JP3240034B2 - Rare earth sintered magnet and manufacturing method thereof - Google Patents

Rare earth sintered magnet and manufacturing method thereof

Info

Publication number
JP3240034B2
JP3240034B2 JP20529494A JP20529494A JP3240034B2 JP 3240034 B2 JP3240034 B2 JP 3240034B2 JP 20529494 A JP20529494 A JP 20529494A JP 20529494 A JP20529494 A JP 20529494A JP 3240034 B2 JP3240034 B2 JP 3240034B2
Authority
JP
Japan
Prior art keywords
rare earth
ppm
raw material
sintered magnet
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20529494A
Other languages
Japanese (ja)
Other versions
JPH0869908A (en
Inventor
公穂 内田
昌弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20529494A priority Critical patent/JP3240034B2/en
Publication of JPH0869908A publication Critical patent/JPH0869908A/en
Application granted granted Critical
Publication of JP3240034B2 publication Critical patent/JP3240034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気特性を向上した希土
類焼結磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered magnet having improved magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】希土類焼結磁石は、原料金属を溶解し鋳
型に注湯して得られた合金を粉砕、成形、焼結、熱処理
するという粉末冶金技術を用いて製造される。あるいは
希土類元素の酸化物を還元剤で還元し、還元された希土
類元素をCo粉、Fe粉等に拡散させて合金粉とし、こ
れを粉砕、成形、焼結、熱処理することにより製造され
る。溶解法で作製するにしろ、還元拡散法で作製するに
しろ、希土類元素を多量に含む希土類焼結磁石用合金粉
末は化学的に非常に活性である。このため特に微粉砕の
過程と微粉砕直後の取扱いの過程での酸化が激しく、最
終的に得られる希土類焼結磁石の含有酸素量が高くな
り、磁気特性低下の原因や高性能化の妨げとなってい
た。
2. Description of the Related Art Rare earth sintered magnets are manufactured using powder metallurgy techniques in which an alloy obtained by melting a raw material metal and pouring it into a mold is pulverized, formed, sintered and heat-treated. Alternatively, it is manufactured by reducing an oxide of a rare earth element with a reducing agent, diffusing the reduced rare earth element into Co powder, Fe powder, or the like to obtain an alloy powder, and pulverizing, molding, sintering, and heat treating the alloy powder. Irrespective of whether it is produced by a melting method or a reduction diffusion method, an alloy powder for a rare earth sintered magnet containing a large amount of a rare earth element is chemically very active. For this reason, oxidation is particularly severe during the pulverization process and the handling process immediately after the pulverization, and the oxygen content of the rare earth sintered magnet finally obtained becomes high, which causes a decrease in magnetic properties and hinders high performance. Had become.

【0003】この問題を解決する手段として、例えば特
開昭58−157924号公報、特開昭61−1145
05号公報、特開平1−303710号公報等に開示さ
れるように、希土類焼結磁石用の微粉を有機溶媒に浸漬
して混合物とし、これを湿式成形する方法が提案されて
いる。しかし有機溶媒中の溶存酸素と水分の影響による
混合物中の微粉の酸化の程度が大きく、これらの方法で
は磁気特性の安定性や原料の長期保存に問題がある。更
に例えば特開昭60−91601号公報には希土類磁石
用原料を有機溶媒中で湿式粉砕することにより作製する
方法が開示されている。しかし、湿式粉砕ではジェット
ミル粉砕による微粉に比べてシャープな粒度分布の微粉
が得られない、粉砕過程で有機溶媒からの酸素や炭素の
混入が避けられないなどの問題がある。
As means for solving this problem, for example, JP-A-58-157924 and JP-A-61-1145 are known.
As disclosed in Japanese Unexamined Patent Application Publication No. 05, JP-A-1-303710, etc., a method has been proposed in which fine powder for a rare-earth sintered magnet is immersed in an organic solvent to form a mixture, and the mixture is wet-formed. However, the degree of oxidation of the fine powder in the mixture due to the influence of dissolved oxygen and water in the organic solvent is large, and these methods have problems in stability of magnetic properties and long-term storage of raw materials. Further, for example, Japanese Unexamined Patent Publication No. 60-91601 discloses a method of producing a rare earth magnet raw material by wet grinding in an organic solvent. However, wet pulverization has problems in that fine powder having a sharper particle size distribution cannot be obtained as compared with fine powder obtained by jet mill pulverization, and mixing of oxygen and carbon from an organic solvent in the pulverization process is inevitable.

【0004】以上の問題点を解決するために、本発明者
らは先に溶媒として鉱物油または合成油を使用し、酸素
濃度を極力低減した窒素ガス雰囲気中においてジェット
ミル粉砕した微粉をその窒素ガス雰囲気中で大気に接触
させずに直接前記油中に回収する方法を提案した(特願
平5−59820号公報、特願平5−175088号公
報、特願平5−200543号公報、特願平5−317
747号公報)。この提案によって、微粉砕時から焼結
に至る製造過程での酸化が抑制され焼結体の酸素量の水
準が低下したため、高い磁気特性が安定して得られるよ
うになった。
[0004] In order to solve the above problems, the present inventors first used a mineral oil or a synthetic oil as a solvent, and jet-milled the fine powder in a nitrogen gas atmosphere in which the oxygen concentration was reduced as much as possible. A method of directly recovering the oil in the gas atmosphere without contacting the air has been proposed (Japanese Patent Application Nos. 5-59820, 5-175850, 5-200543, 5-200543, 5-317
747). According to this proposal, oxidation in the manufacturing process from pulverization to sintering was suppressed, and the level of oxygen content of the sintered body was reduced, so that high magnetic properties could be stably obtained.

【0005】[0005]

【発明が解決しようとする課題】ところがその後の詳細
な研究によって、酸素濃度を抑えた窒素ガス気流中での
微粉砕では、原料の酸化は抑制されるものの原料成分中
の希土類元素と窒素との結合が生じ、焼結体の窒素量の
水準が高くなることが判明した。これによって焼結体に
おいて磁気特性に有効に寄与する希土類元素の含有量が
減少し、保磁力等の磁気特性が低下するという問題があ
る。この問題に対して鋭意検討した結果、前記窒素量の
増加を抑えることにより磁気特性が更に向上できる見通
しが得られ、本発明に想到した。
However, according to the subsequent detailed research, in the pulverization in a nitrogen gas stream in which the oxygen concentration is suppressed, the oxidation of the raw material is suppressed, but the rare earth element and the nitrogen in the raw material component are suppressed. It was found that bonding occurred and the level of nitrogen in the sintered body increased. As a result, there is a problem that the content of the rare earth element which effectively contributes to the magnetic characteristics in the sintered body is reduced, and the magnetic characteristics such as the coercive force are reduced. As a result of intensive studies on this problem, a prospect was obtained that the magnetic characteristics could be further improved by suppressing the increase in the amount of nitrogen, and the present invention was reached.

【0006】したがって、本発明の課題は、酸素含有
量、窒素含有量および炭素含有量を所定量以下に低減す
ることにより磁気特性を向上した希土類焼結磁石および
その製造方法を提供することである。
Accordingly, an object of the present invention is to provide a rare earth sintered magnet whose magnetic properties are improved by reducing the oxygen content, the nitrogen content and the carbon content to predetermined amounts or less, and a method of manufacturing the same. .

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明は、RCo系、RCo17系またはR−Fe−B
系(RはYを含む希土類元素の内の一種または二種以上
である)希土類焼結磁石用原料粗粉を酸素濃度が30p
pm以下のArガス雰囲気中で粉砕し、粉砕によって得
られた微粉をこの酸素濃度が30ppm以下のArガス
雰囲気中から鉱物油、合成油あるいは植物油中に回収
し、前記の回収微粉と油とからなる混合物を用いて磁場
中で湿式成形後、脱油、焼結、熱処理する希土類焼結磁
石の製造方法である。本発明によれば、Arガス雰囲気
中で粉砕するため、粉砕過程での窒素の混入はほとんど
無く、最終的に得られる希土類焼結磁石の窒素量の水準
は当初の希土類焼結磁石用原料粗粉の窒素量の水準(3
00ppm以下)とほとんど変わらない。前記Arガス
雰囲気中の酸素濃度は低いほど好ましいが、酸素濃度が
30ppm以下であれば最終的に得られる希土類焼結磁
石の含有酸素量の水準は2000ppm以下となり高い
磁気特性が安定に得られる。このように、前記Arガス
雰囲気中の酸素濃度は30ppm以下が好ましい。続い
て、酸素濃度が30ppm以下にされたArガス雰囲気
中において、含有酸素量、含有窒素量および含有炭素量
の水準が低い上記希土類焼結磁石用微粉を、鉱物油、合
成油あるいは植物油中に大気と接触させずに直接投入
し、前記の微粉と油とからなる原料混合物を作製する。
具体的には、前記油を満たした容器を上記粉砕機に付設
しておくことが好ましい。原料混合物中の微粉は鉱物
油、合成油あるいは植物油によって大気と遮断されてい
るため酸化や窒化の促進が妨げられて低い含有酸素量お
よび含有窒素量の水準が維持される。従来の有機溶媒
(トルエン、ヘキサン等)を使用した場合には従来の有
機溶媒中の含有酸素や水分の影響により微粉の酸素量の
増加が大きくなり、磁気特性が低下する。
The present invention, which has solved the above-mentioned problems, comprises an RCo 5 system, an R 2 Co 17 system or R-Fe-B.
(R is one or more of the rare earth elements including Y) The raw material coarse powder for the rare earth sintered magnet has an oxygen concentration of 30 p.
pm or less in an Ar gas atmosphere, and the fine powder obtained by the pulverization is recovered in a mineral oil, a synthetic oil or a vegetable oil from an Ar gas atmosphere having an oxygen concentration of 30 ppm or less. This is a method for producing a rare-earth sintered magnet that is subjected to de-oiling, sintering and heat treatment after wet molding in a magnetic field using a mixture. According to the present invention, since pulverization is performed in an Ar gas atmosphere, there is almost no contamination of nitrogen during the pulverization process, and the level of nitrogen content of the rare earth sintered magnet finally obtained is equal to the initial raw material coarseness for the rare earth sintered magnet. Nitrogen level of flour (3
(Less than 00 ppm). The oxygen concentration in the Ar gas atmosphere is preferably as low as possible, but if the oxygen concentration is 30 ppm or less, the level of the oxygen content of the finally obtained rare earth sintered magnet becomes 2000 ppm or less, and high magnetic properties can be stably obtained. Thus, the oxygen concentration in the Ar gas atmosphere is preferably 30 ppm or less. Subsequently, in an Ar gas atmosphere having an oxygen concentration of 30 ppm or less, the above-mentioned fine powder for a rare earth sintered magnet having low levels of oxygen content, nitrogen content and carbon content is mixed with mineral oil, synthetic oil or vegetable oil. The raw material mixture composed of the above-mentioned fine powder and oil is directly introduced without being brought into contact with the atmosphere.
Specifically, it is preferable to attach a container filled with the oil to the crusher. Since the fine powder in the raw material mixture is shielded from the atmosphere by the mineral oil, the synthetic oil or the vegetable oil, the promotion of oxidation and nitridation is hindered, and the level of the low oxygen content and the low nitrogen content is maintained. When a conventional organic solvent (toluene, hexane, or the like) is used, the amount of oxygen in the fine powder increases greatly due to the effect of oxygen and moisture contained in the conventional organic solvent, and the magnetic properties deteriorate.

【0008】また本発明は、R−Fe−B系希土類焼結
磁石(RはYを含む希土類元素の一種または二種以上で
ある)であって、含有酸素量が2000ppm以下、含
有窒素量が300ppm以下、含有炭素量が1000p
pm以下であり、かつ42.6MGOe超の最大エネル
ギー積(BH)maxを有する希土類焼結磁石である。
Further, the present invention relates to an R—Fe—B based rare earth sintered magnet (R is one or more rare earth elements including Y), wherein the oxygen content is 2000 ppm or less and the nitrogen content is 2000 ppm or less. 300ppm or less, carbon content is 1000p
pm or less and a maximum energy product (BH) max of more than 42.6 MGOe.

【0009】また本発明は、RCo系またはRCo
17系希土類焼結磁石(RはYを含む希土類元素の一種
または二種以上である)であって、含有酸素量が200
0ppm以下、含有窒素量が300ppm以下、含有炭
素量が1000ppm以下であり、かつ19.7MGO
e超の最大エネルギー積(BH)maxを有する希土類
焼結磁石である。
[0009] The present invention also relates to RCo 5 or R 2 Co
17 type rare earth sintered magnet (R is one or two or more rare earth elements including Y), and has an oxygen content of 200
0 ppm or less, nitrogen content is 300 ppm or less, carbon content is 1000 ppm or less, and 19.7 MGO
It is a rare earth sintered magnet having a maximum energy product (BH) max exceeding e.

【0010】本発明に用いる鉱物油または合成油はその
種類が特定されるものではないが、常温での動粘度が1
0cstを超えると粘性の増大によって微粉相互の結合
力が強まり磁場中湿式成形時の微粉の配向性に悪影響を
与える。このため鉱物油または合成油の常温での動粘度
は10cst以下が好ましい。また鉱物油または合成油
の分留点が400℃を超えると脱油が困難となり、焼結
体内の残留炭素量が多くなって磁気特性の低下をもたら
す。したがって、鉱物油または合成油の分留点は400
℃以下が好ましい。植物油は植物より抽出される油を指
し、その種類も特定の植物に限定されるものではない。
例えば、大豆油、なたね油、コーン油、べにばな油また
はひまわり油などがあげられる。以上において、原料混
合物中の希土類焼結磁石用微粉の量比は重量百分率で5
0〜85%とされる。前記微粉の量比が50%未満の場
合、原料混合物に占める前記油の割合が多くなって上澄
みが生じ、原料混合物の定量供給が困難となる。また、
前記微粉の量比が85%より多い場合、前記油の割合が
少なすぎて原料混合物の供給に切れが生じ、やはり原料
混合物の定量供給に困難を生じる。
The type of mineral oil or synthetic oil used in the present invention is not specified, but it has a kinematic viscosity of 1 at room temperature.
When it exceeds 0 cst, the bonding force between the fine powders is increased due to the increase in viscosity, which adversely affects the orientation of the fine powders during wet molding in a magnetic field. Therefore, the kinematic viscosity of the mineral oil or the synthetic oil at room temperature is preferably 10 cst or less. If the fractional point of the mineral oil or the synthetic oil exceeds 400 ° C., it becomes difficult to remove the oil, the amount of carbon remaining in the sintered body increases, and the magnetic properties deteriorate. Therefore, the fractionation point of mineral oil or synthetic oil is 400
C. or less is preferred. Vegetable oil refers to oil extracted from a plant, and its type is not limited to a particular plant.
For example, soybean oil, rapeseed oil, corn oil, banana oil, sunflower oil and the like can be mentioned. In the above, the amount ratio of the fine powder for rare earth sintered magnet in the raw material mixture is 5% by weight.
0 to 85%. When the amount ratio of the fine powder is less than 50%, the ratio of the oil in the raw material mixture is increased, resulting in a supernatant, which makes it difficult to supply the raw material mixture quantitatively. Also,
If the amount ratio of the fine powder is more than 85%, the ratio of the oil is too small, so that the supply of the raw material mixture is cut off, which also makes it difficult to quantitatively supply the raw material mixture.

【0011】以上のようにして作製した原料混合物の湿
式成形の方法は特に限定されない。原料混合物を金型キ
ャビティに擦り切りによって充填し、配向磁場を印加し
て磁場中で加圧成形してもよい。または原料混合物を金
型キャビティに定量秤量して直接投入し、配向磁場を印
加して磁場中で加圧成形してもよい。さらには、金型キ
ャビティに配向磁場を印加して、次いで金型に開けた注
入孔より原料混合物を加圧注入し、その後磁場中で加圧
成形することもできる。これらいずれの成形方法におい
ても、上パンチあるいは下パンチ面に溶媒排出用の孔を
設け、加圧成形時の微粉の流出を防ぐために布製または
紙製等のフィルタを用いる。あるいは上パンチまたは下
パンチの一部を多孔質フィルタ材料とするなどの工夫が
必要である。
The method of wet molding the raw material mixture produced as described above is not particularly limited. The raw material mixture may be filled into the mold cavity by abrasion, and may be subjected to pressure molding in a magnetic field by applying an orientation magnetic field. Alternatively, the raw material mixture may be quantitatively weighed and directly injected into the mold cavity, and an orientation magnetic field may be applied to perform pressure molding in the magnetic field. Further, it is also possible to apply an orientation magnetic field to the mold cavity, then inject the raw material mixture under pressure from an injection hole formed in the mold, and then perform pressure molding in a magnetic field. In any of these molding methods, a hole for discharging the solvent is provided on the upper punch or lower punch surface, and a filter made of cloth or paper is used to prevent the fine powder from flowing out during pressure molding. Alternatively, it is necessary to devise a method such as using a part of the upper punch or the lower punch as a porous filter material.

【0012】成形後の成形体には前記油が残存している
ため、そのまま通常の焼結を行うと、残存していた前記
油が加熱時に蒸発して焼結炉内を汚染するとともに、一
部は分解して焼結体中に残存する。このために焼結体の
残存炭素量が増加して焼結体密度が低下し、残留磁束密
度Brと最大エネルギー積(BH)maxが低下する。し
たがって、成形体は脱油処理を行ってから焼結する必要
がある。脱油処理は0.1Torr以下の減圧下で成形
体を100〜500℃の温度範囲に30分以上保持する
ことによって行う。なお、保持は100〜500℃の範
囲であれば一点である必要はなく、二点以上であっても
よい。また0.1Torr以下の減圧下で室温から50
0℃までの昇温速度を10℃/分以下とすることによっ
ても脱油を行うことができる。脱油処理終了後の成形体
は、引き続いて焼結温度まで加熱し、更にその焼結温度
で所定の時間保持することによって焼結体とする。得ら
れた焼結体に熱処理を施して本発明の希土類焼結磁石が
得られる。
[0012] Since the oil remains in the molded body after the molding, if normal sintering is performed as it is, the remaining oil evaporates during heating and contaminates the inside of the sintering furnace. The part decomposes and remains in the sintered body. For this reason, the residual carbon content of the sintered body increases, the sintered body density decreases, and the residual magnetic flux density Br and the maximum energy product (BH) max decrease. Therefore, it is necessary to sinter the molded body after performing the deoiling treatment. The deoiling treatment is performed by keeping the molded body in a temperature range of 100 to 500 ° C. for 30 minutes or more under reduced pressure of 0.1 Torr or less. In addition, holding | maintenance does not need to be one point if it is the range of 100-500 degreeC, and may be two or more points. Further, the temperature is reduced from room temperature to 50 under reduced pressure of 0.1 Torr or less.
Deoiling can also be performed by setting the rate of temperature rise to 0 ° C to 10 ° C / min or less. The compact after the deoiling process is subsequently heated to a sintering temperature, and further maintained at the sintering temperature for a predetermined time to form a sintered body. The obtained sintered body is subjected to a heat treatment to obtain the rare earth sintered magnet of the present invention.

【0013】[0013]

【実施例】以下、本発明を実施例をもって具体的に説明
するが、本発明の内容はそれら実施例により限定される
ものではない。 (実施例1) 重量百分率でSm36.7%、Co63.3%の主成分
組成を有するSmCo系希土類焼結磁石の原料粗粉を
酸素濃度が20ppmのArガス気流中でジェットミル
粉砕した。続いて酸素濃度が20ppmのArガス気流
中に保持した前記粉砕機の微粉排出口に設置した容器内
に満たされた分留点が200〜300℃、常温での動粘
度が1.0cstの合成油(出光興産製、商品名DN.
ロールオイル.AL−35)中に前記排出微粉を直接回
収し、原料混合物を作製した。原料混合物中の前記微粉
の比率は重量百分率で55%であり、前記微粉の平均粒
度は5.0μmであった。この原料混合物を図1に示す
成形装置にて成形した。成形条件は金型キャピティに8
KOeの磁場を印加した状態で加圧供給装置に充填した
原料混合物を10kgf/cmの注入圧力で注入、充
填した。原料混合物を金型キャビティ内に充填した後、
配向磁場を印加したまま成形圧力4.0ton/cm
で湿式成形し成形体を得た。なおこの場合フィルタは1
mm厚さの布製のものを使用した。次に成形体に5×1
−2Torrの圧力下で、室温から500℃までの昇
温速度が5℃/分の脱合成油処理を施し、その後同じ圧
力で1135℃までを30℃/分の昇温速度で昇温し、
その温度で4時間保持して焼結した。得られた焼結体
に、更にArガス雰囲気中で800℃×1時間の熱処理
を施して本発明の焼結磁石を得た。この磁石を機械加工
後、含有酸素量、含有窒素量、含有炭素量、焼結体密度
および磁気特性を測定した結果を表1に示す。表1よ
り、良好な磁気特性を得られたことがわかる。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the contents of the present invention are not limited to the examples. (Example 1) Sm36.7% in weight percentage, the oxygen concentration raw coarse powder of SmCo 5 rare earth sintered magnet having a main component composition Co63.3% are jet milled in an Ar gas flow of 20 ppm. Subsequently, a synthesis where the fractionation point filled in the container installed at the fine powder discharge port of the pulverizer held in an Ar gas stream having an oxygen concentration of 20 ppm is 200 to 300 ° C. and the kinematic viscosity at room temperature is 1.0 cst. Oil (made by Idemitsu Kosan, trade name DN.
Roll oil. The discharged fine powder was directly collected in AL-35) to prepare a raw material mixture. The ratio of the fine powder in the raw material mixture was 55% by weight percentage, and the average particle size of the fine powder was 5.0 μm. This raw material mixture was molded by a molding apparatus shown in FIG. Molding conditions are 8 for mold capacity
With the KOe magnetic field applied, the raw material mixture charged into the pressurized supply apparatus was injected and filled at an injection pressure of 10 kgf / cm 2 . After filling the raw material mixture into the mold cavity,
The molding pressure is 4.0 ton / cm 2 while the orientation magnetic field is applied.
To obtain a molded body. In this case, the filter is 1
A cloth of mm thickness was used. Next, 5 × 1
Under the pressure of 0 -2 Torr, a de-synthesis oil treatment is performed at a rate of 5 ° C./min from room temperature to 500 ° C., and then the temperature is increased to 1135 ° C. at a rate of 30 ° C./min at the same pressure. And
It was kept at that temperature for 4 hours for sintering. The obtained sintered body was further subjected to a heat treatment at 800 ° C. × 1 hour in an Ar gas atmosphere to obtain a sintered magnet of the present invention. Table 1 shows the results of measuring the content of oxygen, the content of nitrogen, the content of carbon, the density of the sintered body, and the magnetic properties after machining this magnet. Table 1 shows that good magnetic properties were obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】(比較例1) 実施例1で使用したものと同一のSmCo系希土類焼
結磁石の原料粗粉を酸素濃度が20ppmの窒素ガス気
流中でジェットミル粉砕した。続いて同一酸素濃度の窒
素ガス気流中に保持した前記粉砕機の微粉排出口に設け
た容器内に満たされた実施例1と同じ合成油中に排出微
粉を回収し、原料混合物を作製した。この原料混合物に
占める前記微粉の重量百分率は55%であり、前記微粉
の平均粒度は4.8μmであった。以降は、この原料混
合物を用いた以外は実施例1と同一の条件で成形、脱合
成油処理、焼結および熱処理を行い、比較例の焼結磁石
を得た。この磁石を機械加工後、含有酸素量、含有窒素
量、含有炭素量、焼結体密度および磁気特性を測定し
た。結果を表1に示す。表1より、実施例1のものに比
べて含有窒素量が高く、iHcおよび(BH)maxが低
いことがわかる。
Comparative Example 1 The same raw material powder of the SmCo 5 based rare earth sintered magnet used in Example 1 was pulverized by a jet mill in a nitrogen gas stream having an oxygen concentration of 20 ppm. Subsequently, the discharged fine powder was collected in the same synthetic oil as in Example 1 filled in the container provided at the fine powder discharge port of the pulverizer held in the nitrogen gas stream having the same oxygen concentration to prepare a raw material mixture. The weight percentage of the fine powder in the raw material mixture was 55%, and the average particle size of the fine powder was 4.8 μm. Thereafter, molding, desynthesis oil treatment, sintering and heat treatment were performed under the same conditions as in Example 1 except that this raw material mixture was used, and a sintered magnet of a comparative example was obtained. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1 shows that the nitrogen content is higher and iHc and (BH) max are lower than those in Example 1.

【0016】(実施例2) 重量百分率でSm25.2%、Fe13.8%、Cu
4.5%、Zr2.0%、Co54.5%の主成分組成
を有するSmCo17系希土類焼結磁石の原料粗粉を
酸素濃度が10ppmのArガス気流中でジェットミル
粉砕した。続いて同一酸素濃度のArガス雰囲気中に保
持した前記粉砕機の微粉排出口に設けた容器内に満たさ
れた植物油(大豆油:コーン油=50%:50%の混合
油)中に排出微粉を直接回収し、原料混合物を作製し
た。この原料混合物中の前記微粉の重量百分率は80%
であり、前記微粉の平均粒度は5.3μmであった。次
に、この原料混合物を用いて図2に示す成形装置にて成
形した。成形条件は、金型キャビティに原料混合物を擦
り切って充填した後10KOeの配向磁場を印加し、続
いて配向磁場を印加したまま成形圧力2.0ton/c
の条件で湿式成形し、成形体を得た。なお、この場
合フィルタは0.3mm厚さの紙製のものを使用した。
次に成形体に5×10−2Torrの圧力下で200℃
×2時間の脱植物油処理を施し、その後同じ圧力で12
00℃までを20℃/分の昇温測度で昇温し、その温度
で2時間保持して焼結した。次に、得られた焼結体にA
rガス雰囲気中で1180℃×4時間の溶体化処理と7
50℃×24時間の時効処理とを施し、本発明の焼結磁
石を得た。この磁石を機械加工後、含有酸素量、含有窒
素量、含有炭素量、焼結体密度および磁気特性を測定し
た。結果を表1に示す。表1より、高い磁気特性が得ら
れたことがわかる。
Example 2 Sm 25.2%, Fe 13.8%, Cu
The raw material powder of the Sm 2 Co 17- based rare earth sintered magnet having a main component composition of 4.5%, Zr 2.0%, and Co 54.5% was jet-milled in an Ar gas stream having an oxygen concentration of 10 ppm. Subsequently, the fine powder discharged into vegetable oil (soy oil: corn oil = 50%: 50% mixed oil) filled in a container provided at the fine powder discharge port of the crusher maintained in an Ar gas atmosphere having the same oxygen concentration. Was directly recovered to produce a raw material mixture. The weight percentage of the fine powder in this raw material mixture is 80%
The average particle size of the fine powder was 5.3 μm. Next, this raw material mixture was molded by a molding apparatus shown in FIG. The molding conditions were as follows: the raw material mixture was scraped and filled into the mold cavity, an orientation magnetic field of 10 KOe was applied, and then the molding pressure was 2.0 ton / c with the orientation magnetic field applied.
Wet molding was performed under the conditions of m 2 to obtain a molded body. In this case, a filter made of paper having a thickness of 0.3 mm was used.
Next, the molded body was heated at 200 ° C. under a pressure of 5 × 10 −2 Torr.
× 2 hours of de-vegetable oil treatment, then 12 hours at the same pressure
The temperature was raised to 00 ° C. at a temperature rising rate of 20 ° C./min, and the temperature was maintained for 2 hours for sintering. Next, A was added to the obtained sintered body.
Solution treatment at 1180 ° C for 4 hours in r gas atmosphere and 7
An aging treatment at 50 ° C. × 24 hours was performed to obtain a sintered magnet of the present invention. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1 shows that high magnetic properties were obtained.

【0017】(比較例2) 実施例2と同一のSmCo17系希土類焼結磁石の原
料粗粉を酸素濃度が10ppmの窒素ガス気流中でジェ
ットミル粉砕した。続いて同一酸素濃度の窒素ガス雰囲
気中に保持した前記粉砕機の微粉排出口に設置した容器
内に満たされた実施例2と同じ植物油中に排出微粉を回
収し原料混合物を作製した。この原料混合物中の前記微
粉(平均粒度5.0μm)の比率は重量百分率で85%
であった。以降は、この原料混合物を用いた以外は実施
例2と同一の条件で成形、脱植物油処理、焼結、熱処理
を行い比較例の焼結磁石を得た。この磁石を機械加工
後、含有酸素量、含有窒素量、含有炭素量、焼結体密度
および磁気特性を測定した。結果を表1に示す。表1よ
り、実施例2のものに比べて焼結体の含有窒素量が高
く、iHcおよび(BH)maxが低いことがわかる。
Comparative Example 2 The raw material coarse powder of the same Sm 2 Co 17- based rare earth sintered magnet as in Example 2 was jet-milled in a nitrogen gas stream having an oxygen concentration of 10 ppm. Subsequently, the discharged fine powder was recovered in the same vegetable oil as in Example 2 filled in a container installed at the fine powder discharge port of the crusher maintained in a nitrogen gas atmosphere having the same oxygen concentration to prepare a raw material mixture. The ratio of the fine powder (average particle size: 5.0 μm) in this raw material mixture was 85% by weight percentage.
Met. Thereafter, molding, devegetable oil treatment, sintering, and heat treatment were performed under the same conditions as in Example 2 except that this raw material mixture was used, to obtain a sintered magnet of a comparative example. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1 shows that the sintered body has a higher nitrogen content and a lower iHc and (BH) max than those of Example 2.

【0018】(実施例3) 重量百分率でNd27.0%、Pr3.0%、Dy1.
0%、B1.0%、Nb0.7%、Al0.2%、Ga
0.1%、残部Feの主成分組成を有するR−Fe−B
系希土類焼結磁石の原料粗粉を酸素濃度が5ppmのA
rガス気流中でジェットミル粉砕した。続いて同一酸素
濃度のArガス雰囲気中に保持した前記粉砕機の微粉排
出口に設けた容器内に満たされた分留点が200〜30
0℃、常温での動粘度が2.0cstの鉱物油(出光興
産製、商品名MC.OIL.P−02)中に排出微粉を
回収し、原料混合物を作製した。この原料混合物中の前
記微粉(平均粒度4.2μm)の比率は重量百分率で7
0%であった。この原料混合物を用いて図1に示す成形
装置にて成形した。成形条件は金型キャビティに10K
Oeの磁場を印加した後、加圧供給装置に充填した原料
混合物を15kgf/cmの注入圧力で注入、充填し
た。原料混合物を金型キャビティ内に充填した後、配向
磁場を印加したまま成形圧力1.0ton/cmで湿
式成形し成形体を得た。なおこの場合フィルタは1mm
厚さの布製のものを使用した。次に成形体に3×10
−2Torrの圧力下で、室温から500℃までの昇温
測度が7℃/分の脱鉱物油処理を施し、その後同じ圧力
で1100℃までを30℃/分の昇温度速度で昇温し、
その温度で4時間保持して焼結した。その後、得られた
焼結体にArガス雰囲気中で900℃×1時間と550
℃×1時間の熱処理を各1回施し、本発明の焼結磁石を
得た。この磁石を機械加工後、含有酸素量、含有窒素
量、含有炭素量、焼結体密度および磁気特性を測定し
た。結果を表1に示す。表1より、高い磁気特性を得ら
れたことがわかる。
Example 3 Nd 27.0%, Pr 3.0%, Dy1.
0%, B1.0%, Nb0.7%, Al0.2%, Ga
R-Fe-B having a main component composition of 0.1% and the balance of Fe
Raw material coarse powder of a rare earth sintered magnet
Jet mill pulverization was performed in an r gas stream. Subsequently, the fractionation point filled in the container provided at the fine powder discharge port of the pulverizer held in the Ar gas atmosphere having the same oxygen concentration is 200 to 30.
The discharged fine powder was collected in a mineral oil (manufactured by Idemitsu Kosan Co., Ltd., trade name: MC.OIL.P-02) having a kinematic viscosity of 2.0 cst at 0 ° C. and normal temperature to prepare a raw material mixture. The ratio of the fine powder (average particle size of 4.2 μm) in this raw material mixture was 7% by weight.
It was 0%. Using this raw material mixture, molding was performed using a molding apparatus shown in FIG. Molding condition is 10K for mold cavity
After applying a magnetic field of Oe, the raw material mixture charged into the pressurized supply device was injected and filled at an injection pressure of 15 kgf / cm 2 . After the raw material mixture was filled in the mold cavity, wet molding was performed at a molding pressure of 1.0 ton / cm 2 while an orientation magnetic field was applied to obtain a molded body. In this case, the filter is 1mm
Thick cloth was used. Next, 3 × 10
Under a pressure of -2 Torr, a demineralized oil treatment is performed at a temperature rise rate of from room temperature to 500 ° C at a rate of 7 ° C / min. ,
The temperature was maintained for 4 hours for sintering. Thereafter, the obtained sintered body was heated in an Ar gas atmosphere at 900 ° C. for 1 hour and 550 ° C.
Heat treatment was performed once each at a temperature of 1 ° C. × 1 hour to obtain a sintered magnet of the present invention. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1 shows that high magnetic properties were obtained.

【0019】(比較例3) 実施例3と同一のR−Fe−B系希土類焼結磁石の原料
粗粉を酸素濃度が5ppmの窒素ガス気流中でジェット
ミル粉砕した。続いて同一酸素濃度の窒素ガス雰囲気中
に保持した前記粉砕機の微粉排出口に設置した容器内に
満たされた実施例3と同じ鉱物油中に排出微粉を回収し
て原料混合物を作製した。この原料混合物に占める前記
微粉(平均粒度4.1μm )の比率は重量百分率で7
0%であった。以降は、この原料混合物を用いた以外は
実施例3と同一の条件で成形、脱鉱物油処理、焼結、熱
処理を行い比較例の焼結磁石を得た。この磁石を機械加
工後、含有酸素量、含有窒素量、含有炭素量、焼結体密
度および磁気特性を測定した。結果を表1に示す。表1
より、実施例3のものに比べて焼結体の窒素量が高く、
iHcおよび(BH)maxが低いことがわかる。
Comparative Example 3 The raw material coarse powder of the same R—Fe—B rare earth sintered magnet as in Example 3 was pulverized by a jet mill in a nitrogen gas stream having an oxygen concentration of 5 ppm. Subsequently, the discharged fine powder was recovered in the same mineral oil as in Example 3 filled in the container installed at the fine powder discharge port of the pulverizer maintained in the nitrogen gas atmosphere having the same oxygen concentration to prepare a raw material mixture. The ratio of the fine powder (average particle size: 4.1 μm) in the raw material mixture was 7% by weight.
It was 0%. Thereafter, molding, demineralizing oil treatment, sintering, and heat treatment were performed under the same conditions as in Example 3 except that this raw material mixture was used, to obtain a sintered magnet of a comparative example. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1
Thus, the nitrogen content of the sintered body was higher than that of Example 3,
It can be seen that iHc and (BH) max are low.

【0020】(実施例4) 重量百分率でNd28.3%、Dy1.0%、B1.0
%、Nb1.0%、A10.2%、Co2.0%、残部
Feの主成分組成を有するR−Fe−B系希土類焼結磁
石の原料粗粉を酸素濃度が3ppmのArガス気流中で
ジェットミル粉砕した。続いて同一酸素濃度のArガス
雰囲気中に保持した前記粉砕機の微粉排出口に設置した
容器内に満たされた分留点が200〜300℃、常温で
の動粘度が2.0cstの鉱物油(出光興産製、商品名
MC.OIL.P−02)中に排出微粉を回収し、原料
混合物を作製した。この原料混合物中の前記微粉(平均
粒度4.5μm)の比率は重量百分率で60%であっ
た。この原料混合物を用いて図2に示す成形装置にて成
形した。成形条件は金型キャビティに原料混合物を擦り
切って充填した後12KOeの配向磁場を印加したまま
成形圧力1.3ton/cmで湿式成形し成形体を得
た。なおこの場合フィルタは1mm厚さの布製のものを
使用した。次に成形体に5×10−2Torrの圧力下
で180℃×4時間の脱鉱物油処理を施し、その後同じ
圧力で1080℃までを15℃/分の昇温測度で昇温
し、その温度で3時間保持して焼結した。次に、得られ
た焼結体にArガス雰囲気中で900℃×1時間と53
0℃×1時間の熱処理を各1回施し、本発明の焼結磁石
を得た。この磁石を機械加工後、含有酸素量、含有窒素
料、含有炭素量、焼結体密度および磁気特性を測定し
た。結果を表1に示す。表1より、良好な磁気特性が得
られたことがわかる。
Example 4 Nd 28.3%, Dy 1.0%, B1.0 by weight percentage
%, Nb 1.0%, A10.2%, Co 2.0%, and the raw material powder of the R-Fe-B based rare earth sintered magnet having the main component composition of Fe in an Ar gas stream having an oxygen concentration of 3 ppm. Jet mill pulverization. Subsequently, a mineral oil having a fractionation point of 200 to 300 ° C. and a kinematic viscosity at room temperature of 2.0 cst filled in a container installed at the fine powder discharge port of the pulverizer held in an Ar gas atmosphere having the same oxygen concentration. The discharged fine powder was collected in (made by Idemitsu Kosan, trade name: MC.OIL.P-02) to prepare a raw material mixture. The ratio of the fine powder (average particle size: 4.5 μm) in the raw material mixture was 60% by weight. Using this raw material mixture, molding was performed using a molding apparatus shown in FIG. The molding conditions were as follows: the raw material mixture was scraped and filled in the mold cavity, and then wet-molded at a molding pressure of 1.3 ton / cm 2 while applying an orientation magnetic field of 12 KOe to obtain a molded body. In this case, a filter made of cloth having a thickness of 1 mm was used. Next, the molded body is subjected to a demineralized oil treatment at 180 ° C. × 4 hours under a pressure of 5 × 10 −2 Torr, and then heated to 1080 ° C. at the same pressure at a rate of 15 ° C./min. It was kept at the temperature for 3 hours and sintered. Next, the obtained sintered body was heated at 900 ° C. for 1 hour in an Ar gas atmosphere for 53 hours.
Heat treatment at 0 ° C. × 1 hour was performed once each to obtain a sintered magnet of the present invention. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1 shows that good magnetic properties were obtained.

【0021】(比較例4) 実施例4と同一のR−Fe−B系希土類焼結磁石の原料
粗粉を酸素濃度が3ppmの窒素ガス気流中でジェット
ミル粉砕した。続いて、同一酸素濃度の窒素ガス雰囲気
中に保持した前記粉砕機の微粉排出口に設けた容器内に
満たされた実施例4と同じ鉱物油中に排出微粉を回収
し、原料混合物を作製した。この原料混合物に占める前
記微粉(平均粒度4.3μm)の比率は重量百分率で6
0%であった。以降は、この原料混合物を用いた以外は
実施例4と同一の条件で成形、脱鉱物油処理、焼結、熱
処理を行い比較例の焼結磁石を得た。この磁石を機械加
工後、含有酸素量、含有窒素量、含有炭素量、焼結体密
度および磁気特性を測定した。結果を表1に示す。表1
より、実施例4のものに比べて含有窒素量が高く、iH
cおよび(BH)maxが低いことがわかる。
Comparative Example 4 The same raw material powder of the same R—Fe—B rare earth sintered magnet as in Example 4 was jet-milled in a nitrogen gas stream having an oxygen concentration of 3 ppm. Subsequently, the discharged fine powder was recovered in the same mineral oil as in Example 4 filled in the container provided at the fine powder discharge port of the pulverizer held in the nitrogen gas atmosphere having the same oxygen concentration to prepare a raw material mixture. . The ratio of the fine powder (average particle size: 4.3 μm) in the raw material mixture was 6% by weight.
It was 0%. Thereafter, molding, demineralizing oil treatment, sintering, and heat treatment were performed under the same conditions as in Example 4 except that this raw material mixture was used, to obtain a sintered magnet of Comparative Example. After machining this magnet, the oxygen content, nitrogen content, carbon content, sintered body density and magnetic properties were measured. Table 1 shows the results. Table 1
Therefore, the nitrogen content was higher than that of Example 4, and iH
It can be seen that c and (BH) max are low.

【0022】[0022]

【発明の効果】以上詳述した通り、本発明によれば、含
有酸素量、含有窒素量および含有炭素量を特定値以下に
制御したことによって、従来のものに比べて磁気特性を
更に向上したR−Fe−B系希土類焼結磁石およびその
製造方法を提供することができる。
As described above in detail, according to the present invention, by controlling the content of oxygen, the content of nitrogen and the content of carbon to specific values or less, the magnetic properties are further improved as compared with the prior art. An R—Fe—B based rare earth sintered magnet and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる成形装置の一例を示す要部断面
図である。
FIG. 1 is a sectional view of a main part showing an example of a molding apparatus used in the present invention.

【図2】本発明に用いる成形装置の他の例を示す要部断
面図である。
FIG. 2 is a sectional view of a main part showing another example of a molding apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 上パンチ、2 下パンチ、3 ダイ、4 配向磁場
用コイル、5 フィルタ、6 溶媒排出孔、7 原料混
合物、8 加圧供給装置、9 ヨーク。
Reference Signs List 1 upper punch, 2 lower punch, 3 die, 4 coil for alignment magnetic field, 5 filter, 6 solvent discharge hole, 7 raw material mixture, 8 pressure supply device, 9 yoke.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/03 - 1/08 H01F 41/02 B22F 1/00,3/00 C22C 33/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/03-1/08 H01F 41/02 B22F 1 / 00,3 / 00 C22C 33/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R−Co5系、R2−Co17系またはR−
Fe−B系(RはYを含む希土類元素の内の一種または
二種以上である)希土類焼結磁石用原料粗粉を酸素濃度
が30ppm以下のArガス雰囲気中で粉砕し、粉砕に
よって得られた微粉をこの酸素濃度が30ppm以下の
Arガス雰囲気中から鉱物油、合成油あるいは植物油中
に回収し、前記の回収微粉と油とからなる混合物を用い
て磁場中で湿式成形後、脱油、焼結、熱処理することを
特徴とする希土類焼結磁石の製造方法。
An R-Co 5 system, an R 2 -Co 17 system or R-
A raw material powder for a Fe-B-based (R is one or more of rare earth elements including Y) rare earth sintered magnet raw material is crushed in an Ar gas atmosphere having an oxygen concentration of 30 ppm or less, and is obtained by crushing. The recovered fine powder is recovered in a mineral oil, a synthetic oil or a vegetable oil from an Ar gas atmosphere having an oxygen concentration of 30 ppm or less, wet-molded in a magnetic field using a mixture of the recovered fine powder and oil, and then deoiled. A method for producing a rare earth sintered magnet, comprising sintering and heat treating.
【請求項2】 R−Fe−B系希土類焼結磁石(RはY
を含む希土類元素の一種または二種以上である)であっ
て、含有酸素量が2000ppm以下、含有窒素量が3
00ppm以下、含有炭素量が1000ppm以下であ
り、かつ42.6MGOe超の最大エネルギー積(B
H)maxを有することを特徴とする希土類焼結磁石。
2. An R—Fe—B based rare earth sintered magnet (R is Y
And at least one kind of rare earth element containing at least 2,000 ppm of oxygen and 2,000 ppm or less of nitrogen.
00 ppm or less, the carbon content is 1000 ppm or less, and the maximum energy product of more than 42.6 MGOe (B
H) A rare earth sintered magnet having a max.
【請求項3】 RCo系またはRCo17系希土類
焼結磁石(RはYを含む希土類元素の一種または二種以
上である)であって、含有酸素量が2000ppm以
下、含有窒素量が300ppm以下、含有炭素量が10
00ppm以下であり、かつ19.7MGOe超の最大
エネルギー積(BH)maxを有することを特徴とする
希土類焼結磁石。
A 3. RCo 5 system or R 2 Co 17 based rare-earth sintered magnet (R is one or at two or more rare earth elements including Y), the following oxygen content 2000 ppm, nitrogen content is 300 ppm or less, carbon content is 10
Not more than 00 ppm and a maximum of more than 19.7 MGOe
A rare-earth sintered magnet having an energy product (BH) max .
JP20529494A 1994-08-30 1994-08-30 Rare earth sintered magnet and manufacturing method thereof Expired - Lifetime JP3240034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20529494A JP3240034B2 (en) 1994-08-30 1994-08-30 Rare earth sintered magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20529494A JP3240034B2 (en) 1994-08-30 1994-08-30 Rare earth sintered magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0869908A JPH0869908A (en) 1996-03-12
JP3240034B2 true JP3240034B2 (en) 2001-12-17

Family

ID=16504593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20529494A Expired - Lifetime JP3240034B2 (en) 1994-08-30 1994-08-30 Rare earth sintered magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3240034B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294841B2 (en) 2000-09-19 2002-06-24 住友特殊金属株式会社 Rare earth magnet and manufacturing method thereof
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP4821128B2 (en) * 2005-02-10 2011-11-24 Tdk株式会社 R-Fe-B rare earth permanent magnet
CN102214508B (en) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
JP5939302B2 (en) * 2012-08-13 2016-06-22 日立金属株式会社 Rare earth sintered magnet manufacturing method and molding apparatus
WO2014027638A1 (en) * 2012-08-13 2014-02-20 日立金属株式会社 Method for producing rare-earth sintered magnet and molding device

Also Published As

Publication number Publication date
JPH0869908A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
US5858123A (en) Rare earth permanent magnet and method for producing the same
EP1195779B1 (en) Rare-earth sintered magnet and method of producing the same
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
WO2002099823A1 (en) Method of making sintered compact for rare earth magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JPH08264363A (en) Manufacture of rare earth permanent magnet
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JP2859517B2 (en) Rare earth magnet manufacturing method
JPH0685369B2 (en) Permanent magnet manufacturing method
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3413789B2 (en) R-Fe-B sintered permanent magnet
JP3346628B2 (en) Manufacturing method of rare earth sintered magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JPH10321451A (en) Rare earth sintered magnet manufacturing method
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0718366A (en) Production of r-fe-b permanent magnet material
JP3171426B2 (en) Sintered permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

EXPY Cancellation because of completion of term