなくても構わないが、粉末の配向を維
持するためおよび金型1と上・下パンチ5、2のクリア
ランスから鉱物油または合成油とともに微粉末が吹き出
すのを防止するためには圧縮が完了するまで配向磁場を
印加した状態を維持することが望ましい。図1は配向磁
場の方向が圧縮方向に対し垂直の場合を示しているが、
圧縮方向に平行になるように配向磁場の発生機構、つま
り配向磁場用コイル6およびポールピース7を設けても
構わない。また配向磁場の発生方法もこれらに限られる
ものではない。また、微粉末と鉱物油または合成油の混
合物の金型1のキャビティ内への充填を加圧しつつ行う
ことが望ましい。これは、加圧充填を行った方が残留磁
束密度(Br)、最大エネルギ−積((BH)max)
が高い値となるからである。特に、図1の配向磁場の方
向が、圧縮方向に対し垂直な場合(いわゆる横磁場成形
の場合)は勿論のこと、圧縮方向に対し平行な場合(い
わゆる縦磁場成形の場合)においても加圧充填を行うこ
とで(BH)max≧40MGOeのものを安定に得る
ことができる。すなわち、加圧充填によってR−Fe−
B系希土類焼結磁石により良好な磁気異方性が付与され
るのである。
FIG. 1 shows an example of a press apparatus suitable for wet-forming a mixture of the fine powder thus obtained and a mineral oil or a synthetic oil. An example of wet molding using the press device shown in FIG. 1 will be described below. A mixture of fine powder and mineral oil or synthetic oil is filled in the cavity of the mold 1 placed in an intermittent aligning magnetic field, and the fine powder is oriented by applying an aligning magnetic field. When applied, the mineral oil or the synthetic oil is discharged through a filter 4 placed on the lower punch 2 and through a solvent discharge hole 3 provided in the lower punch 2, and the powder is compressed and formed. While the mixture of the fine powder and the mineral oil or the synthetic oil is being compressed, the orientation magnetic field may or may not be applied. However, in order to maintain the orientation of the powder, the mold 1 and the upper and lower punches 5, 2 In order to prevent the fine powder from blowing out together with the mineral oil or synthetic oil from the clearance, it is desirable to maintain the state in which the orientation magnetic field is applied until the compression is completed. FIG. 1 shows a case where the direction of the alignment magnetic field is perpendicular to the compression direction,
A mechanism for generating an orientation magnetic field, that is, an orientation magnetic field coil 6 and a pole piece 7 may be provided so as to be parallel to the compression direction. The method of generating the alignment magnetic field is not limited to these. It is desirable that the mixture of the fine powder and the mineral oil or the synthetic oil be filled into the cavity of the mold 1 while applying pressure. This is because the residual magnetic flux density (Br) and the maximum energy product ((BH) max) are better when pressure filling is performed.
Is a high value. In particular, pressure is applied not only when the direction of the alignment magnetic field in FIG. 1 is perpendicular to the compression direction (so-called transverse magnetic field forming) but also when it is parallel to the compressing direction (so-called vertical magnetic field forming). By filling, (BH) max ≧ 40 MGOe can be stably obtained. That is, R-Fe-
Good magnetic anisotropy is provided by the B-based rare earth sintered magnet.

【0008】得られた成形体は、大気中に放置すると鉱
物油または合成油が気化するのに伴い表面から乾燥し鉱
物油または合成油で濡れていない部分が生じ徐々に酸化
され焼結により得られる希土類焼結磁石の特性を劣化さ
せる。これを防止するため、成形体は成形直後に鉱物油
または合成油もしくは非酸化性または還元性雰囲気のガ
ス中で焼結炉に挿入するまで保存することが望ましい。
When the obtained compact is left in the air, the mineral oil or the synthetic oil evaporates to dry out from the surface as the mineral oil or the synthetic oil evaporates. The properties of the rare earth sintered magnet to be used. To prevent this, it is desirable that the compact be stored immediately after compaction in a sintering furnace in mineral oil or synthetic oil or a gas in a non-oxidizing or reducing atmosphere.

【0009】次に成形体を焼結するが、常温から焼結温
度である950〜1150℃まで急激に昇温すると成形
体内温度が急激に上昇し、成形体中に残留した鉱物油ま
たは合成油と成形体内の希土類元素が反応することによ
り希土類炭化物を生成し、焼結に十分な量の液相の発生
が妨げられ十分な密度の焼結体が得られず磁気特性の劣
化を招くおそれがある。これを防止するためには、温度
100〜500℃、圧力10-1Torr以下の条件下で
30分以上保持する脱鉱物油または脱合成油処理を施す
ことが望ましい。この処理により成形体中に残留した鉱
物油または合成油を十分に除去することができる。な
お、保持は100〜500℃の温度範囲であれば一点で
ある必要はなく二点以上であってもよい。また10-1
orr以下の圧力下で室温から500℃までの昇温速度
を10℃/min以下、好ましくは5℃/min以下とする脱
鉱物油または脱合成油処理を施すことによっても、温度
100〜500℃、圧力10-1Torr以下の条件下で
30分以上保持する処理と同様な効果を得ることができ
る。以上の処理によって鉱物油あるいは合成油を除去さ
れた成形体は、表面が非常に活性になっているため、こ
れを大気に触れさせずに焼結炉に入炉し、焼結する。本
発明では、以上に説明したように、鉱物油あるいは合成
油によって、微粉砕以降の工程での微粉や成形体の酸化
を防止することができる。また、先に示した脱鉱物油、
脱合成油処理を行うことで、成形体中の鉱物油や合成油
を除去することができる。このため、焼結過程で生成す
る希土類の酸化物や炭化物の量は少なく、前者は焼結体
の酸素量換算で3000ppm以下、後者は焼結体の炭
素量換算で0.1wt%以下とすることができる。焼結
時の生成酸化物や炭化物は、それ自体非磁性介在物とし
て磁気的に有害であり、焼結時の結晶の粒成長を妨げる
とともに焼結体密度を低下させる。酸化物や炭化物の生
成量が非常に少なく抑えられた本発明磁石の焼結体では
緻密化が容易に促進され、7.58g/cm3以上とい
う極めて高い密度が得られる。
Next, when the molded body is sintered, if the temperature is rapidly increased from room temperature to sintering temperature of 950 to 1150 ° C., the temperature of the molded body is rapidly increased, and the mineral oil or synthetic oil remaining in the molded body Reacts with the rare earth elements in the compact to generate rare earth carbides, which prevents the generation of a sufficient amount of liquid phase for sintering, resulting in a sintered body with insufficient density and degraded magnetic properties. is there. In order to prevent this, it is desirable to carry out a demineralized oil or a de-synthetic oil treatment that is maintained at a temperature of 100 to 500 ° C. and a pressure of 10 −1 Torr or less for 30 minutes or more. By this treatment, mineral oil or synthetic oil remaining in the molded product can be sufficiently removed. The holding is not required to be performed at a single point in the temperature range of 100 to 500 ° C., and may be performed at two or more points. 10 -1 T
By applying a demineralized oil or a de-synthetic oil treatment at a temperature rising rate from room temperature to 500 ° C. under a pressure of not more than 10 ° C./min, preferably 5 ° C./min or less under a pressure of not more than 100 ° C. The same effect can be obtained as in the case where the pressure is maintained at a pressure of 10 -1 Torr or less for 30 minutes or more. Since the surface of the molded body from which the mineral oil or the synthetic oil has been removed by the above treatment is very active, the molded body enters a sintering furnace without being exposed to the atmosphere and is sintered. In the present invention, as described above, the mineral oil or the synthetic oil can prevent the oxidation of the fine powder and the compact in the steps after the pulverization. Also, the demineralized oil shown above,
By performing the de-synthetic oil treatment, mineral oil and synthetic oil in the molded body can be removed. For this reason, the amount of rare earth oxides and carbides generated in the sintering process is small, and the former is 3000 ppm or less in terms of the oxygen amount of the sintered body, and the latter is 0.1 wt% or less in terms of the carbon amount of the sintered body. be able to. Oxides and carbides generated during sintering are magnetically harmful as nonmagnetic inclusions themselves, hinder crystal grain growth during sintering and lower the density of the sintered body. In the sintered body of the magnet of the present invention in which the generation amount of oxides and carbides is extremely small, densification is easily promoted, and an extremely high density of 7.58 g / cm 3 or more can be obtained.

【0010】鉱物油または合成油としては、分留点が3
50℃以下、動粘度が成形性の点から室温において10
cSt以下、さらに好ましくは5cSt以下が良い。
[0010] Mineral oil or synthetic oil has a fractionation point of 3
50 ° C. or less, kinematic viscosity is 10 at room temperature in view of moldability.
cSt or less, more preferably 5 cSt or less.

【0011】[0011]

【実施例】以下、本発明を実施例をもって具体的に説明
するが、本発明の内容は、これらに限定されるものでは
ない。 (実施例1)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31.
0%、B=1.0%、Al=0.3%、残部Feなるイ
ンゴットを製造した。このインゴットを粗粉砕し、次い
でジェットミルを用い雰囲気の酸素量が10ppmの窒素
中で微粉砕した。微粉末の平均粒経は4.1μmであっ
た。粉砕して得られた微粉末を窒素雰囲気で分留点が2
00〜300℃、室温での動粘度が2cStの鉱物油
(出光興産製、商品名:MC OIL P−02)に浸
漬した。これを配向磁場の方向が圧縮方向に対して垂直
であるいわゆる横磁場型の図1に示すプレス装置を用い
て湿式成形を行った。すなわち、鉱物油に浸漬された微
粉末を金型1のキャビティ内に充填し、配向磁場用コイ
ル6に電流を流し配向磁場強度15kOeで鉱物油中の微
粉末を配向させ、その状態のまま上パンチ5により加圧
した。加圧された鉱物油の大部分はフィルター4を通し
下パンチ2に設けられた溶媒排出用穴3を通し排出され
た。その後配向磁場電流を切り、成形体を取り出してこ
れを直ちに鉱物油に浸漬させた。得られた成形体を鉱物
油から取り出し焼結炉に挿入し圧力5×10-2Torrで室
温から150℃まで1.56℃/minで昇温し、その温度
で1時間保持の後500℃まで1.5℃/minで昇温、成
形体中の鉱物油を除去し、圧力5×10-4Torrで500
から1100℃まで20℃/minで昇温、2時間保持しそ
の後炉冷した。得られた焼結体を900℃で1時間、6
00℃で1時間熱処理した後、焼結体の酸素量、炭素
量、磁気特性、焼結体密度を測定したところ表1に示す
ように十分な特性(焼結体酸素量=1890ppm、炭素
量=0.03wt%、Br=13.5kG、iHc=11.
3kOe、(BH)max=41.5MGOe、 ρs=7.5
9g/cm3)が得られた。 (実施例3)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例1と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性、焼結体密度を測定したところ表1に示
すように十分な特性が得られた。 (実施例5)実施例1で得られた成形体を実施例1と同
じ鉱物油中に1ヶ月保存し、実施例1と同様の工程によ
り熱処理した焼結体とし、焼結体の酸素量、炭素量、磁
気特性、焼結体密度を測定したところ表1に示すように
十分な特性が得られた。 (実施例6)実施例3で得られた成形体を実施例3と同
じ鉱物油中に1週間および1ヶ月保存し、実施例3と同
様の工程により熱処理した焼結体とし、焼結体の酸素
量、炭素量、磁気特性、焼結体密度を測定したところ表
1に示すように十分な特性が得られた。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the contents of the present invention are not limited to these examples. (Example 1) Electrolytic iron, ferroboron, and Nd were weighed in predetermined amounts as starting materials for rare earth sintered magnets, and were melted and cast in a high frequency melting furnace to obtain Nd = 31.% by weight.
An ingot of 0%, B = 1.0%, Al = 0.3%, and the balance Fe was produced. This ingot was roughly pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere containing 10 ppm of oxygen. The average particle size of the fine powder was 4.1 μm. The fine powder obtained by pulverization has a fractionation point of 2 in a nitrogen atmosphere.
It was immersed in a mineral oil (manufactured by Idemitsu Kosan, trade name: MC OIL P-02) having a kinematic viscosity of 2 cSt at 00 to 300 ° C. and room temperature. This was subjected to wet molding using a so-called transverse magnetic field type press device shown in FIG. 1 in which the direction of the alignment magnetic field was perpendicular to the compression direction. That is, the fine powder immersed in the mineral oil is filled in the cavity of the mold 1, a current is applied to the coil 6 for the aligning magnetic field, and the fine powder in the mineral oil is oriented at the aligning magnetic field strength of 15 kOe. Pressure was applied by a punch 5. Most of the pressurized mineral oil was discharged through the filter 4 and the solvent discharge hole 3 provided in the lower punch 2. Thereafter, the orientation magnetic field current was turned off, and the molded product was taken out and immediately immersed in mineral oil. The obtained compact was taken out from the mineral oil, inserted into a sintering furnace, and heated from room temperature to 150 ° C. at a pressure of 5 × 10 −2 Torr at a rate of 1.56 ° C./min. The temperature was raised at 1.5 ° C./min to remove the mineral oil from the compact, and the pressure was 5 × 10 −4 Torr to 500
To 1100 ° C. at a rate of 20 ° C./min, kept for 2 hours, and then cooled in a furnace. The obtained sintered body was heated at 900 ° C. for 1 hour for 6 hours.
After heat treatment at 00 ° C. for 1 hour, the sintered body was measured for oxygen content, carbon content, magnetic properties, and sintered density. As shown in Table 1, sufficient properties were obtained (sintered product oxygen content = 1890 ppm, carbon content = 0.03 wt%, Br = 13.5 kG, iHc = 11.
3 kOe, (BH) max = 41.5 MGOe, ρs = 7.5
9 g / cm 3 ) were obtained. (Example 3) Electrolytic iron, ferroboron, and Nd were weighed in predetermined amounts as starting materials for rare earth sintered magnets, and were melted and cast in a high-frequency melting furnace to obtain Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the remainder was Fe ingot. This ingot was made into a sintered body which was heat-treated in the same process as in Example 1, and the amount of oxygen, the amount of carbon, the magnetic properties, and the density of the sintered body were measured. As shown in Table 1, sufficient properties were obtained. Was done. (Example 5) The compact obtained in Example 1 was stored in the same mineral oil as in Example 1 for one month to obtain a sintered body which was heat-treated in the same process as in Example 1; , Carbon content, magnetic properties, and sintered density were measured, and sufficient properties were obtained as shown in Table 1. (Example 6) The molded body obtained in Example 3 was stored in the same mineral oil as in Example 1 for one week and one month, and was subjected to heat treatment in the same process as in Example 3 to obtain a sintered body. When the amount of oxygen, the amount of carbon, the magnetic characteristics, and the density of the sintered body were measured, sufficient characteristics were obtained as shown in Table 1.

【0012】(比較例1)実施例1と同じインゴットを
実施例1と同様の粉砕を行い、鉱物油中に回収せず大気
中に開放したところ、即座に発火し微粉の回収を行うこ
とはできなかった。 (比較例2)実施例1と同じインゴットを実施例1と同
様の粉砕を行い、窒素ガス中で気密容器に回収し、48
時間大気圧の窒素ガス中で安定化処理をした微粉末を大
気中、配向磁場強度15kOe、成形圧1ton/cm2で成形
し、得られた成形体を5×10-4Torrで室温から110
0℃まで20℃/minで昇温、2時間保持後炉冷した。得
られた焼結体を900℃で1時間、600℃で1時間熱
処理した後、焼結体の酸素量、炭素量、磁気特性、焼結
体密度を測定したところ表1に示すように、実施例より
酸素量が高く、磁気特性、焼結体密度も実施例より低い
結果となった。 (比較例3)実施例1と同じインゴットを実施例1と同
様の粉砕を行い、窒素ガス中で気密容器に回収し、48
時間大気圧の窒素ガス中で安定化処理をした微粉末を大
気中、配向磁場強度15kOe、成形圧1ton/cm2で成形
し、得られた成形体を圧力5×10-4Torrで室温から1
100℃まで20℃/minで昇温、2時間保持後炉冷し
た。得られた焼結体を900℃で1時間、600℃で1
時間熱処理した後、焼結体の酸素量、炭素量、磁気特
性、焼結体密度を測定したところ表1に示すように、実
施例より酸素量が高く、焼結体密度、磁気特性も実施例
より低い結果となった。 (比較例4)実施例1と同じインゴットを実施例1と同
様に粉砕、n−ヘキサン中への回収、湿式成形を行い、
得られた成形体を圧力5×10-4Torrで室温から110
0℃まで20℃/minで昇温、2時間保持後炉冷した。得
られた焼結体を900℃で1時間、600℃で1時間熱
処理した後、焼結体の酸素量、炭素量、磁気特性、焼結
体密度を測定したところ表1に示すように、酸素量は実
施例よりやや高い程度であるが炭素量が高く焼結体密度
が小さくなっており、磁気特性も実施例より低い結果と
なった。 (比較例5)実施例1と同じインゴットを実施例1と同
様に粉砕し、n−ヘキサン中に回収、湿式成形を行い、
n−ヘキサン中に1週間および1ヶ月保存した後、実施
例1と同様の工程で熱処理した焼結体とした。得られた
焼結体の酸素量、炭素量、磁気特性、焼結体密度を測定
したところ炭素量、焼結体密度は実施例1と同等である
が、酸素量が実施例1に比べ高く、磁気特性も実施例1
より低い結果となった。
(Comparative Example 1) When the same ingot as in Example 1 was pulverized in the same manner as in Example 1 and opened to the atmosphere without being recovered in mineral oil, it was immediately ignited to recover fine powder. could not. (Comparative Example 2) The same ingot as in Example 1 was pulverized in the same manner as in Example 1 and collected in an airtight container in nitrogen gas.
Fine powder in the atmosphere in which the stabilization treatment time atmospheric pressure nitrogen gas, the orientation magnetic field intensity 15 kOe, and molded at a molding pressure of 1 ton / cm 2, from room temperature and the resulting molded body 5 × 10 -4 Torr 110
The temperature was raised to 0 ° C. at a rate of 20 ° C./min, kept for 2 hours, and then cooled in the furnace. After the obtained sintered body was heat-treated at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, the oxygen amount, carbon amount, magnetic properties, and sintered body density of the sintered body were measured. The results showed that the amount of oxygen was higher than in the examples, and the magnetic properties and the sintered body density were lower than those in the examples. (Comparative Example 3) The same ingot as in Example 1 was pulverized in the same manner as in Example 1 and collected in an airtight container in nitrogen gas.
The fine powder stabilized in a nitrogen gas at atmospheric pressure for a time is molded in the atmosphere at an orientation magnetic field strength of 15 kOe and a molding pressure of 1 ton / cm 2 , and the obtained molded body is subjected to a pressure of 5 × 10 -4 Torr from room temperature. 1
The temperature was raised to 100 ° C. at a rate of 20 ° C./min, kept for 2 hours, and then cooled in the furnace. The obtained sintered body is heated at 900 ° C. for 1 hour and at 600 ° C. for 1 hour.
After heat treatment for a period of time, the amount of oxygen, the amount of carbon, the magnetic properties, and the density of the sintered body were measured. As shown in Table 1, the amount of oxygen was higher than in the examples, and the density of the sintered body and the magnetic properties were also measured. The result was lower than the example. (Comparative Example 4) The same ingot as in Example 1 was pulverized, recovered in n-hexane, and wet-molded in the same manner as in Example 1,
The obtained molded body is heated from room temperature to 110 at a pressure of 5 × 10 −4 Torr.
The temperature was raised to 0 ° C. at a rate of 20 ° C./min, kept for 2 hours, and then cooled in the furnace. After the obtained sintered body was heat-treated at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, the oxygen amount, carbon amount, magnetic properties, and sintered body density of the sintered body were measured. Although the amount of oxygen was slightly higher than that of the example, the amount of carbon was high and the density of the sintered body was small, and the magnetic properties were lower than those of the example. (Comparative Example 5) The same ingot as in Example 1 was pulverized in the same manner as in Example 1, collected in n-hexane, and wet-molded.
After storage for one week and one month in n-hexane, a sintered body was heat-treated in the same process as in Example 1. When the oxygen content, carbon content, magnetic properties, and sintered density of the obtained sintered body were measured, the carbon content and the sintered density were the same as those in Example 1, but the oxygen content was higher than that in Example 1. Example 1
Lower results were obtained.

【0013】[0013]

【表1】 [Table 1]

【0014】(実施例7)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=31%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでジェットミルを用い雰囲気の酸素量が10pp
mの窒素中で微粉砕した。微粉末の平均粒経は4.0μ
mであった。粉砕して得られた微粉末を窒素雰囲気で分
留点が200〜300℃、室温での動粘度が2cStの
合成油(出光興産製,商品名ダフニクリーナーH)に浸
漬した。これを実施例1と同一の条件で成形、焼結、熱
処理を行い、焼結体の酸素量、炭素量、磁気特性、焼結
体密度を測定したところ表2に示すように十分な特性が
得られた。
Example 7 As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron, and Nd were weighed to a predetermined amount.
By melting and casting in a high frequency melting furnace, Nd = 31%, B = 1.0%, Al = 0.3%, and the balance F by weight%
e was produced. This ingot is roughly pulverized, and then the oxygen content of the atmosphere is 10 pp using a jet mill.
Milled in m2 nitrogen. Average particle size of fine powder is 4.0μ
m. The fine powder obtained by the pulverization was immersed in a synthetic oil (manufactured by Idemitsu Kosan Co., Ltd., trade name: Daphne Cleaner H) having a fractionation point of 200 to 300 ° C. and a kinematic viscosity of 2 cSt at room temperature in a nitrogen atmosphere. This was subjected to molding, sintering, and heat treatment under the same conditions as in Example 1, and the oxygen content, carbon content, magnetic properties, and sintered density of the sintered body were measured. As shown in Table 2, sufficient properties were obtained. Obtained.

【0015】(実施例8)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=31.0%、B=1.0%、Al=0.3%、残
部Feなるインゴットを製造した。このインゴットを粗
粉砕し、次いでジェットミルを用い雰囲気の酸素量が1
0ppmの窒素中で微粉砕した。微粉末の平均粒経は4.
2μmであった。粉砕して得られた微粉末を窒素雰囲気
で分留点が200〜300℃、室温での動粘度が2.0
cStの鉱物油(出光興産製,商品名:MC OIL
P−02)に浸漬した。次いで、図1に示すのと同じ構
造の上・下パンチを有するが、配向磁場の方向が圧縮方
向に平行になるように配向磁場用コイルとポールピース
を設けたいわゆる縦磁場型のプレス装置を用いキャビテ
ィー内に上記浸漬原料を注入して成形した。具体的に
は、原料注入口を有するダイスを用い、10kOeの磁
場を印加したキャビティに注入口を経由して10kgf
/cm2の圧力で浸漬原料を加圧注入した。注入後、印
加磁場を維持したまま1ton/cm2の加圧力で成形
し、成形体を得た。得られた成形体は以後実施例1と同
一の条件で焼結、熱処理を行い、焼結体の酸素量、炭素
量、磁気特性、焼結体密度を測定したところ表2に示す
ように十分な特性が得られた。
(Embodiment 8) As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron, and Nd were weighed in predetermined amounts.
An ingot consisting of Nd = 31.0%, B = 1.0%, Al = 0.3% and the balance Fe by weight was manufactured by melting and casting in a high frequency melting furnace. This ingot is roughly pulverized, and the oxygen content of the atmosphere is reduced to 1 using a jet mill.
Milled in 0 ppm nitrogen. The average particle size of the fine powder is 4.
It was 2 μm. The fine powder obtained by pulverization has a fractionation point of 200 to 300 ° C. in a nitrogen atmosphere and a kinematic viscosity at room temperature of 2.0.
cSt mineral oil (made by Idemitsu Kosan, trade name: MC OIL
P-02). Next, a so-called vertical magnetic field type press device having upper and lower punches having the same structure as that shown in FIG. 1, but provided with an aligning magnetic field coil and a pole piece so that the direction of the aligning magnetic field is parallel to the compression direction is provided. The immersion raw material was injected into the cavity to be used for molding. Specifically, using a dice having a raw material injection port, 10 kgf was applied to the cavity to which a magnetic field of 10 kOe was applied via the injection port.
The immersion raw material was injected under pressure at a pressure of / cm 2 . After the injection, molding was performed with a pressure of 1 ton / cm 2 while maintaining the applied magnetic field to obtain a molded body. The obtained compact was thereafter subjected to sintering and heat treatment under the same conditions as in Example 1, and the oxygen content, carbon content, magnetic properties, and sintered density of the sintered compact were measured. Characteristics were obtained.

【0016】(実施例9)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、フェロニオブ、Nd、
Dyを所定量秤量し、高周波溶解炉にて溶解、鋳造する
ことにより、重量%でNd=29.0%、Dy=2.0
%、B=1.0%、Al=0.3%、Nb=0.3%、
残部Feなるインゴットを製造した。このインゴットを
粗粉砕し、次いでジェットミルを用い雰囲気の酸素量が
10ppmの窒素中で微粉砕した。微粉末の平均粒経は
4.0μmであった。粉砕して得られた微粉末を窒素雰
囲気で分留点が200〜300℃、室温での動粘度が
2.0cStの鉱物油(出光興産製,商品名:MC O
IL P−02)に浸漬した。次いで実施例8と同一の
条件で成形し、さらに同一の条件で焼結、熱処理を行い
焼結体の酸素量、炭素量、磁気特性、焼結体密度を測定
したところ表2に示すように十分な特性が得られた。
Example 9 As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron, ferroniob, Nd,
By weighing a predetermined amount of Dy, melting and casting in a high frequency melting furnace, Nd = 29.0% by weight%, Dy = 2.0
%, B = 1.0%, Al = 0.3%, Nb = 0.3%,
An ingot having a balance of Fe was manufactured. This ingot was roughly pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere containing 10 ppm of oxygen. The average particle size of the fine powder was 4.0 μm. Mineral oil having a fractionation point of 200 to 300 ° C. and a kinematic viscosity of 2.0 cSt at room temperature (made by Idemitsu Kosan, trade name: MC O
ILP-02). Then, molding was performed under the same conditions as in Example 8, and sintering and heat treatment were further performed under the same conditions to measure the oxygen content, carbon content, magnetic properties, and sintered density of the sintered body. Sufficient characteristics were obtained.

【0017】(実施例10)希土類焼結磁石用の出発原
料として、電解鉄、Co、Ga、フェロボロン、フェロ
ニオブ、Nd、Pr、Dyを所定量秤量し、高周波溶解
炉にて溶解、鋳造することにより、重量%でNd=3
0.0%、Pr=0.5%、Dy=1.0%、B=1.
0%、Al=0.3%、Nb=0.3%、Co=2.0
%、Ga=0.1%、残部Feなるインゴットを製造し
た。このインゴットを粗粉砕し、次いでジェットミルを
用い雰囲気の酸素量が10ppmの窒素中で微粉砕した。
微粉末の平均粒経は4.1μmであった。粉砕して得ら
れた微粉末を窒素雰囲気で分留点が200〜300℃、
室温での動粘度が2.0cStの鉱物油(出光興産製,
商品名:MC OIL P−02)に浸漬した。次いで
実施例8と同一の条件で成形し、さらに同一の条件で焼
結、熱処理を行い焼結体の酸素量、炭素量、磁気特性、
焼結体密度を測定したところ表2に示すように十分な特
性が得られた。
(Example 10) Electrolytic iron, Co, Ga, ferroboron, ferroniob, Nd, Pr, and Dy are weighed as predetermined starting materials for a rare earth sintered magnet, and are melted and cast in a high frequency melting furnace. Nd = 3% by weight
0.0%, Pr = 0.5%, Dy = 1.0%, B = 1.
0%, Al = 0.3%, Nb = 0.3%, Co = 2.0
%, Ga = 0.1%, with the balance being Fe. This ingot was roughly pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere containing 10 ppm of oxygen.
The average particle size of the fine powder was 4.1 μm. The fine powder obtained by pulverization has a fractionation point of 200 to 300 ° C. in a nitrogen atmosphere,
Mineral oil with a kinematic viscosity of 2.0 cSt at room temperature (Idemitsu Kosan,
(Product name: MC OIL P-02). Then, molding was performed under the same conditions as in Example 8, and further sintering and heat treatment were performed under the same conditions, and the oxygen content, carbon content, magnetic characteristics,
When the density of the sintered body was measured, sufficient characteristics were obtained as shown in Table 2.

【0018】(実施例11)希土類焼結磁石用の出発原
料として、電解鉄、フェロボロン、フェロニオブ、N
d、Dyを所定量秤量し、高周波溶解炉にて溶解、鋳造
することにより、重量%でNd=29.0%、Dy=
2.0%、B=1.0%、Al=0.3%、Nb=0.
3%、残部Feなるインゴットを製造した。このインゴ
ットを粗粉砕し、次いでジェットミルを用い雰囲気の酸
素量が10ppmの窒素中で微粉砕した。微粉末の平均粒
経は3.8μmであった。粉砕して得られた微粉末を窒
素雰囲気で分留点が200〜300℃、室温での動粘度
が2.5cStの合成油(出光興産製,商品名:ダフニ
クリーナーH)に浸漬した。次いで実施例8と同一の条
件で成形し、さらに同一の条件で焼結、熱処理を行い焼
結体の酸素量、炭素量、磁気特性、焼結体密度を測定し
たところ表2に示すように十分な特性が得られた。
Example 11 As starting materials for rare earth sintered magnets, electrolytic iron, ferroboron, ferroniob, N
A predetermined amount of d and Dy is weighed, melted and cast in a high-frequency melting furnace, so that Nd = 29.0% by weight and Dy =
2.0%, B = 1.0%, Al = 0.3%, Nb = 0.
An ingot consisting of 3% and the balance Fe was produced. This ingot was roughly pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere containing 10 ppm of oxygen. The average particle size of the fine powder was 3.8 μm. The fine powder obtained by pulverization was immersed in a nitrogen atmosphere in a synthetic oil having a fractionation point of 200 to 300 ° C. and a kinematic viscosity at room temperature of 2.5 cSt (trade name: Daphne Cleaner H, manufactured by Idemitsu Kosan Co., Ltd.). Then, molding was performed under the same conditions as in Example 8, and sintering and heat treatment were further performed under the same conditions to measure the oxygen content, carbon content, magnetic properties, and sintered density of the sintered body. Sufficient characteristics were obtained.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上詳述したように、本発明のR−Fe
−B系希土類焼結磁石は特長ある下記の優れた効果を有
しており、各種磁石応用製品の高性能化等に多大に貢献
し得る極めて有用なものである。 (1)微粉および成形体の酸化や水分の吸着を防止して
焼結体の酸素量を低減するとともに磁気特性を劣化させ
る焼結体の炭素量を低減することでR−Fe−B系希土
類焼結磁石に占める磁石特性に寄与しない非磁性化合物
の体積比率を非常に少なく抑え、同時に焼結体密度を実
質的にR−Fe−B系磁石の理論密度に略相当する7.
58g/cm3以上の高密度域に緻密化することによ
り、従来に比べて大幅に高い磁気特性を有したR−Fe
−B系希土類焼結磁石を提供することを可能とした。 (2)成形手段として横磁場成形のみを用い、微粉およ
び成形体の酸化や水分の吸着を防止して焼結体の酸素量
を低減するとともに磁気特性を劣化させる焼結体の炭素
量を低減することでR−Fe−B系希土類焼結磁石に占
める磁石特性に寄与しない非磁性化合物の体積比率を非
常に少なく抑え、同時に焼結体密度を実質的にR−Fe
−B系磁石の理論密度に略相当する7.58g/cm3
以上の高密度域に緻密化することにより、40MGOe
以上の高い磁気特性を有したR−Fe−B系希土類焼結
磁石を提供することを可能とした。 (3)成形手段として縦磁場成形のみを用い、微粉およ
び成形体の酸化や水分の吸着を防止して焼結体の酸素量
を低減するとともに磁気特性を劣化させる焼結体の炭素
量を低減することでR−Fe−B系希土類焼結磁石に占
める磁石特性に寄与しない非磁性化合物の体積比率を非
常に少なく抑え、同時に焼結体密度を実質的にR−Fe
−B系磁石の理論密度に略相当する7.58g/cm3
以上の高密度域に緻密化することにより、40MGOe
以上の高い磁気特性を有したR−Fe−B系希土類焼結
磁石を提供することを可能とした。
As described in detail above, the R-Fe of the present invention
-B-based rare earth sintered magnets have the following distinguished and excellent effects, and are extremely useful as they can greatly contribute to the high performance of various magnet applied products. (1) R-Fe-B-based rare earths by preventing oxidation of fine powder and compacts and adsorption of moisture to reduce the amount of oxygen in the sintered body and the amount of carbon in the sintered body that deteriorates magnetic properties. 6. The volume ratio of the non-magnetic compound which does not contribute to the magnet characteristics in the sintered magnet is extremely small, and the density of the sintered body substantially corresponds to the theoretical density of the R-Fe-B based magnet.
By densifying to a high-density region of 58 g / cm 3 or more, R-Fe
-It has become possible to provide a B-based rare earth sintered magnet. (2) Only transverse magnetic field molding is used as the molding means to prevent oxidation of fine powder and compacts and adsorption of moisture, thereby reducing the oxygen content of the sintered compact and reducing the carbon content of the sintered compact which deteriorates the magnetic characteristics. By doing so, the volume ratio of the non-magnetic compound which does not contribute to the magnet properties in the R-Fe-B based rare earth sintered magnet is extremely reduced, and at the same time, the sintered body density is substantially reduced to R-Fe.
7.58 g / cm 3 which approximately corresponds to the theoretical density of a B-based magnet
By densifying to the above high density region, 40MGOe
It has become possible to provide an R-Fe-B based rare earth sintered magnet having the above high magnetic properties. (3) Only vertical magnetic field molding is used as the molding means to prevent oxidation of fine powder and compacts and adsorption of moisture, thereby reducing the oxygen content of the sintered compact and reducing the carbon content of the sintered compact which deteriorates the magnetic properties. By doing so, the volume ratio of the non-magnetic compound which does not contribute to the magnet properties in the R-Fe-B based rare earth sintered magnet is extremely reduced, and at the same time, the sintered body density is substantially reduced to R-Fe.
7.58 g / cm 3 which approximately corresponds to the theoretical density of a B-based magnet
By densifying to the above high density region, 40MGOe
It has become possible to provide an R-Fe-B based rare earth sintered magnet having the above high magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のR−Fe−B系希土類焼結磁石の製造
に好適なプレス装置の1例を示す要部断面図である。
FIG. 1 is a cross-sectional view of a main part showing an example of a press apparatus suitable for manufacturing an R—Fe—B based rare earth sintered magnet of the present invention.

【符号の説明】[Explanation of symbols]

1 金型、2 下パンチ、3 溶媒排出用穴、4 フィ
ルター、5 上パンチ、6 配向磁場用コイル、7 ポ
ールピース。
1 mold, 2 lower punches, 3 solvent discharge holes, 4 filters, 5 upper punches, 6 orientation magnetic field coils, 7 pole pieces.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系(RはYを含む希土類元
素のうち一種または二種以上)希土類焼結磁石であっ
て、含有酸素量が3000ppm以下、含有炭素量が
0.1wt%以下であるとともに焼結体密度が7.58
g/cm3以上に高密度化されたことを特徴とするR−
Fe−B系希土類焼結磁石。
An R—Fe—B-based (R is one or two or more rare earth elements including Y) sintered rare earth magnet having an oxygen content of 3000 ppm or less and a carbon content of 0.1 wt%. And the sintered body density is 7.58
g / cm 3 or more.
Fe-B based rare earth sintered magnet.
【請求項2】 成形工程においてR−Fe−B系(Rは
Yを含む希土類元素のうち一種または二種以上)希土類
焼結磁石用原料を配向磁場の方向が圧縮方向に対して垂
直である成形用金型のキャビティに充填し磁気異方性が
付与されてなるR−Fe−B系希土類焼結磁石であっ
て、含有酸素量が3000ppm以下、含有炭素量が
0.1wt%以下であるとともに焼結体密度が7.58
g/cm3以上に高密度化されており、最大エネルギー
積を40MGOe以上としたことを特徴とするR−Fe
−B系希土類焼結磁石。
2. In the forming step, an R-Fe-B-based (R is one or more of rare earth elements including Y) rare earth sintered magnet raw material is oriented in the direction of the orientation magnetic field perpendicular to the compression direction. An R-Fe-B based rare earth sintered magnet filled in a cavity of a molding die and given magnetic anisotropy, wherein the content of oxygen is 3000 ppm or less and the content of carbon is 0.1 wt% or less. And the sintered body density is 7.58
g / cm 3 or more, and the maximum energy product is 40 MGOe or more.
-B type rare earth sintered magnet.
【請求項3】 成形工程においてR−Fe−B系(Rは
Yを含む希土類元素のうち一種または二種以上)希土類
焼結磁石用原料を配向磁場の方向が圧縮方向に対して平
行である成形用金型のキャビティに充填し磁気異方性が
付与されてなるR−Fe−B系希土類焼結磁石であっ
て、含有酸素量が3000ppm以下、含有炭素量が
0.1wt%以下であるとともに焼結体密度が7.58
g/cm3以上に高密度化されており、最大エネルギー
積を40MGOe以上としたことを特徴とするR−Fe
−B系希土類焼結磁石。
3. An R-Fe-B-based (R is one or more rare earth elements including Y) rare earth sintered magnet raw material in the forming step, and the direction of the orientation magnetic field is parallel to the compression direction. An R-Fe-B based rare earth sintered magnet filled in a cavity of a molding die and given magnetic anisotropy, wherein the content of oxygen is 3000 ppm or less and the content of carbon is 0.1 wt% or less. And the sintered body density is 7.58
g / cm 3 or more, and the maximum energy product is 40 MGOe or more.
-B type rare earth sintered magnet.
JP9193803A 1997-07-18 1997-07-18 R-fe-b rare earth sintered magnet Pending JPH1064712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9193803A JPH1064712A (en) 1997-07-18 1997-07-18 R-fe-b rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9193803A JPH1064712A (en) 1997-07-18 1997-07-18 R-fe-b rare earth sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5175088A Division JP2731337B2 (en) 1993-01-29 1993-07-15 Manufacturing method of rare earth sintered magnet

Publications (1)

Publication Number Publication Date
JPH1064712A true JPH1064712A (en) 1998-03-06

Family

ID=16314039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9193803A Pending JPH1064712A (en) 1997-07-18 1997-07-18 R-fe-b rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JPH1064712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029997A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b based rare earth element permanent magnet and magnet composition
WO2004030000A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation Method for producing r-t-b based rare earth element permanent magnet
WO2004029996A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b based rare earth element permanent magnet
US7314531B2 (en) 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029997A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b based rare earth element permanent magnet and magnet composition
WO2004030000A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation Method for producing r-t-b based rare earth element permanent magnet
WO2004029998A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation Method for producing r-t-b based rare earth element permanent magnet
WO2004029996A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b based rare earth element permanent magnet
WO2004029999A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b based rare earth element permanent magnet
WO2004029995A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation R-t-b rare earth permanent magnet
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7314531B2 (en) 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet

Similar Documents

Publication Publication Date Title
JP3294841B2 (en) Rare earth magnet and manufacturing method thereof
US6527874B2 (en) Rare earth magnet and method for making same
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JP5501826B2 (en) Manufacturing method of rare earth sintered magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP6623998B2 (en) Method for producing RTB based sintered magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JP3346628B2 (en) Manufacturing method of rare earth sintered magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP2872794B2 (en) Manufacturing method of rare earth permanent magnet
JP7315889B2 (en) Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet
JP4057563B2 (en) Granule, sintered body
KR100379247B1 (en) Method for Preparing Rare-Earth Base Permanent Magnets
JP2001143950A (en) METHOD OF MANUFACTURING R-Fe-B SINTERED MAGNET, METHOD OF PREPARING ALLOY POWDER MATERIAL FOR R-Fe-B SINTERED MAGNET, AND METHOD OF PRESERVING THE MATERIAL
JPS61238938A (en) Sintering method for permanent magnet alloy
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JPH06231924A (en) Manufacture of rare earth sintered magnet
WO2023080171A1 (en) R-t-b permanent magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2006016646A (en) Granule and sintered compact