JPH09289127A - Manufacture of rare earth permanent magnet, and the rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet, and the rare earth permanent magnet

Info

Publication number
JPH09289127A
JPH09289127A JP8099960A JP9996096A JPH09289127A JP H09289127 A JPH09289127 A JP H09289127A JP 8099960 A JP8099960 A JP 8099960A JP 9996096 A JP9996096 A JP 9996096A JP H09289127 A JPH09289127 A JP H09289127A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
earth permanent
slurry
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8099960A
Other languages
Japanese (ja)
Inventor
Tsukasa Mikamoto
司 三家本
Kensuke Sasaki
研介 佐々木
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8099960A priority Critical patent/JPH09289127A/en
Publication of JPH09289127A publication Critical patent/JPH09289127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

PROBLEM TO BE SOLVED: To suppress the oxidation of material even in handling in the open air by finely crushing rare earth permanent magnet material in an inert gas atmosphere, and collecting and keeping it in an oleaginous solvent, and adjusting the mixed slurry into the preset concentration, and removing the oleaginous solvent from the molded item after molding of the slurry, and sintering the molded item. SOLUTION: Rough powder is crushed (1) in are inert gas atmosphere, and the fine powder is collected into an oleaginous solvent without exposing it to the open air. The mixture of the fine powder in a recovery container and the oleaginous solvent is agitated and mixed (3) so that air may not get in, and then it is adjusted to slurry concentration suitable for the supply to the mold of a molding machine (4), and the slurry is supplied to the mold of a molding machine, and while filtration the oleaginous solvent in slurry, orientation of magnetic field is applied to get a molded item (5), and then the solvent in the molded item is removed at a specific temperature in vacuum (6), and the molded item is sintered in vacuum atmosphere to draw out magnetic property (7). Hereby, the oxidation can be suppressed in the manufacture process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類永久磁石、
好ましくはR−Fe−B系(RはYを含む希土類元素の
うち1種または2種以上)希土類永久磁石の製造方法及
び希土類永久磁石に関するものである。
TECHNICAL FIELD The present invention relates to a rare earth permanent magnet,
Preferably, the present invention relates to a method for producing a rare earth permanent magnet and a rare earth permanent magnet, in which R—Fe—B system (R is one or more of rare earth elements including Y).

【0002】[0002]

【従来の技術】希土類永久磁石は、原料金属を溶解し、
鋳型に注湯して得られたインゴットを粉砕、成形、焼結
して製造する。ところで、希土類粉末は、微粉砕後化学
的に非常に活性になる。このため、微粉砕後特に成形中
に大気に触れると急激に酸化し、磁気特性の劣化を招い
てしまうという問題がある。これを防止する方法とし
て、例えば特開昭58−157924号が開示されてい
る。これは、原料粉末と有機溶媒との混合物を作成し、
これを金型キャビティに供給し、混合物中の有機溶媒を
濾過しながら加圧成形を行い、その後成形体中に残留し
ている有機溶媒を真空雰囲気で除去し、焼結を行うもの
である。
2. Description of the Related Art Rare earth permanent magnets dissolve raw material metals,
It is manufactured by crushing, molding and sintering an ingot obtained by pouring the molten metal into a mold. By the way, rare earth powders become chemically very active after fine grinding. For this reason, there is a problem in that the magnetic characteristics are rapidly oxidized when exposed to the atmosphere after the pulverization, especially during the molding, and the magnetic characteristics are deteriorated. As a method for preventing this, for example, JP-A-58-157924 is disclosed. This creates a mixture of raw powder and organic solvent,
This is supplied to a mold cavity, pressure molding is performed while filtering the organic solvent in the mixture, and then the organic solvent remaining in the molded body is removed in a vacuum atmosphere, and sintering is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、有機溶
媒は一般的に常温での揮発性が強く、大気中で成形体を
取り扱うと成形体表面が乾燥して大気に曝される場合が
あり、成形体中の希土類磁性材料の酸化が進んでしまい
磁気特性が劣化するという問題があった。また、有機溶
媒は一般的に引火点が低く取り扱いが危険であるだけで
なく、常温で揮発した蒸気は人体にも影響を与えるとい
う問題があった。
However, organic solvents generally have strong volatility at room temperature, and when a molded product is handled in the air, the surface of the molded product may be dried and exposed to the air. There is a problem that the rare earth magnetic material in the body is oxidized and the magnetic characteristics are deteriorated. Further, there is a problem that the organic solvent generally has a low flash point and is dangerous to handle, and that the vaporized vapor at room temperature affects the human body.

【0004】[0004]

【課題を解決するための手段】希土類永久磁石の製造方
法において、不活性雰囲気中で希土類永久磁石原料を微
粉砕する微粉砕工程と、前記で製造された微粉を不活性
雰囲気中で油性溶媒に回収保管する回収工程と、前記微
粉と油性溶媒の混合物であるスラリーを予め設定した濃
度に調整するスラリー濃度調整工程と、濃度調整された
スラリーを成形する成形工程と、成形された成形体から
油性溶媒を除去する脱溶媒工程と、油性溶媒が除去され
た成形体を焼結する焼結工程とを有することを特徴とし
ている。また、重量百分率でR(RはY含む希土類元素
のうち1種または2種以上)は28.0〜31.0%、Bは0.5
〜2.0%、Nは0.02〜0.15%、Oは0.25%以下、Cは0.1
5%以下、残部Feの組成を有し前記の製造方法で製造
する希土類永久磁石であることも特徴としている。
[Means for Solving the Problems] In a method for producing a rare earth permanent magnet, a fine pulverizing step of finely pulverizing a rare earth permanent magnet raw material in an inert atmosphere, and the fine powder produced above in an inert atmosphere to an oil solvent. A collecting step of collecting and storing, a slurry concentration adjusting step of adjusting the slurry, which is a mixture of the fine powder and an oily solvent, to a preset concentration, a molding step of molding the slurry whose concentration is adjusted, and an oily material formed from the molded body. It is characterized by having a solvent removal step of removing the solvent and a sintering step of sintering the molded body from which the oily solvent has been removed. Further, in weight percentage, R (R is one or more of rare earth elements including Y) is 28.0 to 31.0%, and B is 0.5.
~ 2.0%, N 0.02 ~ 0.15%, O 0.25% or less, C 0.1
It is also characterized in that it is a rare earth permanent magnet manufactured by the above manufacturing method, having a composition of 5% or less and the balance of Fe.

【0005】[0005]

【発明の実施の形態】希土類永久磁石の製造方法につい
て、図1の製造工程図をもとに説明する。希土類永久磁
石原料としては、後述する組成の合金であって、平均粒
径が20〜500μmに解砕され、酸素量が500〜2
000ppmの粗粉を用いる。ここで、平均粒径が20
μm未満であると粗粉中酸素量が増え、製品となったと
きの希土類永久磁石の保磁力が低下し、500μmより
大きいと後述の微粉砕工程での粉砕性が低下する。ま
た、酸素量はできるだけ少ない方が良いが、粗粉砕過程
での酸化が避けられず、500ppm未満は技術的に困
難であり、2000ppmをこえると製品となったとき
の希土類永久磁石の保磁力が低下する。微粉砕工程1で
は、前記粗粉を不活性ガス雰囲気中で粉砕し、平均粒径
2〜6μm、好ましくは3〜5μmの微粉を得るもので
あり、雰囲気中の酸素濃度が30ppm未満、望ましく
は数ppmになるようにする。これには、高圧の不活性
ガスジェットに前記粗粉を導入し、粒子どうしを衝突さ
せて微粉を得るジェットミル粉砕法が適している。平均
粒径が2μm未満であると、後述する成形工程における
磁場中成形時に微粉の配向性が悪化し、残留磁束密度が
低下する。6μmより大になると後述する焼結工程にお
ける焼結性が悪く、焼結体密度が低下するとともに、保
磁力も急激に低下する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing a rare earth permanent magnet will be described with reference to the manufacturing process chart of FIG. The rare earth permanent magnet raw material is an alloy having the composition described below, which is crushed to have an average particle size of 20 to 500 μm and an oxygen content of 500 to 2
000 ppm of coarse powder is used. Here, the average particle size is 20
If it is less than μm, the amount of oxygen in the coarse powder increases, and the coercive force of the rare earth permanent magnet when it becomes a product is lowered, and if it is more than 500 μm, the pulverizability in the fine pulverization step described later is lowered. Also, it is better that the amount of oxygen is as small as possible, but oxidation in the course of coarse crushing is unavoidable, and it is technically difficult to be less than 500 ppm. If it exceeds 2000 ppm, the coercive force of the rare earth permanent magnet when it becomes a product is descend. In the fine pulverization step 1, the coarse powder is pulverized in an inert gas atmosphere to obtain fine powder having an average particle size of 2 to 6 μm, preferably 3 to 5 μm, and the oxygen concentration in the atmosphere is less than 30 ppm, desirably Adjust to a few ppm. For this, a jet mill pulverization method in which the coarse powder is introduced into a high-pressure inert gas jet and the particles are made to collide with each other to obtain fine powder is suitable. If the average particle size is less than 2 μm, the orientation of the fine powder deteriorates during the molding in a magnetic field in the molding step described later, and the residual magnetic flux density decreases. If it is larger than 6 μm, the sinterability in the sintering step described later is poor, the density of the sintered body is reduced, and the coercive force is also rapidly reduced.

【0006】回収工程2は、前記で得られた微粉を大気
に曝さずに油性の溶媒中に回収する工程である。このた
め前記で用いた粉砕機の微粉排出口に、油性溶媒を入れ
た回収容器を直結するようにセットすると好適である。
ここで油性溶媒は、分留点400℃以下、常温の動粘度
10cst以下、気化開始温度約150℃の鉱物油、合
成油又は植物油の一種、あるいは2種以上の混合体を用
いる。スラリー化工程3は、回収容器内の微粉と油性溶
媒の混合物(以下スラリーと称す)を、十分に攪拌混合
する工程である。これは、微粉回収中に行ってもよい
し、回収容器を粉砕機から分離してから行ってもよい
が、回収容器内は大気が入らないようにしておくことが
望ましい。
The recovery step 2 is a step of recovering the fine powder obtained above in an oily solvent without exposing it to the atmosphere. Therefore, it is preferable to set the recovery container containing the oily solvent directly connected to the fine powder discharge port of the crusher used above.
Here, as the oily solvent, one or a mixture of two or more kinds of mineral oil, synthetic oil or vegetable oil having a distillation point of 400 ° C. or less, a kinematic viscosity at room temperature of 10 cst or less, and a vaporization starting temperature of about 150 ° C. is used. Slurrying step 3 is a step of thoroughly stirring and mixing a mixture of fine powder and an oily solvent (hereinafter referred to as slurry) in the recovery container. This may be performed during the recovery of fine powder, or may be performed after the recovery container is separated from the crusher, but it is desirable to prevent air from entering the recovery container.

【0007】スラリー濃度調整工程4は、スラリーを成
形機金型に供給するに適した濃度に調整するものであ
る。前記処理を行った回収容器を所定時間静置した後、
上澄みを除去し、再び攪拌混合しながらスラリーを濃度
調整手段に移送し、スラリー濃度が50〜85重量%、
好ましくは75〜80重量%となるようにする。スラリ
ー濃度調整手段としては、スラリーの通過路外殻がステ
ンレス製メッシュフィルタから成る枠体構造のものや、
フィルタプレスなどの加圧濾過式のものや遠心濾過方式
のものなどを用いることができる。この処理は、次の加
圧成形工程へのスラリー供給に連動して行うことが好ま
しいが、処理濃度調整後のスラリーを一時保管してもよ
い。この場合も、保管容器内には大気が入らないように
することが望ましい。スラリー濃度が50重量%未満の
場合、溶媒と微粉の分離が激しく、後述する成形工程で
のスラリー供給時の微粉供給量のばらつきが大になる。
85重量%より大になると、ほとんど固形物に近く、供
給性が悪化するとともに、磁場中成形時に微粉の配向性
が悪く残留磁束密度が低下する。成形工程5は、処理濃
度調整後のスラリーを成形機の金型に供給して、スラリ
ー中の油性溶媒を濾過しながら磁場配向を印加して成形
体を得るものである。スラリーの供給は金型内キャビテ
ィに一定量供給することが望ましく、ネジ式ポンプやプ
ランジャポンプを用いるとよい。成形体はAr、N等の
不活性ガスを充満した容器又は油性溶媒を入れた容器中
に保管する。
In the slurry concentration adjusting step 4, the concentration is adjusted to be suitable for supplying the slurry to the molding die. After leaving the collection container subjected to the above treatment for a predetermined time,
The supernatant is removed, and the slurry is transferred to the concentration adjusting means again while stirring and mixing, and the slurry concentration is 50 to 85% by weight,
It is preferably 75 to 80% by weight. As the slurry concentration adjusting means, one having a frame structure in which the outer shell of the slurry passage is made of a stainless mesh filter,
A pressure filtration type such as a filter press or a centrifugal filtration type may be used. This treatment is preferably performed in conjunction with the supply of the slurry to the next pressure molding step, but the slurry after the treatment concentration adjustment may be temporarily stored. Also in this case, it is desirable to prevent air from entering the storage container. When the slurry concentration is less than 50% by weight, the solvent and the fine powder are severely separated, and the amount of the fine powder supplied during the slurry supply in the molding step to be described later varies greatly.
When it is more than 85% by weight, it is almost like a solid matter, the feedability is deteriorated, and the orientation of the fine powder during the molding in a magnetic field is poor and the residual magnetic flux density is lowered. In the molding step 5, the slurry whose treatment concentration has been adjusted is supplied to the mold of the molding machine, and the magnetic field orientation is applied while filtering the oily solvent in the slurry to obtain a molded body. It is desirable to supply a certain amount of slurry to the cavity in the mold, and it is preferable to use a screw pump or a plunger pump. The molded body is stored in a container filled with an inert gas such as Ar or N or a container containing an oily solvent.

【0008】脱溶媒工程6は、成形体中に含まれる溶媒
除去を行うものである。真空度が1Torr以下の真空
中で、成形体を100〜250℃、好ましくは150〜
200℃に30分以上保つことによって行うが、減圧排
気しつつ不活性ガスあるいは還元性ガス雰囲気中におい
て行うこともできる。ここでは、成形体からほとんど完
全に溶媒を除去することと、気化した溶媒又はその分解
物を成形体に付着させないように排気することが重要で
ある。ここで、成形体温度が100℃未満であると、一
日かけても脱脂が完了できない程非常な長時間を要し、
250℃より高いと、成形体中の希土類元素と溶媒中の
Cが反応し、保磁力が低下する。焼結工程7は、溶媒除
去後の成形体を焼結し磁気特性を出すためのものであ
る。従って脱溶媒処理後の成形体を大気に曝すことなく
本工程に移すことが必要である。焼結は、真空度10-1
Torr以下の真空雰囲気中で、1000〜1150
℃、好ましくは1050〜1100℃に所定時間保持し
て行う。1000℃未満であると残留磁束密度が低く、
1150℃より高くなると結晶粒が異常成長し保磁力が
低下する。
In the desolvation step 6, the solvent contained in the molded body is removed. In a vacuum with a vacuum degree of 1 Torr or less, the molded body is heated to 100 to 250 ° C., preferably 150 to
It is carried out by keeping it at 200 ° C. for 30 minutes or more, but it can also be carried out in an inert gas or reducing gas atmosphere while exhausting under reduced pressure. Here, it is important to almost completely remove the solvent from the molded body and to exhaust the vaporized solvent or its decomposition product so as not to adhere to the molded body. Here, if the temperature of the molded body is less than 100 ° C., it takes a very long time that degreasing cannot be completed even in one day,
If the temperature is higher than 250 ° C., the rare earth element in the molded body reacts with C in the solvent to lower the coercive force. The sintering step 7 is for sintering the molded body after removing the solvent so as to obtain magnetic characteristics. Therefore, it is necessary to transfer the molded body after the desolvation treatment to this step without exposing it to the atmosphere. Sintering is vacuum 10 -1
1000 to 1150 in a vacuum atmosphere below Torr
It hold | maintains at (degree C.), preferably 1050-1100 degreeC for a predetermined time, and performs it. If the temperature is less than 1000 ° C, the residual magnetic flux density is low,
If the temperature is higher than 1150 ° C, the crystal grains grow abnormally and the coercive force decreases.

【0009】次に希土類永久磁石について説明する。本
磁石は製造方法とともにその組成に特徴があり、製造方
法は上述した通りである。以下組成の限定理由を説明す
る。希土類元素の量は重量百分率で28.0〜31.0%とされ
る。希土類元素の量が31.0%を越えると、焼結体内部の
Rrich相の量が多くなり、かつ形態が粗大化して耐
蝕性が悪くなる。一方、希土類元素の量が28.0%未満で
あると、焼結体緻密化に必要な液相量が不足して焼結体
密度が低下し、同時に磁気特性のうち残留磁束密度Br
と保磁力iHcが共に低下する。従って、希土類元素の
量は28.0〜31.0%とされる。Bの量は、重量百分率で0.
5〜2.0%とされる。Bの量が2.0%を越える場合には残
留磁束密度が低下し、0.5%未満であると保磁力が低下
するため、B量は0.5〜2.0%とすることが好ましい。O
の量は、重量百分率で0.05〜0.25%とされる。Oの量が
0.25%を越える場合には、希土類元素の一部が酸化物を
形成し、磁気的に有効な希土類元素が減少して保磁力i
Hcが低下する。一方溶解によって作製するインゴット
のO量の水準は最大0.04%であるため、最終焼結体のO
量をこの値以下とすることは困難であり、O量は0.05〜
0.25%とすることが好ましい。C量は、重量百分率で0.
01〜0.15%とされる。Cの量が0.15%より多い場合に
は、希土類元素の一部が炭化物を形成し、磁気的に有効
な希土類元素が減少して、保磁力iHcが低下する。C
量は0.12%以下とすることがより好ましく、0.10%以下
とすることがさらに好ましい。一方、溶解によって作製
するインゴットのC量の水準は最大0.008%であり、最
終焼結体のC量をこの値以下とすることは困難であり、
焼結体のC量は0.01〜0.15%とすることが好ましい。
Next, the rare earth permanent magnet will be described. The present magnet is characterized by its composition as well as its manufacturing method, and the manufacturing method is as described above. The reasons for limiting the composition will be described below. The amount of rare earth element is 28.0 to 31.0% by weight. If the amount of rare earth element exceeds 31.0%, the amount of Rrich phase inside the sintered body increases, and the morphology becomes coarse, resulting in poor corrosion resistance. On the other hand, if the amount of the rare earth element is less than 28.0%, the amount of liquid phase required for densification of the sintered body is insufficient and the density of the sintered body decreases, and at the same time, the residual magnetic flux density Br of the magnetic properties is reduced.
And the coercive force iHc both decrease. Therefore, the amount of rare earth element is set to 28.0 to 31.0%. The amount of B is 0.1% by weight.
5 to 2.0%. When the amount of B exceeds 2.0%, the residual magnetic flux density decreases, and when it is less than 0.5%, the coercive force decreases, so the amount of B is preferably 0.5-2.0%. O
The amount is 0.05 to 0.25% by weight. The amount of O
When it exceeds 0.25%, a part of the rare earth element forms an oxide, and the magnetically effective rare earth element is reduced to decrease the coercive force i.
Hc decreases. On the other hand, since the maximum level of O in the ingot produced by melting is 0.04%, the O of the final sintered body is
It is difficult to keep the amount below this value, and the O amount is 0.05-
It is preferably 0.25%. The amount of C is 0.1% by weight.
It is set to 01 to 0.15%. When the amount of C is more than 0.15%, a part of the rare earth element forms a carbide, the magnetically effective rare earth element decreases, and the coercive force iHc decreases. C
The amount is more preferably 0.12% or less, still more preferably 0.10% or less. On the other hand, the level of C content of the ingot produced by melting is 0.008% at maximum, and it is difficult to keep the C content of the final sintered body at or below this value.
The C content of the sintered body is preferably 0.01 to 0.15%.

【0010】本発明者らの研究成果によると、R−Fe
−B系希土類永久磁石の耐蝕性の改善に対しては、希土
類元素の量を31.0%以下とすることは必要条件ではある
が十分条件ではない。これにはさらに焼結体中のN量を
厳密に制御する必要がある。上記の組成範囲の希土類
量、O量、C量を有するR−Fe−B系希土類永久磁石
において、焼結体中のN量を所定範囲とすることによっ
て、優れた耐蝕性と高い磁気特性を両立させることがで
きる。焼結体中のN量は重量百分率で0.02〜0.15%とす
る必要がある。Nの含有による耐蝕性の改善効果のメカ
ニズムについては必ずしも明確ではないが、焼結体中の
Nは主にRrich相に存在し、希土類元素の一部と結
合して窒化物を形成していることから、この窒化物の形
成がRrich相の陽極酸化を抑制しているものと考え
られる。Nの量が0.02%より少ない場合には、窒化物の
形成量が少ないためか、焼結体の耐蝕性の改善効果は観
られない。Nの量が0.02%以上では、Nの量の増加に従
って焼結体の耐蝕性も向上するが、Nの量が0.15%を越
えると保磁力iHcが急激に低下する。これは、窒化物
の形成による磁気的に有効な希土類元素の減少によるた
めと考えられる。以上の理由から、N量は、0.02〜0.15
%とされる。さらには、N量は0.03〜0.13%とすること
が好ましい。
According to the research results of the present inventors, R-Fe
In order to improve the corrosion resistance of the -B rare earth permanent magnet, it is a necessary condition but not a sufficient condition to set the amount of rare earth element to 31.0% or less. This further requires strict control of the amount of N in the sintered body. In the R—Fe—B rare earth permanent magnet having the rare earth content, the O content, and the C content in the above composition range, excellent corrosion resistance and high magnetic properties can be obtained by setting the N content in the sintered body to a predetermined range. It can be compatible. The amount of N in the sintered body must be 0.02 to 0.15% by weight. Although the mechanism of the effect of improving the corrosion resistance due to the inclusion of N is not always clear, N in the sintered body is mainly present in the Rrich phase and forms a nitride by combining with a part of the rare earth element. Therefore, it is considered that the formation of this nitride suppresses the anodic oxidation of the Rrich phase. If the amount of N is less than 0.02%, the effect of improving the corrosion resistance of the sintered body cannot be seen, probably because the amount of nitride formed is small. When the amount of N is 0.02% or more, the corrosion resistance of the sintered body improves as the amount of N increases, but when the amount of N exceeds 0.15%, the coercive force iHc drops sharply. This is considered to be due to the reduction of magnetically effective rare earth elements due to the formation of nitrides. For the above reasons, the N content is 0.02 to 0.15
%. Further, the N content is preferably 0.03 to 0.13%.

【0011】また、本発明のR−Fe−B系希土類永久
磁石においては、Feの一部をNb,Al,Co,G
a,Cuのうち1種類または2種類以上で置換すること
ができる。以下に各元素の置換量(ここでは置換後の希
土類永久磁石の全組成に対する重量百分率)の限定理由
を説明する。Nbの置換量は0.1〜2.0%とされる。Nb
の添加によって、焼結過程でNbのほう化物が生成し、
これが結晶粒の異常粒成長を抑制する。Nbの置換量が
0.1%より少ない場合には、結晶粒の異常粒成長の抑制
効果が不十分となる。一方、Nbの置換量が2.0%を越
えると、Nbのほう化物の生成量が多くなるため、残留
磁束密度Brが低下する。Alの置換量は、0.02〜2.0
%とされる。Alの添加は保磁力iHcを高める効果が
ある。Alの置換量が0.02%より少ない場合には、保磁
力の向上効果が少ない。置換量が2.0%を越えると、残
留磁束密度Brが急激に低下する。
In the R-Fe-B rare earth permanent magnet of the present invention, a part of Fe is Nb, Al, Co, G.
It can be replaced by one or more of a and Cu. The reason for limiting the substitution amount of each element (here, the weight percentage with respect to the total composition of the rare earth permanent magnet after substitution) will be described. The substitution amount of Nb is set to 0.1 to 2.0%. Nb
Addition of Nb produces Nb boride during the sintering process,
This suppresses abnormal grain growth of crystal grains. The amount of Nb substitution is
If it is less than 0.1%, the effect of suppressing abnormal grain growth of crystal grains becomes insufficient. On the other hand, when the substitution amount of Nb exceeds 2.0%, the amount of boride of Nb generated increases, and the residual magnetic flux density Br decreases. The substitution amount of Al is 0.02 to 2.0
%. The addition of Al has the effect of increasing the coercive force iHc. When the substitution amount of Al is less than 0.02%, the effect of improving the coercive force is small. When the substitution amount exceeds 2.0%, the residual magnetic flux density Br drops sharply.

【0012】Coの置換量は、0.3〜5.0%とされる。C
oの添加はキューリ点の向上すなわち飽和磁化の温度係
数の改善をもたらす。Coの置換量が0.3%より少ない
場合には、温度係数の改善効果は小さい。Coの置換量
が5.0%を越えると。、残留磁束密度Br,保磁力iH
cが共に急激に低下する。Gaの置換量は、0.01〜0.5
%とされる。Gaの微量添加は保磁力iHcの向上をも
たらすが、置換量が0.01%より少ない場合には、添加効
果は小さい。一方、Gaの置換量が0.5%を越えると、
残留磁束密度Brの低下が顕著になるとともに、保磁力
も低下する。Cuの置換量は、0.01〜1.0%とされる。
Cuの微量添加は、保磁力iHcの向上をもたらすが、
添加量が1.0%を越えるとその添加効果は飽和する。添
加量が0.01%より少ない場合には、保磁力iHcの向上
効果は小さい。
The substitution amount of Co is set to 0.3 to 5.0%. C
The addition of o brings about an improvement in the Curie point, that is, an improvement in the temperature coefficient of saturation magnetization. When the substitution amount of Co is less than 0.3%, the effect of improving the temperature coefficient is small. When the substitution amount of Co exceeds 5.0%. , Residual magnetic flux density Br, coercive force iH
Both c decrease sharply. The replacement amount of Ga is 0.01 to 0.5
%. Although the addition of a small amount of Ga improves the coercive force iHc, when the substitution amount is less than 0.01%, the addition effect is small. On the other hand, when the Ga substitution amount exceeds 0.5%,
The residual magnetic flux density Br is significantly reduced and the coercive force is also reduced. The substitution amount of Cu is 0.01 to 1.0%.
Although the addition of a trace amount of Cu improves the coercive force iHc,
If the amount added exceeds 1.0%, the effect of addition becomes saturated. If the added amount is less than 0.01%, the effect of improving the coercive force iHc is small.

【0013】[0013]

【実施例】以下、Nd−Fe−B系希土類に対する本発
明の一実施例を示す。微粉砕工程1では、平均粒径20
0μm、含有酸素濃度1300ppmの粗粉を用い、不
活性高圧ガス雰囲気中で粒子どうしを衝突させて微粉を
得るジェットミル粉砕法で微粉を得た。不活性ガスはA
rガスを用い、粉砕ガス雰囲気中の酸素濃度は1ppm
未満とし、得られた微粉の平均粒径は約5μmであり、
その組成は重量百分率でNd28.01%、Pr0.57%、D
y1.01%、B1.06%、Co2.06%、Nb0.67%、Al0.
10%、Ga0.08%、Cu1.06%、残部Feであった。微
粉の回収工程2では、油性溶媒として出光興産(株)
製、商品名LA35の鉱物油を用いた。本鉱物油の性状
は分溜点約272℃、動粘度2.4cst、引火点10
7℃である。溶媒の量は、回収後の微粉が充分に湿潤さ
れる様に多めとしたため、結果的に微粉と溶媒の重量比
は4:6(濃度40重量%)となった。スラリー化工程
3では、回収容器内の微粉と溶媒は、パドル型攪拌翼を
設けた攪拌機により、充分に混合してスラリー化した。
EXAMPLES An example of the present invention for Nd-Fe-B rare earths will be described below. In the pulverizing step 1, the average particle size is 20
Fine powder was obtained by a jet mill pulverization method in which a coarse powder having a particle size of 0 μm and an oxygen content of 1300 ppm was used to collide particles in an inert high pressure gas atmosphere to obtain a fine powder. Inert gas is A
Oxygen concentration in crushed gas atmosphere is 1ppm using r gas
And the average particle size of the obtained fine powder is about 5 μm,
The composition is Nd 28.01%, Pr 0.57%, D by weight percentage.
y1.01%, B1.06%, Co2.06%, Nb0.67%, Al0.
The content was 10%, Ga 0.08%, Cu 1.06%, and the balance Fe. In the fine powder recovery step 2, as an oil solvent, Idemitsu Kosan Co., Ltd.
A mineral oil manufactured by LA35 was used. The mineral oil has a distillation point of about 272 ° C, a kinematic viscosity of 2.4 cst, and a flash point of 10.
7 ° C. Since the amount of the solvent was increased so that the fine powder after collection was sufficiently wet, the weight ratio of the fine powder and the solvent was 4: 6 (concentration 40% by weight). In the slurry forming step 3, the fine powder and the solvent in the recovery container were sufficiently mixed into a slurry by a stirrer equipped with a paddle type stirring blade.

【0014】スラリー濃度調整工程4では、前記40重
量%濃度のスラリーを75〜80重量%濃度にすること
にした。回収容器内のスラリーは保管中に微粉が沈澱
し、上澄みを除去すると約60重量%のスラリー濃度と
なった。このスラリーをパドル型攪拌翼の攪拌機を用い
て均一に攪拌しつつ、圧送ポンプを用いて濃度調整装置
に移送した。濃度調整装置では、圧送ポンプの圧力1k
gf/cm2で60重量%スラリーをステンレス製メッ
シュフィルタ(目開き3μm)に押し込み、適量の溶媒
のみフィルタ外に排出することにより、フィルタ内のス
ラリー濃度を75〜80重量%にすることができた。成
形工程4では、75〜80重量%スラリーを、ネジ式容
積型ポンプを回転数制御して成形機の金型(幅15、奥
行き50、深さ50mm)に定量供給し、水平方向に1
2kOeの配向磁場を印加した状態で、スラリー中の溶
媒を布製濾布を介して濾過しながら、1トン/cm2の
圧力で垂直方向に加圧し、成形体を得た。成形体中には
約10重量%の溶媒が残存した。成形体は脱溶媒焼結処
理まで、Nガスを導入した容器内に約6時間保管した。
In the slurry concentration adjusting step 4, the 40% by weight slurry is adjusted to 75-80% by weight. Fine powder precipitated during storage in the slurry in the collection container, and when the supernatant was removed, the slurry concentration was about 60% by weight. The slurry was uniformly stirred using a stirrer having a paddle type stirring blade and transferred to a concentration adjusting device using a pressure pump. In the concentration adjusting device, the pressure of the pressure pump is 1k
By pushing the 60 wt% slurry at gf / cm 2 into a stainless mesh filter (mesh opening 3 μm) and discharging only an appropriate amount of solvent out of the filter, the slurry concentration in the filter could be 75 to 80 wt%. . In the molding step 4, 75 to 80% by weight of the slurry is quantitatively supplied to the mold (width 15, depth 50, depth 50 mm) of the molding machine by controlling the rotational speed of the screw type positive displacement pump, and the horizontal direction is 1
While the orientation magnetic field of 2 kOe was applied, the solvent in the slurry was filtered through a cloth filter cloth and vertically pressed at a pressure of 1 ton / cm 2 to obtain a molded body. About 10% by weight of the solvent remained in the molded body. The molded body was stored in a container into which N gas was introduced for about 6 hours until the solvent removal sintering treatment.

【0015】脱溶媒工程6では、前記成形体を脱脂炉に
すばやく供給し、真空中加熱により成形体中に含まれる
溶媒を除去した。真空度10ー2Torr台、成形体温
度200℃、加熱時間1時間で溶媒が除去できることを
確認した。焼結工程7では、脱脂炉に連続する焼結炉に
真空状態を保ったまま溶媒除去後の成形体を移載し、真
空度10ー4Torr台、成形体温度1080℃、焼結
時間2時間で焼結を行い焼結体を得た。以上の製造条件
で得られた希土類永久磁石焼結体の酸素量は1580p
pmであった。当初の粗粉酸素量1300ppmに対
し、わずか280ppmの増加に止まった。また、残留
磁束密度Br13.7kG、保磁力iHc15.3kO
e、最大エネルギー積(BH)max45.2MGOe
という高い磁気特性が得られた。。
In the desolvation step 6, the molded body was rapidly supplied to a degreasing furnace and heated in vacuum to remove the solvent contained in the molded body. Vacuum 10-2 2 Torr stand, moldings temperature 200 ° C., the solvent in a heating time of 1 hour it was confirmed that can be removed. In the sintering step 7, and transfers the molded body after leaving the solvent removed maintaining the vacuum state in a sintering furnace for continuous degreasing furnace, vacuum degree of 10 over 4 Torr stand, moldings temperature 1080 ° C., the sintering time 2 Sintering was performed for a time to obtain a sintered body. The oxygen content of the rare earth permanent magnet sintered body obtained under the above manufacturing conditions is 1580 p.
pm. The initial amount of oxygen in coarse powder was 1300 ppm, but only an increase of 280 ppm. Further, the residual magnetic flux density Br13.7 kG and the coercive force iHc15.3 kO
e, maximum energy product (BH) max45.2MGOe
That is, high magnetic characteristics were obtained. .

【0016】[0016]

【発明の効果】本発明は、以上述べたように有機溶媒よ
り揮発性が低い油性溶媒を使用することにより、次の効
果がある。希土類永久磁石材料の微粉砕は不活性雰囲気
中で行い、そのまま大気に曝すことなく油性溶媒に回収
し、スラリー化して成形し、湿潤状態で焼結工程まで供
給をするので、大気中で取り扱う場合においても、表面
が油性溶媒溶媒で被われて材料の酸化を抑えることがで
きる。即ち、非常に酸化し易い希土類の微粉を、以降焼
結に至る製造工程中で酸化を徹底的に抑さえることがで
き、良好な磁気特性の希土類永久磁石が得られる。ま
た、鉱物油、合成油及び植物油は、従来の溶媒である有
機溶媒よりも溶存酸素量が少ないため、微粉砕後スラリ
ーで保管しても微粉の酸化がすすみ難く磁気特性の劣化
を起こさない。また、鉱物油は有機溶媒より引火点が高
いため、常温で安全に取り扱うことができる。さらに、
鉱物油は常温において有機溶媒より揮発性が低いため、
蒸気を人が吸い込むことも無く、人体への影響が無い。
As described above, the present invention has the following effects by using the oily solvent having a lower volatility than the organic solvent. Fine pulverization of rare earth permanent magnet materials is carried out in an inert atmosphere, they are collected in an oily solvent without being exposed to the air as they are, made into slurries, molded, and supplied to the sintering process in a wet state. Also in the case, the surface can be covered with the oil solvent to suppress the oxidation of the material. That is, it is possible to thoroughly suppress the oxidation of fine powder of rare earth which is extremely easy to oxidize during the manufacturing process until sintering, and to obtain a rare earth permanent magnet having good magnetic characteristics. Further, since mineral oil, synthetic oil, and vegetable oil have a smaller amount of dissolved oxygen than the organic solvent which is a conventional solvent, even if the fine oil is stored in a slurry after being finely pulverized, the fine powder is less likely to oxidize and the magnetic properties are not deteriorated. Further, since mineral oil has a higher flash point than organic solvents, it can be safely handled at room temperature. further,
Mineral oil is less volatile than organic solvents at room temperature,
No one inhales the steam, and there is no effect on the human body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程図を示す。FIG. 1 shows a manufacturing process diagram of the present invention.

【符号の説明】[Explanation of symbols]

1:微粉砕工程 2:回収工程 3:スラリー化工程 4:スラリー濃度調整工程 5:成形工程 6:脱溶媒工程 7:焼結工程 1: Fine pulverization step 2: Collection step 3: Slurrying step 4: Slurry concentration adjusting step 5: Molding step 6: Desolvation step 7: Sintering step

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/08 H01F 1/08 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area H01F 1/08 H01F 1/08 B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 希土類永久磁石の製造方法において、 不活性雰囲気中で希土類永久磁石原料を微粉砕する微粉
砕工程と、前記で製造された微粉を不活性雰囲気中で油
性溶媒に回収保管する回収工程と、前記微粉と油性溶媒
の混合物であるスラリーを予め設定した濃度に調整する
スラリー濃度調整工程と、濃度調整されたスラリーを成
形する成形工程と、成形された成形体から油性溶媒を除
去する脱溶媒工程と、油性溶媒が除去された成形体を焼
結する焼結工程とを有することを特徴とする希土類永久
磁石の製造方法。
1. A method for producing a rare earth permanent magnet, comprising a fine pulverizing step of finely pulverizing a raw material of a rare earth permanent magnet in an inert atmosphere, and a step of recovering and storing the fine powder produced above in an oily solvent in an inert atmosphere. Steps, a slurry concentration adjusting step of adjusting the slurry, which is a mixture of the fine powder and the oily solvent, to a preset concentration, a molding step of molding the slurry of which the concentration is adjusted, and an oily solvent is removed from the molded body formed. A method for producing a rare earth permanent magnet, comprising a desolvation step and a sintering step of sintering a molded body from which an oily solvent has been removed.
【請求項2】 希土類永久磁石の製造方法において、 平均粒径20〜500μmで、含有酸素濃度が500〜
2000ppmのR−Fe−B系(RはYを含む希土類
元素のうち1種または2種以上)希土類永久磁石原料粗
粉を、酸素濃度30ppm以下の不活性雰囲気中で平均
粒径2〜6μmに微粉砕する微粉砕工程と、 前記で製造された微粉を不活性雰囲気中で分留点が40
0℃以下、常温の動粘度が10cst以下である油性溶
媒中に回収保管する回収工程と、 前記微粉と油性溶媒を混合するスラリー化工程と、 スラリーを微粉の重量百分率で50〜85%の濃度に調
整するスラリー濃度調整工程と、 濃度調整されたスラリーを金型に定量供給し、磁場印加
しながら成形し、前記成形体を大気と実質的に非接触状
態で保管する成形工程と、 真空度が1Torr以下で、成形体温度を100〜25
0℃とし、前記成形体から油性溶媒を除去する脱溶媒工
程と、 真空度が10-1Torr以下で、成形体温度を1000
〜1150℃とし、油性溶媒が除去された前記成形体を
焼結する焼結工程とを有することを特徴とする希土類永
久磁石の製造方法。
2. A method for manufacturing a rare earth permanent magnet, wherein the average particle size is 20 to 500 μm and the oxygen content is 500 to 500 μm.
2000 ppm of R-Fe-B system (R is one or more kinds of rare earth elements including Y) rare earth permanent magnet raw material coarse powder having an average particle diameter of 2 to 6 μm in an inert atmosphere with an oxygen concentration of 30 ppm or less. A fine pulverization step of pulverizing, and a fine fraction produced as described above in an inert atmosphere with a fractionation point of 40.
A collecting step of collecting and storing in an oily solvent having a kinematic viscosity at room temperature of 0 ° C. or less and 10 cst or less, a slurrying step of mixing the fine powder and the oily solvent, and a concentration of the slurry of 50 to 85% by weight percentage of the fine powder. A slurry concentration adjusting step for adjusting the concentration to a mold, a forming step in which the slurry whose concentration is adjusted is quantitatively supplied to a mold, is molded while applying a magnetic field, and the molded body is stored in a substantially non-contact state with the atmosphere; Is 1 Torr or less, and the molded body temperature is 100 to 25
Desolvation step at 0 ° C. to remove the oily solvent from the molded product, and a molded product temperature of 1000 at a vacuum degree of 10 −1 Torr or less.
A sintering step of sintering the formed body from which the oily solvent has been removed at a temperature of ˜1150 ° C., and a method for producing a rare earth permanent magnet.
【請求項3】 前記油性溶媒が、鉱物油、合成油又は植
物油のいずれか1種あるいは2種以上の混合されたもの
である請求項1又は2に記載の希土類永久磁石の製造方
法。
3. The method for producing a rare earth permanent magnet according to claim 1, wherein the oily solvent is one kind or a mixture of two or more kinds of mineral oil, synthetic oil and vegetable oil.
【請求項4】 希土類永久磁石であって、 重量百分率でR(RはY含む希土類元素のうち1種また
は2種以上)は28.0〜31.0%、Bは0.5〜2.0%、Nは0.
02〜0.15%、Oは0.25%以下、Cは0.15%以下、残部F
eの組成を有し、請求項1乃至3のいずれかに記載の製
造方法で製造することを特徴とする希土類永久磁石。
4. A rare earth permanent magnet, wherein R (R is one or more of rare earth elements including Y) is 28.0 to 31.0%, B is 0.5 to 2.0%, and N is 0.1% by weight.
02-0.15%, O less than 0.25%, C less than 0.15%, balance F
A rare earth permanent magnet having a composition of e and manufactured by the manufacturing method according to any one of claims 1 to 3.
【請求項5】 請求項4の希土類永久磁石において、F
eの一部を、Nb0.1〜2.0%、Al 0.02〜2.0%、Co
0.3〜5.0%、Ga 0.01〜0.5%、Cu 0.01〜1.0%の
うち1種または2種以上で置換する事を特徴とする請求
項4に記載の希土類永久磁石。
5. The rare earth permanent magnet according to claim 4, wherein F
Part of e is Nb 0.1-2.0%, Al 0.02-2.0%, Co
The rare earth permanent magnet according to claim 4, which is substituted with one or more of 0.3 to 5.0%, Ga 0.01 to 0.5%, and Cu 0.01 to 1.0%.
【請求項6】 保磁力iHcの値が13.0kOe以上
であることを特徴とする請求項4又は5に記載の希土類
永久磁石。
6. The rare earth permanent magnet according to claim 4, wherein the value of the coercive force iHc is 13.0 kOe or more.
JP8099960A 1996-04-22 1996-04-22 Manufacture of rare earth permanent magnet, and the rare earth permanent magnet Pending JPH09289127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8099960A JPH09289127A (en) 1996-04-22 1996-04-22 Manufacture of rare earth permanent magnet, and the rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8099960A JPH09289127A (en) 1996-04-22 1996-04-22 Manufacture of rare earth permanent magnet, and the rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH09289127A true JPH09289127A (en) 1997-11-04

Family

ID=14261256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8099960A Pending JPH09289127A (en) 1996-04-22 1996-04-22 Manufacture of rare earth permanent magnet, and the rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH09289127A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244158A (en) * 2007-03-27 2008-10-09 Tdk Corp Manufacturing method of magnet and molding apparatus for molding magnetic particle
JP2008251778A (en) * 2007-03-30 2008-10-16 Tdk Corp Manufacturing method of metal sintered magnet
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
US7955442B2 (en) 2003-11-18 2011-06-07 Tdk Corporation Method for producing sintered magnet and alloy for sintered magnet
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
CN109500398A (en) * 2018-12-28 2019-03-22 上海三环磁性材料有限公司 A kind of binding rare earth permanent magnet oriontation molding die

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955442B2 (en) 2003-11-18 2011-06-07 Tdk Corporation Method for producing sintered magnet and alloy for sintered magnet
JP2008244158A (en) * 2007-03-27 2008-10-09 Tdk Corp Manufacturing method of magnet and molding apparatus for molding magnetic particle
JP2008251778A (en) * 2007-03-30 2008-10-16 Tdk Corp Manufacturing method of metal sintered magnet
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
JP4716051B2 (en) * 2008-02-20 2011-07-06 Tdk株式会社 Manufacturing method of sintered magnet
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
US10546672B2 (en) * 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
CN109500398A (en) * 2018-12-28 2019-03-22 上海三环磁性材料有限公司 A kind of binding rare earth permanent magnet oriontation molding die

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
EP0576055B1 (en) Fine-grained anisotropic powder from melt-spun ribbons
JP4640585B2 (en) Rare earth magnet manufacturing method
WO1999060580A1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JPS6333505A (en) Production of raw material powder for permanent magnet material
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH064885B2 (en) Production method of alloy powder for rare earth / boron / iron-based permanent magnet
JPH09232173A (en) Manufacture of rare earth magnet, and rare earth magnet
JPH0666174B2 (en) Rare earth bonded magnet manufacturing method
JP3346628B2 (en) Manufacturing method of rare earth sintered magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JP3171426B2 (en) Sintered permanent magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JP4403998B2 (en) Method for producing rare earth alloy fine powder
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPH0582319A (en) Permanent magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2006009074A (en) Rare earth-transition metal-nitrogen base magnet powder and its production method, and obtained bond magnet
JP2002332507A (en) Rare earth magnet and production method therefor
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP2591126B2 (en) Grinding method of alloy powder for rare earth permanent magnet