JP3413789B2 - R-Fe-B sintered permanent magnet - Google Patents

R-Fe-B sintered permanent magnet

Info

Publication number
JP3413789B2
JP3413789B2 JP27057097A JP27057097A JP3413789B2 JP 3413789 B2 JP3413789 B2 JP 3413789B2 JP 27057097 A JP27057097 A JP 27057097A JP 27057097 A JP27057097 A JP 27057097A JP 3413789 B2 JP3413789 B2 JP 3413789B2
Authority
JP
Japan
Prior art keywords
main phase
sintered
permanent magnet
raw material
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP27057097A
Other languages
Japanese (ja)
Other versions
JPH1197223A (en
Inventor
公穂 内田
昌弘 高橋
文丈 谷口
司 三家本
研介 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17487998&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3413789(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27057097A priority Critical patent/JP3413789B2/en
Publication of JPH1197223A publication Critical patent/JPH1197223A/en
Application granted granted Critical
Publication of JP3413789B2 publication Critical patent/JP3413789B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い磁気特性を保
持するとともに、曲げ強さおよび/または残留磁束密度
(Br)の温度係数(α)、固有保磁力(iHc)の温度係数(β)
を改善したR−Fe−B系焼結型永久磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high magnetic property, a bending strength and / or a residual magnetic flux density.
(Br) temperature coefficient (α), intrinsic coercive force (iHc) temperature coefficient (β)
The present invention relates to an R-Fe-B system sintered permanent magnet with improved characteristics.

【0002】[0002]

【従来の技術】焼結型希土類永久磁石の中でR-Fe-B系の
焼結型永久磁石は高性能磁石として注目され、広い分野
で使用されている。このR-Fe-B系焼結型永久磁石は、基
本的にはR2Fe14B相(主相)、RFe7B6相(Brich相)、R85Fe
15相(Rrich相)の3相からなる構造を有している。
2. Description of the Related Art Among sintered rare earth permanent magnets, R-Fe-B type sintered permanent magnets have attracted attention as high-performance magnets and are used in a wide range of fields. This R-Fe-B sintered permanent magnet is basically composed of R 2 Fe 14 B phase (main phase), RFe 7 B 6 phase (Brich phase), and R 85 Fe.
It has a structure consisting of 3 phases of 15 phases (Rrich phase).

【0003】R-Fe-B系を含む焼結型の希土類永久磁石
は、原料金属を溶解し鋳型に注湯して得られたインゴッ
トを粉砕,成形,焼結,熱処理,加工するという粉末冶
金的な工程によって製造されるのが一般的である。しか
し、インゴットを粉砕して得られる合金粉末は、希土類
元素を多量に含むため化学的に非常に活性であり、大気
中において酸化して含有酸素量が増加する。これによっ
て、焼結後の焼結体では希土類元素の一部が酸化物を形
成し、磁気的に有効な希土類元素が減少するため、実用
的な磁気特性の水準、例えば iHc≧13KOe を実現する
にはR-Fe-B系焼結型永久磁石の希土類元素の量を増やす
必要があり、重量百分率で31%を越える希土類元素の添
加量が実用材料では採用されている。このため、従来の
R-Fe-B系焼結型永久磁石の曲げ強度や磁気特性の温度係
数(α、β)は十分なものではなかった。
Sintering type rare earth permanent magnets containing R-Fe-B system are powder metallurgy in which raw metal is melted and an ingot obtained by pouring in a mold is crushed, molded, sintered, heat treated and processed. It is generally manufactured by a conventional process. However, the alloy powder obtained by crushing the ingot is chemically very active because it contains a large amount of rare earth elements, and is oxidized in the atmosphere to increase the oxygen content. As a result, in the sintered body after sintering, a part of the rare earth element forms an oxide, and the magnetically effective rare earth element is reduced, so that a practical magnetic characteristic level, for example, iHc ≧ 13KOe is realized. It is necessary to increase the amount of rare earth element in the R-Fe-B system sintered permanent magnet, and the addition amount of rare earth element exceeding 31% by weight is adopted in practical materials. Therefore, the conventional
The bending strength and temperature coefficient (α, β) of the magnetic properties of the R-Fe-B sintered permanent magnet were not sufficient.

【0004】例えば、特開平7−86015号は、ヘキサンを
湿式微粉砕媒体に用いて微粉砕し、以後所定の製造工程
を経て製作されたNd−Fe−B系焼結型永久磁石であって4
点曲げ強度が30.5〜47.4kg/mm2、磁石中酸素濃度が0.10
〜0.30wt%、(BH)maxが20.4〜34.8MGOeであるものを開
示している。しかし、微粉砕媒体のヘキサン等から不可
避に混入する炭素の含有量および得られたNd−Fe−B系
焼結型永久磁石のミクロ組織と磁気特性の温度係数、曲
げ強度との相関については何ら検討されていない。
For example, Japanese Unexamined Patent Publication No. 7-86015 discloses an Nd-Fe-B system sintered permanent magnet manufactured by pulverizing hexane as a wet pulverizing medium and then performing a predetermined manufacturing process. Four
Point bending strength 30.5-47.4 kg / mm 2 , oxygen concentration in magnet 0.10
.About.0.30 wt% and (BH) max of 20.4 to 34.8 MGOe are disclosed. However, what about the content of carbon inevitably mixed from hexane etc. of the finely pulverized medium and the microstructure of the obtained Nd-Fe-B system sintered permanent magnet and the temperature coefficient of magnetic properties, and the correlation with bending strength Not considered.

【0005】また、特開昭62−133040号は、重量百分率
で0.3%未満のOと0.05%以下のCを含有したR−Fe−B系
焼結型永久磁石を開示しているが、曲げ強度や磁気特性
の温度係数についての示唆はない。
Further, JP-A-62-133040 discloses an R-Fe-B type sintered permanent magnet containing O in an amount of less than 0.3% and C in an amount of 0.05% by weight. There is no suggestion of the temperature coefficient of strength or magnetic properties.

【0006】また、特公平5−18895号は、一次焼結体を
時効処理したのち不活性ガスを圧力媒体として熱間静水
圧プレス処理を施すことによりR−Fe−B系焼結型永久磁
石を高密度化して機械的強度と40MGOeを越える最大エネ
ルギー積を実現したことを開示しているが、不可避不純
物であるO,Cの含有量および焼結体のミクロ組織と磁気
特性の温度係数、曲げ強度との相関については全く検討
されていない。
Japanese Patent Publication No. 5-18895 discloses an R-Fe-B sintered permanent magnet obtained by aging a primary sintered body and then hot isostatic pressing with an inert gas as a pressure medium. It has been disclosed that the mechanical strength and the maximum energy product exceeding 40 MGOe were realized by densifying the alloy, the contents of O and C which are unavoidable impurities, and the temperature coefficient of the microstructure and magnetic properties of the sintered body, No consideration has been given to the correlation with bending strength.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
従来の未検討領域すなわちR−Fe−B系焼結型永久磁石の
不可避不純物であるO,Cの含有量およびその焼結体のミ
クロ組織と磁気特性の温度係数(α、β)、曲げ強度と
の相関を把握することにより、熱間静水圧プレス処理等
を必要とすることなく高い磁気特性を保持しながら曲げ
強度、磁気特性の温度係数(α、β)を改善したR-Fe-B
系焼結型永久磁石を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to find the contents of O and C which are inevitable impurities in the above-mentioned conventional unexamined area, that is, the R-Fe-B system sintered permanent magnet and the sintered body thereof. By grasping the correlation between the microstructure and the temperature coefficient (α, β) of magnetic properties, and bending strength, bending strength and magnetic properties can be maintained while maintaining high magnetic properties without the need for hot isostatic pressing. R-Fe-B with improved temperature coefficient (α, β)
A sintered sintered permanent magnet is provided.

【0008】[0008]

【課題を解決するための手段】本発明者らは、R-Fe-B系
焼結型永久磁石の曲げ強度、磁気特性の温度係数を改善
するため鋭意検討した結果、不可避不純物であるO,C含
有量を極力低く抑えると同時にR-Fe-B系焼結型永久磁石
の主相結晶粒が特定の粒径分布を有しており、高密度化
した場合に、高い磁気特性ととともに曲げ強度と磁気特
性の温度係数とが改善されることを見出し本発明に想到
した。
Means for Solving the Problems As a result of intensive investigations by the present inventors in order to improve the bending strength and the temperature coefficient of magnetic characteristics of an R-Fe-B system sintered permanent magnet, O, which is an unavoidable impurity, The C content is kept as low as possible, and at the same time, the main phase crystal grains of the R-Fe-B system sintered permanent magnet have a specific grain size distribution. The inventors have found that the strength and the temperature coefficient of magnetic properties are improved, and have arrived at the present invention.

【0009】すなわち、本発明は、重量百分率でR(RはY
を含む希土類元素のうちの1種または2種以上) 27.0
〜31.0%、B 0.5〜2.0%、O 0.25%以下、C 0.15%
以下、残部Feの組成を有し、主相結晶粒の総面積に対し
て粒径10μm以下の主相結晶粒の面積の和が80%以上で
かつ粒径13μm以上の主相結晶粒の面積の和が10%以下
であり、7.60g/cm3以上に高密度化したことを特徴とす
るR−Fe−B系焼結型永久磁石である。この構成により、
300N/mm2を越える3点曲げ強さを保有することができ
る。また、297〜393Kにおける残留磁束密度(Br)の温度
係数(α)と固有保磁力(iHc)の温度係数(β)とをそれぞ
れα=−0.081〜−0.089%/K、β=−0.516〜−0.551%
/Kとすることができる。
That is, according to the present invention, R (R is Y
2 or more of rare earth elements including) 27.0
~ 31.0%, B 0.5 ~ 2.0%, O 0.25% or less, C 0.15%
Below, the area of the main phase crystal grains having the composition of the balance Fe and the sum of the areas of the main phase crystal grains having a grain size of 10 μm or less with respect to the total area of the main phase crystal grains of 80% or more and the grain size of 13 μm or more Is 10% or less and has a high density of 7.60 g / cm 3 or more, which is an R-Fe-B based sintered permanent magnet. With this configuration,
It can hold a three-point bending strength exceeding 300 N / mm 2 . Further, the temperature coefficient (α) of the residual magnetic flux density (Br) at 297 to 393 K and the temperature coefficient (β) of the intrinsic coercive force (iHc) are α = -0.081 to -0.089% / K, β = -0.516 to -0.551%
It can be / K.

【0010】上記本発明磁石はOおよびC含有量を非常に
少なく抑えているので、熱間静水圧プレスのような高密
度化処理を必要とすることなく後述の特長ある縦磁場成
形または横磁場成形とそれに続く脱溶媒、焼結処理によ
って焼結体密度をR−Fe−B系焼結型永久磁石の理論密度
に相当する7.60g/cm3以上に高密度化することができ
る。このため、室温293Kで測定した磁気特性で iHc≧1
3kOe でかつ (BH)maxを35MGOe以上、好ましくは40MGO
e以上、より好ましくは45MGOe以上、特に好ましくは50M
GOe以上とすることができる。
Since the magnet of the present invention has a very low O and C content, it is possible to perform the longitudinal magnetic field forming or transverse magnetic field formation which is described later without the need for densification treatment such as hot isostatic pressing. The density of the sintered body can be increased to 7.60 g / cm 3 or more, which is equivalent to the theoretical density of the R-Fe-B system sintered permanent magnet, by molding, followed by desolvation and sintering treatment. Therefore, iHc ≥ 1 in the magnetic characteristics measured at room temperature 293K.
3kOe and (BH) max of 35MGOe or more, preferably 40MGOe
e or more, more preferably 45 MGOe or more, particularly preferably 50 M
Can be more than GOe.

【0011】また、上記本発明磁石が重量百分率でNを
0.02〜0.15%含有した場合には良好な耐蝕性が付与され
る。
Further, the magnet of the present invention contains N in weight percentage.
When it is contained 0.02 to 0.15%, good corrosion resistance is given.

【0012】また、上記本発明磁石のFeの一部を重量百
分率でNb 0.1〜2.0%、Al 0.02〜2.0%、Co 0.3〜5.
0%、Ga 0.01〜0.5%、Cu 0.01〜1.0%のうちの1種
または2種以上で置換することにより磁気特性を改良で
きる。
In addition, a part of Fe of the magnet of the present invention is Nb 0.1-2.0%, Al 0.02-2.0%, Co 0.3-5.
The magnetic characteristics can be improved by substituting one or more of 0%, Ga 0.01 to 0.5%, and Cu 0.01 to 1.0%.

【0013】[0013]

【発明の実施の形態】以下、本発明を具体的に説明する
が、下記により本発明が限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below, but the present invention is not limited to the following.

【0014】本発明磁石の結晶粒径の定義と測定には種
々の方法があり得、一義的ではないが、本発明者らは主
相(R2Fe14B相)の総面積に対する粒径が10μm以下の主
相結晶粒の面積の和の割合と、同じく主相の総面積に対
する粒径が13μm以上の主相結晶粒の面積の和の割合に
よって、主相の結晶粒径分布を示す尺度とした場合に、
曲げ強度や温度係数(α、β)がこの尺度によって大き
く変化することを見出した。この計測は、対象とするR-
Fe-B系焼結型永久磁石の結晶組織を、OLYMPUS社製顕微
鏡(商品名VANOX)で観察し、この画像をNIRECO社製画像
処理装置(商品名LUZEX2)に直接投入して評価した。
There are various methods for defining and measuring the crystal grain size of the magnet of the present invention, and although it is not unambiguous, the present inventors have found that the grain size with respect to the total area of the main phase (R 2 Fe 14 B phase). Shows the crystal grain size distribution of the main phase by the ratio of the sum of the areas of the main phase crystal grains having a grain size of 10 μm or less and the ratio of the sum of the areas of the main phase grains having a grain size of 13 μm or more to the total area of the main phase. When used as a scale,
It was found that the bending strength and the temperature coefficient (α, β) greatly changed by this scale. This measurement is the target R-
The crystal structure of the Fe-B system sintered permanent magnet was observed with a microscope (trade name VANOX) manufactured by OLYMPUS, and this image was directly put into an image processing device (trade name LUZEX2) manufactured by NIRECO and evaluated.

【0015】図1は、重量百分率でNd 27.5%,Pr 0.5
%,Dy 1.5%,B 1.1%,Al 0.1%,Co 2.0%,Ga 0.08
%,N 0.06%,O 0.16%,C 0.06%,N 0.040%,残部Fe
の組成を有し、主相の総面積に対する結晶粒径が10μm
以下の主相結晶粒の面積の和が96%,結晶粒径が13μm
以上の主相結晶粒の面積の和が1%の本発明の焼結型永
久磁石の光学顕微鏡(倍率1000倍)による観察結果であ
る。また図2は、同じ組成を有し、主相の総面積に対す
る結晶粒径が10μm以下の主相結晶粒の面積の和が64
%,結晶粒径が13μm以上の主相結晶粒の面積の和が17
%の比較例の焼結型永久磁石の光学顕微鏡(倍率1000
倍)による観察結果である。
FIG. 1 is a weight percentage of Nd 27.5%, Pr 0.5
%, Dy 1.5%, B 1.1%, Al 0.1%, Co 2.0%, Ga 0.08
%, N 0.06%, O 0.16%, C 0.06%, N 0.040%, balance Fe
And the grain size is 10 μm with respect to the total area of the main phase.
The sum of the areas of the following main phase crystal grains is 96%, and the crystal grain size is 13 μm
It is an observation result by an optical microscope (magnification: 1000 times) of the sintered permanent magnet of the present invention in which the sum of the areas of the main phase crystal grains is 1%. In addition, FIG. 2 shows that the sum of the areas of the main phase crystal grains having the same composition and the crystal grain size of 10 μm or less with respect to the total area of the main phase is 64
%, The sum of the areas of the main phase crystal grains with a grain size of 13 μm or more is 17
% Of the sintered permanent magnet of the comparative example (magnification 1000
Times).

【0016】一般に、R-Fe-B系焼結型永久磁石の製造
は、原料粗粉を微粉砕し、この微粉を所定の金型内に磁
場中成形して成形体を得、次いで焼結して焼結体とする
方法が採られる。本発明磁石は、例えば、本発明磁石を
得るに好適な原料の微粉砕をジェットミルを用いて行う
場合には、微粉砕媒体ガスの圧力や粗粉の供給速度等を
制御することにより、所定の平均粒度や粒度分布を持つ
微粉を得、この微粉を用いて製作することができる。ま
た、必要に応じて、分級を行うことにより、微粉の粒度
分布を制御することもできる。
Generally, in the manufacture of R-Fe-B system sintered permanent magnets, raw material coarse powder is finely pulverized, and the fine powder is compacted in a predetermined mold in a magnetic field to obtain a compact, and then sintered. Then, a method of forming a sintered body is adopted. When the raw material suitable for obtaining the magnet of the present invention is finely pulverized by using a jet mill, the magnet of the present invention is controlled by controlling the pressure of the finely pulverizing medium gas, the supply rate of coarse powder, and the like. It is possible to obtain a fine powder having an average particle size and a particle size distribution of, and manufacture using this fine powder. Moreover, the particle size distribution of the fine powder can be controlled by performing classification as necessary.

【0017】本発明者らはR-Fe-B系焼結型永久磁石の主
相の結晶粒径分布を上記の特定範囲とすることが可能で
あり量産に適した製造手段を検討した結果、いわゆるス
トリップキャスト法と呼ばれる方法で製造された所定組
成のR-Fe-B系急冷薄帯状合金を、所定の温度範囲で熱処
理し、これを粗粉砕して原料粗粉とする方法を見出し
た。また熱処理後の薄帯状合金を粉砕する場合は、水素
吸蔵により自然崩壊させた後脱水素処理を施してから行
うことが微粉砕性能を高める上で有効であることを確認
した。図3は、重量百分率でNd 27.8%,Pr 0.45%,Dy
1.7%,B 1.05%,Al 0.05%,Co 2.05%,Ga 0.08
%,Cu 0.09%,O 0.02%,N 0.004%,C 0.007%,残部
Feの組成を有し、ストリップキャスト法で製造された薄
帯状合金の急冷鋳造まま(as cast)の断面組織である。
デンドライト状の微細な組織が存在している。写真の中
で白色に観察される相は希土類量が少なくこの合金の主
相に相当する相、黒色に観察される相は希土類量が多い
この合金のRrich相に相当する相である。このRrich相
は微粉砕時に破壊の起点となるので、このRrich相が図
3に示すように微細に分散している帯状合金を使用した
場合、粒径が細かくて均一な微粉が確率的に生成しやす
い。しかしこの薄帯状合金を急冷鋳造のまま直接原料粗
粉とし、次いで微粉砕しても、良好な粒度分布の微粉は
得られず、これを成形、焼結、熱処理したR-Fe-B系焼結
型永久磁石では、本発明の意図する主相結晶粒の粒径分
布を得られない。この理由は、急冷鋳造によって薄帯状
合金の表面が硬化し、微粉砕時の被粉砕性を著しく悪化
させるからである。
The inventors of the present invention have studied the production means suitable for mass production because the crystal grain size distribution of the main phase of the R-Fe-B system sintered permanent magnet can be set within the above specified range. The inventors have found a method of heat-treating an R-Fe-B-based quenched ribbon having a predetermined composition produced by a so-called strip casting method in a predetermined temperature range and coarsely pulverizing this to obtain a raw material coarse powder. Further, when crushing the ribbon-shaped alloy after the heat treatment, it was confirmed that it is effective to enhance the fine crushing performance by performing natural decomposing by hydrogen absorption and then performing dehydrogenation treatment. Figure 3 shows Nd 27.8%, Pr 0.45%, Dy by weight percentage.
1.7%, B 1.05%, Al 0.05%, Co 2.05%, Ga 0.08
%, Cu 0.09%, O 0.02%, N 0.004%, C 0.007%, balance
It is a cross-sectional structure of an as-cast steel ribbon having an Fe composition and manufactured by a strip casting method.
There is a dendrite-like fine structure. In the photograph, the phase observed in white has a small amount of rare earth and corresponds to the main phase of this alloy, and the phase observed in black has a large amount of rare earth and corresponds to the Rrich phase of this alloy. Since this Rrich phase becomes a starting point of fracture during fine pulverization, when a strip-shaped alloy in which this Rrich phase is finely dispersed is used, a fine powder with a fine particle size is generated stochastically. It's easy to do. However, even if this ribbon-shaped alloy was directly used as raw material coarse powder as it was in rapid cooling casting and then finely pulverized, fine powder with a good particle size distribution could not be obtained. With the bonded permanent magnet, the grain size distribution of the main phase crystal grains intended by the present invention cannot be obtained. The reason for this is that the surface of the ribbon-shaped alloy is hardened by the quenching casting, and the pulverizability during fine pulverization is remarkably deteriorated.

【0018】本発明者らは、この問題を解決する手段と
して、この薄帯状合金を特定温度範囲で熱処理すると薄
帯状合金表面の硬化部分を除去できることを見出した。
この熱処理温度は800〜1100℃が好ましい。熱処理時間
は、少なくとも15分以上好ましくは30分以上行う必要が
ある。これは、熱処理温度が800℃未満では硬化部分の
除去が不十分だからである。また、1100℃より高い温度
では、熱処理時に薄帯状合金間で反応が生じ、後工程で
の処理に困難が生じるからである。活性な希土類元素を
多量に含有する薄帯状合金であるため、熱処理は不活性
ガス雰囲気中または真空中で行う必要があることは言う
までもない。また、前記の通り、熱処理後の薄帯状合金
に水素を吸蔵させて自然崩壊させ、脱水素処理を行った
後、これを粗粉化することは、微粉砕性を高める有効な
手段である。これは、熱処理による薄帯状合金表面の硬
化部分の除去効果に加え、水素による薄帯状合金内部の
主にはRrich相の脆化効果が加わることによる。このよ
うにストリップキャスト法で製造された薄帯状合金を熱
処理し、用いることによって、特許請求範囲に示す主相
粒径分布を有したR-Fe-B系の焼結磁石が得られる。図4
は、ストリップキャスト法により製造した薄板状合金を
900℃で熱処理し、本発明磁石を得るに好適な状態とし
たものの断面写真の一例である。
The present inventors have found that as a means for solving this problem, the hardened portion of the surface of the ribbon-shaped alloy can be removed by heat-treating the ribbon-shaped alloy within a specific temperature range.
The heat treatment temperature is preferably 800 to 1100 ° C. The heat treatment time should be at least 15 minutes or longer, preferably 30 minutes or longer. This is because if the heat treatment temperature is lower than 800 ° C, the hardened portion is not sufficiently removed. Further, at a temperature higher than 1100 ° C., a reaction occurs between the ribbon-shaped alloys during the heat treatment, which makes it difficult to perform the treatment in the subsequent step. Needless to say, the heat treatment must be performed in an inert gas atmosphere or in a vacuum because it is a ribbon-shaped alloy containing a large amount of active rare earth elements. Further, as described above, it is an effective means to improve fine pulverizability by causing the strip-shaped alloy after heat treatment to occlude hydrogen to spontaneously disintegrate, dehydrogenating and then coarsening this. This is because, in addition to the effect of removing the hardened portion on the surface of the ribbon alloy by the heat treatment, the effect of embrittlement of mainly the Rrich phase inside the ribbon alloy by hydrogen is added. By heat-treating the strip-shaped alloy produced by the strip casting method and using it, an R-Fe-B based sintered magnet having a main phase grain size distribution as claimed in the claims is obtained. Figure 4
Is a thin plate alloy manufactured by the strip casting method.
It is an example of a cross-sectional photograph of a state in which the magnet of the present invention is heat-treated at 900 ° C. to be in a suitable state.

【0019】次に、本発明のR-Fe-B系焼結型永久磁石の
組成の限定理由を述べる。希土類元素(R)の量は、下記
の低酸素含有量、低炭素含有量を反映して重量百分率で
27.0〜31.0%とされる。希土類元素の量が31.0%を越え
ると、焼結体内部のRrich相の量が多くなり、かつ形態
も粗大化して耐蝕性が悪くなる。一方、希土類元素の量
が27.0%未満であると、焼結体の緻密化に必要な液相量
が不足して焼結体密度が低下し、同時にBrとiHcが低下
する。酸素(O)の含有量は重量百分率で0.05〜0.25%と
される。酸素の含有量が0.25%を越えると、希土類元素
の酸化物形成割合が増大し、磁気的に有効な希土類元素
含有量が減少してiHc、焼結体密度が低下する。一方、
溶製されるインゴットのO量の水準は通常0.04%以下で
あるため、焼結体のO量をこの値以下とすることは困難
であり、O量は0.05〜0.25%とすることが好ましい。炭
素(C)の量は重量百分率で0.01〜0.15%とされる。Cの量
が0.15%より多い場合には、希土類元素の炭化物が多く
形成される結果、磁気的に有効な希土類元素分が減少し
てiHc、焼結体密度が低下する。C量は0.12%以下とする
ことがより好ましく、0.10%以下とすることが特に好ま
しい。一方、溶製されるインゴットのC量の水準は通常
0.008%以下であり、焼結体のC量をこの値以下とするこ
とは困難であり、焼結体のC量は0.01〜0.15%とする。
なお、本発明磁石のO量とC量を上記特定範囲とする具体
的な方法は後述する。
Next, the reasons for limiting the composition of the R-Fe-B system sintered permanent magnet of the present invention will be described. The amount of rare earth element (R) is a percentage by weight reflecting the following low oxygen content and low carbon content.
It is set to 27.0 to 31.0%. When the amount of rare earth element exceeds 31.0%, the amount of Rrich phase inside the sintered body increases, and the morphology becomes coarse, resulting in poor corrosion resistance. On the other hand, if the amount of rare earth element is less than 27.0%, the amount of liquid phase required for densification of the sintered body is insufficient, the density of the sintered body decreases, and at the same time, Br and iHc decrease. The content of oxygen (O) is 0.05 to 0.25% by weight. When the oxygen content exceeds 0.25%, the oxide formation ratio of the rare earth element increases, the magnetically effective rare earth element content decreases, and iHc and the sintered body density decrease. on the other hand,
Since the level of O content of the ingot to be melted is usually 0.04% or less, it is difficult to set the O content of the sintered body to this value or less, and the O content is preferably 0.05 to 0.25%. The amount of carbon (C) is 0.01 to 0.15% by weight. When the amount of C is more than 0.15%, a large amount of rare earth element carbides are formed, and as a result, the magnetically effective rare earth element content is reduced, and iHc and the sintered body density are reduced. The C content is more preferably 0.12% or less, and particularly preferably 0.10% or less. On the other hand, the level of C content of ingots is usually
It is 0.008% or less, and it is difficult to set the C content of the sintered body to this value or less, and the C content of the sintered body is set to 0.01 to 0.15%.
A specific method of setting the O amount and C amount of the magnet of the present invention within the above specific range will be described later.

【0020】本発明磁石はFeの一部をNb,Al,Co,Ga,Cuの
うちの1種または2種以上で置換することができる。以
下に重量百分率で示した上記各元素の置換量の限定理由
を説明する。Nbの置換量は0.1〜2.0%とされる。Nbの添
加によって、焼結過程でNbのほう化物が生成し、これが
結晶粒の異常粒成長を抑制する。Nbの置換量が0.1%よ
り少ない場合には、結晶粒の異常粒成長の抑制効果が十
分ではなくなる。一方、Nbの置換量が2.0%を越える
と、Nbのほう化物の生成量が多くなるためBrが顕著に低
下する。Alの置換量は0.02〜2.0%とされる。Alの添加
はiHcを高める効果がある。Alの置換量が0.02%より少
ない場合にはiHcの向上効果が少なく、2.0%を越えると
Brが急激に低下する。Coの置換量は0.3〜5.0%とされ
る。Coの添加はキューリ点の向上すなわち飽和磁化の温
度係数の改善をもたらす。Coの置換量が0.3%より少な
い場合には、温度係数の改善効果は小さい。Coの置換量
が5.0%を越えると、Br、iHcが急激に低下する。Gaの置
換量は0.01〜0.5%とされる。Gaの微量添加はiHcの向上
をもたらすが、置換量が0.01%より少ない場合にはiHc
の向上効果は認められない。一方、Gaの置換量が0.5%
を越えるとBrの低下が顕著になり、iHcも低下する。Cu
の置換量は0.01〜1.0%とされる。Cuの微量添加はiHcの
向上をもたらすが、置換量が1.0%を越えるとiHcの向上
効果は飽和する。添加量が0.01%より少ないとiHcの向
上効果は認められない。
In the magnet of the present invention, a part of Fe may be replaced with one or more of Nb, Al, Co, Ga and Cu. The reasons for limiting the substitution amount of each of the above elements shown in weight percentage will be described below. The substitution amount of Nb is set to 0.1 to 2.0%. The addition of Nb produces Nb boride during the sintering process, which suppresses abnormal grain growth. When the Nb substitution amount is less than 0.1%, the effect of suppressing abnormal grain growth of crystal grains becomes insufficient. On the other hand, when the substitution amount of Nb exceeds 2.0%, the production amount of boride of Nb increases, so that Br remarkably decreases. The substitution amount of Al is 0.02 to 2.0%. Addition of Al has the effect of increasing iHc. When the Al substitution amount is less than 0.02%, the iHc improving effect is small, and when it exceeds 2.0%.
Br drops sharply. The substitution amount of Co is 0.3 to 5.0%. The addition of Co brings about the improvement of the Curie point, that is, the temperature coefficient of the saturation magnetization. When the substitution amount of Co is less than 0.3%, the effect of improving the temperature coefficient is small. If the substitution amount of Co exceeds 5.0%, Br and iHc decrease sharply. The substitution amount of Ga is 0.01 to 0.5%. Addition of a small amount of Ga brings about an improvement in iHc, but when the substitution amount is less than 0.01%, iHc
No improvement effect is recognized. On the other hand, the substitution amount of Ga is 0.5%
When it exceeds, the decrease of Br becomes remarkable and the iHc also decreases. Cu
The amount of substitution is 0.01 to 1.0%. The addition of a small amount of Cu brings about the improvement of iHc, but the effect of improving iHc becomes saturated when the substitution amount exceeds 1.0%. If the amount added is less than 0.01%, the effect of improving iHc is not observed.

【0021】次に、本発明磁石に良好な耐蝕性を付与す
るN量の制御方法について 説明する。R-Fe-B系焼結型
永久磁石のN量の制御方法には種々の方法があり、その
うちの適宜の方法を本発明に選択可能であり、限定され
るものではない。例えば、ジェットミル粉砕機にR-Fe-B
系焼結型永久磁石用の原料粗粉を装入し、次いでジェッ
トミル内部をArガスで置換してそのArガス中の酸素濃度
が実質的に0%になるようにし、次にN2ガスを微量導入
してArガス中のN2ガスの濃度を調整する(通常0.0001〜
0.1vol%の範囲)。このN2ガスを微量に含んだArガス雰
囲気中で原料粗粉を微粉砕する過程で、原料中の主には
希土類元素とNが結合し、回収された微粉中のN量が増加
する。微粉の回収は、その微粉を被覆することで酸化の
進行を完全に阻止可能な鉱物油、植物油、合成油等のい
ずれかまたは2種以上を混合した溶媒を満たした容器を
ジェットミルの微粉回収口に設置し、Arガス雰囲気中で
溶媒中に直接微粉を回収する。こうして得たスラリー状
の原料を所定の金型内に磁界中で湿式成形し、成形体と
する。次に、この成形体を真空炉中で5×10-2torr程度
の真空度下で200℃前後の温度に加熱し、成形体内の含
有溶媒を除去する。次いで引き続き、真空炉の温度を11
00℃前後の焼結温度にまで上げ、5×10-4torr程度の真
空度下で焼結して焼結体を得る。以後、所定の熱処理等
を経てO量が0.25%以下、C量が0.15%以下のR-Fe-B系焼
結型永久磁石が得られる。この場合、焼結体中のN量の
制御は、上記ジェットミル粉砕時のArガス中の導入N2
スの濃度制御によって行う。原料へのNの混入度は、ジ
ェットミルの容量、装入原料粗粉の組成と装入量、ジェ
ットミル粉砕時の原料粗粉の送り量などによって変化す
る。したがって、目標とする焼結体N量を得るために
は、最適なArガス中のN2ガス濃度を決めてジェットミル
粉砕する必要がある。この様にして、焼結体中のN量を
0.02〜0.15%に制御することができる。
Next, a method of controlling the amount of N which imparts good corrosion resistance to the magnet of the present invention will be described. There are various methods for controlling the N content of the R-Fe-B system sintered permanent magnet, and an appropriate method among them can be selected for the present invention, and is not limited. For example, R-Fe-B in a jet mill grinder
Was charged with raw meal for the system sintered permanent magnets, then the internal jet mill as the oxygen concentration in the Ar gas was replaced with Ar gas is substantially 0%, then N 2 gas Is introduced to adjust the concentration of N 2 gas in Ar gas (usually 0.0001 ~
0.1 vol% range). During the process of finely pulverizing the raw material coarse powder in the Ar gas atmosphere containing a small amount of N 2 gas, the rare earth element and N in the raw material are mainly combined, and the amount of N in the recovered fine powder increases. The fine powder can be collected by coating the fine powder with a jet mill and collecting a container filled with a solvent that is a mixture of two or more mineral oils, vegetable oils, synthetic oils, etc. that can completely prevent the progress of oxidation. Place in the mouth and collect fine powder directly in the solvent in Ar gas atmosphere. The slurry-like raw material thus obtained is wet-molded in a predetermined mold in a magnetic field to obtain a molded body. Next, this molded body is heated to a temperature of about 200 ° C. in a vacuum furnace under a vacuum degree of about 5 × 10 -2 torr to remove the solvent contained in the molded body. Then continue to increase the temperature of the vacuum furnace to 11
The sintering temperature is raised to around 00 ° C. and sintered under a vacuum degree of about 5 × 10 −4 torr to obtain a sintered body. After that, through a predetermined heat treatment or the like, an R-Fe-B system sintered permanent magnet having an O content of 0.25% or less and a C content of 0.15% or less can be obtained. In this case, the control of the amount of N in the sintered body is performed by controlling the concentration of the introduced N 2 gas in the Ar gas at the time of crushing the jet mill. The degree of incorporation of N into the raw material changes depending on the capacity of the jet mill, the composition and amount of the raw material coarse powder charged, and the feed amount of the raw material coarse powder during jet mill pulverization. Therefore, in order to obtain the target amount of the sintered body N, it is necessary to determine the optimum N 2 gas concentration in Ar gas and perform the jet mill grinding. In this way, the amount of N in the sintered body
It can be controlled to 0.02 to 0.15%.

【0022】また、ジェットミル内部をN2ガスで置換し
てそのN2ガス中の酸素濃度が実質的に0%になるように
し、このN2ガス雰囲気中で原料粗粉を微粉砕すること
で、0量が0.25%以下、C量が0.15%以下、N量が0.02〜
0.15%のR-Fe-B系焼結型永久磁石が得られる。この場合
は、原料粗粉の装入量と微粉砕時の原料粗粉の送り量に
よって原料へのNの混入度を制御し、目標とするN量の焼
結体を得る。ジェットミルの型式や容量によって原料へ
のNの混入度は変化するため、あらかじめ条件出しを行
って、原料粗粉の装入量と微粉砕時の送り量を設定す
る。微粉砕粉の回収方法は鉱物油、植物油、合成油等の
溶媒中へであり、溶媒中回収から焼結に至る間の微粉の
酸化が阻止される。なお、以上に述べた酸素濃度が実質
的に0%である雰囲気とは、例えばR-Fe-B系原料粗粉を1
0kg/時間程度微粉砕できる能力を有する生産型のジット
ミル粉砕機の場合では、雰囲気中の酸素濃度が0.01vol
%以下、より好ましくは0.005vol%以下、さらに好まし
くは0.002vol%以下の雰囲気を言う。以上のような方法
によってO量が0.25%以下、C量が0.15%以下、N量が0.0
2〜0.15%のR-Fe-B系焼結体を作製できると同時に、先
に説明した800〜1100℃の温度範囲で熱処理を施した所
定の組成を有する急冷薄帯状合金を原料として用いるこ
とによって、特許請求範囲に記載した主相結晶粒径分布
のものが再現性よく得られる。こうして得られた焼結体
に所定の熱処理、加工、表面処理等を行うことにより、
高い磁気特性を有するとともに曲げ強度、磁気特性の温
度係数が改善されたR-Fe-B系焼結型永久磁石が得られ
る。
Further, the oxygen concentration of the N 2 gas inside the jet mill was replaced with N 2 gas is substantially set to be 0%, comminuting raw meal in the N 2 gas atmosphere , 0 content is 0.25% or less, C content is 0.15% or less, N content is 0.02 ~
0.15% of R-Fe-B system sintered permanent magnet is obtained. In this case, the mixing degree of N in the raw material is controlled by the charging amount of the raw material coarse powder and the feed amount of the raw material coarse powder at the time of fine pulverization to obtain a target N amount of sintered body. Since the mixing degree of N in the raw material changes depending on the type and capacity of the jet mill, the conditions are set in advance and the charging amount of the raw material coarse powder and the feed amount during fine pulverization are set. The method of recovering the finely pulverized powder is into a solvent such as mineral oil, vegetable oil, or synthetic oil, and the oxidation of the fine powder during the recovery from the solvent to the sintering is prevented. The above-mentioned atmosphere in which the oxygen concentration is substantially 0% means, for example, that R-Fe-B raw material coarse powder is
In the case of a production type jitt mill crusher that has the ability to finely pulverize about 0 kg / hour, the oxygen concentration in the atmosphere is 0.01 vol.
% Or less, more preferably 0.005 vol% or less, still more preferably 0.002 vol% or less. By the above method, O content is 0.25% or less, C content is 0.15% or less, N content is 0.0
A 2 to 0.15% R-Fe-B system sintered body can be produced, and at the same time, a quenched ribbon-shaped alloy having a predetermined composition that has been heat-treated in the temperature range of 800 to 1100 ° C described above is used as a raw material. Thus, the main phase crystal grain size distribution described in the claims can be obtained with good reproducibility. By subjecting the thus obtained sintered body to predetermined heat treatment, processing, surface treatment, etc.,
An R-Fe-B sintered permanent magnet having high magnetic properties and improved bending strength and temperature coefficient of magnetic properties can be obtained.

【0023】(実施例1)重量百分率でNd 27.0%,Pr
0.5%,Dy 1.5%,B 1.05%,Nb 0.35%,Al 0.08%,C
o 2.5%,Ga 0.09%,Cu 0.08%,O 0.03%,C 0.005
%,N 0.004%,残部Feの組成を有する、厚さが0.2〜0.5
mmの薄帯状合金を、ストリップキャスト法で作製した。
この薄帯状の合金を、Arガス雰囲気中で1000℃で2時間
加熱した。次に水素炉を使用し、この薄帯状の合金を常
温で水素ガス雰囲気中で水素吸蔵させ、自然崩壊させ
た。次いで炉内を真空排気しつつ550℃まで薄帯状の合
金を加熱し、その温度で1時間保持して脱水素処理を行
った。崩壊した合金を窒素ガス雰囲気中で機械的に破砕
して32meshアンダーの原料粗粉とした。この原料粗粉を
分析したところ、重量百分率でNd 27.0%,Pr 0.5%,D
y 1.5%,B 1.05%,Nb 0.35%,Al 0.08%,Co 2.5
%,Ga 0.09%,Cu 0.08%,O 0.12%,C 0.02%,N 0.
008%,残部Feという分析値を得た。この原料粗粉80kgを
ジェットミル内に装入した後、ジェットミル内部をN2
スで置換し、N2ガス中の酸素濃度を実質的に0%(酸素分
析計値で0.001vol%)とした。次いで、粉砕圧力7.0kg/c
m2、原料粗粉の供給量10kg/時間の条件でジェットミル
粉砕した。微粉の平均粒度は3.9μmであった。ジェッ
トミルの微粉回収口には鉱物油(商品名出光スーパーゾ
ルPA-30,出光興産製)を満たした容器を直接設置し、N2
ガス雰囲気中で微粉を直接鉱物油中へ回収した。回収後
の原料は、鉱物油の量を加減することで微粉の純分が80
重量%の原料スラリーとした。この原料スラリーを、所
定の金型キャビティ内で12kOeの配向磁界を印加しなが
ら0.8ton/cm2の成形圧で湿式成形した。配向磁界の印加
方向は、成形方向と垂直である。また、金型の上パンチ
には溶媒排出孔を多数設け、成形時には1mmの厚さの布
製のフィルタを上パンチ面にあてて使用した。次に、こ
の得られた成形体を、5.0×10-2torrの真空中で200℃×
1時間加熱して含有鉱物油を除去し、次いで4.0×10-4to
rrの条件下で15℃/分の昇温速度で1070℃まで昇温し、
その温度で3時間保持して焼結した。この焼結体にArガ
ス雰囲気中で900℃×2時間と480℃×1時間の熱処理を各
1回施して本発明の焼結型永久磁石を得た。この焼結磁
石の組成を分析したところ、重量百分率でNd 27.0%,P
r 0.5%,Dy 1.5%,B 1.05%,Nb 0.35%,Al 0.08
%,Co 2.5%,Ga 0.09%,Cu 0.08%,O 0.16%,C 0.
07%,N 0.055%,残部Feという分析値を得た。この焼結
磁石の、主相結晶粒の総面積に対する、結晶粒径が10μ
m以下の主相結晶粒の面積の和は93%、結晶粒径が13μ
m以上の主相結晶粒の面積の和は4%であった。機械加
工後293Kにおける磁気特性、焼結体密度(ρs)を測定し
たところ、Br=14.0〜14.2kG、iHc=14.2〜14.3kOe、(B
H)max=47.2〜47.6MGOe、ρs=7.60〜7.62g/cm3という
良好な値が得られた。また、297〜393Kにおいて、測定
した本発明磁石のBrの温度係数α=−0.081〜−0.083%
/K、iHcの温度係数β=−0.540〜−0.546%/Kであっ
た。次に、得られた上記本発明磁石のうちの任意のもの
から長さ40mm×横10mm×縦5mmの長方形板状の曲げ試験
片(長さ方向が磁気異方性化方向。)を合計20個切り出
し、オートグラフAG−5000A(島津製作所製)を用い
て、JIS 1601−1981に基づき3点曲げ強度を293Kで測定
したところ、320〜325N/mm2という良好な値を得た。ま
た、得られた本発明磁石を縦8mm×横8mm×厚み2mmの直
方体ブロックに加工後、表面に膜厚10〜20μmのNiメ
ッキを施したものを製作し、2気圧×120℃×相対湿度10
0%の条件に放置し、時間の経過に対するNiメッキの
はく離程度を調べたところ、2500時間を経過してもNi
メッキに異常は認められず、良好な耐蝕性を示した。
(Example 1) Nd 27.0%, Pr by weight percentage
0.5%, Dy 1.5%, B 1.05%, Nb 0.35%, Al 0.08%, C
o 2.5%, Ga 0.09%, Cu 0.08%, O 0.03%, C 0.005
%, N 0.004%, balance Fe composition, thickness 0.2-0.5
A strip alloy of mm was produced by the strip casting method.
This ribbon-shaped alloy was heated in an Ar gas atmosphere at 1000 ° C. for 2 hours. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material powder of 32 mesh under. Analysis of this raw material coarse powder showed that the weight percentage was Nd 27.0%, Pr 0.5%, D
y 1.5%, B 1.05%, Nb 0.35%, Al 0.08%, Co 2.5
%, Ga 0.09%, Cu 0.08%, O 0.12%, C 0.02%, N 0.
The analytical values were 008% and balance Fe. After charging the raw material coarse powder 80kg in a jet mill, the inner jet mill was replaced with N 2 gas, substantially 0% of oxygen concentration in the N 2 gas and (0.001 vol% oxygen analyzer value) did. Then, crushing pressure 7.0 kg / c
Jet milling was performed under the conditions of m 2 and a raw material coarse powder supply rate of 10 kg / hour. The average particle size of the fine powder was 3.9 μm. A container filled with mineral oil (trade name Idemitsu Super Sol PA-30, manufactured by Idemitsu Kosan) was installed directly at the fine powder recovery port of the jet mill, and N 2
Fine powder was recovered directly in mineral oil in a gas atmosphere. The raw material after recovery has a fine content of 80% by adjusting the amount of mineral oil.
It was a raw material slurry of wt%. This raw material slurry was wet-molded at a molding pressure of 0.8 ton / cm 2 while applying an orientation magnetic field of 12 kOe in a predetermined mold cavity. The application direction of the orientation magnetic field is perpendicular to the molding direction. In addition, a large number of solvent discharge holes were provided in the upper punch of the die, and a 1 mm-thick cloth filter was applied to the upper punch surface during molding. Next, the obtained molded body was heated at a temperature of 200 ° C. in a vacuum of 5.0 × 10 -2 torr.
Heat for 1 hour to remove mineral oil content, then 4.0 × 10 -4 to
Under the condition of rr, the temperature is raised to 1070 ° C at a heating rate of 15 ° C / min,
The temperature was maintained for 3 hours for sintering. This sintered body was heat-treated once at 900 ° C. × 2 hours and 480 ° C. × 1 hour each in an Ar gas atmosphere to obtain a sintered permanent magnet of the present invention. When the composition of this sintered magnet was analyzed, it was found that the weight percentage was Nd 27.0%, P
r 0.5%, Dy 1.5%, B 1.05%, Nb 0.35%, Al 0.08
%, Co 2.5%, Ga 0.09%, Cu 0.08%, O 0.16%, C 0.
The analytical values were 07%, N 0.055% and balance Fe. The crystal grain size of this sintered magnet is 10μ with respect to the total area of the main phase crystal grains.
The sum of the areas of the main phase crystal grains of m or less is 93%, and the crystal grain size is 13μ.
The sum of the areas of the main phase crystal grains of m or more was 4%. Magnetic properties and sintered body density (ρs) at 293K after machining were measured. Br = 14.0 to 14.2kG, iHc = 14.2 to 14.3kOe, (B
Good values of (H) max = 47.2 to 47.6 MGOe and ρs = 7.60 to 7.62 g / cm 3 were obtained. Further, the temperature coefficient of Br of the magnet of the present invention measured at 297 to 393 K, α = −0.081 to −0.083%
/ K, iHc temperature coefficient β = -0.540 to -0.546% / K. Next, a total of 20 rectangular plate-shaped bending test pieces having a length of 40 mm, a width of 10 mm, and a length of 5 mm (the length direction is the direction of magnetic anisotropy) were obtained from any of the obtained magnets of the present invention. Using an Autograph AG-5000A (manufactured by Shimadzu Corp.), the three-point bending strength was measured at 293K based on JIS 1601-1981, and a good value of 320 to 325 N / mm 2 was obtained. The obtained magnet of the present invention was processed into a rectangular block having a length of 8 mm × a width of 8 mm × a thickness of 2 mm, and a Ni-plated film having a film thickness of 10 to 20 μm was applied to the surface of the block to produce 2 atm × 120 ° C. × relative humidity. Ten
It was left in the condition of 0% and the degree of peeling of the Ni plating was examined with the passage of time.
No abnormalities were found in the plating, indicating good corrosion resistance.

【0024】(実施例2)重量百分率でNd 22.3%,Pr
2.0%,Dy 5.5%,B 1.0%,Nb 0.5%,Al 0.2%,Co
2.0%,Ga 0.09%,Cu 0.1%,O 0.02%,C 0.005%,N
0.003%,残部Feの組成を有する、厚さが0.2〜0.4mmの
薄帯状合金を、ストリップキャスト法で作製した。この
薄帯状の合金を、Arガス雰囲気中で1100℃で1時間加熱
した。次に水素炉を使用し、この薄帯状の合金を常温で
水素ガス雰囲気中で水素吸蔵させ、自然崩壊させた。次
いで炉内を真空排気しつつ550℃まで薄帯状の合金を加
熱し、その温度で1時間保持して脱水素処理を行った。
崩壊した合金を窒素ガス雰囲気中で機械的に破砕して、
32meshアンダーの原料粗粉とした。この原料粗粉を分析
したところ、重量百分率でNd 22.3%,Pr 2.0%,Dy
5.5%,B 1.0 %,Nb 0.5%,Al 0.2%,Co 2.0%,Ga
0.09%,Cu 0.1%,O 0.11%,C 0.02%,N 0.006%,
残部Feという分析値を得た。この原料粗粉100kgをジェ
ットミル内に装入した後、ジェットミル内部をN2ガスで
置換し、N2ガス中の酸素濃度を実質的に0%(酸素分析計
値で0.002vol%)とした。次いで、粉砕圧力8.0kg/cm2
原料粗粉の供給量12kg/時間の条件で粉砕した。微粉の
平均粒度は3.8μmであった。ジェットミルの微粉回収
口には鉱物油(商品名出光スーパーゾルPA-30,出光興産
製)を満たした容器を直接設置し、N2ガス雰囲気中で微
粉を直接鉱物油中へ回収した。回収後の原料は、鉱物油
の量を加減することで微粉の純分が77重量%の原料スラ
リーとした。この原料スラリーを、金型キャビティ内で
10kOeの配向磁界を印加しながら1.5ton/cm2の成形圧で
湿式成形した。配向磁界の印加方向は、成形方向と垂直
である。また、金型の上パンチには溶媒排出孔を多数設
け、成形時には1mmの厚さの布製のフィルタを上パンチ
面にあてて使用した。成形体は、5.0×10-2torrの真空
中で200℃×2時間加熱して含有鉱物油を除去し、次いで
5.0×10-4torrの条件下で15℃/分の昇温速度で1090℃ま
で昇温し、その温度に3時間保持して焼結し、以後Arガ
ス雰囲気中で900℃×2時間と460℃×1時間の熱処理を施
して本発明の焼結型永久磁石を得た。この磁石を分析し
たところ、重量百分率でNd 22.3%,Pr 2.0%,Dy 5.5
%,B 1.0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga 0.09
%,Cu 0.1%,O 0.14%,C 0.06%,N 0.040%,残部Fe
という分析値を得た。また、この磁石の主相の粒径分布
は図5に示すように、主相結晶粒の総面積に対する、結
晶粒径が10μm以下の主相結晶粒の面積の和は95%、結
晶粒径が13μm以上の主相結晶粒の面積の和は3%であ
った。図5より、面積率が最大である主相の結晶粒径範
囲は5μm以上でかつ6μm未満の範囲にあり、シャ−プ
な分布となっていることがわかる。得られた焼結型永久
磁石について実施例1と同様にして磁気特性、ρs、3
点曲げ強度、温度係数α、βをそれぞれ測定した結果を
表1に示す。表1より、本発明磁石が良好な磁気特性を
保持しているとともに、温度係数α、βおよび3点曲げ
強度が良好であることがわかる。また、実施例1と同様
にして行った耐蝕性の評価試験では2500時間を経過して
もNiメッキに異常は認められず良好な耐蝕性を示し
た。
(Example 2) Nd 22.3%, Pr by weight percentage
2.0%, Dy 5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co
2.0%, Ga 0.09%, Cu 0.1%, O 0.02%, C 0.005%, N
A strip-shaped alloy with a composition of 0.003% and the balance of Fe and a thickness of 0.2 to 0.4 mm was prepared by the strip casting method. This ribbon-shaped alloy was heated at 1100 ° C. for 1 hour in an Ar gas atmosphere. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment.
Mechanically crush the collapsed alloy in a nitrogen gas atmosphere,
Raw material for 32 mesh under. When this raw material powder was analyzed, Nd 22.3%, Pr 2.0%, Dy
5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga
0.09%, Cu 0.1%, O 0.11%, C 0.02%, N 0.006%,
The analytical value of the balance Fe was obtained. After charging the raw material coarse powder 100kg to the jet mill, the inner jet mill was replaced with N 2 gas, substantially 0% of oxygen concentration in the N 2 gas and (0.002vol% oxygen analyzer value) did. Then, crushing pressure 8.0 kg / cm 2 ,
The raw material coarse powder was pulverized under the condition of a supply rate of 12 kg / hour. The average particle size of the fine powder was 3.8 μm. A container filled with mineral oil (trade name Idemitsu Super Sol PA-30, manufactured by Idemitsu Kosan Co., Ltd.) was directly installed at the fine powder recovery port of the jet mill, and the fine powder was directly recovered into the mineral oil in a N 2 gas atmosphere. The raw material after recovery was made into a raw material slurry in which the fine powder was 77% by weight by adjusting the amount of mineral oil. This raw material slurry is placed in the mold cavity.
Wet molding was performed at a molding pressure of 1.5 ton / cm 2 while applying an orientation magnetic field of 10 kOe. The application direction of the orientation magnetic field is perpendicular to the molding direction. In addition, a large number of solvent discharge holes were provided in the upper punch of the die, and a 1 mm-thick cloth filter was applied to the upper punch surface during molding. The molded body is heated in a vacuum of 5.0 × 10 -2 torr at 200 ° C for 2 hours to remove the contained mineral oil, and then
Under conditions of 5.0 × 10 -4 torr, the temperature was raised to 1090 ° C at a heating rate of 15 ° C / min, held at that temperature for 3 hours and sintered, and then 900 ° C for 2 hours in Ar gas atmosphere. Heat treatment was performed at 460 ° C. for 1 hour to obtain a sintered permanent magnet of the present invention. Analysis of this magnet revealed that it had a weight percentage of Nd 22.3%, Pr 2.0%, Dy 5.5.
%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga 0.09
%, Cu 0.1%, O 0.14%, C 0.06%, N 0.040%, balance Fe
I got the analysis value. As shown in FIG. 5, the particle size distribution of the main phase of this magnet is 95% of the total area of the main phase crystal grains with the area of the main phase crystal grains having a grain size of 10 μm or less. The sum of the areas of the main phase crystal grains having a diameter of 13 μm or more was 3%. It can be seen from FIG. 5 that the crystal grain size range of the main phase having the largest area ratio is in the range of 5 μm or more and less than 6 μm, which is a sharp distribution. The magnetic properties, ρs, and 3 of the obtained sintered permanent magnet were measured in the same manner as in Example 1.
Table 1 shows the results of measuring the point bending strength and the temperature coefficients α and β. It can be seen from Table 1 that the magnet of the present invention retains good magnetic properties and has good temperature coefficients α, β and three-point bending strength. Further, in the corrosion resistance evaluation test conducted in the same manner as in Example 1, no abnormality was found in the Ni plating even after 2500 hours, and good corrosion resistance was exhibited.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例3)重量百分率でNd 20.7%,Pr
8.6%,Dy 1.2%,B 1.05%,Al 0.08%,Co 2.0%,Ga
0.09%,Cu 0.1%,O 0.03%,C 0.006%,N 0.004
%,残部Feの組成を有する、厚さが0.1〜0.5mmの薄帯状
合金を、ストリップキャスト法で作製した。この薄帯状
の合金を、Arガス雰囲気中で900℃で3時間加熱した。次
に水素炉を使用し、この薄帯状の合金を常温で水素ガス
雰囲気中で水素吸蔵させ、自然崩壊させた。次いで炉内
を真空排気しつつ550℃まで薄帯状の合金を加熱し、そ
の温度で1時間保持して脱水素処理を行った。崩壊した
合金を窒素ガス雰囲気中で機械的に破砕して、32meshア
ンダーの原料粗粉とした。この原料粗粉を分析したとこ
ろ、重量百分率でNd 20.7%,Pr 8.6%,Dy 1.5%,B
1.05%,Al 0.08%,Co 2.0%,Ga 0.09%,Cu 0.1%,O
0.13%,C 0.03%,N 0.009%,残部Feという分析値を
得た。この原料粗粉50kgをジェットミル内に装入した
後、ジェットミル内部をArガスで置換し、Arガス中の酸
素濃度を実質的に0%(酸素分析計値で0.002vol%)とし
た。次にArガス中のN2ガスの濃度を0.005vol%とした。
次いで、粉砕圧力7.5kg/cm2、原料粗粉の供給量8kg/時
間の条件で粉砕した。ジェットミルの微粉回収口には鉱
物油(商品名出光スーパーゾルPA-30,出光興産製)を満た
した容器を直接設置し、Arガス雰囲気中で微粉を直接鉱
物油中へ回収した。回収後の原料は、鉱物油の量を加減
することで微粉の純分が75重量%の原料スラリーとし
た。なお、微粉の平均粒度は4.0μmであった。この原
料スラリーを、金型キャビティ内で13kOeの配向磁界を
印加しながら0.6ton/cm2の成形圧で湿式成形した。配向
磁界の印加方向は、成形方向と垂直である。また、金型
の上パンチには溶媒排出孔を多数設け、成形時には1mm
の厚さの布製のフィルタを上パンチ面にあてて使用し
た。成形体は、6.0×10-2torrの真空中で180℃×4時間
加熱して含有鉱物油を除去し、次いで3.0×10-4torrの
条件下で15℃/分の昇温速度で1070℃まで昇温し、その
温度で2時間保持して焼結し、この焼結体にArガス雰囲
気中で900℃×2時間と510℃×1時間の熱処理を各1回施
し、本発明の焼結型永久磁石を得た。この焼結磁石の組
成を分析したところ、重量百分率でNd 20.7%,Pr 8.6
%,Dy 1.2%,B 1.05%,Al 0.08%,Co 2.0%,Ga 0.
09%,Cu 0.1%,O 0.18%,C0.07%,N 0.075%,残部Fe
という分析値を得た。また、得られた焼結磁石の、主相
結晶粒の総面積に対する、結晶粒径が10μm以下の主相
結晶粒の面積の和は90%、結晶粒径が13μm以上の主相
結晶粒の面積の和は5%であった。次に、得られた焼結
磁石について実施例1と同様にして磁気特性、ρs、3
点曲げ強度、温度係数α、βをそれぞれ測定した結果を
表1に示す。表1より、本発明磁石が良好な磁気特性を
有してしているとともに、温度係数α、βおよび3点曲
げ強度が良好であることがわかる。また、この得られた
焼結磁石に対して実施例1と同様にして行った耐蝕性試
験の結果、2500時間を経過してもNiメッキに異常は認め
られず、良好な耐蝕性を示した。
(Example 3) Nd 20.7%, Pr by weight percentage
8.6%, Dy 1.2%, B 1.05%, Al 0.08%, Co 2.0%, Ga
0.09%, Cu 0.1%, O 0.03%, C 0.006%, N 0.004
%, The balance of Fe, 0.1-0.5 mm thick ribbon alloy was prepared by strip casting method. This ribbon-shaped alloy was heated in an Ar gas atmosphere at 900 ° C. for 3 hours. Next, using a hydrogen furnace, this ribbon-shaped alloy was allowed to occlude hydrogen at room temperature in a hydrogen gas atmosphere and naturally collapsed. Then, while the vacuum in the furnace was evacuated, the ribbon-shaped alloy was heated to 550 ° C., and was held at that temperature for 1 hour for dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material powder of 32 mesh under. When this raw material powder was analyzed, Nd 20.7%, Pr 8.6%, Dy 1.5%, B
1.05%, Al 0.08%, Co 2.0%, Ga 0.09%, Cu 0.1%, O
The analytical values were 0.13%, C 0.03%, N 0.009% and balance Fe. After charging 50 kg of this raw material coarse powder into a jet mill, the inside of the jet mill was replaced with Ar gas to make the oxygen concentration in Ar gas substantially 0% (oxygen analyzer value 0.002 vol%). Next, the concentration of N 2 gas in Ar gas was set to 0.005 vol%.
Next, the crushing pressure was 7.5 kg / cm 2 , and the raw material coarse powder was supplied at a rate of 8 kg / hour. A container filled with mineral oil (trade name Idemitsu Super Sol PA-30, manufactured by Idemitsu Kosan) was directly installed at the fine powder recovery port of the jet mill, and the fine powder was directly recovered into the mineral oil in an Ar gas atmosphere. The raw material after recovery was made into a raw material slurry in which the amount of fine oil was 75% by weight by adjusting the amount of mineral oil. The average particle size of the fine powder was 4.0 μm. This raw material slurry was wet-molded at a molding pressure of 0.6 ton / cm 2 while applying an alignment magnetic field of 13 kOe in the mold cavity. The application direction of the orientation magnetic field is perpendicular to the molding direction. In addition, a large number of solvent discharge holes are provided on the upper punch of the mold, and 1 mm is used for molding.
A cloth filter having a thickness of 3 was applied to the upper punch surface and used. The compact is heated in a vacuum of 6.0 × 10 -2 torr at 180 ° C for 4 hours to remove the contained mineral oil, and then 1070 at a heating rate of 15 ° C / min under the conditions of 3.0 × 10 -4 torr. The temperature was raised to ℃, the temperature was maintained for 2 hours to sinter, and this sintered body was subjected to a heat treatment at 900 ° C. × 2 hours and 510 ° C. × 1 hour once in an Ar gas atmosphere. A sintered permanent magnet was obtained. When the composition of this sintered magnet was analyzed, it was found that the weight percentage was Nd 20.7%, Pr 8.6
%, Dy 1.2%, B 1.05%, Al 0.08%, Co 2.0%, Ga 0.
09%, Cu 0.1%, O 0.18%, C 0.07%, N 0.075%, balance Fe
I got the analysis value. In the obtained sintered magnet, the total area of the main phase crystal grains having a crystal grain size of 10 μm or less is 90% of the total area of the main phase crystal grains of the main phase crystal grains having a crystal grain size of 13 μm or more. The sum of the areas was 5%. Next, regarding the obtained sintered magnet, magnetic properties, ρs, 3
Table 1 shows the results of measuring the point bending strength and the temperature coefficients α and β. It can be seen from Table 1 that the magnet of the present invention has good magnetic properties and also has good temperature coefficients α, β and three-point bending strength. In addition, as a result of a corrosion resistance test performed on the obtained sintered magnet in the same manner as in Example 1, no abnormality was found in the Ni plating even after 2500 hours, and good corrosion resistance was exhibited. .

【0027】(実施例4)重量百分率でNd 22.0%,Pr
5.0%,Dy 1.5%,B 1.1%,Al 1.0%,Co 2.5%,O
0.02%,C 0.005%,N 0.005%,残部Feの組成を有す
る、厚さが0.1〜0.4mmの薄帯状合金を、ストリップキャ
スト法で作製した。この薄帯状の合金を、Arガス雰囲気
中で1000℃で2時間加熱した。熱処理後の薄帯状合金を
窒素ガス雰囲気中で機械的に破砕して、32meshアンダー
の原料粗粉とした。この原料粗粉を分析したところ、重
量百分率でNd 22.0%,Pr 5.0%,Dy 1.5%,B 1.1
%,Al 1.0%,Co 2.5%,O 0.14%,C 0.01%,N 0.00
9%,残部Feという分析値を得た。この原料粗粉50kgをジ
ェットミル内に装入した後、ジェットミル内部をN2ガス
で置換し、N2ガス中の酸素濃度を実質的に0%(酸素分析
計値で0.002vol%)とした。次いで、粉砕圧力7.0kg/c
m2、原料粗粉の供給量10kg/時間の条件でジェットミル
粉砕した。微粉の平均粒度は4.2μmであった。ジェッ
トミルの微粉回収口には鉱物油(商品名出光スーパーゾ
ルPA-30,出光興産製)を満たした容器を直接設置し、N2
ガス雰囲気中で微粉を直接鉱物油中へ回収した。回収後
の原料は、鉱物油の量を加減することで微粉の純分が78
重量%の原料スラリーとした。この原料スラリーを、金
型キャビティ内で11kOeの配向磁界を印加しながら0.5to
n/cm2の成形圧で湿式成形した。配向磁界の印加方向
は、成形方向と垂直である。また金型の上パンチには溶
媒排出孔を多数設け、成形時には1mmの厚さの布製のフ
ィルタを上パンチ面にあてて使用した。成形体は、5.0
×10-2torrの真空中で200℃×2時間加熱して含有鉱物油
を除去し、次いで2.0×10-4torrの条件下で15℃/分の昇
温速度で1080℃まで昇温し、その温度で3時間保持して
焼結した。この焼結体にArガス雰囲気中で900℃×2時間
と600℃×1時間の熱処理を各1回施し、本発明の焼結型
永久磁石を得た。この焼結磁石の組成を分析したとこ
ろ、重量百分率でNd 22.0%,Pr 5.0%,Dy 1.5%,B
1.1%,Al 1.0%,Co 2.5%,O 0.17%,C 0.07%,N
0.060%,残部Feという分析値を得た。この焼結磁石の、
主相結晶粒の総面積に対する、結晶粒径が10μm以下の
主相結晶粒の面積の和は88%、結晶粒径が13μm以上の
主相結晶粒の面積の和は7%であった。次に、得られた
焼結磁石について実施例1と同様にして磁気特性、ρ
s、3点曲げ強度、温度係数α、βをそれぞれ測定した
結果を表1に示す。表1より、本発明磁石が良好な磁気
特性を有しているとともに、温度係数α、βおよび3点
曲げ強度が良好であることがわかる。また、実施例1と
同様にして行った耐蝕性試験の結果、2000時間を経過す
るまではNiメッキに異常が認められなかった。
(Example 4) Nd 22.0%, Pr by weight percentage
5.0%, Dy 1.5%, B 1.1%, Al 1.0%, Co 2.5%, O
A strip-shaped alloy having a composition of 0.02%, C 0.005%, N 0.005% and the balance Fe and a thickness of 0.1 to 0.4 mm was prepared by a strip casting method. This ribbon-shaped alloy was heated in an Ar gas atmosphere at 1000 ° C. for 2 hours. The ribbon-shaped alloy after the heat treatment was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material coarse powder of 32 mesh under. When this raw material powder was analyzed, Nd 22.0%, Pr 5.0%, Dy 1.5%, B 1.1
%, Al 1.0%, Co 2.5%, O 0.14%, C 0.01%, N 0.00
The analytical values were 9% and the balance Fe. After charging the raw material coarse powder 50kg in a jet mill, the inner jet mill was replaced with N 2 gas, substantially 0% of oxygen concentration in the N 2 gas and (0.002vol% oxygen analyzer value) did. Then, crushing pressure 7.0 kg / c
Jet milling was performed under the conditions of m 2 and a raw material coarse powder supply rate of 10 kg / hour. The average particle size of the fine powder was 4.2 μm. A container filled with mineral oil (trade name Idemitsu Super Sol PA-30, manufactured by Idemitsu Kosan) was installed directly at the fine powder recovery port of the jet mill, and N 2
Fine powder was recovered directly in mineral oil in a gas atmosphere. The raw material after recovery has a fine powder of 78% by adjusting the amount of mineral oil.
It was a raw material slurry of wt%. This raw material slurry was applied in the mold cavity while applying an orientation magnetic field of 11 kOe to 0.5 to
Wet molding was performed at a molding pressure of n / cm 2 . The application direction of the orientation magnetic field is perpendicular to the molding direction. A large number of solvent discharge holes were provided in the upper punch of the die, and a 1 mm thick cloth filter was applied to the upper punch surface during molding. Molded body is 5.0
The contained mineral oil is removed by heating at 200 ° C for 2 hours in a vacuum of × 10 -2 torr, and then heated to 1080 ° C at a heating rate of 15 ° C / min under the condition of 2.0 × 10 -4 torr. , And kept at that temperature for 3 hours for sintering. This sintered body was heat-treated once at 900 ° C. × 2 hours and 600 ° C. × 1 hour each in an Ar gas atmosphere to obtain a sintered permanent magnet of the present invention. Analysis of the composition of this sintered magnet showed that it had a weight percentage of Nd 22.0%, Pr 5.0%, Dy 1.5%, B
1.1%, Al 1.0%, Co 2.5%, O 0.17%, C 0.07%, N
The analytical values were 0.060% and the balance Fe. Of this sintered magnet,
The sum of the areas of the main phase crystal grains having a crystal grain size of 10 μm or less was 88%, and the sum of the areas of the main phase crystal grains having a crystal grain size of 13 μm or more was 7% with respect to the total area of the main phase crystal grains. Next, regarding the obtained sintered magnet, magnetic properties, ρ were obtained in the same manner as in Example 1.
Table 1 shows the results of measuring s, three-point bending strength, and temperature coefficients α and β. It can be seen from Table 1 that the magnet of the present invention has good magnetic properties and also has good temperature coefficients α, β and three-point bending strength. In addition, as a result of the corrosion resistance test performed in the same manner as in Example 1, no abnormality was found in the Ni plating until 2000 hours had elapsed.

【0028】(実施例5)配向磁場の方向が圧縮方向に
垂直になるように配向磁場用コイルとポールピース等を
設けたプレス装置の金型のキャビティ内に10kOeの磁場
を印加した状態で、その金型の原料注入口を経由して、
実施例1の原料スラリーを、10kgf/cm2の圧力で加圧注
入し、注入後、印加磁場を維持したまま1ton/cm2の加
圧力で成形し、成形体を得た以外は、実施例1と同様に
して本発明の焼結磁石を得た。この焼結磁石の組成を分
析したところ、重量百分率でNd 27.0%,Pr 0.5%,Dy
1.5%,B 1.05%,Nb 0.35%,Al 0.08%,Co 2.5%,G
a 0.09%,Cu 0.08%,0.14%,C 0.06%,N 0.061%,
残部Feという分析値を得た。この焼結磁石の、主相結晶
粒の総面積に対する、結晶粒径が10μm以下の主相結晶
粒の面積の和は94%、結晶粒径が13μm以上の主相結晶
粒の面積の和は4%であった。次に、得られた焼結磁石
について実施例1と同様にして磁気特性、ρs、3点曲
げ強度、温度係数α、βをそれぞれ測定した結果を表1
に示す。表1より、本発明磁石が良好な磁気特性を有し
ているとともに、温度係数α、βおよび3点曲げ強度が
良好であることがわかる。特に、配向磁場中にスラリー
を加圧充填することにより、いわゆる横磁場成形で(BH)
max≧50MGOe でかつ iHc≧13kOe を実現できるとと
もに、曲げ強度と温度係数(α、β)が改善されたR-Fe
-B系焼結型永久磁石を得られる。また、実施例1と同様
にして耐蝕性試験を行ったところ、実施例1と同様の耐
蝕性を示した。
(Embodiment 5) With a magnetic field of 10 kOe applied in the cavity of a die of a pressing machine provided with a coil for orientation magnetic field and a pole piece so that the direction of the orientation magnetic field is perpendicular to the compression direction, Via the raw material inlet of the mold,
The raw material slurry of Example 1 was pressure-injected at a pressure of 10 kgf / cm 2 , and after the injection, the material was molded under a pressure of 1 ton / cm 2 while maintaining the applied magnetic field to obtain a molded body. A sintered magnet of the present invention was obtained in the same manner as in 1. When the composition of this sintered magnet was analyzed, it was found that the weight percentage was Nd 27.0%, Pr 0.5%, Dy
1.5%, B 1.05%, Nb 0.35%, Al 0.08%, Co 2.5%, G
a 0.09%, Cu 0.08%, 0.14%, C 0.06%, N 0.061%,
The analytical value of the balance Fe was obtained. In this sintered magnet, the total area of the main phase crystal grains with a grain size of 10 μm or less is 94%, and the total area of the main phase crystal grains with a grain size of 13 μm or more is It was 4%. Next, the magnetic properties, ρs, three-point bending strength, and temperature coefficients α and β of the obtained sintered magnet were measured in the same manner as in Example 1 and the results are shown in Table 1.
Shown in. It can be seen from Table 1 that the magnet of the present invention has good magnetic properties and also has good temperature coefficients α, β and three-point bending strength. In particular, by pressure-filling the slurry in the orientation magnetic field, so-called transverse magnetic field molding (BH)
R-Fe with max ≧ 50 MGOe and iHc ≧ 13 kOe, and improved bending strength and temperature coefficient (α, β)
-A B-type sintered permanent magnet can be obtained. Further, when a corrosion resistance test was conducted in the same manner as in Example 1, it showed the same corrosion resistance as in Example 1.

【0029】(実施例6)配向磁場の方向が圧縮方向に
平行になるように配向磁場用コイルとポールピース等を
設けたプレス装置の金型のキャビティ内に10kOeの磁場
を印加した状態で、その金型の原料注入口を経由して、
実施例1の原料スラリーを、10kgf/cm2の圧力で加圧注
入し、注入後、印加磁場を維持したまま1ton/cm2の加
圧力で成形し、成形体を得た以外は、実施例1と同様に
して本発明の焼結磁石を得た。この焼結磁石の組成を分
析したところ、重量百分率でNd 27.0%,Pr 0.5%,Dy
1.5%,B 1.05%,Nb 0.35%,Al 0.08%,Co 2.5%,G
a 0.09%,Cu 0.08%,O 0.15%,C 0.06%,N 0.051
%,残部Feという分析値を得た。この焼結磁石の、主相
結晶粒の総面積に対する、結晶粒径が10μm以下の主相
結晶粒の面積の和は93%、結晶粒径が13μm以上の主相
結晶粒の面積の和は4%であった。次に、得られた焼結
磁石について実施例1と同様にして磁気特性、ρs、3
点曲げ強度、温度係数α、βをそれぞれ測定した結果を
表1に示す。表1より、本発明磁石が良好な磁気特性を
有しているとともに、温度係数α、βおよび3点曲げ強
度が良好であることがわかる。特に、配向磁場中にスラ
リーを加圧充填することにより、いわゆる縦磁場成形で
(BH)max≧45MGOe でかつ iHc≧13kOe を実現できる
とともに、曲げ強度と温度係数(α、β)が改善された
R-Fe-B系焼結型永久磁石が得られる。また、実施例1と
同様にして耐蝕性試験を行ったところ、実施例1と同様
の耐蝕性を示した。
(Embodiment 6) With a magnetic field of 10 kOe applied in the cavity of a die of a pressing machine provided with a coil for orientation magnetic field and a pole piece so that the direction of orientation magnetic field is parallel to the compression direction, Via the raw material inlet of the mold,
The raw material slurry of Example 1 was pressure-injected at a pressure of 10 kgf / cm 2 , and after the injection, the material was molded under a pressure of 1 ton / cm 2 while maintaining the applied magnetic field to obtain a molded body. A sintered magnet of the present invention was obtained in the same manner as in 1. When the composition of this sintered magnet was analyzed, it was found that the weight percentage was Nd 27.0%, Pr 0.5%, Dy
1.5%, B 1.05%, Nb 0.35%, Al 0.08%, Co 2.5%, G
a 0.09%, Cu 0.08%, O 0.15%, C 0.06%, N 0.051
%, Balance Fe was obtained. In this sintered magnet, the total area of the main phase crystal grains with a grain size of 10 μm or less is 93% of the total area of the main phase crystal grains, and the total area of the main phase grains with a grain size of 13 μm or more is It was 4%. Next, regarding the obtained sintered magnet, magnetic properties, ρs, 3
Table 1 shows the results of measuring the point bending strength and the temperature coefficients α and β. It can be seen from Table 1 that the magnet of the present invention has good magnetic properties and also has good temperature coefficients α, β and three-point bending strength. In particular, by filling the slurry under pressure in the orientation magnetic field, so-called longitudinal magnetic field molding is possible.
(BH) max ≧ 45MGOe and iHc ≧ 13kOe can be realized, and bending strength and temperature coefficient (α, β) are improved.
An R-Fe-B system sintered permanent magnet is obtained. Further, when a corrosion resistance test was conducted in the same manner as in Example 1, it showed the same corrosion resistance as in Example 1.

【0030】(比較例1)実施例1で作製した薄帯状の
合金を、熱処理を行わずに直接水素炉に入れ、常温で水
素ガス雰囲気中で水素吸蔵させ、自然崩壊させた。その
後、実施例1と同じ条件で脱水素処理と機械的破砕を行
い、32meshアンダーの原料粗粉とした。この原料粗粉を
分析したところ、重量百分率でNd 27.0%,Pr 0.5%,D
y 1.5%,B1.05%,Nb 0.35%,Al 0.08%,Co 2.5%,G
a 0.09%,Cu 0.08%,O 0.10%,C 0.02%,N 0.007
%,残部Feという分析値を得た。この原料粗粉を、実施
例1と同一の条件で微粉砕して得られた微粉の平均粒度
は4.4μmと、実施例1の場合に比べて粗かった。微粉
の回収、原料スラリーの作製、湿式成形、脱鉱物油と焼
結、熱処理などの以降の工程も、実施例1と同一の条件
で行った。得られた焼結磁石の組成を分析したところ、
重量百分率でNd 27.0%,Pr 0.5%,Dy 1.5%,B 1.05
%,Nb 0.35%,Al 0.08%,Co 2.5%,Ga 0.09%,Cu
0.08%,O 0.14%,C 0.06%,N 0.045%,残部Feという
分析値を得た。この焼結磁石の、主相結晶粒の総面積に
対する、結晶粒径が10μm以下の主相結晶粒の面積の和
は78%、結晶粒径が13μm以上の主相結晶粒の面積の和
は12%であった。この比較例の焼結磁石の磁気特性、ρ
s、3点曲げ強度、温度係数α、βをそれぞれ実施例1
と同様にして測定した結果を表1に示す。表1より、こ
の比較例のもののBr,iHcが上記実施例より少し低く、
温度係数βおよび3点曲げ強度が劣っていることがわか
る。また、実施例1と同様にして評価した耐蝕性は1200
時間経過まではNiメッキに異常が認められなかった
が、2000時間経過時点でNiメッキの局部に小さなはく
離が認められた。
(Comparative Example 1) The ribbon-shaped alloy produced in Example 1 was directly placed in a hydrogen furnace without heat treatment and allowed to occlude hydrogen in a hydrogen gas atmosphere at room temperature to spontaneously collapse. Then, dehydrogenation treatment and mechanical crushing were performed under the same conditions as in Example 1 to obtain a raw material coarse powder of 32 mesh under. Analysis of this raw material coarse powder showed that the weight percentage was Nd 27.0%, Pr 0.5%, D
y 1.5%, B 1.05%, Nb 0.35%, Al 0.08%, Co 2.5%, G
a 0.09%, Cu 0.08%, O 0.10%, C 0.02%, N 0.007
%, Balance Fe was obtained. This raw material coarse powder was finely pulverized under the same conditions as in Example 1, and the average particle size of the fine powder was 4.4 μm, which was coarser than that in Example 1. Subsequent steps such as fine powder collection, raw material slurry preparation, wet molding, demineralized oil and sintering, and heat treatment were also performed under the same conditions as in Example 1. When the composition of the obtained sintered magnet was analyzed,
Nd 27.0%, Pr 0.5%, Dy 1.5%, B 1.05 by weight percentage
%, Nb 0.35%, Al 0.08%, Co 2.5%, Ga 0.09%, Cu
The analytical values were 0.08%, O 0.14%, C 0.06%, N 0.045% and balance Fe. In this sintered magnet, the sum of the areas of the main phase crystal grains with a grain size of 10 μm or less to the total area of the main phase grains is 78%, and the sum of the areas of the main phase grains with a grain size of 13 μm or more is It was 12%. Magnetic properties of the sintered magnet of this comparative example, ρ
s, three-point bending strength, and temperature coefficients α and β of Example 1 respectively.
The results measured in the same manner as in Table 1 are shown in Table 1. From Table 1, the Br and iHc of this comparative example are slightly lower than those of the above examples,
It can be seen that the temperature coefficient β and the three-point bending strength are inferior. The corrosion resistance evaluated in the same manner as in Example 1 is 1200.
No abnormality was observed in the Ni plating until the time elapsed, but a small amount of peeling was observed in the local area of the Ni plating after the lapse of 2000 hours.

【0031】(比較例2)実施例2と同一の組成を有す
るR-Fe-B系合金インゴットを作製した。この合金の組成
分析値は重量百分率でNd 22.3%,Pr 2.0%,Dy 5.5
%,B 1.0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga 0.09
%,Cu 0.1%,O 0.01%,C 0.004%,N 0.002%,残部F
eであった。合金の組織中にα-Feの析出が認められたた
め、これを消去するため、合金インゴットにアルゴンガ
ス雰囲気中で1100℃×6時間の液体化処理を施した。次
に合金インゴットを水素炉中に入れ、常温で水素吸蔵さ
せて自然崩壊させた。自然崩壊後の合金を、実施例2と
同一の条件で脱水素処理と機械的破砕をし、32meshアン
ダーの原料粗粉とした。この原料粗粉を分析したとこ
ろ、重量百分率でNd 22.3%,Pr 2.0%,Dy 5.5%,B
1.0%,Nb 0.5%,Al 0.2%,Co 2.0%,Ga 0.09%,Cu
0.1%,O 0.10%,C 0.02%,N 0.005%,残部Feという
分析値を得た。この原料粗粉を、実施例2と同一の条件
で微粉砕した。得られた微粉の平均粒度は4.7μmと、
実施例2の場合に比べて粗かった。次いで微粉砕粉をAr
雰囲気に保持した原料保管容器内へ回収し48時間保存す
る安定化処理を行った後、この微粉のみを所定の金型内
に給粉し、Arガス雰囲気下で実施例2と同様の磁場印
加、加圧条件で乾式成形することにより成形体を製作
し、引き続いて実施例2と同様にして焼結、熱処理など
の所定の処理を行い焼結磁石を得た。この焼結磁石の組
成を分析したところ、重量百分率でNd 22.3%,Pr 2.0
%,Dy 5.5%,B 1.0%,Nb 0.5%,Al 0.2 %,Co 2.
0%,Ga 0.09%,Cu 0.1%,O 0.38%,C 0.06%,N 0.
030%,残部Feという分析値を得た。この焼結磁石の主相
結晶粒の粒径分布と面積率との関係は図6に示すよう
に、主相結晶粒の総面積に対する、結晶粒径が10μm以
下の主相結晶粒の面積の和は61%、結晶粒径が13μm以
上の主相結晶粒の面積の和は22%であった。図5と比較
すると、図6では13μm以上の主相結晶粒の面積率が大
きいことがわかる。この比較例の焼結磁石の磁気特性、
ρs、3点曲げ強度、温度係数α、βをそれぞれ実施例
1と同様にして測定した結果を表1に示す。表1より、
実施例2に比べてこの比較例のもののiHc、温度係数
α、βおよび3点曲げ強度が劣っていることがわかる。
また、実施例1と同様にして評価した耐蝕性は1000時間
経過まではNiメッキに異常が認められなかったが、19
00時間経過時点でNiメッキの局部に異常が認められ
た。
(Comparative Example 2) An R-Fe-B alloy ingot having the same composition as in Example 2 was produced. The compositional analysis value of this alloy is Nd 22.3%, Pr 2.0%, Dy 5.5 by weight percentage.
%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga 0.09
%, Cu 0.1%, O 0.01%, C 0.004%, N 0.002%, balance F
It was e. Precipitation of α-Fe was found in the structure of the alloy, and in order to eliminate it, the alloy ingot was subjected to liquefaction treatment at 1100 ° C for 6 hours in an argon gas atmosphere. Next, the alloy ingot was put into a hydrogen furnace and allowed to occlude hydrogen at room temperature to spontaneously collapse. The alloy after natural disintegration was subjected to dehydrogenation treatment and mechanical crushing under the same conditions as in Example 2 to obtain a raw material coarse powder of 32 mesh under. When this raw material coarse powder was analyzed, Nd 22.3%, Pr 2.0%, Dy 5.5%, B
1.0%, Nb 0.5%, Al 0.2%, Co 2.0%, Ga 0.09%, Cu
The analytical values were 0.1%, O 0.10%, C 0.02%, N 0.005% and balance Fe. This raw material coarse powder was finely pulverized under the same conditions as in Example 2. The average particle size of the obtained fine powder was 4.7 μm,
It was coarse compared to the case of Example 2. Then pulverize the finely ground powder into Ar
After carrying out a stabilization treatment in which it is collected in a raw material storage container kept in an atmosphere and stored for 48 hours, only this fine powder is fed into a predetermined mold, and a magnetic field is applied in the same atmosphere as in Example 2 in an Ar gas atmosphere. A molded body was manufactured by dry-molding under pressure conditions, and then, a predetermined treatment such as sintering and heat treatment was performed in the same manner as in Example 2 to obtain a sintered magnet. When the composition of this sintered magnet was analyzed, it was found that the weight percentage was Nd 22.3%, Pr 2.0
%, Dy 5.5%, B 1.0%, Nb 0.5%, Al 0.2%, Co 2.
0%, Ga 0.09%, Cu 0.1%, O 0.38%, C 0.06%, N 0.
The analytical values of 030% and balance Fe were obtained. As shown in FIG. 6, the relationship between the particle size distribution of main phase crystal grains and the area ratio of this sintered magnet is as shown in FIG. The sum was 61%, and the sum of the areas of the main phase crystal grains having a grain size of 13 μm or more was 22%. Compared with FIG. 5, it can be seen that in FIG. 6, the area ratio of the main phase crystal grains of 13 μm or more is large. The magnetic characteristics of the sintered magnet of this comparative example,
Table 1 shows the results obtained by measuring ρs, three-point bending strength, and temperature coefficients α and β in the same manner as in Example 1. From Table 1,
It can be seen that the iHc, the temperature coefficients α, β, and the three-point bending strength of this comparative example are inferior to those of Example 2.
Further, the corrosion resistance evaluated in the same manner as in Example 1 showed that no abnormality was found in the Ni plating until 1000 hours passed.
Abnormality was found in the Ni-plated area at the time point of 00 hours.

【0032】[0032]

【発明の効果】以上記述の通り、本発明によれば、高い
磁気特性を有しているとともに、曲げ強度、温度係数
(α、β)が改善されたR-Fe-B系焼結型永久磁石を提供
することができる。
As described above, according to the present invention, the R-Fe-B system sintered permanent type having high magnetic properties and improved bending strength and temperature coefficient (α, β) is obtained. A magnet can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】主相の総面積に対し、粒径が10μm以下の主相
結晶粒の面積の和が96%、粒径が13μm以上の主相結晶
粒の面積の和が1%である焼結型永久磁石の金属組織写
真である。
[Fig. 1] The total area of the main phase is 96% of the total area of the main phase crystal grains with a grain size of 10 μm or less, and 1% of the total area of the main phase crystal grains with a grain size of 13 μm or more. 3 is a photograph of a metal structure of a bonded permanent magnet.

【図2】主相の総面積に対し、粒径が10μm以下の主相
結晶粒の面積の和が64%、粒径が13μm以上の主相結晶
粒の面積の和が17%である焼結型永久磁石の金属組織写
真である。
[Fig. 2] The total area of the main phase is 64% of the total area of the main phase crystal grains with a grain size of 10 µm or less, and 17% of the total area of the main phase crystal grains with a grain size of 13 µm or more. 3 is a photograph of a metal structure of a bonded permanent magnet.

【図3】ストリップキャスト法で作製した薄帯状合金の
As-castな断面の金属組織写真である。
FIG. 3 shows a strip-shaped alloy produced by the strip casting method.
It is a photograph of the metal structure of an As-cast cross section.

【図4】ストリップキャスト法で作製した薄帯状合金を
900℃で熱処理したものの断面の金属組織写真である。
FIG. 4 shows a ribbon-shaped alloy produced by the strip casting method.
It is a metallographic photograph of the cross section of what was heat-treated at 900 ° C.

【図5】主相結晶粒の総面積に対し、粒径が10μm以下
の主相結晶粒の面積の和が95%、粒径が13μm以上の主
相結晶粒の面積の和が3%である本発明磁石の主相粒径
分布を示す図である。
[Fig. 5] The sum of the areas of the main phase grains with a grain size of 10 µm or less is 95% and the sum of the areas of the main phase grains with a grain size of 13 µm or more is 3% with respect to the total area of the main phase grains. It is a figure which shows the main phase particle size distribution of a certain magnet of this invention.

【図6】主相結晶粒の総面積に対し、粒径が10μm以下
の主相結晶粒の面積の和が61%、粒径が13μm以上の主
相結晶粒の面積の和が22%である比較例の焼結磁石の主
相粒径分布を示す図である。
FIG. 6 shows that the sum of the areas of the main phase grains having a grain size of 10 μm or less is 61% and the sum of the areas of the main phase grains having a grain size of 13 μm or more is 22% with respect to the total area of the main phase grains. It is a figure which shows the main phase particle size distribution of the sintered magnet of a certain comparative example.

フロントページの続き (72)発明者 佐々木 研介 埼玉県熊谷市三ケ尻6010番地日立金属株 式会社 生産システム研究所 (56)参考文献 特開 平4−7804(JP,A) 特開 平9−232173(JP,A) 特開 平9−260122(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 H01F 1/053 C22C 38 B22F Front Page Continuation (72) Kensuke Sasaki Kensuke Sasaki 6010 Mikajiri, Kumagaya, Saitama Hitachi Metals Co., Ltd. Production Systems Research Laboratory (56) References JP-A-4-7804 (JP, A) JP-A-9-232173 ( JP, A) JP-A-9-260122 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/08 H01F 1/053 C22C 38 B22F

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量百分率でR(RはYを含む希土類元素の
うちの1種または2種以上)27.0〜31.0%、B 0.5〜2.0
%、O 0.25%以下、C 0.15%以下、残部Feの組成を有
し、主相結晶粒の総面積に対して粒径10μm以下の主相
結晶粒の面積の和が80%以上でかつ粒径13μm以上の主
相結晶粒の面積の和が10%以下であり、焼結体密度を7.
60g/cm3以上に高密度化したことを特徴とするR−Fe−B
系焼結型永久磁石。
1. R in weight percentage (R is one or more of rare earth elements including Y) 27.0 to 31.0%, B 0.5 to 2.0
%, O 0.25% or less, C 0.15% or less, and the balance Fe, and the total area of main phase crystal grains with a grain size of 10 μm or less is 80% or more with respect to the total area of the main phase crystal grains and The sum of the areas of the main phase crystal grains with a diameter of 13 μm or more is 10% or less, and the sintered body density is 7.
R-Fe-B characterized by being densified to 60 g / cm 3 or more
Sintered permanent magnet.
【請求項2】 重量百分率でNを0.02〜0.15%含有した
ことを特徴とする請求項1に記載のR−Fe−B系焼結型永
久磁石。
2. The R-Fe-B system sintered permanent magnet according to claim 1, wherein the content of N is 0.02 to 0.15% by weight.
【請求項3】 重量百分率でFeの一部をNb 0.1〜2.0
%、Al 0.02〜2.0%、Co 0.3〜5.0%、Ga 0.01〜0.5
%、Cu 0.01〜1.0%のうちの1種または2種以上で置
換したことを特徴とする請求項1または2に記載のR−F
e−B系焼結型永久磁石。
3. A part of Fe by weight percentage is Nb 0.1 to 2.0.
%, Al 0.02 to 2.0%, Co 0.3 to 5.0%, Ga 0.01 to 0.5
%, Cu 0.01 to 1.0%, and one or more of them are substituted, R-F according to claim 1 or 2.
eB sintered permanent magnet.
【請求項4】 固有保磁力iHcが13kOe以上であることを
特徴とする請求項1乃至3のいずれかに記載のR−Fe−B
系焼結型永久磁石。
4. The R-Fe-B according to claim 1, wherein the intrinsic coercive force iHc is 13 kOe or more.
Sintered permanent magnet.
【請求項5】 最大エネルギー積が35MGOe以上であるこ
とを特徴とする請求項1乃至4のいずれかに記載のR−F
e−B系焼結型永久磁石。
5. The R-F according to claim 1, wherein the maximum energy product is 35 MGOe or more.
eB sintered permanent magnet.
JP27057097A 1997-09-17 1997-09-17 R-Fe-B sintered permanent magnet Ceased JP3413789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27057097A JP3413789B2 (en) 1997-09-17 1997-09-17 R-Fe-B sintered permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27057097A JP3413789B2 (en) 1997-09-17 1997-09-17 R-Fe-B sintered permanent magnet

Publications (2)

Publication Number Publication Date
JPH1197223A JPH1197223A (en) 1999-04-09
JP3413789B2 true JP3413789B2 (en) 2003-06-09

Family

ID=17487998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27057097A Ceased JP3413789B2 (en) 1997-09-17 1997-09-17 R-Fe-B sintered permanent magnet

Country Status (1)

Country Link
JP (1) JP3413789B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815983B2 (en) * 2000-07-10 2006-08-30 株式会社Neomax Rare earth magnet and manufacturing method thereof
JP2002175931A (en) * 2000-09-28 2002-06-21 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
WO2006054617A1 (en) * 2004-11-17 2006-05-26 Tdk Corporation Rare earth sintered magnet
JP4753024B2 (en) * 2005-03-24 2011-08-17 Tdk株式会社 Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
CN114730653A (en) * 2019-11-11 2022-07-08 信越化学工业株式会社 R-Fe-B sintered magnet
JP7226281B2 (en) * 2019-12-03 2023-02-21 信越化学工業株式会社 rare earth sintered magnet
CN113593799B (en) * 2020-04-30 2023-06-13 烟台正海磁性材料股份有限公司 Fine-grain high-coercivity sintered NdFeB magnet and preparation method thereof

Also Published As

Publication number Publication date
JPH1197223A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
EP0651401B1 (en) Preparation of permanent magnet
EP0557103B1 (en) Master alloy for magnet production and its production, as well as magnet production
EP1860668A1 (en) R-t-b based sintered magnet
JP6881338B2 (en) Rare earth magnet manufacturing method
US7056393B2 (en) Method of making sintered compact for rare earth magnet
US8182618B2 (en) Rare earth sintered magnet and method for producing same
US11087922B2 (en) Production method of rare earth magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JP3413789B2 (en) R-Fe-B sintered permanent magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
JP2966342B2 (en) Sintered permanent magnet
JP3255344B2 (en) Sintered permanent magnet
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
JP3586577B2 (en) Sintered permanent magnet
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3171426B2 (en) Sintered permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH0745412A (en) R-fe-b permanent magnet material
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP2002088451A (en) Rare earth magnet and its manufacturing method
JP3984850B2 (en) Rare earth permanent magnet manufacturing method
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RVOP Cancellation by post-grant opposition