JP3346628B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet

Info

Publication number
JP3346628B2
JP3346628B2 JP31774793A JP31774793A JP3346628B2 JP 3346628 B2 JP3346628 B2 JP 3346628B2 JP 31774793 A JP31774793 A JP 31774793A JP 31774793 A JP31774793 A JP 31774793A JP 3346628 B2 JP3346628 B2 JP 3346628B2
Authority
JP
Japan
Prior art keywords
mixture
molding
mold cavity
rare earth
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31774793A
Other languages
Japanese (ja)
Other versions
JPH07176413A (en
Inventor
公穂 内田
昌弘 高橋
正道 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP31774793A priority Critical patent/JP3346628B2/en
Publication of JPH07176413A publication Critical patent/JPH07176413A/en
Application granted granted Critical
Publication of JP3346628B2 publication Critical patent/JP3346628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は改良した希土類焼結磁石
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an improved rare earth sintered magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石は通常原料金属を溶解
し、次いで鋳型に注湯して得られたインゴットを粉砕
次いで順次成形、焼結、熱処理及び加工して製造さ
れる。粉砕は、不活性高圧ガス雰囲気中で粒子どうしを
衝突させ乾粉を得るジェットミル粉砕法、あるいはボ−
ルミルまたは振動ミル等を用い有機溶媒中で原料粉を
粉砕しその後有機溶媒を乾燥させて乾粉を得る湿式粉砕
法で行われるのが一般的である。乾粉を成形するにあた
っては、所定量の乾粉を秤量し、これを金型キャビティ
に投入する、あるいはフィードボックス等を用いて擦
り切り法にて金型キャビティに投入する方法が採られ
。給粉後、配向磁界を印加して成形を行う。また、あ
らかじめ磁界を印加したキャビティに上記方法で乾粉を
給粉し、成形する方法が採られる場合もある。一方、粉
砕後の希土類焼結磁石用粉末は化学的に非常に活性であ
るため大気中で急激に酸化し、磁気特性の劣化を招いて
しまう。これを防止する方法として、例えば特開昭58
−157924号、特開昭61−114505号、特開
平1−303710号、特開平3−1504号あるいは
特開平4−83319号に、原料粉末と有機溶媒との
混合物を作製し、これを上記の乾粉と同様の方法で金型
キャビティに給粉し、磁界中成形し、得られた成形体を
順次乾燥、焼結及び熱処理する製造方法の開示がある。
れら従来の製造方法によれば、有機溶媒を用いた湿式
成形の効果により酸化による磁気特性の劣化が乾粉を用
いた場合に比べて多少緩和される。しかし、有機溶媒に
は微量の水分や空気が含まれており、疎水性有機溶媒で
あるヘキサンやトルエンを使用しても含有水分や空気に
よる希土類焼結磁石用微粉の酸化による経時変化は避け
られず、得られる希土類焼結磁石の磁気特性の水準は満
足すべきものではなかった。
2. Description of the Related Art Rare-earth sintered magnets usually melt the raw material metal and then pour it into a mold to pulverize the obtained ingot.
And then sequentially forming, sintering, is produced heat treatment and machining to. The pulverization is performed by a jet mill pulverization method in which particles collide with each other in an inert high-pressure gas atmosphere to obtain a dry powder, or a ball mill.
In general, the raw material powder is pulverized in an organic solvent using a mill or a vibration mill, and then the organic solvent is dried to obtain a dry powder. In forming the dry powder, it was weighed predetermined amounts of dry powder, which should be placed into a mold cavity, or a method of introducing into the mold cavity by leveling method using a feed box etc. taken
You . After the powder is supplied, an orientation magnetic field is applied to perform molding. In some cases, dry powder is supplied to the cavity to which a magnetic field has been applied in advance by the above-described method, followed by molding. On the other hand, the powder for the rare earth sintered magnet after the pulverization is very active chemically, so that it is rapidly oxidized in the air, resulting in deterioration of magnetic properties. As a method for preventing this, for example, Japanese Patent Application Laid-Open
No. -157924, JP 61-114505, JP-A-1-303710, No. Hei 3-1504 or <br/> JP 4-83319 is to prepare a mixture of raw material powder and an organic solvent This is supplied to the mold cavity in the same manner as the dry powder described above, and is molded in a magnetic field.
There is a disclosure of a manufacturing method in which drying, sintering, and heat treatment are sequentially performed .
According to these conventional production methods, use deterioration of magnetic properties due to oxidation by the effect of wet molding using an organic solvent a dry powder
It is somewhat relaxed compared to the case where However, organic solvents contain trace amounts of water and air, and even if hexane or toluene, which is a hydrophobic organic solvent, is used, changes over time due to oxidation of the fine powder for rare earth sintered magnets due to the contained water or air can be avoided. However, the level of the magnetic properties of the obtained rare earth sintered magnet was not satisfactory.

【0003】[0003]

【発明が解決しようとする課題】本発明者は上記従来
の湿式成形法で満足すべき磁気特性が得られない原因に
ついてさらに研究した結果、先に示した有機溶媒中に含
有されている水分と空気による希土類焼結磁石用微粉の
酸化の他に、他の原因が関与していることを見いだし
た。粉砕後の希土類焼結磁石微粉間に強い相互作用
が生じ、ブリッジを組みやすい。このため配向磁界を印
加した状態においてもキャビティの希土類焼結磁石用微
粉は局所的に配向の不揃いを有している。このため成形
体の配向性が低下し、もって最終的に得られる希土類焼
結磁石の磁気特性の内、特に残留磁束密度と最大エネル
ギ−積の低下をもたらす。従って、良好な配向性を得る
には前記微粉間の相互作用によるブリッジの生成を防止
する必要がある。発明者等は、上記従来の湿式成形法
で使用される有機溶媒には前記微粉間の相互作用による
ブリッジの生成を防止する何等の効果も無いことを確認
した。即ち、希土類焼結磁石微粉と有機溶媒とを混合
して作製した混合物の配向磁界に対する配向性は乾粉と
何等変わらず不十分なものである。
The present inventors have INVENTION SUMMARY is] As a result of further study the cause no magnetic properties obtained satisfactory in the conventional wet forming process, moisture contained in the organic solvent shown above In addition to the oxidation of fine particles for rare earth sintered magnets by air, other factors were found to be involved. Strong interaction occurs between the fine powder for rare earth sintered magnet after grinding, it tends to set the bridge. Mark the orientation magnetic field for this
Even in the added state , the fine powder for the rare earth sintered magnet in the cavity locally has a nonuniform orientation. Molding for this
The orientation of the body is reduced and the final rare earth firing
Among the magnetic properties of the magnet , particularly, the residual magnetic flux density and the maximum energy product are reduced. Thus, to obtain good orientation it is necessary to prevent the formation of a bridge due to the interaction between the pulverized. The present inventors have confirmed that the organic solvent used in the conventional wet forming process no effect what such to prevent the formation of a bridge due to the interaction between the pulverized. That is, the orientation of the mixture produced by mixing the fine powder for rare earth sintered magnets and the organic solvent with respect to the orientation magnetic field is as inadequate as that of the dry powder.

【0004】[0004]

【課題を解決するための手段】以上の理由から、希土類
焼結磁石用微粉の有するポテンシャルを引き出して良好
な磁気特性を得るためには、製造工程における前記微粉
の酸化を防止すると共に、前記微粉間の相互作用による
ブリッジの生成を防止し、良好な配向性を得る必要があ
る。発明者等は鋭意検討の結果、希土類焼結磁石
粉と植物油とを混合して混合物とし、これを磁界中で湿
式成形することによって上記課題が達せられることを見
いだし本発明に至ったものである。本発明では、希土類
焼結磁石微粉と植物油とが混合され混合物とされる。
植物油は前記微粉の表面を被覆し、これによって化学的
に活性な前記微粉の表面が大気から遮断されるため酸化
が防止される。前記微粉と植物油の混合方法は特に限
定されるものではなく、前記微粉及び植物油を各々所定
量秤量し、これらをミキサ−等で混合してもよい。ある
いはジェットミル粉砕機の微粉排出口に植物油を満たし
た容器を設置し、植物油中に直接粉砕した希土類焼結磁
石用微粉を回収し混合物としてもよい。また、ボ−ルミ
ル、振動ミルあるいはアトライタ−などの粉砕機に植物
油を溶媒として所定量投入し、かつ希土類焼結磁石
粉を所定量入して湿式粉砕し、混合物を作製すること
ができる。
For the above reasons, rare earth elements
To obtain good magnetic properties pull the potential possessed by the fine powder for sintered magnets, as well as to prevent oxidation of the pulverized in a manufacturing process, to prevent the formation of bridging due to interaction between the fines, good It is necessary to obtain orientation. The present inventors have intensive studies results, the present inventors found that the above problems can be achieved by mixing a fine <br/> powder and vegetable oils for rare earth sintered magnet and the mixture is wet-molded in a magnetic field this This has led to the invention. In the present invention, rare earth
Fine powder for sintered magnets and vegetable oil are mixed to form a mixture.
Vegetable oil covers the surface of the pulverized, whereby oxidation since the surface of the chemically active the fines are shielded from the atmosphere is prevented. Method of mixing the pulverized and vegetable oils rather limited in particular, the fine powder and vegetable oils respectively weighed predetermined amounts, these mixers - may be mixed in like. Alternatively, a container filled with vegetable oil is installed at the fine powder outlet of the jet mill grinder, and the rare earth
Stone fines may be collected and made into a mixture. Further, ball - mill, vibration mill or attritor - be a vegetable oil by a predetermined amount introduced as a solvent pulverizer such as, and the coarse powder for the rare-earth sintered magnet by entering a predetermined amount projecting wet-milled to produce a mixture it can.

【0005】混合物中の希土類焼結磁石微粉の量比は
重量百分率で50〜80%とされる。微粉の量比が50%未満
の場合、混合物中の溶媒である植物油の割合が多くなっ
て上澄みが生じ、混合物の定量供給に困難を生じる。ま
た、微粉の量比が80%より多い場合、溶媒である植物油
の割合が少なすぎて混合物の供給時に切れが生じ、同じ
く混合物の定量供給が困難となる。尚、ここで言う植物
油とは植物より抽出される油を指し、その種類も特定の
植物に限定されるものではないが、例えば大豆油、なた
ね油、コ−ン油、べにばな油、ひまわり油、ごま油また
つばき油などがげられる。また、植物油の2種以上
を適量混合したものも使用できる。さらに、植物油の少
なくとも1種を主成分とし、これに必要な添加物を加え
たものなども使用できる。また、希土類焼結磁石微粉
と植物油とを混合してなる混合物の配向磁界に対する配
向性は、乾粉あるいは有機溶媒を用いて作製した混合物
の配向性に比べて向上する。これは、植物油の潤滑性に
よる前記微粉表面の改質、特に前記微粉相互間の摩擦力
の低減が有効に作用しているものと考えられる。これに
よって、前記微粉間の相互作用によるブリッジの生成が
無くなり、配向性が改善されるものと考えられる。
The amount ratio of the fine powder for the rare earth sintered magnet in the mixture is 50 to 80% by weight. When the amount ratio of the fine powder is less than 50%, the proportion of the vegetable oil which is the solvent in the mixture increases, causing supernatant to occur, which makes it difficult to quantitatively supply the mixture. If the amount ratio of the fine powder is more than 80%, the proportion of the vegetable oil as the solvent is too small, so that the mixture is cut off at the time of supply, and it is also difficult to supply the mixture quantitatively. The term "vegetable oil" used herein refers to an oil extracted from a plant, and the type of the oil is not limited to a specific plant. For example, soybean oil, rapeseed oil, corn oil, red bean oil, sunflower Oil, sesame oil or
Is such as camellia oil is Oh up. A mixture of two or more vegetable oils in an appropriate amount can also be used. Further, those containing at least one kind of vegetable oil as a main component to which necessary additives are added can also be used. In addition, the orientation of a mixture obtained by mixing the fine powder for rare earth sintered magnet and vegetable oil with respect to the orientation magnetic field is improved as compared with the orientation of a mixture prepared using a dry powder or an organic solvent. This modification of the pulverized surface with lubricity of vegetable oils, especially considered that reduction of the frictional force between the pulverized mutually acts effectively. Thus, generation of the bridge due to the interaction between the pulverized is eliminated, it is considered that the orientation is improved.

【0006】混合物の金型キャビティへの充填方法には
特に制限は無く、例えばモノポンプ等の定量供給装置で
定量を金型キャビティに供給する方法あるいは擦り切り
フィ−ダ等で金型キャビティに擦り切り充填する方法等
があげられる。配向磁界は、あらかじめ印加してから混
合物を金型キャビティに充填しても、あるいは混合物を
金型キャビティに充填してから印加してもよく、その効
果は双方で変わらない。また配向磁界を印加した金型キ
ャビティに混合物を加圧フィ−ダ等を用いて加圧注入し
てもよい。この場合は、金型キャビティの微粉の充填密
度が上記の定量供給法あるいは擦り切り法の場合に比べ
て高まるため、磁気特性の内特に残留磁束密度を高め
れる。さらに、上記定量供給法あるいは擦り切り法で金
型キャビティに混合物を充填後、配向磁界を印加した
態のまま加圧フィ−ダ等を用いて混合物を金型キャビテ
ィに加圧注入し追加充填してもよい。この場合も上記と
同じ理由で残留留磁束密度を高められる。上記いずれの
混合物の金型キャビティへの充填方法を採用した場合で
も、磁界中成形における配向磁界強度は2KOe以上とさ
れる。配向磁界強度が2KOe未満では配向性が不十分
なり高い残留磁束密度が得られない。また、加圧フィ−
ダ等によって混合物を金型キャビティへ充填あるいは追
加充填する上記の方法においては、加圧注入時の注入圧
力は1Kgf/cm以上とされる。注入圧力が1Kgf/cm
満では注入圧力が不足し、1.8g/cc以上という高い充填
密度が得られず、充填密度は定量供給方式あるいは擦り
切り方式での水準と変わらないため、加圧注入する意味
がなくなる。
There is no particular limitation on the method of filling the mixture into the mold cavity. For example, a fixed amount supply device such as a monopump may be used to supply a fixed amount to the mold cavity, or a friction feeder may be used to cut and fill the mold cavity. Method and the like. The orientation magnetic field may be applied beforehand and then the mixture is filled into the mold cavity, or the mixture may be filled and then applied to the mold cavity, and the effect is the same in both cases. The mixture may be injected under pressure using a pressure feeder or the like into the mold cavity to which the alignment magnetic field has been applied. In this case, the filling density of the fine powder in the mold cavity is increased as compared with the above-described quantitative supply method or the scraping method, so that the residual magnetic flux density among the magnetic characteristics can be particularly increased . Further, after filling the mixture into the mold cavity in the dispensing method or leveling method, like the application of the aligning magnetic field
The mixture may be additionally injected into the mold cavity under pressure using a pressure feeder or the like in the state . In this case, the residual magnetic flux density can be increased for the same reason as described above. <br/> In case of adopting the method of filling the mold cavity of any of the above mixture also aligning magnetic field strength in the magnetic field during molding are more 2 kOe. If the orientation magnetic field strength is less than 2KOe, the orientation is insufficient .
Therefore, a high residual magnetic flux density cannot be obtained. Also, pressurized filter
In the above-described method of filling or additionally filling the mixture into the mold cavity with a die or the like, the injection pressure at the time of pressurized injection is set to 1 kgf / cm 2 or more. When the injection pressure is less than 1 kgf / cm 2 , the injection pressure is insufficient, and a high packing density of 1.8 g / cc or more cannot be obtained, and the packing density is not different from the level in the quantitative supply method or the rubbing method. There is no point in performing pressure injection.

【0007】以上の各種の充填方法によって金型キャビ
ティに充填された混合物は磁界中成形される。成形体内
部には溶媒である植物油が残留している。この様な成形
体を常温から焼結温度である950〜1200℃まで急激に昇
温すると成形体の内部温度が急激に上昇し、成形体内に
残留した植物油と成形体内の希土類元素が反応て希土
類炭化物が生成する。このため焼結に十分な量の液相の
発生が妨げられ、十分な密度の焼結体が得られず磁気特
性の劣化を招く恐れがある。これを防止するためには、
温度50〜500℃好ましくは50〜250℃でかつ圧力10−1
torr以下の条件30分以上保持する脱植物油処理を施す
ことが望ましい。この処理により成形体中に残留した植
物油を十分に除去することができる。尚、脱植物油処理
の加熱温度は50〜500℃の温度範囲であれば一点である
必要はなく二点以上でもよい。また圧力10−1torr以下
でかつ室温から500℃までの昇温速度を10℃/以下、好
ましくは5℃/以下とする脱植物油処理を施すことに
よっても、温度50〜500℃好ましくは50〜250℃でかつ
圧力10−1torr以下の条件30分以上保持する脱植物油
処理と同様脱油効果を得ることができる。
The mixture filled in the mold cavity by the above various filling methods is molded in a magnetic field . Vegetable oil, which is a solvent, remains inside the molded body. When such a compact is rapidly heated from room temperature to a sintering temperature of 950 to 1200 ° C., the internal temperature of the compact rapidly rises, and the vegetable oil remaining in the compact and the rare earth element in the compact react with each other. Rare earth carbides are formed. For this reason, the generation of a sufficient amount of liquid phase for sintering is prevented, and a sintered body with a sufficient density cannot be obtained, which may lead to deterioration of magnetic properties. To prevent this,
Temperature 50-500 ° C , preferably 50-250 ° C and pressure 10 -1
It is desirable to perform a de-vegetable oil treatment that is maintained for 30 minutes or more under the condition of torr or less. By this treatment, the vegetable oil remaining in the molded body can be sufficiently removed. In addition, de-vegetable oil treatment
The heating temperature is not required to be one point as long as it is in the temperature range of 50 to 500 ° C., and may be two or more points. Pressure 10 -1 torr or less
In and the rate of Atsushi Nobori from room temperature to 500 ° C. 10 ° C. / min or less, and preferably also by applying de-vegetable oil processing to 5 ° C. / min or less, the temperature 50 to 500 ° C., preferably at 50 to 250 ° C. A deoiling effect similar to the deoiled vegetable oil treatment maintained at a pressure of 10 -1 torr or less for 30 minutes or more can be obtained.

【0008】[0008]

【実施例】以下、本発明を成形方向と配向磁界の印加方
が平行であるいわゆる縦磁場成形による実施例をも
って具体的に説明するが、本発明の内容はこれによって
限定されるものではなく、成形方向と配向磁界の印加方
が直角であるいわゆる横磁場成形法、径方向に異方
性を有するラジアルリング成形、径2極成形、あるいは
極異方性成形等を適用した場合も有効である。 (実施例1) 重量百分率でSm36.5%、Co63.5%の組成を有するS
mCo合金粗粉をNガス雰囲気中でジェットミル
粉砕し、平均粒度が5.0μm の微粉とした。この微粉6
Kgに大豆油4Kgを混ぜ混合物とした。次いで得られた微
粉砕直後の混合物の作製時点から24時間、48時間、72時
間、96時間及び120時間放置した混合物をそれぞれ作製
し、成形に供した。各混合物を図1に示す成形装置にて
成形した。成形は、金型キャビティに混合物を順次
り切って充填し、次いで上パンチをダイ面まで下降させ
た後に金型キャビティに8KOeの配向磁界を印加し、次
いで配向磁界を印加したまま成形圧力3ton/cmで湿式
成形する条件で行い、成形体を得た。金型キャビティに
おける微粉の充填密度は1.6g/ccであった。この場
合、フィルタは1mm厚さの布製のものを使用した。次
に成形体に5×10−2torrの圧力下で200℃×1時間の
脱植物油処理を施した後、Arガス雰囲気中で1130℃×
4時間の焼結条件で焼結した。に、焼結体にArガス
雰囲気中で800℃×2時間の熱処理を施し、次いで機械
加工し、得られた各焼結磁石試料の密度、酸素量、炭素
量及び磁気特性を測定したところ、表1に示すように、
放置時間の経過に対する焼結体酸素量の増加はきわめて
少なく、いずれの試料においても良好な磁気特性が得ら
れた。
EXAMPLES Hereinafter, the present invention will be described molding direction and the application direction of the orientation magnetic field with an embodiment according to the so-called vertical magnetic field molding is parallel Specifically, the contents of the present invention is not limited thereto , apply a molding direction called transverse magnetic field molding method and the application direction is perpendicular oriented magnetic field, radial ring mold having anisotropy in the radial direction, the diameter 2 pole molding, or <br/> polar anisotropy molding This is also effective. (Example 1) S having a composition of Sm 36.5% by weight and Co 63.5% by weight percentage.
The mCo 5 alloy coarse powder was jet-milled in an N 2 gas atmosphere to obtain a fine powder having an average particle size of 5.0 μm. This fine powder 6
4 kg of soybean oil was mixed with Kg to obtain a mixture. Then the obtained fine
24 hours, 48 hours, 72 hours from the point of preparation of the mixture immediately after grinding
For 96 hours and 120 hours
And subjected to molding. Each mixture was molded by a molding apparatus shown in FIG. The molding is performed by sequentially filling each mixture in the mold cavity, and then lowering the upper punch to the die surface, applying an orientation magnetic field of 8KOe to the mold cavity, and then applying the orientation magnetic field. The molding was carried out under the conditions of wet molding at a molding pressure of 3 ton / cm 2 while keeping the molding, to obtain a molded body. In the mold cavity
The packing density of the fines that put was 1.6 g / cc. In this case, a filter made of cloth having a thickness of 1 mm was used. Next, the molded body was subjected to de-vegetable oil treatment at 200 ° C. × 1 hour under a pressure of 5 × 10 −2 torr, and then 1130 ° C. × in an Ar gas atmosphere.
Sintering was performed under sintering conditions for 4 hours. In the following, heat-treated at 800 ° C. × 2 hours in an Ar gas atmosphere in the sintered body, followed by mechanical
The density, oxygen content and carbon of each sintered magnet sample processed and obtained
When the amount and magnetic properties were measured, as shown in Table 1,
The increase in the amount of oxygen in the sintered body with the passage of the standing time was extremely small, and good magnetic properties were obtained in all samples.

【0009】(比較例1) 実施例1で微粉砕して作製したSmCo焼結磁石用
微粉を真空パック中に保管し、微粉砕から24時間、48時
間、72時間、96時間及び120時間保存した微粉を得た。
次いで前記各保存時間の真空パックを開封し、取り出し
た各微粉のみをそれぞれ用いた以外は実施例1と同様に
して磁界中成形、焼結、熱処理及び機械加工を行い比較
例の焼結磁石試料を得た。成形に際し、図1に示す成形
装置の金型キャビティに前記各微粉のみ順次擦り切っ
て充填し、金型キャビティにおける微粉の充填密度は1.
6g/ccであった。この場合、上パンチは油の排出孔無
しのものと交換し、フィルタは使用しなかった。得られ
各試料の密度、酸素量、炭素量及び磁気特性を測定し
たところ、表1に示すように、放置時間の経過に対する
焼結体酸素量の増加が実施例1に比べて大きく、これに
伴って保磁力の顕著な低下が見られた。また、焼結体酸
素量の増加がそれほど大きくない初期放置時間から残留
磁束密度実施例1に比べて低いことがわかる
(Comparative Example 1) Fine powder for the SmCo 5 based sintered magnet prepared by finely pulverizing in Example 1 was stored in a vacuum pack, and 24 hours and 48 hours after the fine pulverization.
A fine powder which was stored for 72 hours, 96 hours and 120 hours was obtained.
Then open the vacuum pack for each storage time and remove
In the same manner as in Example 1 except that only each fine powder was used.
And then perform molding, sintering, heat treatment and machining in a magnetic field and compare
Example sintered magnet samples were obtained. At the time of molding, only each of the fine powders is sequentially cut and filled into the mold cavity of the molding apparatus shown in FIG. 1, and the filling density of the fine powder in the mold cavity is 1.
It was 6 g / cc. In this case, the upper punch was replaced with one having no oil discharge hole, and no filter was used. Obtained
When the density, oxygen content, carbon content and magnetic characteristics of each sample were measured, as shown in Table 1, the increase in the oxygen content of the sintered body with respect to the passage of the standing time was larger than that in Example 1, and with this, A remarkable decrease in coercive force was observed. The low Ikoto be seen than the initial idle time increases of the sintered body the oxygen content is not so large in residual magnetic flux density in Example 1.

【0010】(実施例2) 重量百分率でSm25.0%、Fe14.0%、Cu4.5%、Z
r2.5%、Co54.0%の組成を有するSmCo17
合金粗粉をコ−ン油中でボ−ルミル粉砕し、粉砕微粉と
コ−ン油からなる混合物を回収した。この混合物に占め
る微粉の重量比率は65%であり、混合物中の微粉の平均
粒度は5.0μmであった。次いで、得られた混合物の作
製時点から24時間、48時間、72時間、96時間及び120時
間放置した混合物をそれぞれ作製し、成形に供した。各
混合物を図1に示す成形装置にて成形した。成形は、金
型キャビティに混合物を順次擦り切って充填し、次い
上パンチをダイ面まで下降させた後に金型キャビティ
に6KOeの配向磁界を印加し、次いで配向磁界を印加し
たまま成形圧力2ton/cmで湿式成形する条件で行い
成形体を得た。金型キャビティにおける微粉の充填密度
は1.5g/ccであった。この場合、フィルタは0.5mm厚
さの金属製のものを使用した。次に成形体に5×10−2
torrの圧力下で100℃×1時間の脱植物油処理を施した
後、HArガス雰囲気中で1200℃×2時間の焼結条件
で焼結した。得られた焼結体にArガス雰囲気中で1180
℃×1時間の溶体化処理と750℃×20時間の時効処理を
施した。次いで機械加工し、得られた各焼結磁石試料の
密度、酸素量、炭素量及び磁気特性を測定したところ、
表1に示すように、放置時間の経過に対する焼結体酸素
量の増加はきわめて少なく、いずれの試料においても良
好な磁気特性が得られた。
Example 2 Sm 25.0%, Fe 14.0%, Cu 4.5%, Z
Sm 2 Co 17 system having a composition of r2.5% and Co54.0%
The alloy coarse powder was ball-milled in corn oil to recover a mixture of crushed fine powder and corn oil. Weight ratio of fines accounted for the mixture Ri 65% der, the average particle size of fine powder in the mixture was 5.0 .mu.m. Then the crop of the resulting mixture
24 hours, 48 hours, 72 hours, 96 hours and 120 hours from the time of manufacture
The mixtures left for a while were prepared and subjected to molding. Each mixture was molded by a molding apparatus shown in FIG. Molding, filled sequentially Suriki' each mixture into the mold cavity, then
After lowering the upper punch to the die surface with the above, an orientation magnetic field of 6 KOe is applied to the mold cavity, and then wet molding is performed at a molding pressure of 2 ton / cm 2 with the orientation magnetic field applied.
A molded article was obtained. The packing density of the fines that put into the mold cavity was 1.5 g / cc. In this case, a 0.5 mm thick metal filter was used. Next, 5 × 10 -2 was added
After subjecting to vegetable oil removal at 100 ° C. × 1 hour under torr pressure, sintering was performed at 1200 ° C. × 2 hours in an H 2 Ar gas atmosphere. The obtained sintered body was heated to 1180 in an Ar gas atmosphere.
A solution treatment at 1 ° C. × 1 hour and an aging treatment at 750 ° C. × 20 hours were performed. Then machined, each of the sintered magnet samples obtained
When the density, oxygen content, carbon content and magnetic properties were measured,
As shown in Table 1, the increase in the oxygen amount of the sintered body with the passage of the standing time was extremely small, and good magnetic properties were obtained in all the samples.

【0011】(比較例2) 実施例2で使用したSmCo17合金粗粉をトルエ
ン中でボ−ルミル粉砕し、次いでこれを乾燥して平均粒
度が5.0μmの微粉とした。この微粉を真空パック中に
保管し、微粉砕から24時間、48時間、72時間、96時間及
び120時間保存した微粉を得た。次いで前記各保存時間
真空パックを開封し、取り出した各微粉のみをそれぞ
れ用いた以外は実施例2と同様にして磁界中成形、焼
結、熱処理及び機械加工を行い比較例の焼結磁石試料を
得た。成形に際し、図1に示す成形装置の金型キャビテ
ィに前記各微粉のみ順次擦り切って充填し、金型キャ
ビティにおける微粉の充填密度は1.5g/ccであった。
この場合、上パンチは油の排出孔無しのものと交換し、
フィルタは使用しなかった。得られた各試料の密度、酸
素量、炭素量及び磁気特性を測定したところ、表1に示
すように、放置時間の経過に対する焼結体酸素量の増加
が実施例2に比べて大きく、これに伴って保磁力の顕著
低下が見られた。また、焼結体酸素量の増加がそれほ
ど大きくない初期放置時間から残留磁束密度実施例2
に比べて低いことがわかる
Comparative Example 2 The coarse powder of the Sm 2 Co 17 alloy used in Example 2 was ball-milled in toluene, and then dried to obtain a fine powder having an average particle size of 5.0 μm. This fine powder is stored in a vacuum pack, and after 24 hours , 48 hours, 72 hours, 96 hours
For 120 hours. Then each of the storage times
Unpack the vacuum pack and remove each fine powder only.
Except for use, molding in a magnetic field , sintering, heat treatment and machining were performed in the same manner as in Example 2 to obtain a sintered magnet sample of the comparative example.
Obtained. At the time of molding, only each of the fine powders was sequentially cut and filled into the mold cavity of the molding apparatus shown in FIG. 1, and the filling density of the fine powder in the mold cavity was 1.5 g / cc. In this case, in this case, replace the upper punch with one without an oil discharge hole,
No filters were used. Density of each sample obtained , acid
When the elementary amount, the carbon amount and the magnetic properties were measured, as shown in Table 1, the increase in the oxygen amount of the sintered body with respect to the elapse of the standing time was larger than that in Example 2, and the coercive force was remarkably increased accordingly.
Significant decline was seen. In addition, the residual magnetic flux density was lower than that of Example 2 from the initial standing time in which the increase in the oxygen amount of the sintered body was not so large.
Low Ikoto is seen compared to.

【0012】(実施例3) 重量百分率でNd28.0%、Pr1.5%、Dy1.0%、B1.
0%、Nb1.0%、Co3.5%、Al0.3%、残部Feの組
成を有するNd−Fe−B系合金粗粉をNガス雰囲気
中でジェットミル粉砕し、粉砕機の微粉排出口になたね
油を満たした容器を設置し、Nガス雰囲気中で排出微
粉を直接なたね油中に回収し、混合物とした。この混合
物中の微粉の重量比率は70%であ、微粉の平均粒度は
3.9μmであった。次いで、得られた微粉砕直後の混合
物の作製時点から24時間、48時間、72時間、96時間及び
120時間放置した混合物をそれぞれ作製し、成形に供し
た。各混合物を図1に示す成形装置にて成形した。成形
は、金型キャビティに混合物を順次擦り切って充填
し、次に上パンチをダイ面まで下降させた後に、金型キ
ャビティに3KOeの配向磁界を印加し、次いで配向磁界
を印加したまま成形圧力1.0ton/cmで湿式成形する条
件で行い、成形体を得た。金型キャビティにおける微粉
の充填密度は1.6g/ccであった。この場合フィルタ
は、上パンチに多孔質金属材料を溶接したものを使用し
た。次に、成形体に5×10−2torrの圧力下で、室温か
ら500℃までの昇温速度が5℃/の脱植物油処理を施
し、次いで同じ圧力で1070℃までを30℃/の昇温速度
で昇温し、その温度で4時間保持して焼結した。次いで
焼結体Arガス雰囲気中で900℃×1時間と600℃×1
時間の熱処理を各1回施した。次いで機械加工し、得ら
れた各焼結磁石試料の密度、酸素量、炭素量及び磁気特
を測定したところ、表1に示すように、放置時間の経
過に対する焼結体酸素量の増加はきわめて少なく、いず
れの試料においても良好な磁気特性が得られた。
Example 3 Nd 28.0%, Pr 1.5%, Dy 1.0%, B1.
0%, Nb1.0%, Co3.5% , Al0.3%, Nd-Fe-B based alloy coarse powder having a composition of the balance Fe and jet mill in N 2 gas atmosphere, fine exhaust crusher A container filled with rapeseed oil was installed at the outlet, and the discharged fine powder was directly collected in rapeseed oil in a N 2 gas atmosphere to form a mixture. The weight ratio of fine powder in the mixture Ri 70% der, the average particle size of the fine powder
It was 3.9 μm. Then, the resulting mixture immediately after pulverization
24 hours, 48 hours, 72 hours, 96 hours and
Each mixture left for 120 hours was prepared and subjected to molding.
Was. Each mixture was molded by a molding apparatus shown in FIG. Molding is performed by filling the mold cavity by rubbing each mixture in order , then lowering the upper punch to the die surface, applying an orientation magnetic field of 3KOe to the mold cavity, and then molding while applying the orientation magnetic field. conditions to be wet-molded at a pressure of 1.0ton / cm 2
And a molded article was obtained. The packing density of the fine powder in the mold cavity was 1.6 g / cc. In this case, a filter obtained by welding a porous metal material to the upper punch was used. Then, under a pressure of 5 × 10 -2 torr in the molded body is subjected to heating rate 5 ° C. / min of de vegetable oil processing to 500 ° C. from room temperature, then to 1070 ° C. 30 ° C. at the same pressure / min The temperature was raised at the temperature rising rate, and the temperature was maintained for 4 hours for sintering. Next, the sintered body was heated in an Ar gas atmosphere at 900 ° C for 1 hour and at 600 ° C for 1 hour.
Each time heat treatment was performed once. Then machined and obtained
Density, oxygen content, carbon content and magnetic characteristics of each sintered magnet sample
When the properties were measured, as shown in Table 1, the increase in the amount of oxygen in the sintered body with the passage of the standing time was extremely small, and good magnetic properties were obtained in all the samples.

【0013】(比較例3) 実施例3で使用したNd−Fe−B系合金粗粉をN
ス雰囲気中で平均粒度4.0μmにジェットミル粉砕し、
粉砕機の微粉排出口に接続された気密容器中に微粉を直
接回収し、保管することにより、微粉砕から24時間、48
時間、72時間、96時間及び120時間保存した微粉を得
た。次いで前記各保存時間の気密容器から取り出した各
微粉のみをそれぞれ用いた以外は実施例3と同様にして
磁界中成形を行った。成形に際し、図1に示す成形装置
をArガス雰囲気中に設置し、金型キャビティに前記各
微粉のみを擦り切って充填し、金型キャビティにおける
微粉の充填密度は1.6g/ccであった。この場合、上パ
ンチは植物油排出孔無しのものと交換し、フィルタは使
用しなかった。成形直後の各成形体を大気に接触させな
いようにして焼結炉に入炉し、以降は実施例3と同様に
して焼結、熱処理及び 機械加工を行い比較例の焼結磁石
試料を得た。得られた各試料の密度、酸素量、炭素量及
び磁気特性を測定したところ、表1に示すように、放置
時間の経過に対する焼結体酸素量の増加が実施例3に比
べて大きく、これに伴って保磁力の顕著な低下が見られ
た。また、焼結体酸素量の増加がそれほど大きくない初
放置時間から残留磁束密度実施例3に比べて低いこ
とがわかる
Comparative Example 3 The coarse powder of the Nd—Fe—B alloy used in Example 3 was jet-milled to an average particle size of 4.0 μm in an N 2 gas atmosphere.
Directly recovered fines during the connection gas tight container in the fine powder discharge port of the crushing machine, by storing, 24 hours milling, 48
Time, 72 hours, 96 hours and 120 hours
Was. Then, each of the storage times was taken out of the airtight container.
In the same manner as in Example 3 except that only the fine powder was used,
Molding was performed in a magnetic field . Upon molding, established the molding apparatus shown in Figure 1 in an Ar gas atmosphere, the the mold cavity was filled with Suriki' only each <br/> fine, the packing density of <br/> fines in the mold cavity It was 1.6 g / cc. In this case, the upper punch was replaced with one without a vegetable oil discharge hole, and no filter was used. Do not bring each compact immediately after molding into contact with the atmosphere.
And then enter the sintering furnace.
To sintering, the sintered magnet of Comparative Example by heat treatment and machining
A sample was obtained. Density of each sample obtained, the oxygen content, carbon content及
Measurement of the fine magnetic properties, as shown in Table 1, large increase in the sintered body oxygen content compared to the Example 3 on the course of the standing <br/> time, a significant decrease in the coercive force along with this It was observed. Further, us go low residual magnetic flux density from the initial idle time increases of the sintered body the oxygen content is not so large as compared with Example 3
I understand .

【0014】(実施例4) 重量百分率でNd27.5%、Pr2.5%、Dy1.5%、B1.
0%、Nb0.6%、Co2.5%、Al0.2%、Ga0.2%、
残部Feの組成を有するNd−Fe−B系合金粗粉をN
ガス雰囲気中でジェットミル粉砕し、粉砕機の微粉排
出口に大豆油となたね油の混合油を満たした容器を設置
し、Nガス雰囲気中で排出微粉を直接混合油中に回収
し、混合物とした。この混合物中の微粉の重量比率は70
%であ、微粉の平均粒度は4.0μmであった。次い
で、得られた混合物を図2に示す成形装置にて成形し
た。成形に際し、上パンチをダイ面まで下降させた後
に、金型キャビティに8KOeの配向磁界を印加し、次い
配向磁界を印加したまま金型キャビティへ、加圧供給
装置に順次充填され前記各混合物を10Kgf/cmの注入
圧力で充填した。金型キャビティにおける微粉の充填密
度は2.8g/ccであった。混合物を金型キャビティに充填
後、配向磁界を印加したまま成形圧力1.0ton/cmで湿
式成形し、成形体を得た。この場合フィルタ1mm
厚さの布製のものを使用した。次に、成形体に5×10
−2torrの圧力下で、室温から500℃までの昇温速度が
5℃/分の脱植物油処理を施し、次いで同じ圧力で1100
℃までを30℃/の昇温速度で昇温し、その温度で4時
間保持して焼結した。次いで焼結体Arガス雰囲気中
で900℃×1時間と600℃×1時間の熱処理を各1回施し
た。次いで機械加工し、得られた焼結磁石試料の密度、
酸素量、炭素量及び磁気特性を測定したところ、表1に
示す良好な値が得られた。
Example 4 Nd27.5%, Pr2.5%, Dy1.5%, B1.
0%, Nb 0.6%, Co 2.5%, Al 0.2%, Ga 0.2%,
Nd-Fe-B-based alloy coarse powder having the balance of Fe
2 jet milled in a gas atmosphere, set up a container filled with oil mixture of soybean oil and rapeseed oil in fine powder discharge port of the crusher to recover a discharge fines directly mixed oil in N 2 gas atmosphere, the mixture And The weight ratio of fines in this mixture is 70
% Der is, the average particle size of fine powder was 4.0 .mu.m. Next
The obtained mixture was molded by a molding apparatus shown in FIG. Upon molding, after lowering the upper punch to the die surface, applying an orientation magnetic field of 8KOe the mold cavity, then
While the orientation magnetic field was applied , the mold cavities were filled with the respective mixtures sequentially filled in the pressurized supply apparatus at an injection pressure of 10 kgf / cm 2 . Packing density of fines definitive the mold cavity was 2.8 g / cc. After filling the mixture into the mold cavity, the mixture was wet-molded at a molding pressure of 1.0 ton / cm 2 while applying an orientation magnetic field to obtain a molded body. In this case, the filter is 1mm
Thick cloth was used. Next, 5 × 10
Under a pressure of -2 torr, subjected to a de-vegetable oil processing heating rate of 5 ° C. / min up to 500 ° C. from room temperature, then at the same pressure 1100
The temperature was raised to 30 ° C. at a rate of 30 ° C./min, and the temperature was maintained for 4 hours for sintering. Next, the sintered body was subjected to heat treatment once each in an Ar gas atmosphere at 900 ° C. × 1 hour and 600 ° C. × 1 hour. Then machined, the density of the obtained sintered magnet sample,
When the amount of oxygen, the amount of carbon and the magnetic properties were measured, good values shown in Table 1 were obtained.

【0015】(比較例4) 実施例4で作製した混合物を、図2に示す成形装置にて
成形した。成形に際し、上パンチをダイ面まで下降さ
せ、次いで金型キャビティに1KOeの配向磁界を印加し
たまま金型キャビティへ加圧供給装置に充填され
混合物を10kgf/cmの注入圧力で充填した。金型キャ
ビティにおける微粉の充填密度は3.0g/ccであった。混
合物を金型キャビティに充填後、配向磁界を印加したま
ま成形圧力1.0ton/cmで湿式成形し、成形体を得た。
この場合フィルタ1mm厚さの布製のものを使用し
た。次に、成形体に5×10−2torrの圧力下で、室温か
ら500℃までの昇温速度が5℃/の脱植物油処理を施
し、次いで同じ圧力で1100℃までを30℃/の昇温速度
で昇温し、その温度で4時間保持して焼結した。得られ
焼結体Arガス雰囲気中で900℃×1時間と600℃×
1時間の熱処理を各1回施した。次いで機械加工し、得
られた焼結磁石試料の密度、酸素量、炭素量及び磁気特
性を測定したところ、表1に示すように、残留磁束密度
と最大エネルギ−積とが実施例4に比べて大幅に低いも
のであった。
Comparative Example 4 The mixture prepared in Example 4 was molded by a molding apparatus shown in FIG. Before Upon molding, lowering the upper punch to the die surface, then that while applying an orientation magnetic field of 1KOe the mold cavity was filled into a mold cavity pressurized feed device
The mixture was filled at an injection pressure of 10 kgf / cm 2 . The packing density of the fines that put into the mold cavity was 3.0 g / cc. After filling the mixture into the mold cavity, the mixture was wet-molded at a molding pressure of 1.0 ton / cm 2 while applying an orientation magnetic field to obtain a molded body.
In this case, a filter made of cloth having a thickness of 1 mm was used. Then, under a pressure of 5 × 10 -2 torr in the molded body is subjected to heating rate 5 ° C. / min of de vegetable oil processing to 500 ° C. from room temperature, then to 1100 ° C. 30 ° C. at the same pressure / min The temperature was raised at the temperature rising rate, and the temperature was maintained for 4 hours for sintering. Obtained
Was 900 ° C. × 1 hour and 600 ° C. × in an Ar gas atmosphere sintered
Heat treatment for one hour was performed once each. Then machined and obtained
When the density, oxygen content, carbon content and magnetic properties of the obtained sintered magnet sample were measured, as shown in Table 1, the residual magnetic flux density and the maximum energy product were much lower than those in Example 4. there were.

【0016】(比較例5) 実施例4で作製した混合物を、図2に示す成形装置にて
成形した。成形に際し、上パンチをダイ面まで下降さ
せ、次いで金型キャビティに8KOeの磁界を印加したま
ま、金型キャビティへ、加圧供給装置に充填され前記
混合物を0.5kgf/cmの注入圧力で充填した。充填後の
金型キャビティにおける微粉の充填密度は1.2g/ccであ
った。混合物を金型キャビティに充填後、配向磁界を印
加したまま成形圧力1.0ton/cmで湿式成形し、成形体
を得た。この場合フィルタ1mm厚さの布製のもの
を使用した。次に、成形体に5×10−2torrの圧力下
で、室温から500℃までの昇温速度が5℃/の脱植物油
処理を施し、次いで同じ圧力で1100℃までを30℃/
昇温速度で昇温し、その温度で4時間保持して焼結し
た。得られた焼結体Arガス雰囲気中で900℃×1時
間と600℃×1時間の熱処理を各1回施した。次いで機
械加工し得られた焼結磁石試料の磁気特性を測定し
たところ、表1に示すように残留磁束密度と最大エネル
ギ−とが実施例4に比べて大幅に低いものであった。
Comparative Example 5 The mixture prepared in Example 4 was molded by a molding apparatus shown in FIG. Upon molding, the upper punch is lowered to the die surface, then while applying a magnetic field of 8KOe the mold cavity, the mold cavity, the <br/> mixture filled in the pressurized feed system 0.5 kgf / cm 2 At an injection pressure of. The packing density of the fines that put the mold cavity after filling was 1.2 g / cc. After filling the mixture into the mold cavity, the mixture was wet-molded at a molding pressure of 1.0 ton / cm 2 while applying an orientation magnetic field to obtain a molded body. In this case, a filter made of cloth having a thickness of 1 mm was used. Then, under a pressure of 5 × 10 -2 torr in the molded body is subjected to heating rate 5 ° C. / min of de vegetable oil processing to 500 ° C. from room temperature, then to 1100 ° C. 30 ° C. at the same pressure / min The temperature was raised at the temperature rising rate, and the temperature was maintained for 4 hours for sintering. The obtained sintered body was subjected to heat treatment once each in an Ar gas atmosphere at 900 ° C. × 1 hour and 600 ° C. × 1 hour. Then machine
When the magnetic properties and the like of the obtained sintered magnet sample were measured, as shown in Table 1, the residual magnetic flux density and the maximum energy were significantly lower than those of Example 4.

【0017】(比較例6) 実施例4で使用したNd−Fe−B系合金粗粉をN
ス雰囲気中でジェットミル粉砕し、粉砕機の微粉排出口
に実施例4の場合と同一配合比の大豆油となたね油から
なる混合油を満たした容器を設置し、Nガス雰囲気中
で排出微粉を直接混合油中に回収し、混合物とした。こ
の混合物中の微粉の重量比率は40%であり、微粉の平均
粒度は4.1μmであった。この混合物を図2に示す成形
装置にて、実施例4と同一条件で成形しようとしたが、
混合物中の植物油の量が多すぎるため上澄みが生成し、
混合物の加圧供給装置による加圧供給時に供給量が安定
せず、成形毎に充填密度と成形体寸法が大きく変動し、
さらにはこれが磁気特性のバラツキをも誘起したため、
製品とすることができなかった。
Comparative Example 6 The Nd—Fe—B-based alloy coarse powder used in Example 4 was pulverized by a jet mill in an N 2 gas atmosphere, and the same compounding as in Example 4 was performed at the fine powder outlet of the pulverizer. from soybean oil and rapeseed oil ratio
It becomes mixed oil established a container filled with, collect the discharged fine powder directly mixed oil in an N 2 gas atmosphere and the mixture. The weight ratio of fine powder in the mixture Ri 40% der, the average particle size of fine powder was 4.1 .mu.m. This mixture was molded using the molding apparatus shown in FIG. 2 under the same conditions as in Example 4.
A supernatant is formed due to too much vegetable oil in the mixture,
The supply amount is not stable at the time of pressurized supply of the mixture by the pressurized supply device, and the packing density and the size of the compact greatly fluctuate every molding,
Furthermore, this also caused variations in magnetic properties,
The product could not be.

【0018】(比較例7) 実施例4で使用したNd−Fe−B系合金粗粉をN
ス雰囲気中でジェットミル粉砕し、粉砕機の微粉排出口
に実施例4の場合と同一配合比の大豆油となたね油から
なる混合油を満たした容器を設置し、Nガス雰囲気中
で排出微粉を直接混合油中に回収し、混合物とした。こ
の混合物中の微粉の重量比率は90%であり、微粉の平均
粒度は3.8μmであった。次いで混合物を図2に示す成
形装置にて、実施例4と同一条件で成形しようとした
が、混合物中の微粉の量が多すぎるため混合物に切れが
生じ、混合物の加圧供給装置による加圧供給時に供給量
が安定せず、成形毎に充填密度と成形体寸法が大きく変
動し、さらにはこれが磁気特性のバラツキをも誘起した
ため、製品とすることができなかった。
(Comparative Example 7) The Nd-Fe-B alloy coarse powder used in Example 4 was pulverized by a jet mill in an N 2 gas atmosphere, and the same compounding as in Example 4 was performed at the fine powder discharge port of the pulverizer. from soybean oil and rapeseed oil ratio
It becomes mixed oil established a container filled with, collect the discharged fine powder directly mixed oil in an N 2 gas atmosphere and the mixture. The weight ratio of fine powder in the mixture Ri 90% der, the average particle size of fine powder was 3.8 .mu.m. Next, the mixture was molded using the molding apparatus shown in FIG. 2 under the same conditions as in Example 4. However, the amount of fine powder in the mixture was too large, and the mixture was cut off. The supply amount was not stable at the time of supply, and the packing density and the size of the compact greatly fluctuated with each molding, and this also caused variations in the magnetic characteristics, so that the product could not be manufactured.

【0019】(実施例5) 重量百分率でNd28.0%、Dy4.0%、B1.0%、Nb1.
0%、Co4.5%、Al0.3%、残部Feの組成を有する
Nd−Fe−B系合金粗粉をNガス雰囲気中でジェッ
トミル粉砕し、平均粒度3.8μmの微粉とした。この微
粉5.5Kgにゴマ油4.5Kgを混ぜ、混合して合計10Kgの混合
物とした。この混合物を図3に示す成形装置にて成形し
た。成形に際し、金型キャビティに混合物を擦り切って
充填し、次に上パンチをダイ面まで下降させた。次に、
金型キャビティに10KOeの配向磁界を印加したまま
型キャビティへ、加圧供給装置に充填された混合物を20
Kgf/cmの注入圧力で追加充填した。追加充填後の金型
キャビティにおける微粉の充填密度は2.9g/ccであっ
た。混合物を金型キャビティに追加充填後、配向磁界を
印加したまま成形圧力1.0ton/cmで湿式成形し、成形
体を得た。この場合フィルタ1mm厚さの布製のも
のを使用した。次に、成形体に5×10−2torrの圧力下
で、室温から500℃までの昇温速度が7℃/の脱植物油
処理を施し、次いで同じ圧力で1100℃までを20℃/
昇温速度で昇温し、その温度で2時間保持して焼結し
た。次いで焼結体Arガス雰囲気中で900℃×1時間
と550℃×1時間の熱処理を各1回施した。次いで機械
加工し、得られた焼結磁石試料の密度、酸素量、炭素量
及び磁気特性を測定したところ、表1に示す良好な値が
得られた。
Example 5 Nd 28.0%, Dy 4.0%, B 1.0%, Nb1.
0%, Co4.5%, Al0.3% , Nd-Fe-B based alloy coarse powder having a composition of the balance Fe and jet mill in N 2 gas atmosphere to obtain a fine powder having an average particle size of 3.8 .mu.m. 4.5 kg of this fine powder was mixed with 4.5 kg of sesame oil, and mixed to obtain a total of 10 kg. This mixture was molded by a molding apparatus shown in FIG. Upon molding, the mold cavity was frayed and filled with the mixture, and then the upper punch was lowered to the die surface . To the next,
While applying an orientation magnetic field of 10KOe the mold cavity, the mold cavity, the mixture filled in the pressurized feed device 20
Additional filling was performed at an injection pressure of Kgf / cm 2 . The packing density of the fines that put the mold cavity after additional charging was 2.9 g / cc. After the mixture was additionally filled in the mold cavity, the mixture was wet-molded at a molding pressure of 1.0 ton / cm 2 while applying an orientation magnetic field to obtain a molded body. In this case, a filter made of cloth having a thickness of 1 mm was used. Then, under the pressure of the molded body 5 × 10 -2 torr, subjected to a de-vegetable oil processing heating rate 7 ° C. / min up to 500 ° C. from room temperature, then up to 1100 ° C. 20 ° C. at the same pressure / min The temperature was raised at the temperature rising rate, and the temperature was maintained for 2 hours for sintering. Next, the sintered body was subjected to heat treatment once each in an Ar gas atmosphere at 900 ° C. × 1 hour and 550 ° C. × 1 hour. Then machined , the density, oxygen content and carbon content of the obtained sintered magnet sample
When the magnetic properties were measured, good values shown in Table 1 were obtained.

【0020】(比較例8) 実施例5で成形した成形体に5×10−2torrの圧力下
で、室温から500℃までの昇温速度が15℃/の脱植物油
処理を施し、次いで同じ圧力で1100℃までを20℃/
昇温速度で昇温し、その温度で2時間保持して焼結し
た。次いで焼結体Arガス雰囲気中で900℃×1時間
と550℃×1時間の熱処理を各1回施した。次いで機械
加工得られた焼結磁石試料の炭素量、磁気特性
測定したところ、表1に示すように炭素量は実施例5に
比べて高く、逆に焼結体密度と残留磁束密度、最大エネ
ルギ−積及び保磁力は低い値であった。
[0020] In a pressure of Comparative Example 8 Example 5 5 × 10 -2 torr to compact molded with, subjected to a de-vegetable oil processing heating rate of 15 ° C. / min up to 500 ° C. from room temperature, then the same pressure to 1100 ° C. the temperature was raised at a heating rate of 20 ° C. / min, and sintered by holding at that temperature for 2 hours. Next, the sintered body was subjected to heat treatment once each in an Ar gas atmosphere at 900 ° C. × 1 hour and 550 ° C. × 1 hour. Then, machining was performed, and the carbon content, magnetic properties, and the like of the obtained sintered magnet sample were measured. As shown in Table 1, the carbon content was higher than that of Example 5; Density, maximum energy product and coercivity were low.

【0021】(実施例6) 重量百分率でNd28.0%、Dy1.5%、B1.0%、Nb1.
2%、Al0.3%、残部Feの組成を有するNd−Fe−
B系合金粗粉をNガス雰囲気中でジェットミル粉砕
し、粉砕機の微粉排出口にひまわり油を満たした容器を
設置し、Nガス雰囲気中で排出微粉を直接ひまわり油
中に回収し、混合物とした。この混合物中の微粉の重量
比率は75%であり、微粉の平均粒度は3.7μmであっ
た。この混合物を図3に示す成形装置にて成形したが、
この場合は注入孔を2つ持つダイを使用し、加圧フィ−
ダからの原料供給ホ−スも途中で二股に分かれているも
のを使用した。成形に際し、金型キャビティに混合物を
擦り切って充填し、次に上パンチをダイ面まで下降させ
た。次に、金型キャビティに4KOeの配向磁界を印加し
たまま金型キャビティへ、加圧供給装置に充填され
混合物を10Kgf/cmの注入圧力で追加充填した。追加
充填後の金型キャビティにおける微粉の充填密度は2.7g
/ccであった。混合物を金型キャビティに追加充填後、
配向磁界を印加したまま成形圧力1.0ton/cmで湿式成
形し、成形体を得た。この場合フィルタは、上パンチ
に多孔質金属材料を溶接したものを使用した。次に、成
形体に5×10−2torrの圧力下で、室温から500℃まで
の昇温速度が3℃/の脱植物油処理を施し、次いで
じ圧力で1060℃までを30/の昇温速度で昇温し、その
温度で3時間保持して焼結した。得られた焼結体Ar
ガス雰囲気中で900℃×1時間と600℃×1時間の熱処理
を各1回施した。次いで機械加工し、得られた焼結磁石
試料の密度、酸素量、炭素量及び磁気特性を測定したと
ころ、表1に示す良好な値が得られた。
Example 6 Nd 28.0%, Dy 1.5%, B 1.0%, Nb 1.
Nd—Fe— having a composition of 2%, Al 0.3%, and the balance Fe
The B based alloy coarse powder with a jet mill ground in N 2 gas atmosphere, established a container filled with sunflower oil to a fine powder discharge port of the crusher to recover a discharge fines into direct sunflower oil in an N 2 gas atmosphere And a mixture. The weight ratio of fine powder in the mixture Ri 75% der, the average particle size of fine powder was 3.7 .mu.m. This mixture was molded by a molding apparatus shown in FIG.
In this case, use a die with two injection holes and pressurize
The material supply hose from the damper also used a forked part on the way. Upon molding, filled with Suriki' the mixture into the mold cavity, it is then lowered over the punch to the die surface
Was. To the next, before the mold cavity to the mold cavity while applying an orientation magnetic field of 4 KOe, filled into pressurized feed device
The mixture was additionally charged at an injection pressure of 10 kgf / cm 2 . The packing density of the fines that put the mold cavity after the addition filling 2.7g
/ cc. After additional filling of the mixture into the mold cavity,
With the orientation magnetic field being applied, wet molding was performed at a molding pressure of 1.0 ton / cm 2 to obtain a molded body. In this case, a filter obtained by welding a porous metal material to the upper punch was used. Then, under the pressure of the molded body 5 × 10 -2 torr, subjected to heating rate 3 ° C. / min of de vegetable oil processing to 500 ° C. from room temperature, then to 1060 ° C. at the same <br/> Ji pressure Was heated at a heating rate of 30 / min , and kept at that temperature for 3 hours for sintering. Ar is added to the obtained sintered body .
Heat treatment at 900 ° C. × 1 hour and 600 ° C. × 1 hour were performed once each in a gas atmosphere. Then machined and obtained sintered magnet
When the density, oxygen content, carbon content and magnetic properties of the sample were measured, good values shown in Table 1 were obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上詳述したように、本発明の原料作
成、成形方法により希土類焼結磁石の配向性が改善さ
れ、かつ耐酸化性も向上するため高性能の希土類焼結磁
石が安定に量産できるようになった。
As described above in detail, the raw material preparation and molding method of the present invention improves the orientation of the rare earth sintered magnet and improves the oxidation resistance, so that the high performance rare earth sintered magnet can be stably obtained. Now it can be mass-produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例、比較例に用いる成形装置の部
分縦断面図である。
FIG. 1 is a partial longitudinal sectional view of a molding apparatus used in Examples and Comparative Examples of the present invention.

【図2】本発明の他の実施例、比較例に用いる成形装置
の部分縦断面図である。
FIG. 2 is a partial longitudinal sectional view of a molding apparatus used in another example of the present invention and a comparative example.

【図3】本発明の他の実施例、比較例に用いる成形装置
の部分縦断面図である。
FIG. 3 is a partial longitudinal sectional view of a molding apparatus used in another example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 上パンチ、2 フィルタ、3 下パンチ、4 ダ
イ、5 配向コイル、6 擦り切りフィ−ダ、7 原料
混合物、8 原料供給ホ−ス、9 原料供給フィ−ダ。
1. Upper punch, 2 filters, 3 lower punches, 4 dies, 5 orientation coils, 6 scraping feeder, 7 raw material mixture, 8 raw material supply hose, 9 raw material supply feeder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−276303(JP,A) 特開 平4−97957(JP,A) 特許2731337(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F 3/00 H01F 41/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-276303 (JP, A) JP-A-4-97957 (JP, A) Patent 2731337 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/00-1/117 B22F 3/00 H01F 41/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RCo系、RCo17系あるいはR
−Fe−B系希土類焼結磁石用微粉(RはYを含む希土
類元素の内の少なくとも1種である)と植物油とを混合
し、得られた混合物を磁界中成形し、次いで順次脱植物
油処理、焼結及び熱処理を行い、かつ前記混合物に占め
る植物油の量を重量百分率で20〜50%に調整し磁界中成
形を行うことを特徴とする希土類焼結磁石の製造方法。
An RCo 5 system, an R 2 Co 17 system or R
-Mixing of fine powder for Fe-B based rare earth sintered magnets (R is at least one of rare earth elements including Y) and vegetable oil, molding the resulting mixture in a magnetic field, and then sequentially removing vegetable oil , have rows sintering and heat treatment, and getting into the mixture
Adjust the amount of vegetable oil to 20 to 50% by weight, and
A method for producing a rare-earth sintered magnet, comprising shaping .
【請求項2】 成形体を温度50〜500℃でかつ圧力10
−1torr以下の条件に30分以上保持する脱植物油処理を
行う請求項1に記載の希土類焼結磁石の製造方法。
2. The molded body is heated at a temperature of 50 to 500 ° C. and a pressure of 10 ° C.
The method for producing a rare earth sintered magnet according to claim 1, wherein a de-vegetable oil treatment is performed for maintaining the condition at −1 torr or less for 30 minutes or more.
【請求項3】 成形体を圧力10−1torr以下でかつ常温
から500℃までの温度範囲の昇温速度を10℃/分以下とし
た条件に保持する脱植物油処理を行う請求項1に記載の
希土類焼結磁石の製造方法。
3. The devegetable oil treatment according to claim 1, wherein the compact is maintained at a pressure of 10 -1 torr or less and a temperature rising rate in a temperature range from ordinary temperature to 500 ° C. of 10 ° C./min or less. Of manufacturing rare earth sintered magnets.
JP31774793A 1993-12-17 1993-12-17 Manufacturing method of rare earth sintered magnet Expired - Lifetime JP3346628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31774793A JP3346628B2 (en) 1993-12-17 1993-12-17 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31774793A JP3346628B2 (en) 1993-12-17 1993-12-17 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JPH07176413A JPH07176413A (en) 1995-07-14
JP3346628B2 true JP3346628B2 (en) 2002-11-18

Family

ID=18091589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31774793A Expired - Lifetime JP3346628B2 (en) 1993-12-17 1993-12-17 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP3346628B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692485B2 (en) * 2004-04-30 2011-06-01 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
JP2011216724A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP2011216732A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same
JP5501826B2 (en) * 2010-03-31 2014-05-28 日東電工株式会社 Manufacturing method of rare earth sintered magnet

Also Published As

Publication number Publication date
JPH07176413A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
WO2019151244A1 (en) Permanent magnet
JP3346628B2 (en) Manufacturing method of rare earth sintered magnet
JPH0354806A (en) Manufacture of rare-earth permanent magnet
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JP4879128B2 (en) Magnet manufacturing method
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2859517B2 (en) Rare earth magnet manufacturing method
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP5228506B2 (en) Magnet manufacturing method
JP3413789B2 (en) R-Fe-B sintered permanent magnet
JPH06322469A (en) Production of rare earth sintered magnet
JP4285666B2 (en) Manufacturing method of rare earth sintered magnet
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JPH0888133A (en) Manufacture of rare earth element magnet
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP3170156B2 (en) Method for producing isotropic granulated powder
JPH1064712A (en) R-fe-b rare earth sintered magnet
US20110298571A1 (en) Rare earth magnetic materials comprising gallium and methods of making the same
JPH08130142A (en) Manufacturing for rear-earth magnet
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

EXPY Cancellation because of completion of term