JP2002332507A - Rare earth magnet and production method therefor - Google Patents

Rare earth magnet and production method therefor

Info

Publication number
JP2002332507A
JP2002332507A JP2001136960A JP2001136960A JP2002332507A JP 2002332507 A JP2002332507 A JP 2002332507A JP 2001136960 A JP2001136960 A JP 2001136960A JP 2001136960 A JP2001136960 A JP 2001136960A JP 2002332507 A JP2002332507 A JP 2002332507A
Authority
JP
Japan
Prior art keywords
rare earth
powder
alloy
pulverizing
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001136960A
Other languages
Japanese (ja)
Inventor
Katsumi Okayama
克己 岡山
Naoyuki Ishigaki
尚幸 石垣
Shuhei Okumura
修平 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001136960A priority Critical patent/JP2002332507A/en
Publication of JP2002332507A publication Critical patent/JP2002332507A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic properties of a magnet by improving the properties of an alloy powder for a rare earth magnet. SOLUTION: The production method includes a first pulverizing stage where a raw material alloy for a rare earth magnet is coarsely pulverized and a second pulverizing stage where the raw material alloy is finely pulverized. In the first pulverizing stage, for raw material alloy is pulverized by using a hydrogen pulverizing method. In the second pulverizing stage, hyperfine powders easy to be oxidized (having a grain size of <=1.0 μm) are removed, and the piece ratio of the hyperfine powders is controlled to <=10% of the whole of the powders.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、R−Fe−B系希
土類磁石および当該磁石用合金粉末の製造方法に関す
る。
The present invention relates to an R-Fe-B rare earth magnet and a method for producing an alloy powder for the magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石は、希土類磁石用合金
(原料合金)を粉砕して形成した合金粉末をプレス成形
した後、焼結工程および時効熱処理工程を経て作製され
る。現在、希土類焼結磁石としては、サマリウム・コバ
ルト系磁石とネオジム・鉄・ほう素系磁石の二種類が各
分野で広く用いられている。なかでもネオジム・鉄・ほ
う素系磁石(以下、「R−Fe−B系磁石」と称する。
Rは希土類元素および/またはY(イットリウム)、F
eは鉄、Bはほう素である)は、種々の磁石の中で最も
高い磁気エネルギー積を示し、価格も比較的安いため、
各種電子機器へ積極的に採用されている。なお、Feの
一部は、Co等の遷移金属元素と置換されていても良い
し、Bの一部がCによって置換されていても良い。
2. Description of the Related Art Rare earth sintered magnets are produced by pressing an alloy powder formed by pulverizing an alloy for a rare earth magnet (raw material alloy), followed by a sintering step and an aging heat treatment step. At present, two types of rare earth sintered magnets, samarium / cobalt magnets and neodymium / iron / boron magnets, are widely used in various fields. Among them, neodymium / iron / boron magnets (hereinafter referred to as "R-Fe-B magnets").
R is a rare earth element and / or Y (yttrium), F
e is iron and B is boron) has the highest magnetic energy product among various magnets and is relatively inexpensive.
Actively used in various electronic devices. Note that a part of Fe may be replaced by a transition metal element such as Co, or a part of B may be replaced by C.

【0003】R−Fe−B系希土類磁石用原料合金の粉
末は、原料合金の粗粉砕を行う第1粉砕工程と、原料合
金の微粉砕を行う第2粉砕工程とを含む方法によって作
製される。通常、第1粉砕工程では、水素粉砕装置によ
って原料合金を数百μm以下のサイズに粗く粉砕し、第
2粉砕工程では、粗粉砕された合金(粗粉砕粉)をジェ
ットミル粉砕装置などによって平均粒径が数μm程度の
サイズに細かく粉砕する。
[0003] Powders of raw material alloys for R-Fe-B rare earth magnets are produced by a method including a first pulverizing step of roughly pulverizing the raw material alloy and a second pulverizing step of finely pulverizing the raw material alloy. . Usually, in the first pulverizing step, the raw material alloy is coarsely pulverized to a size of several hundred μm or less by a hydrogen pulverizer, and in the second pulverizing step, the coarsely pulverized alloy (coarse pulverized powder) is averaged by a jet mill pulverizer or the like. Finely pulverize to a size of about several μm.

【0004】原料合金自体の作製方法には大きく分けて
2種類ある。第1の方法は、原料合金の溶湯を鋳型に入
れ、比較的ゆっくりと冷却するインゴット鋳造法であ
る。第2の方法は、合金の溶湯を単ロール、双ロール、
回転ディスク、または回転円筒鋳型等に接触させて急速
に冷却し、合金溶湯からインゴット合金よりも薄い凝固
合金を作製するストリップキャスト法や遠心鋳造法に代
表される急冷法である。
[0004] There are roughly two types of methods for producing the raw material alloy itself. The first method is an ingot casting method in which a molten metal of a raw material alloy is put into a mold and cooled relatively slowly. The second method is to melt the alloy in a single roll, a twin roll,
This is a quenching method typified by a strip casting method or a centrifugal casting method in which a solidified alloy thinner than an ingot alloy is produced from a molten alloy by rapidly cooling by contacting with a rotating disk or a rotating cylindrical mold or the like.

【0005】この急冷法による場合、合金溶湯の冷却速
度は102℃/秒以上104℃/秒以下の範囲にある。そ
して、急冷法によって作製された急冷合金の厚さは、
0.03mm以上10mm以下の範囲にある。合金溶湯
は冷却ロールの接触した面(ロール接触面)から凝固
し、ロール接触面から厚さ方向に結晶が柱状(針状)に
成長してゆく。その結果、上記急冷合金は、短軸方向サ
イズが0.1μm以上100μm以下で長軸方向サイズ
が5μm以上500μm以下のR214B結晶相と、R2
14B結晶相の粒界に分散して存在するRリッチ相(希
土類元素Rの濃度が相対的に高い相)とを含有する微細
結晶組織を持つにいたる。Rリッチ相は希土類元素Rの
濃度が比較的に高い非磁性相であり、その厚さ(粒界の
幅に相当する)は10μm以下である。
[0005] In the case of this quenching method, the cooling rate of the molten alloy is in the range of 10 2 ° C / sec to 10 4 ° C / sec. And the thickness of the quenched alloy produced by the quenching method is
It is in the range of 0.03 mm or more and 10 mm or less. The molten alloy solidifies from the contact surface of the cooling roll (roll contact surface), and crystals grow from the roll contact surface in a columnar (needle) shape in the thickness direction. As a result, the rapidly solidified alloy has a minor axis size is 5μm or more longitudinal size 0.1μm or 100μm or less 500μm following R 2 T 14 B crystal phase, R 2
It has a fine crystal structure containing an R-rich phase (a phase in which the concentration of the rare earth element R is relatively high) dispersed and present at the grain boundaries of the T 14 B crystal phase. The R-rich phase is a non-magnetic phase in which the concentration of the rare-earth element R is relatively high, and its thickness (corresponding to the width of the grain boundary) is 10 μm or less.

【0006】急冷合金は、従来のインゴット鋳造法(金
型鋳造法)によって作製された合金(インゴット合金)
に比較して、相対的に短時間で冷却されているため、組
織が微細化され、結晶粒径が小さい。また、結晶粒が微
細に分散して粒界の面積が広く、Rリッチ相は粒界内を
薄く広がっているため、Rリッチ相の分散性にも優れ
る。
[0006] The quenched alloy is an alloy (ingot alloy) produced by a conventional ingot casting method (die casting method).
As compared with the case of (1), since the cooling is performed in a relatively short time, the structure is refined and the crystal grain size is small. Further, since the crystal grains are finely dispersed and the area of the grain boundary is wide, and the R-rich phase is thinly spread in the grain boundary, the dispersibility of the R-rich phase is excellent.

【0007】[0007]

【発明が解決しようとする課題】希土類合金(特に急冷
合金)に水素ガスをいったん吸蔵させ、いわゆる水素粉
砕処理によって粗粉砕を行う場合(本明細書では、この
ような粉砕方法を「水素粉砕法」と称する)、粒界に位
置するRリッチ相が水素と反応し、膨張するため、Rリ
ッチ相の部分(粒界部分)から割れる傾向にある。その
ため、希土類合金を水素粉砕することによって得られた
粉末の粒子表面にはRリッチ相が表れやすくなる。ま
た、急冷合金の場合は、Rリッチ相が微細化されてお
り、その分散性も高いため、水素粉砕粉の表面にはRリ
ッチ相が特に露出しやすい。
In the case where a rare earth alloy (particularly a quenched alloy) is temporarily absorbed with hydrogen gas and coarsely pulverized by a so-called hydrogen pulverization treatment (in this specification, such a pulverization method is referred to as a "hydrogen pulverization method". ), The R-rich phase located at the grain boundary reacts with hydrogen and expands, so that it tends to break from the R-rich phase portion (grain boundary portion). For this reason, an R-rich phase is likely to appear on the particle surface of the powder obtained by pulverizing the rare earth alloy with hydrogen. In the case of a quenched alloy, the R-rich phase is finely divided and has a high dispersibility, so that the R-rich phase is particularly easily exposed to the surface of the ground hydrogen powder.

【0008】本発明者の実験によると、このような状態
の粗粉砕粉をジェットミル粉砕装置などによって微粉砕
すると、Rリッチな超微粉(粒径が1μm以下の微粉)
が生成される。Rリッチな超微粉は、希土類元素Rの含
有量が相対的に少ない他の粉末粒子(相対的に大きな粒
径を持っている)に比べて極めて酸化しやすいため、R
リッチ微粉を粉末から除去せずに、そのまま焼結磁石を
作製すると、焼結工程までの製造工程中に希土類元素の
酸化反応が著しく進行してしまう。その結果、希土類元
素Rが酸素との結合に消費され、主相であるR214
型結晶相の生成量が低下してしまう。このことは、磁石
の保磁力や残留磁束密度を低下させ、減磁曲線の角形性
を劣化させるという結果を招く。
According to an experiment conducted by the present inventor, when the coarsely pulverized powder in such a state is finely pulverized by a jet mill pulverizer or the like, R-rich ultrafine powder (fine powder having a particle diameter of 1 μm or less) is obtained.
Is generated. Since the R-rich ultrafine powder is much more easily oxidized than other powder particles (having a relatively large particle size) having a relatively low content of the rare earth element R,
If a sintered magnet is produced as it is without removing the rich fine powder from the powder, the oxidation reaction of the rare earth element remarkably proceeds during the manufacturing process up to the sintering process. As a result, the rare earth element R is consumed for bonding with oxygen, and the main phase R 2 T 14 B
The generation amount of the type crystal phase is reduced. This results in lowering the coercive force and residual magnetic flux density of the magnet and deteriorating the squareness of the demagnetization curve.

【0009】Rリッチな微粉砕粉の酸化を防止するに
は、粉砕工程から焼結工程までの全ての工程を不活性雰
囲気中で実施することが理想的であるが、これを工場施
設内において量産規模で実行することは極めて困難であ
る。
In order to prevent oxidation of the R-rich finely pulverized powder, it is ideal to carry out all steps from the pulverization step to the sintering step in an inert atmosphere. It is extremely difficult to implement on a mass production scale.

【0010】一方、微量の酸素を導入した不活性雰囲気
中で微粉砕工程を実行することによって意図的に微粉砕
粉の表面を薄い酸化膜で覆い、それによって粉末と大気
との急激な酸化を抑制する方法が提案されている。
On the other hand, the surface of the finely pulverized powder is intentionally covered with a thin oxide film by performing the finely pulverizing step in an inert atmosphere into which a trace amount of oxygen has been introduced. Methods of suppressing have been proposed.

【0011】しかしながら、このような技術による場合
でも、Rリッチな超微粉が粉末中一定割合以上に存在し
ている限り、最終的な磁石特性を充分には改善・向上で
きず、安定的に最高水準に保つことができないことが本
発明者の実験によってわかった。
However, even with such a technique, as long as the R-rich ultrafine powder is present in a certain proportion or more in the powder, the final magnet properties cannot be sufficiently improved or improved, and the maximum magnet properties cannot be stably obtained. It has been found by the inventor's experiments that it cannot be kept at the level.

【0012】本発明はかかる諸点に鑑みてなされたもの
であり、その主な目的は、磁石特性を充分に向上し、安
定させることができるR−Fe−B系希土類磁石用合金
粉末を提供することにある。
The present invention has been made in view of the above points, and a main object thereof is to provide an R-Fe-B-based rare-earth magnet alloy powder capable of sufficiently improving and stabilizing magnet properties. It is in.

【0013】本発明の他の目的は、Rリッチ相を含む原
料合金を用い、水素粉砕処理によって粗粉砕を実行する
場合でも、最終的な磁石特性を充分に改善・向上し、安
定的に最高水準に保つことができる優れたR−Fe−B
系希土類磁石用合金粉末を製造する方法を提供すること
にある。
Another object of the present invention is to sufficiently improve and improve the final magnet properties and stably achieve the highest performance even when coarse grinding is performed by hydrogen grinding using a raw alloy containing an R-rich phase. Excellent R-Fe-B that can be kept at a level
An object of the present invention is to provide a method for producing an alloy powder for a rare earth magnet.

【0014】[0014]

【課題を解決するための手段】本発明によるR−Fe−
B系希土類磁石用合金粉末の製造方法は、希土類磁石用
原料合金の粗粉砕を行う第1粉砕工程と、前記原料合金
の微粉砕を行う第2粉砕工程とを含むR−Fe−B系希
土類磁石用合金粉末の製造方法であって、前記第1粉砕
工程は、水素粉砕法を用いて前記原料合金を粉砕する工
程を包含しており、前記第2粉砕工程は、粒径が1.0
μm以下の微粉の少なくとも一部を除去し、それによっ
て粒径が1.0μm以下の微粉の個数を粉末全体の粒子
個数の10%以下に調節する工程を包含している。
According to the present invention, R-Fe-
A method for producing a B-based rare earth magnet alloy powder includes an R-Fe-B based rare earth element including a first pulverizing step of roughly pulverizing a rare earth magnet raw material alloy and a second pulverizing step of finely pulverizing the raw material alloy. A method for producing an alloy powder for a magnet, wherein the first pulverizing step includes a step of pulverizing the raw material alloy using a hydrogen pulverizing method, and wherein the second pulverizing step has a particle diameter of 1.0.
a step of removing at least a part of the fine powder having a particle diameter of 1.0 μm or less, thereby adjusting the number of the fine powder having a particle diameter of 1.0 μm or less to 10% or less of the total number of particles in the powder.

【0015】好ましい実施形態では、粒径が1.0μm
以下の前記微粉中に含まれる希土類元素の平均濃度が前
記粉末全体に含まれる希土類元素の平均濃度よりも高
い。
In a preferred embodiment, the particle size is 1.0 μm
The average concentration of the rare earth element contained in the following fine powder is higher than the average concentration of the rare earth element contained in the whole powder.

【0016】本発明によるR−Fe−B系希土類磁石用
合金粉末の製造方法は、急冷法によって作製した希土類
磁石用原料合金の粗粉砕を行う第1粉砕工程と、前記原
料合金の微粉砕を行う第2粉砕工程とを含むR−Fe−
B系希土類磁石用合金粉末の製造方法であって、前記第
2粉砕工程は、希土類元素の濃度が粉末全体に含まれる
希土類元素の平均濃度よりも高い粉末の少なくとも一部
を除去し、それによって、希土類元素と結合する形態で
粉末に含まれる酸素の平均濃度を低減させる工程を含
む。
The method for producing an R-Fe-B rare earth magnet alloy powder according to the present invention comprises a first pulverizing step of roughly pulverizing a rare earth magnet raw material alloy produced by a quenching method, and a fine pulverization of the raw material alloy. R-Fe-
A method for producing a B-based rare earth magnet alloy powder, wherein the second pulverizing step removes at least a part of the powder in which the concentration of the rare earth element is higher than the average concentration of the rare earth element contained in the entire powder, And reducing the average concentration of oxygen contained in the powder in a form that combines with the rare earth element.

【0017】前記第2粉砕工程では、不活性ガスの高速
気流を用いて前記合金の微粉砕を実行することが好まし
い。
In the second pulverizing step, it is preferable that the alloy is finely pulverized by using a high-speed gas stream of an inert gas.

【0018】前記不活性ガス中には所定量の酸素が導入
されていることが好ましい。その場合、前記酸素の濃度
は0.05体積%以上3体積%以下に調節されているこ
とが好ましい。
It is preferable that a predetermined amount of oxygen is introduced into the inert gas. In that case, it is preferable that the concentration of the oxygen is adjusted to 0.05% by volume or more and 3% by volume or less.

【0019】前記希土類合金として、希土類含有量の異
なる複数種類の希土類合金を用いてもよい。
As the rare earth alloy, a plurality of kinds of rare earth alloys having different rare earth contents may be used.

【0020】ある実施形態において、前記第1粉砕工程
は、前記希土類含有量の異なる複数種類の希土類合金に
対して別々に行ない、前記第2粉砕工程は、前記希土類
含有量の異なる複数種類の希土類合金に対して同時に行
なう。
In one embodiment, the first pulverizing step is performed separately for the plurality of rare earth alloys having different rare earth contents, and the second pulverizing step is performed for the plurality of rare earth alloys having different rare earth contents. Performed simultaneously on alloys.

【0021】ある実施形態において、前記第1および第
2粉砕工程は、前記希土類含有量の異なる複数種類の希
土類合金に対して別々に行ない、前記第2粉砕工程の
後、前記複数種類の希土類合金の粉末を混合する。
In one embodiment, the first and second pulverizing steps are separately performed on a plurality of kinds of rare earth alloys having different rare earth contents, and after the second pulverizing step, the plurality of kinds of rare earth alloys are different. Mix powder.

【0022】前記合金の微粉砕はジェットミル粉砕装置
を用いて実行することができる。
The alloy can be finely pulverized using a jet mill pulverizer.

【0023】好ましい実施形態では、前記ジェットミル
粉砕装置の後段に分級機を接続し、前記ジェットミル粉
砕装置から出た粉末を分級する。
In a preferred embodiment, a classifier is connected to the subsequent stage of the jet mill pulverizer, and the powder discharged from the jet mill pulverizer is classified.

【0024】好ましい実施形態において、前記希土類磁
石用原料合金は、原料合金溶湯を102℃/秒以上104
℃/秒以下の冷却速度で冷却されたものである。
In a preferred embodiment, the material alloy for the rare earth magnet material alloy melt of 10 2 ° C. / sec 10 4
It is cooled at a cooling rate of not more than ° C / sec.

【0025】前記原料合金溶湯の冷却は、ストリップキ
ャスト法によって行うことが好ましい。
Preferably, the cooling of the raw material alloy melt is performed by a strip casting method.

【0026】好ましい実施形態において、前記第1粉砕
工程によって得られた粉末の平均粒径は200〜100
0μmである。また、ストリップキャストなどの急冷合
金の場合、粉末の平均粒径は500μm以下となる。
In a preferred embodiment, the average particle size of the powder obtained in the first pulverizing step is 200 to 100.
0 μm. In the case of a rapidly cooled alloy such as a strip cast, the average particle size of the powder is 500 μm or less.

【0027】前記第2粉砕工程によって得られた粉末の
平均粒径は、2μm以上10μm以下の範囲内にあるこ
とが好ましい。
The average particle size of the powder obtained in the second pulverizing step is preferably in the range of 2 μm to 10 μm.

【0028】前記第2粉砕工程によって得られた粉末に
対して、潤滑剤を添加する工程を更に含むことが好まし
い。
Preferably, the method further comprises a step of adding a lubricant to the powder obtained in the second pulverizing step.

【0029】本発明によるR−Fe−B系希土類磁石の
製造方法は、上記何れかのR−Fe−B系希土類磁石用
合金粉末の製造方法によって作製されたR−Fe−B系
希土類磁石用合金粉末を用意する工程と、前記R−Fe
−B系希土類磁石用合金粉末を成形し、永久磁石を作製
する工程とを含む。
The method for producing an R—Fe—B rare earth magnet according to the present invention is directed to a method for producing an R—Fe—B rare earth magnet produced by any of the above methods for producing an alloy powder for an R—Fe—B rare earth magnet. A step of preparing an alloy powder;
Molding a B-based rare earth magnet alloy powder to produce a permanent magnet.

【0030】本発明による他のR−Fe−B系希土類磁
石の製造方法は、上記何れかのR−Fe−B系希土類磁
石用合金粉末の製造方法によって作製された第1のR−
Fe−B系希土類磁石用合金粉末を用意する工程と、前
記第1のR−Fe−B系希土類磁石用合金粉末とは希土
類の含有量が異なる第2のR−Fe−B系希土類磁石用
合金粉末を用意する工程と、前記第1および第2の合金
粉末を混合して混合粉末を形成する工程と、前記混合粉
末を成形し、成形体を作製する工程と、前記成形体を焼
結し、永久磁石を作製する工程とを含む。
Another method for producing an R—Fe—B based rare earth magnet according to the present invention is a method for producing an R—Fe—B based rare earth magnet alloy powder according to any one of the above methods.
A step of preparing an alloy powder for an Fe-B-based rare-earth magnet; and a step of preparing a second R-Fe-B-based rare-earth magnet having a rare earth content different from that of the first alloy powder for an R-Fe-B-based rare earth magnet. Preparing an alloy powder, mixing the first and second alloy powders to form a mixed powder, forming the mixed powder to form a compact, and sintering the compact. And producing a permanent magnet.

【0031】本発明によるR−Fe−B系希土類磁石用
合金粉末は、平均粒径が2μm以上10μm以下であ
り、1.0μm以下の微粉の個数が粉末全体の粒子個数
の10%以下に調節されている。
The R-Fe-B rare earth magnet alloy powder according to the present invention has an average particle size of 2 μm or more and 10 μm or less, and the number of fine particles of 1.0 μm or less is adjusted to 10% or less of the total number of particles in the powder. Have been.

【0032】好ましい実施形態において、本発明の磁石
粉末は、原料合金溶湯を102℃/秒以上104℃/秒以
下の冷却速度で冷却した合金を粉砕して得られたもので
ある。
In a preferred embodiment, the magnet powder of the present invention is obtained by pulverizing an alloy obtained by cooling a molten raw material alloy at a cooling rate of not less than 10 2 ° C / sec and not more than 10 4 ° C / sec.

【0033】本発明によるR−Fe−B系希土類磁石
は、上記のR−Fe−B系希土類磁石用合金粉末から作
製されたことを特徴とする。
The R-Fe-B rare earth magnet according to the present invention is characterized in that it is produced from the above alloy powder for an R-Fe-B rare earth magnet.

【0034】[0034]

【発明の実施の形態】本願発明者は、粒径1μm以下の
Rリッチ超微粉がR−Fe−B系希土類磁石用合金粉末
中に所定割合を超えて存在していると、そのような粉末
の成形体を焼結して作製した永久磁石の磁気特性が劣化
することを見出し、本発明を想到するに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present application has proposed that if an R-rich ultrafine powder having a particle size of 1 μm or less is present in an R-Fe-B-based rare earth magnet alloy powder in a ratio exceeding a predetermined ratio, such a powder may be used. The present inventors have found that the magnetic properties of the permanent magnet produced by sintering the molded article of Example 1 are deteriorated, and have arrived at the present invention.

【0035】本発明では、希土類磁石用原料合金の粗粉
砕を行った(第1粉砕工程)後、原料合金の微粉砕を行
う(第2粉砕工程)に際して、Rリッチな超微粉(粒径
が1μm以下の微粉)の少なくとも一部を除去し、それ
によってRリッチな超微粉の個数が粉末全体に占める割
合を10%以下に調節する。Rリッチな超微粉に含まれ
る希土類元素Rの濃度は、質量比率で38%以上あり、
これは粉末全体に含まれる希土類元素Rの平均濃度より
も高い。このため、このような超微粉を一部でも除去す
れば、粉末全体に含まれる希土類元素Rの濃度は低下す
ることになる。希土類元素Rは、ハード磁性を担う主相
であるR214B型結晶相に不可欠なものであり、希土
類元素Rの濃度低下は好ましくないように思われるが、
取り除かれる超微粉に含まれる希土類元素Rは酸素との
結合に消費され、R214B型結晶相の生成には充分に
寄与しない。このため、Rリッチな超微粉を除去するこ
とによって、結果的に粉末中の酸素量を低減できるの
で、焼結磁石に含まれるR214B型結晶相の量は却っ
て増加し、磁石の磁気特性が改善されることになる。
In the present invention, after the raw alloy for the rare-earth magnet is roughly pulverized (first pulverizing step), the raw alloy is finely pulverized (second pulverizing step). At least a part of the fine powder having a particle size of 1 μm or less is removed, whereby the ratio of the number of the R-rich ultrafine powder to the whole powder is adjusted to 10% or less. The concentration of the rare earth element R contained in the R-rich ultrafine powder is at least 38% by mass,
This is higher than the average concentration of the rare earth element R contained in the whole powder. For this reason, if such an ultrafine powder is partially removed, the concentration of the rare earth element R contained in the entire powder is reduced. The rare earth element R is indispensable for the R 2 T 14 B type crystal phase, which is the main phase responsible for hard magnetism, and it seems that a decrease in the concentration of the rare earth element R is not preferable.
The rare earth element R contained in the ultrafine powder to be removed is consumed for bonding with oxygen and does not sufficiently contribute to the formation of the R 2 T 14 B type crystal phase. For this reason, by removing the R-rich ultrafine powder, the amount of oxygen in the powder can be reduced as a result, so that the amount of the R 2 T 14 B type crystal phase contained in the sintered magnet increases rather, The magnetic properties will be improved.

【0036】本発明者の実験によると、Rリッチな超微
粉は、前述のように急冷合金(例えばストリップキャス
ト合金)を粉砕する場合に生成されやすく、また、粗粉
砕を水素粉砕法によって行う場合にも生成されやすい。
したがって、以下の説明では、水素粉砕法によって急冷
合金を粗く粉砕した後、微粉砕工程を行う場合を例にと
って本発明の実施形態を説明する。なお、不活性ガスの
高速気流を用いて合金の微粉砕を実行するジェットミル
粉砕装置を使用する場合、ジェットミル粉砕装置の後段
に気流(遠心力)分級機を接続すれば、気流によって運
ばれてきた微粉砕粉からRリッチな超微粉(粒径1μm
以下)を効率的に除去することが可能である。故に、以
下の実施形態では、ジェットミル粉砕装置を用いて微粉
砕工程を行う例を説明する。
According to the experiment of the present inventor, R-rich ultrafine powder is likely to be generated when a rapidly quenched alloy (for example, a strip cast alloy) is pulverized as described above. Also easy to be generated.
Therefore, in the following description, an embodiment of the present invention will be described by taking, as an example, a case where a crushed alloy is roughly pulverized by a hydrogen pulverization method and then a fine pulverization step is performed. In addition, when using a jet mill pulverizer that performs fine pulverization of an alloy using a high-speed air flow of an inert gas, if an airflow (centrifugal force) classifier is connected to the subsequent stage of the jet mill pulverizer, the alloy is carried by the airflow. R-rich ultra fine powder (particle size 1μm)
Can be efficiently removed. Therefore, in the following embodiment, an example in which the fine pulverization step is performed using a jet mill pulverizer will be described.

【0037】以下、図面を参照しながら、本発明の実施
形態を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0038】[原料合金]まず、公知のストリップキャ
スト法で所望の組成を有するR−Fe−B系磁石用合金
の原料合金を用意し、所定の容器に保管しておく。具体
的には、まず、Nd:30.8wt%(原子%)、P
r:3.8wt%、Dy:0.8wt%、B:1.0w
t%、Co:0.9wt%、Al:0.23wt%、C
u:0.10wt%、残部Feおよび不可避不純物から
なる組成の合金を高周波溶解によって溶融し、合金溶湯
を形成する。この合金溶湯を1350℃に保持した後、
単ロール法によって、合金溶湯を急冷し、厚さ約0.3
mmのフレーク状合金鋳塊を得た。このときの急冷条件
は、ロール周速度約1m/秒、冷却速度500℃/秒、
過冷却200℃とした。こうして作製した急冷合金鋳片
を、次の水素粉砕前に、1〜10mmの大きさのフレー
ク状に粉砕する。なお、ストリップキャスト法による原
料合金の製造方法は、例えば、米国特許第5,383,
978号明細書に開示されている。
[Raw Material Alloy] First, a raw material alloy for an R—Fe—B based magnet alloy having a desired composition having a desired composition is prepared by a known strip casting method and stored in a predetermined container. Specifically, first, Nd: 30.8 wt% (atomic%), P
r: 3.8 wt%, Dy: 0.8 wt%, B: 1.0 w
t%, Co: 0.9 wt%, Al: 0.23 wt%, C
u: An alloy having a composition of 0.10 wt%, the balance being Fe and unavoidable impurities is melted by high frequency melting to form a molten alloy. After maintaining this molten alloy at 1350 ° C,
The alloy melt is quenched by the single roll method to a thickness of about 0.3
mm flake-like alloy ingot was obtained. The quenching conditions at this time were as follows: a roll peripheral speed of about 1 m / sec, a cooling speed of 500 ° C./sec,
The temperature was supercooled to 200 ° C. The quenched alloy slab thus produced is pulverized into flakes having a size of 1 to 10 mm before the next pulverization with hydrogen. In addition, the manufacturing method of the raw material alloy by the strip casting method is described in, for example, US Pat. No. 5,383,383.
No. 978.

【0039】[第1粉砕工程]フレーク状に粗く粉砕さ
れた原料合金鋳片を複数の原料パック(ステンレス鋼)
に充填し、ラックに搭載する。この後、原料パックが搭
載されたラックを水素炉の内部へ挿入する。次に、水素
炉の蓋体を閉じ、水素粉砕工程(第1粉砕工程)を開始
する。水素粉砕処理は、例えば図1に示す温度プロファ
イルに従って実行する。図1の例では、まず真空引き過
程Iを0.5時間実行した後、水素吸蔵過程IIを2.5
時間実行する。水素吸蔵過程IIでは、炉内に水素ガスを
供給し、炉内を水素雰囲気にする。そのときの水素圧力
は、200〜400kPa程度が好ましい。
[First pulverizing step] A plurality of raw material packs (stainless steel) of raw material alloy slabs roughly pulverized into flakes
And mounted on a rack. Thereafter, the rack on which the raw material pack is mounted is inserted into the hydrogen furnace. Next, the lid of the hydrogen furnace is closed, and a hydrogen crushing step (first crushing step) is started. The hydrogen pulverization process is performed, for example, according to a temperature profile shown in FIG. In the example of FIG. 1, first, the evacuation process I is performed for 0.5 hour, and then the hydrogen storage process II is performed for 2.5 hours.
Run for hours. In the hydrogen storage process II, hydrogen gas is supplied into the furnace, and the furnace is set to a hydrogen atmosphere. The hydrogen pressure at that time is preferably about 200 to 400 kPa.

【0040】続いて、0〜3Pa程度の減圧下で脱水素
過程IIIを5.0時間実行した後、アルゴンガスを炉内
に供給しつつ、原料合金の冷却過程IVを5.0時間実行
する。
Subsequently, after performing the dehydrogenation process III under reduced pressure of about 0 to 3 Pa for 5.0 hours, the cooling process IV of the raw material alloy is performed for 5.0 hours while supplying argon gas into the furnace. .

【0041】冷却過程IVにおいて炉内の雰囲気温度が比
較的に高い段階(例えば、100℃を超えるとき)で
は、常温の不活性ガスを水素炉の内部に供給し、冷却す
る。その後、原料合金温度が比較的低いレベルに低下し
た段階(例えば、100℃以下のとき)で、常温よりも
低い温度(例えば室温マイナス10℃程度)に冷却した
不活性ガスを水素炉10内部に供給することが冷却効率
の観点から好ましい。アルゴンガスの供給量は、10〜
100m3/min程度にすればよい。
In the cooling process IV, when the atmosphere temperature in the furnace is relatively high (for example, when the temperature exceeds 100 ° C.), an inert gas at room temperature is supplied to the inside of the hydrogen furnace for cooling. Thereafter, at the stage when the temperature of the raw material alloy is lowered to a relatively low level (for example, when the temperature is 100 ° C. or lower), an inert gas cooled to a temperature lower than normal temperature (for example, room temperature minus about 10 ° C.) is introduced into the hydrogen furnace 10. Supply is preferable from the viewpoint of cooling efficiency. The supply amount of argon gas is 10 ~
It may be about 100 m 3 / min.

【0042】原料合金の温度が20〜25℃程度にまで
低下したら、ほぼ常温(室温よりも低いが、室温との差
が5℃以下の範囲の温度)の不活性ガスを水素炉内部に
送風し、原料の温度が常温レベルに達するのを待つこと
が好ましい。こうすることによって、水素炉の蓋体を開
放した際に、炉内部で結露が生じる事態を避けることが
できる。結露によって炉内部に水分が存在していると、
真空引き工程でその水分が凍結・気化するため、真空度
を上昇させにくくなり、真空引き過程Iに要する時間が
長くなってしまうので好ましくない。
When the temperature of the raw material alloy is reduced to about 20 to 25 ° C., an inert gas at substantially normal temperature (a temperature lower than room temperature but a difference from room temperature within 5 ° C.) is blown into the hydrogen furnace. It is preferable to wait until the temperature of the raw material reaches the normal temperature level. By doing so, when the lid of the hydrogen furnace is opened, a situation in which dew condensation occurs inside the furnace can be avoided. If moisture is present inside the furnace due to condensation,
Since the water freezes and evaporates in the evacuation step, it is difficult to increase the degree of vacuum, and the time required for the evacuation step I is undesirably increased.

【0043】水素粉砕後の粗粉砕合金粉末を水素炉から
取り出す際、粗粉砕粉が大気と接触しないように、不活
性雰囲気下で取り出し動作を実行することが好ましい。
そうすれば、粗粉砕粉が酸化・発熱することが防止さ
れ、磁石の磁気特性が向上するからである。次に、粗粉
砕された原料合金は複数の原料パックに充填され、ラッ
クに搭載される。
When the coarsely pulverized alloy powder after hydrogen pulverization is taken out of the hydrogen furnace, it is preferable to carry out the taking out operation under an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere.
This prevents the coarsely pulverized powder from oxidizing and generating heat, thereby improving the magnetic properties of the magnet. Next, the coarsely pulverized raw material alloy is filled into a plurality of raw material packs and mounted on a rack.

【0044】水素粉砕によって、希土類合金は0.1m
m〜数mm程度の大きさに粉砕され、その平均粒径は2
00〜1000μmとなる。水素粉砕後、脆化した原料
合金をロータリクーラ等の冷却装置によって、より細か
く解砕するともに冷却することが好ましい。比較的高い
温度状態のまま原料を取り出す場合は、ロータリクーラ
等による冷却処理の時間を相対的に長くすれば良い。
The rare earth alloy is reduced to 0.1 m by hydrogen pulverization.
m to several mm, and the average particle size is 2
It becomes 00-1000 micrometers. After the hydrogen pulverization, it is preferable that the embrittled raw material alloy is further finely pulverized and cooled by a cooling device such as a rotary cooler. In the case where the raw material is taken out in a relatively high temperature state, the time of the cooling process using a rotary cooler or the like may be made relatively long.

【0045】[第2粉砕工程]次に、第1粉砕工程で作
製された粗粉砕粉に対してジェットミル粉砕装置を用い
て微粉砕を実行する。本実施形態で使用するジェットミ
ル粉砕装置に微粉除去に適したサイクロン分級機が接続
されている。
[Second Pulverization Step] Next, the coarsely pulverized powder produced in the first pulverization step is finely pulverized using a jet mill pulverizer. A cyclone classifier suitable for removing fine powder is connected to the jet mill pulverizer used in the present embodiment.

【0046】以下、図2を参照しながら、ジェットミル
粉砕装置を用いて行う微粉砕工程(第2粉砕工程)を詳
細に説明する。
Hereinafter, the fine pulverization step (second pulverization step) performed using the jet mill pulverizer will be described in detail with reference to FIG.

【0047】図示されるジェットミル粉砕装置10は、
第1粉砕工程で粗く粉砕された希土類合金(被粉砕物)
を供給する原料投入機12と、原料投入機12から投入
された被粉砕物を粉砕する粉砕機14と、粉砕機14で
被粉砕物を粉砕して得られた粉体を分級するサイクロン
分級機16と、サイクロン分級機16によって分級され
た所定の粒度分布を有する粉末を集める回収タンク18
とを備えている。
The illustrated jet mill pulverizer 10 comprises:
Rare earth alloy coarsely pulverized in the first pulverization step (object to be pulverized)
Feeder 12 for supplying the raw material, a pulverizer 14 for pulverizing the material to be pulverized input from the material inputter 12, and a cyclone classifier for classifying the powder obtained by pulverizing the material to be pulverized by the pulverizer 14. And a collection tank 18 for collecting powder having a predetermined particle size distribution classified by the cyclone classifier 16.
And

【0048】原料投入機12は、被粉砕物を収容する原
料タンク20と、原料タンク20からの被粉砕物の供給
量をコントロールするモータ22と、モータ22に接続
されたスパイラル状の供給機(スクリューフィーダ)2
4とを有している。
The raw material input device 12 includes a raw material tank 20 for storing the material to be ground, a motor 22 for controlling the supply amount of the material to be ground from the raw material tank 20, and a spiral feeder ( Screw feeder) 2
And 4.

【0049】粉砕機14は、縦長の略円筒状の粉砕機本
体26を有しており、粉砕機本体26の下部には、不活
性ガス(例えば窒素)を高速で噴出させるノズルを取り
付けるための複数のノズル口28が設けられている。粉
砕機本体26の側部には、粉砕機本体26内に被粉砕物
を投入するための原料投入パイプ30が接続されてい
る。
The crusher 14 has a vertically long, substantially cylindrical crusher main body 26, and a lower part of the crusher main body 26 is provided with a nozzle for ejecting an inert gas (eg, nitrogen) at a high speed. A plurality of nozzle ports 28 are provided. To the side of the crusher main body 26, a raw material input pipe 30 for charging an object to be crushed into the crusher main body 26 is connected.

【0050】原料投入パイプ30には、供給する被粉砕
物を一旦保持し粉砕機14内部の圧力を閉じ込めるため
のバルブ32が設けられており、バルブ32は、一対の
上バルブ32aと下バルブ32bとを有している。供給
機24と原料投入パイプ30とはフレキシブルパイプ3
4によって連結されている。
The raw material input pipe 30 is provided with a valve 32 for temporarily holding the material to be supplied and confining the pressure inside the crusher 14. The valve 32 includes a pair of an upper valve 32a and a lower valve 32b. And The feeder 24 and the raw material input pipe 30 are a flexible pipe 3
4 are connected.

【0051】粉砕機14は、粉砕機本体26の内部上方
に設けられた分級ロータ36と、粉砕機本体26の外部
上方に設けられモータ38と、粉砕機本体26の上方に
設けられた接続パイプ40とを有している。モータ38
は分級ロータ36を駆動し、接続パイプ40は分級ロー
タ36で分級された粉体を粉砕機14の外部に排出す
る。
The crusher 14 includes a classifying rotor 36 provided above the inside of the crusher body 26, a motor 38 provided above the outside of the crusher body 26, and a connection pipe provided above the crusher body 26. 40. Motor 38
Drives the classifying rotor 36, and the connection pipe 40 discharges the powder classified by the classifying rotor 36 to the outside of the crusher 14.

【0052】粉砕機14は、支持部となる複数の脚部4
2を備えている。粉砕機14の外周近傍には基台44が
配設され、粉砕機14は、脚部42によって基台44上
に載置される。本実施形態では、粉砕機14の脚部42
と基台44との間には、ロードセルなどの重量検出器4
6が設けられる。この重量検出器46からの出力に基づ
いて、制御部48はモータ22の回転数を制御し、それ
によって被粉砕物の投入量をコントロールすることがで
きる。
The crusher 14 has a plurality of legs 4 serving as support portions.
2 is provided. A base 44 is provided near the outer periphery of the crusher 14, and the crusher 14 is mounted on the base 44 by the legs 42. In the present embodiment, the leg 42 of the crusher 14 is used.
A weight detector 4 such as a load cell is
6 are provided. Based on the output from the weight detector 46, the control unit 48 controls the number of rotations of the motor 22, and thereby can control the amount of the material to be ground.

【0053】サイクロン分級機16は、分級機本体64
を有し、分級機本体64の内部には、排気パイプ66が
上方から挿入されている。分級機本体64の側部には、
分級ロータ36で分級された粉体を導入する導入口68
が設けられ、導入口68はフレキシブルパイプ70によ
って接続パイプ40と接続されている。分級機本体64
の下部には取出口72が設けられ、この取出口72に所
望の微粉砕粉末の回収タンク18が接続されている。
The cyclone classifier 16 comprises a classifier body 64
An exhaust pipe 66 is inserted into the classifier main body 64 from above. On the side of the classifier body 64,
Inlet 68 for introducing the powder classified by the classification rotor 36
Is provided, and the inlet 68 is connected to the connection pipe 40 by a flexible pipe 70. Classifier body 64
An outlet 72 is provided at a lower portion of the container, and a recovery tank 18 for a desired finely pulverized powder is connected to the outlet 72.

【0054】フレキシブルパイプ34および70は、樹
脂もしくはゴム等によって構成されたもの、または剛性
の高い材料を蛇腹状もしくはコイル状に構成することに
よって柔軟性を持つように構成されたものであることが
好ましい。このような柔軟性のあるパイプ34および7
0を用いると、原料タンク20、供給機24、分級機本
体64、および回収タンク18の重量変化が粉砕機14
の脚部42には伝達されない。そのため、脚部42に設
けた重量検出器46によって重量を検出すれば、粉砕機
14内に滞留した被粉砕物の重量やその変化量を正確に
検知でき、粉砕機14内に供給する被粉砕物の量を正確
に制御することができる。
The flexible pipes 34 and 70 may be made of resin, rubber, or the like, or may be made to have flexibility by forming a highly rigid material into a bellows shape or a coil shape. preferable. Such flexible pipes 34 and 7
If 0 is used, the weight change of the raw material tank 20, the feeder 24, the classifier main body 64, and the collection tank 18 is reduced by
Is not transmitted to the leg portion 42 of the main body. Therefore, if the weight is detected by the weight detector 46 provided on the leg 42, the weight of the material to be ground remaining in the crusher 14 and the change amount thereof can be accurately detected, and the crushed material supplied to the crusher 14 can be detected. The quantity of things can be controlled accurately.

【0055】次に、上記のジェットミル粉砕装置10に
よる粉砕方法を説明する。
Next, a pulverizing method using the above jet mill pulverizing apparatus 10 will be described.

【0056】まず、被粉砕物を原料タンク20に投入す
る。原料タンク20内の被粉砕物は、供給機24によっ
て粉砕機14へ供給される。このとき、モータ22の回
転数を制御することによって被粉砕物の供給量を調節す
ることができる。供給機24から供給される被粉砕物
は、バルブ32において一旦堰き止められる。ここで一
対の上バルブ32a、下バルブ32bは、交互に開閉動
作を行っている。すなわち、上バルブ32aが開のと
き、下バルブ32bは閉状態となり、上バルブ32aが
閉状態のとき、下バルブ32bは開状態となる。このよ
うに一対のバルブ32a、32bを交互に開閉すること
によって、粉砕機14内の圧力が原料投入機12側に漏
れないようにすることができる。その結果、被粉砕物
は、上バルブ32aが開状態となったときに一対の上バ
ルブ32aと下バルブ32bとの間に供給される。そし
て、次に下バルブ32bが開状態となったときに、原料
投入パイプ30に導かれ、粉砕機14内に導入されるこ
とになる。バルブ32は制御回路48とは別のシーケン
ス回路(図示せず)によって高速に駆動され、被粉砕物
が粉砕機14内に連続的に供給される。
First, the material to be ground is put into the raw material tank 20. The material to be crushed in the raw material tank 20 is supplied to the crusher 14 by the supply device 24. At this time, by controlling the number of revolutions of the motor 22, the supply amount of the crushed material can be adjusted. The material to be crushed supplied from the supply device 24 is once blocked by the valve 32. Here, the pair of upper valve 32a and lower valve 32b perform opening and closing operations alternately. That is, when the upper valve 32a is open, the lower valve 32b is closed, and when the upper valve 32a is closed, the lower valve 32b is open. By alternately opening and closing the pair of valves 32a and 32b in this manner, the pressure in the crusher 14 can be prevented from leaking to the material input device 12 side. As a result, the object to be ground is supplied between the pair of upper valve 32a and lower valve 32b when the upper valve 32a is opened. Then, when the lower valve 32b is opened next time, it is guided to the raw material charging pipe 30 and introduced into the crusher 14. The valve 32 is driven at a high speed by a sequence circuit (not shown) different from the control circuit 48, and the material to be ground is continuously supplied into the mill 14.

【0057】粉砕機14内に導入された被粉砕物は、ノ
ズル口28からの不活性ガスの高速噴射によって粉砕機
14内に巻き上げられ、装置内で高速気流とともに旋回
する。そして、被粉砕物同士の相互衝突によって細かく
粉砕される。
The material to be pulverized introduced into the pulverizer 14 is wound up in the pulverizer 14 by the high-speed injection of the inert gas from the nozzle port 28 and swirls in the apparatus together with the high-speed airflow. Then, the objects to be ground are finely ground by mutual collision.

【0058】このようにして微粉砕された粉末粒子は上
昇気流に乗って分級ロータ36に導かれ、分級ロータ3
6で分級され、粗い粉体は再度粉砕されることになる。
一方、所定粒径以下に粉砕された粉体は、接続パイプ4
0、フレキシブルパイプ70を経由して導入口68から
サイクロン分級機16の分級機本体64内に導入され
る。分級機本体64内では、所定粒径以上の相対的な大
きな粉末粒子が下部に設置された回収タンク18に堆積
されるが、超微粉は不活性ガス気流とともに排気パイプ
66から外部に排出される。本実施形態では、排気パイ
プ66を通じて超微粉を除去し、それによって回収タン
ク18で捕集する粉末に占める超微粉(粒径:1.0μ
m以下)の個数比率を10%以下に調節する。このよう
にしてRリッチな超微粉が取り除かれると、焼結磁石中
の希土類元素Rが酸素との結合に消費される量を少なく
し、磁石特性を向上させることができる。
The finely pulverized powder particles are guided to the classifying rotor 36 by the rising airflow,
6 and the coarse powder will be ground again.
On the other hand, the powder pulverized to a predetermined particle size or less is
0, it is introduced into the classifier body 64 of the cyclone classifier 16 from the inlet 68 via the flexible pipe 70. In the classifier main body 64, relatively large powder particles having a predetermined particle size or more are deposited in the recovery tank 18 provided at the lower portion, and the ultrafine powder is discharged to the outside from the exhaust pipe 66 together with the inert gas stream. . In the present embodiment, the ultrafine powder is removed through the exhaust pipe 66, whereby the ultrafine powder occupying the powder collected in the collection tank 18 (particle diameter: 1.0 μm)
m) is adjusted to 10% or less. When the R-rich ultrafine powder is removed in this manner, the amount of the rare earth element R in the sintered magnet consumed for bonding with oxygen can be reduced, and the magnet properties can be improved.

【0059】上述のように本実施形態では、ジェットミ
ル粉砕装置(粉砕機14)の後段に接続する分級機とし
てブローアップ付きのサイクロン分級機16を用いてい
る。このようなサイクロン分級機16によれば、所定粒
径以下の超微粉は回収タンク18に捕集されることなく
反転上昇し、パイプ66から装置外へ排出される。
As described above, in the present embodiment, the cyclone classifier 16 with blow-up is used as a classifier connected to the subsequent stage of the jet mill pulverizer (pulverizer 14). According to such a cyclone classifier 16, the ultrafine powder having a particle size equal to or smaller than a predetermined value is inverted and rises without being collected in the collection tank 18, and is discharged from the pipe 66 to the outside of the apparatus.

【0060】パイプ66から装置外へ取り除く微粉の粒
径は、例えば工業調査会の「粉体技術ポケットブック」
の第92頁から第96頁に記載されているようなサイク
ロンの各部パラメータを適切に規定し、不活性ガス流の
圧力を調整することによって制御することができる。
The particle size of the fine powder removed from the pipe 66 to the outside of the apparatus can be determined, for example, by referring to “Powder Technology Pocket Book”
The parameters can be controlled by appropriately defining the parameters of each part of the cyclone as described on pages 92 to 96, and adjusting the pressure of the inert gas stream.

【0061】図3は、上記第2粉砕工程を経て得られた
粉末の粒度分布の一例を示している。本実施形態によれ
ば、平均粒径が例えば約4.0μm程度であり、しか
も、粒径1.0μm以下の超微粉の個数が粉末全体の個
数の10%以下である合金粉末を得ることができる。な
お、焼結磁石の製造に用いる微粉砕粉の好ましい平均粒
径範囲は2μm以上10μm以下である。なお、図3の
例では、用いた原料合金(ストリップキャスト合金)の
金属組織が微細であるため、従来のインゴット合金粉末
に比較して非常にシャープな粒度分布が得られた。本実
施形態では、粉砕条件を調節することにより、粒径5μ
m以上の粉末個数が粉末全体の個数の13%以下となる
ようにした。粒径5μm以上の大きな粉末粒子を低減す
るこにより、最終的に得られる焼結磁石の磁気特性を向
上させることができる。なお、本明細書における「粒
径」は、Fisher Sub-Siever Sizer(F.S.S.S)法で測定
された粒子の大きさと定義する。
FIG. 3 shows an example of the particle size distribution of the powder obtained through the second pulverizing step. According to the present embodiment, it is possible to obtain an alloy powder having an average particle size of about 4.0 μm, for example, and the number of ultrafine powder having a particle size of 1.0 μm or less is 10% or less of the total number of powders. it can. The preferred average particle size range of the finely pulverized powder used for manufacturing the sintered magnet is 2 μm or more and 10 μm or less. In the example of FIG. 3, since the metal structure of the raw material alloy (strip cast alloy) used was fine, a very sharp particle size distribution was obtained as compared with the conventional ingot alloy powder. In this embodiment, the particle size is 5 μ
The number of powders of m or more was 13% or less of the total number of powders. By reducing large powder particles having a particle size of 5 μm or more, the magnetic properties of the finally obtained sintered magnet can be improved. The “particle size” in the present specification is defined as the size of a particle measured by the Fisher Sub-Siever Sizer (FSSS) method.

【0062】粉砕工程における酸化をできる限り抑制す
るためには、微粉砕を行う際に用いる高速気流ガス(不
活性ガス)中の酸素量を0.02〜5体積%程度に低く
抑えることが好ましい。高速気流ガス中の酸素濃度を制
御する微粉砕方法は、特公平6−6728号公報に記載
されている。不活性ガス中の酸素量は0.05〜3体積
%の範囲に調節することが更に望ましい。
In order to suppress oxidation in the pulverizing step as much as possible, it is preferable to suppress the amount of oxygen in the high-speed gas stream (inert gas) used in the pulverization to as low as about 0.02 to 5% by volume. . A pulverization method for controlling the oxygen concentration in the high-speed airflow gas is described in Japanese Patent Publication No. 6-6728. More preferably, the amount of oxygen in the inert gas is adjusted in the range of 0.05 to 3% by volume.

【0063】上述のように微粉砕時における雰囲気中に
含まれる酸素の濃度を制御することによって、微粉砕後
における合金粉末の酸素含有量(重量)を6,000p
pm以下に調整することが好ましい。希土類合金粉末中
の酸素量が6,000ppmを超えて多くなりすぎる
と、焼結磁石中において非磁性酸化物の占める割合が増
加し、最終的な焼結磁石の磁気特性が劣化してしまうか
らである。このように、微粉砕粉の表面に酸化層で覆う
ことにより、大気中でのプレス成形が可能になる。
As described above, by controlling the concentration of oxygen contained in the atmosphere at the time of pulverization, the oxygen content (weight) of the alloy powder after pulverization is adjusted to 6,000 p.
pm or less. If the amount of oxygen in the rare earth alloy powder exceeds 6,000 ppm and becomes too large, the proportion of the nonmagnetic oxide in the sintered magnet increases, and the magnetic properties of the final sintered magnet deteriorate. It is. As described above, by covering the surface of the finely pulverized powder with the oxide layer, press molding in the air becomes possible.

【0064】なお、本実施形態では、Rリッチな超微粉
を適切に除去しているため、微粉砕時の不活性ガス雰囲
気中における酸素濃度を調節することによって、粉末の
酸素濃度を6,000ppm以下に制御することが可能
であるが、もしもRリッチ超微粉の除去を実行せずに、
超微粉の個数比率が全体の10%を超えてしまうと、如
何に不活性ガス雰囲気中の酸素濃度を低減しても最終的
に得られる粉末中の酸素濃度は6,000ppmを超え
てしまうことになる。
In this embodiment, since the R-rich ultrafine powder is appropriately removed, the oxygen concentration in the inert gas atmosphere during the fine pulverization is adjusted so that the oxygen concentration of the powder is 6,000 ppm. The following can be controlled, but if the R-rich ultrafine powder is not removed,
If the number ratio of ultrafine powder exceeds 10% of the total, no matter how the oxygen concentration in the inert gas atmosphere is reduced, the oxygen concentration in the finally obtained powder will exceed 6,000 ppm. become.

【0065】このように粒径1μm以下のRリッチな超
微粉を除去するこにとより、第2粉砕工程を経て最終的
に得られる粉末の流動性が向上するという効果や、焼結
後における結晶粒の大きさが均一化されるためにB−H
減磁曲線の角形性が優れ、高い保磁力が実現するという
効果も得られる。
By removing the R-rich ultrafine powder having a particle size of 1 μm or less as described above, the fluidity of the powder finally obtained through the second pulverization step is improved, BH is used to make the size of crystal grains uniform.
The squareness of the demagnetization curve is excellent, and an effect of realizing a high coercive force can also be obtained.

【0066】なお、本実施形態では図2に示す構成を備
えたジェットミル粉砕装置10を用いて第2粉砕工程を
実行したが、本発明はこれに限定されず、他の構成を備
えたジェットミル粉砕装置、あるいはその他のタイプの
微粉砕装置(アトライタやボールミル)を用いてもよ
い。また、超微粉を除去するための分級機として、サイ
クロン分級機以外に、ファトンゲレン分級機やミクロセ
パレータなどの遠心分級機を用いても良い。
In the present embodiment, the second pulverizing step is performed using the jet mill pulverizing apparatus 10 having the configuration shown in FIG. 2, but the present invention is not limited to this, and the jet pulverizing apparatus having another configuration is used. A mill pulverizer or another type of pulverizer (attritor or ball mill) may be used. Further, as a classifier for removing the ultrafine powder, a centrifugal classifier such as a Fatongelen classifier or a micro separator may be used in addition to the cyclone classifier.

【0067】[潤滑剤の添加]本実施形態では、上記方
法で作製された微粉砕粉に対し、ロッキングミキサー内
で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で
合金粉末粒子の表面を被覆する。潤滑剤としては、脂肪
酸エステルを石油系溶剤で希釈したものを用いることが
できる。本実施例では、脂肪酸エステルとしてカプロン
酸メチルを用い、石油系溶剤としてはイソパラフィンを
用いる。カプロン酸メチルとイソパラフィンの重量比
は、例えば1:9とする。このような液体潤滑剤は、粉
末粒子の表面を被覆し、粒子の酸化防止効果を発揮する
とともに、プレス時の配向性および粉末成形性を向上さ
せる機能(成形体の密度が均一となり、ワレ・ヒビなど
の欠陥を無くすこと)を発揮する。
[Addition of Lubricant] In the present embodiment, for example, 0.3% by weight of a lubricant is added to and mixed with the finely pulverized powder produced by the above method in a rocking mixer. Cover the surface. As the lubricant, a fatty acid ester diluted with a petroleum solvent can be used. In this embodiment, methyl caproate is used as the fatty acid ester, and isoparaffin is used as the petroleum solvent. The weight ratio between methyl caproate and isoparaffin is, for example, 1: 9. Such a liquid lubricant covers the surface of the powder particles, exhibits an effect of preventing the particles from being oxidized, and also has a function of improving the orientation at the time of pressing and the powder moldability (the density of the molded body becomes uniform, and Eliminating defects such as cracks).

【0068】なお、潤滑剤の種類は上記のものに限定さ
れるわけではない。脂肪酸エステルとしては、カプロン
酸メチル以外に、例えば、カプリル酸メチル、ラウリル
酸メチル(ラウリン酸メチル)などを用いても良い。溶
剤としては、イソパラフィンに代表される石油系溶剤や
ナフテン系溶剤等を用いることができる。潤滑剤添加の
タイミングは任意であり、例えばジェットミル粉砕装置
による微粉砕前、微粉砕中、微粉砕後のいずれであって
も良い。液体潤滑剤に代えて、あるいは液体潤滑剤とと
もに、ステアリン酸亜鉛などの固体(乾式)潤滑剤を用
いても良い。
The type of the lubricant is not limited to the above. As the fatty acid ester, other than methyl caproate, for example, methyl caprylate, methyl laurate (methyl laurate) and the like may be used. As the solvent, a petroleum solvent represented by isoparaffin, a naphthene solvent, or the like can be used. The timing of adding the lubricant is arbitrary, and for example, may be before, during, or after the fine pulverization by the jet mill pulverizer. Instead of the liquid lubricant or together with the liquid lubricant, a solid (dry) lubricant such as zinc stearate may be used.

【0069】このようにして微粉砕粉の表面を潤滑剤で
被覆することにより、粉末の酸化を抑制することができ
る。
By coating the surface of the finely pulverized powder with the lubricant as described above, the oxidation of the powder can be suppressed.

【0070】[プレス成形]公知のプレス装置を用い、
上述の方法で作製した磁性粉末を配向磁界中で成形す
る。プレス成形が終了した後、粉末成形体は下パンチに
よって押し上げられ、プレス装置の外部へ取り出され
る。
[Press molding] Using a known press machine,
The magnetic powder produced by the above method is molded in an orientation magnetic field. After the press molding is completed, the powder compact is pushed up by the lower punch and taken out of the press device.

【0071】次に、成形体は、例えばモリブデン材料か
ら形成された焼結用台板に載せられ、台板とともに焼結
ケースへ搭載される。焼結体を搭載した焼結ケースは焼
結炉内に移送され、その炉内で公知の焼結処理を受け
る。成形体は焼結プロセスを経て、焼結体に変化する。
その後、必要に応じて時効熱処理や焼結体の表面に対す
る研磨加工や保護膜堆積処理を実施する。
Next, the compact is mounted on a sintering base plate made of, for example, a molybdenum material, and is mounted together with the base plate in a sintering case. The sintering case on which the sintered body is mounted is transferred into a sintering furnace, and undergoes a known sintering process in the furnace. The formed body undergoes a sintering process and changes into a sintered body.
Thereafter, aging heat treatment, polishing of the surface of the sintered body, and deposition of a protective film are performed as necessary.

【0072】本実施形態の場合、成形する粉末中に酸化
しやすいRリッチ超微粉が少ないため、酸化による発熱
・発火がプレス成形直後においても生じにくくなってい
る。Rリッチな超微粉を取り除くことによって、磁気特
性の向上だけではなく、安全性の向上も実現することが
できる。
In the case of the present embodiment, since there is little R-rich ultrafine powder which is easily oxidized in the powder to be molded, heat and ignition due to oxidation are less likely to occur even immediately after press molding. By removing the R-rich ultrafine powder, not only the improvement of the magnetic properties but also the improvement of the safety can be realized.

【0073】[実施例と比較例]本実施例では、前述の
サイクロン分級機に接続されたジェットミル粉砕装置を
用いて微粉砕工程(第2粉砕工程)を行う際に、サイク
ロン分級機内の粉砕ガスの圧力を調節することによっ
て、回収粉末に含まれる超微粉の量を変化させた。ジェ
ットミルの粉砕雰囲気ガスとしては、1体積%の酸素と
99体積%の窒素を含むガスを用いた。
[Examples and Comparative Examples] In this example, when the fine pulverization step (second pulverization step) is performed using the jet mill pulverizer connected to the cyclone classifier described above, the pulverization in the cyclone classifier is performed. By adjusting the gas pressure, the amount of ultrafine powder contained in the recovered powder was changed. A gas containing 1% by volume of oxygen and 99% by volume of nitrogen was used as a pulverizing atmosphere gas of the jet mill.

【0074】試料No.1〜8について、粒径が1μm
以下の超微粉が粉末全体に示す割合(個数比率)、磁気
特性、および酸素量を評価した。結果を表1に示す。
Sample No. For 1 to 8, the particle size is 1 μm
The ratio (number ratio), magnetic characteristics, and oxygen content of the following ultrafine powder in the whole powder were evaluated. Table 1 shows the results.

【0075】[0075]

【表1】 [Table 1]

【0076】ここで、試料No.1〜6は本発明の実施
例であり、試料No.7〜8は比較例である。各試料の
作製条件は、以下の通りである。
Here, the sample No. Sample Nos. 1 to 6 are examples of the present invention. 7 and 8 are comparative examples. The preparation conditions for each sample are as follows.

【0077】まず、上記実施形態について説明した方法
で作製した粉末をプレスして15mm×20mm×10
mmのサイズを持つ成形体を作製した。プレス圧力は9
8MPaとした。プレスに際し、成形体の厚さが15m
mとなる方向に向いた配向磁界(1.0MA/m)を印
加した。プレス後、アルゴン雰囲気中で成形体を焼結し
た。焼結温度は1,100℃、焼結時間は2時間とし
た。時効処理後、焼結密度、焼結磁石の保磁力iHc、
および残留磁束密度Brを測定した。なお、表1の酸素
量は、微粉砕後の合金粉末中の酸素量を測定して求めた
ものである。
First, the powder produced by the method described in the above embodiment was pressed into a 15 mm × 20 mm × 10
A compact having a size of mm was produced. Press pressure is 9
8 MPa. When pressing, the thickness of the compact is 15m
An orientation magnetic field (1.0 MA / m) oriented in the direction of m was applied. After pressing, the compact was sintered in an argon atmosphere. The sintering temperature was 1,100 ° C., and the sintering time was 2 hours. After the aging treatment, the sintered density, the coercive force iHc of the sintered magnet,
And the residual magnetic flux density Br were measured. The oxygen content in Table 1 was determined by measuring the oxygen content in the finely pulverized alloy powder.

【0078】表1からわかるように、粒径が1μm以下
の超微粉の個数比率が増加するにつれて、酸素量が増加
し、焼結密度が低下する傾向が観察される。粒径が1μ
m以下の超微粉の個数比率が10.0%を超えて更に増
加してゆくと、含有酸素量は重量比率で6,000pp
mを超え、焼結密度は7.4g/cm3を下回った。こ
の場合、焼結磁石の保磁力iHcおよび残留磁束密度B
rも劣化していた。
As can be seen from Table 1, as the number ratio of ultrafine powder having a particle size of 1 μm or less increases, the amount of oxygen increases and the sintering density tends to decrease. Particle size 1μ
If the number ratio of ultrafine powders of m or less further exceeds 10.0%, the oxygen content becomes 6,000 pp by weight.
m and the sintering density was below 7.4 g / cm 3 . In this case, the coercive force iHc of the sintered magnet and the residual magnetic flux density B
r was also deteriorated.

【0079】一方、粒径が1μm以下の超微粉の個数比
率を10.0%以下にすれば、保磁力iHcが900k
A/m以上、残留磁束密度Brが1.35T以上の優れ
た磁気特性を得ることができた。特に、粒径が1μm以
下の超微粉の個数比率が5.0%以下の場合は、保磁力
iHcが990kA/m以上、残留磁束密度Brが1.
4T以上のより優れた特性を実現することができた。更
に、粒径が1μm以下の超微粉の個数比率が3.0%以
下の場合、最も優れた磁気特性が達成された。
On the other hand, if the number ratio of the ultrafine powder having a particle size of 1 μm or less is set to 10.0% or less, the coercive force iHc becomes 900 k
Excellent magnetic properties of A / m or more and residual magnetic flux density Br of 1.35 T or more could be obtained. In particular, when the number ratio of the ultrafine powder having a particle diameter of 1 μm or less is 5.0% or less, the coercive force iHc is 990 kA / m or more, and the residual magnetic flux density Br is 1.
Superior characteristics of 4T or more could be realized. Furthermore, when the number ratio of the ultrafine powder having a particle size of 1 μm or less is 3.0% or less, the most excellent magnetic properties are achieved.

【0080】このように希土類合金粉末に占めるRリッ
チ超微粉の存在割合を低減すれば、粉砕粉末中の酸素量
を低減することができ、焼結体の密度は充分に向上し
て、その結果、磁石特性を大きく向上させることができ
る。
As described above, if the proportion of the R-rich ultrafine powder in the rare earth alloy powder is reduced, the amount of oxygen in the pulverized powder can be reduced, and the density of the sintered body can be sufficiently improved. In addition, the magnet characteristics can be greatly improved.

【0081】本発明で用いる希土類合金の粉末粒子は強
磁性体であるため、磁力によって凝集し、2次粒子を形
成する傾向がある。このため、従来の粒度分布測定方法
を用いた場合、正確な測定結果が得られないおそれがあ
る。本実施例では、粒度分布の測定を、以下のようにし
て実行した。
Since the rare earth alloy powder particles used in the present invention are ferromagnetic, they tend to aggregate by magnetic force to form secondary particles. For this reason, when the conventional particle size distribution measuring method is used, there is a possibility that an accurate measurement result cannot be obtained. In this example, the particle size distribution was measured as follows.

【0082】粉末試料をエチルアルコールとともにビー
カーに入れた後、超音波分散処理を行う。ビーカーの上
澄み液を除去した後、粉末試料を乳鉢内でバインダと混
練し、ペースト状試料を作製する。次に、傷や汚れの無
いスライドガラス上でペースト状試料を引きのばし、均
一な厚さの混練膜を持つ試料セルを用意する。その後、
混練膜中で粉末粒子の凝集が進行する前に速やかに試料
セルを粒度分布測定装置にセットする。用いる粒度分布
測定装置は、レーザ光源から放射されたレーザビームを
試料セルに照射し、高速でスキャンする。試料セルを透
過したレーザビームの強度変化を検知し、それに基づい
て試料セル内に分散している粒子の粒度分布を測定す
る。このような粒度分布測定は、例えばGALAI社製
の粒度分布測定装置(品番GALAI CIS−1)を
用いて行うことができる。この粒度分布測定装置は、高
速スキャンされるレーザビームが粒子によって遮れたと
きに透過光量の減少が生じることを利用し、レーザビー
ムが粒子を通過するのに要した時間から粒径を直接的に
求めることができる。
After placing the powder sample in a beaker together with ethyl alcohol, an ultrasonic dispersion treatment is performed. After removing the supernatant of the beaker, the powder sample is kneaded with a binder in a mortar to prepare a paste sample. Next, the paste sample is stretched on a slide glass free from scratches and stains to prepare a sample cell having a kneaded film having a uniform thickness. afterwards,
Before the agglomeration of the powder particles proceeds in the kneading film, the sample cell is quickly set in the particle size distribution measuring device. The particle size distribution measuring device used irradiates a sample cell with a laser beam emitted from a laser light source and scans the sample cell at high speed. A change in the intensity of the laser beam transmitted through the sample cell is detected, and the particle size distribution of the particles dispersed in the sample cell is measured based on the detected change. Such a particle size distribution measurement can be performed using, for example, a particle size distribution measuring device (product number GALAI CIS-1) manufactured by GALAI. This particle size distribution measurement device uses the fact that the amount of transmitted light decreases when a laser beam scanned at high speed is blocked by particles, and directly calculates the particle size from the time required for the laser beam to pass through the particles. Can be sought.

【0083】以上、ストリップキャスト法で作製した急
冷合金について本願発明を説明してきたが、本発明の適
用範囲はこれに限定されない。インゴット法によって作
製された合金を用いる場合でもRリッチな超微粉が形成
されるため、本発明の効果が奏される。
Although the present invention has been described with reference to a quenched alloy produced by the strip casting method, the scope of the present invention is not limited to this. Even when an alloy produced by the ingot method is used, an R-rich ultrafine powder is formed, so that the effects of the present invention are exhibited.

【0084】また、上記の説明では、1種類の組成を有
する原料合金を用い、この原料合金に対して第1および
第2の粉砕工程を施してきたが、本発明はこれにも限定
されない。粉砕する対象として、製造方法や希土類含有
量の異なる複数種類の希土類合金を用いてもよい。すな
わち、本発明は、組成の異なる2種類の希土類合金粉末
を混合し、成形・焼結する「2合金法」に適用すること
もできる。2合金法による場合、具体的には、希土類含
有量の異なる2種類の希土類合金に対して別々に第1粉
砕工程を行なった後、これにより得られた粗粉砕粉を混
合し、混合粉末に対して第2の粉砕工程を行なっても良
い。あるいは。希土類含有量の異なる複数種類の希土類
合金に対して第1および第2粉砕工程を別々に行ない、
微粉砕粉を最終的に得た後、それらの微粉砕粉を混合し
て用いても良い。更に、2種類の合金の一方に対しては
本発明を適用し、他方に対しては従来法を適用すること
により得られた2種類の微粉砕粉を混合して用いても良
い。
In the above description, a raw material alloy having one kind of composition is used, and the first and second pulverizing steps are performed on the raw material alloy. However, the present invention is not limited to this. As the object to be pulverized, a plurality of types of rare earth alloys having different production methods and rare earth contents may be used. That is, the present invention can also be applied to a “two-alloy method” in which two kinds of rare-earth alloy powders having different compositions are mixed, molded and sintered. In the case of the two-alloy method, specifically, after the first pulverizing step is separately performed on two kinds of rare-earth alloys having different rare-earth contents, the coarsely pulverized powder obtained by this is mixed and mixed powder is obtained. On the other hand, the second pulverizing step may be performed. Or. The first and second pulverization steps are separately performed on a plurality of types of rare earth alloys having different rare earth contents,
After the pulverized powder is finally obtained, the pulverized powder may be mixed and used. Further, the present invention may be applied to one of the two types of alloys, and two types of finely pulverized powders obtained by applying the conventional method may be used as a mixture for the other type.

【0085】なお、粉砕工程を経るうちに粉末の組成は
微妙に変化する。このため、組成の異なる複数種類の粉
末を適切に配合することにより混合粉末の組成を目標値
に高い精度で調整するには、粉砕工程がすべて終了して
から粉末の組成を測定し、その測定値に基づいて配合比
率を決定することが好ましい。この場合、例えば、粉末
に潤滑剤を与える工程で複数種類の粉末配合を行なうこ
とができる。
The composition of the powder slightly changes during the pulverizing step. For this reason, in order to adjust the composition of the mixed powder to a target value with high accuracy by appropriately blending a plurality of types of powders having different compositions, the composition of the powder is measured after all the pulverization steps are completed, and the measurement is performed. It is preferable to determine the compounding ratio based on the value. In this case, for example, a plurality of types of powders can be blended in a step of applying a lubricant to the powders.

【0086】[0086]

【発明の効果】本発明のR−Fe−B系希土類磁石用合
金粉末によれば、粒径1μm以下の酸化反応性に富んだ
粉末成分の存在比率が低減されるため、希土類元素Rの
酸化に起因する磁石特性の劣化を充分に防止し、それに
よって高性能希土類磁石特性を大きく改善することがで
きるとともに、磁石製造工程中の安全性も向上させるこ
とが可能になる。
According to the R-Fe-B-based rare earth magnet alloy powder of the present invention, since the abundance ratio of the oxidation-reactive powder component having a particle size of 1 μm or less is reduced, the oxidation of the rare earth element R is reduced. Thus, the deterioration of the magnet properties caused by the above can be sufficiently prevented, whereby the properties of the high performance rare earth magnet can be greatly improved, and the safety during the magnet manufacturing process can be improved.

【0087】本発明は、Rリッチな超微粉が生成されや
すい急冷合金(例えばストリップキャスト合金)を使用
する場合や水素粉砕工程を実行する場合に特に顕著な効
果を奏することができる。
The present invention has a particularly remarkable effect when using a quenched alloy (for example, a strip cast alloy) in which an R-rich ultrafine powder is easily generated or when a hydrogen grinding step is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における粗粉砕工程で実行する水素粉砕
処理の温度プロファイルの一例を示すグラフである。
FIG. 1 is a graph showing an example of a temperature profile of a hydrogen pulverization process performed in a coarse pulverization step in the present invention.

【図2】本発明における微粉砕工程を行うために好適に
用いられるジェットミル粉砕装置の構成を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing a configuration of a jet mill pulverizing apparatus suitably used for performing a fine pulverizing step in the present invention.

【図3】本発明による希土類磁石用合金粉末の粒度分布
を示すグラフである。
FIG. 3 is a graph showing a particle size distribution of an alloy powder for a rare earth magnet according to the present invention.

【符号の説明】[Explanation of symbols]

10 ジェットミル粉砕装置 12 原料投入機 14 粉砕機 16 サイクロン分級機 18 回収タンク 20 原料タンク 22 モータ 24 供給機(スクリューフィーダ) 26 粉砕機本体 28 ノズル口 30 原料投入パイプ 32 バルブ 32a 上バルブ 32b 下バルブ 34 フレキシブルパイプ 36 分級ロータ 38 モータ 40 接続パイプ 42 脚部 44 基台 46 重量検出器 48 制御部 64 分級機本体 66 排気パイプ 68 導入口 70 フレキシブルパイプ DESCRIPTION OF SYMBOLS 10 Jet mill crusher 12 Material input machine 14 Crusher 16 Cyclone classifier 18 Recovery tank 20 Material tank 22 Motor 24 Feeder (screw feeder) 26 Crusher main body 28 Nozzle port 30 Material input pipe 32 Valve 32a Upper valve 32b Lower valve 34 Flexible Pipe 36 Classification Rotor 38 Motor 40 Connection Pipe 42 Leg 44 Base 46 Weight Detector 48 Controller 64 Classifier Body 66 Exhaust Pipe 68 Inlet 70 Flexible Pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 修平 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 Fターム(参考) 4K017 AA02 BA08 CA06 CA07 DA04 EA03 EA11 FA01 5E040 AA04 CA01 HB00 NN01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shuhei Okumura 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture F-term in Sumitomo Special Metals Co., Ltd. Yamazaki Works (reference) 4K017 AA02 BA08 CA06 CA07 DA04 EA03 EA11 FA01 5E040 AA04 CA01 HB00 NN01

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石用原料合金の粗粉砕を行う第
1粉砕工程と、前記原料合金の微粉砕を行う第2粉砕工
程とを含むR−Fe−B系希土類磁石用合金粉末の製造
方法であって、 前記第1粉砕工程は水素粉砕法を用いて前記原料合金を
粉砕する工程を含み、 前記第2粉砕工程は粒径が1.0μm以下の微粉の少な
くとも一部を除去し、それによって粒径が1.0μm以
下の微粉の個数を粉末全体の粒子個数の10%以下に調
節する工程を含むR−Fe−B系希土類磁石用合金粉末
の製造方法。
1. A method for producing an R—Fe—B-based rare earth magnet alloy powder, comprising: a first pulverizing step of coarsely pulverizing a raw alloy for a rare earth magnet; and a second pulverizing step of pulverizing the raw material alloy. Wherein the first pulverizing step includes a step of pulverizing the raw material alloy using a hydrogen pulverizing method, and the second pulverizing step removes at least a part of fine powder having a particle size of 1.0 μm or less. A method for producing an alloy powder for R-Fe-B-based rare earth magnets, comprising the step of adjusting the number of fine powder having a particle size of 1.0 μm or less to 10% or less of the total number of particles.
【請求項2】 粒径が1.0μm以下の前記微粉中に含
まれる希土類元素の平均濃度が前記粉末全体に含まれる
希土類元素の平均濃度よりも高い請求項1に記載のR−
Fe−B系希土類磁石用合金粉末の製造方法。
2. The R- according to claim 1, wherein the average concentration of the rare earth element contained in the fine powder having a particle size of 1.0 μm or less is higher than the average concentration of the rare earth element contained in the whole powder.
A method for producing an Fe-B-based rare earth magnet alloy powder.
【請求項3】 急冷法によって作製した希土類磁石用原
料合金の粗粉砕を行う第1粉砕工程と、前記原料合金の
微粉砕を行う第2粉砕工程とを含むR−Fe−B系希土
類磁石用合金粉末の製造方法であって、 前記第2粉砕工程は、希土類元素の濃度が粉末全体に含
まれる希土類元素の平均濃度よりも高い粉末の少なくと
も一部を除去し、それによって、希土類元素と結合する
形態で粉末に含まれる酸素の平均濃度を低減させる工程
を含むR−Fe−B系希土類磁石用合金粉末の製造方
法。
3. An R—Fe—B-based rare earth magnet for an R—Fe—B rare earth magnet, comprising: a first pulverizing step of roughly pulverizing a raw alloy for a rare earth magnet produced by a quenching method; and a second pulverizing step of pulverizing the raw material alloy. A method for producing an alloy powder, wherein the second pulverizing step removes at least a part of the powder in which the concentration of the rare earth element is higher than the average concentration of the rare earth element contained in the entire powder, thereby bonding with the rare earth element. A method for producing an alloy powder for R-Fe-B-based rare earth magnets, the method including a step of reducing the average concentration of oxygen contained in the powder in such a form.
【請求項4】 前記第2粉砕工程では、不活性ガスの高
速気流を用いて前記合金の微粉砕を実行する請求項1か
ら3の何れかに記載のR−Fe−B系希土類磁石用合金
粉末の製造方法。
4. The alloy for an R—Fe—B rare earth magnet according to claim 1, wherein in the second pulverizing step, the alloy is finely pulverized by using a high-speed gas stream of an inert gas. Powder manufacturing method.
【請求項5】 前記不活性ガス中には所定量の酸素が導
入されている請求項4に記載のR−Fe−B系希土類磁
石用合金粉末の製造方法。
5. The method of claim 4, wherein a predetermined amount of oxygen is introduced into the inert gas.
【請求項6】 前記酸素の濃度は0.05体積%以上3
体積%以下に調節されている請求項5に記載のR−Fe
−B系希土類磁石用合金粉末の製造方法。
6. The oxygen concentration is not less than 0.05% by volume.
The R-Fe according to claim 5, which is adjusted to not more than% by volume.
A method for producing an alloy powder for a B-based rare earth magnet.
【請求項7】 前記希土類合金として、希土類含有量の
異なる複数種類の希土類合金を用いる請求項1に記載の
R−Fe−B系希土類磁石用合金粉末の製造方法。
7. The method according to claim 1, wherein a plurality of kinds of rare earth alloys having different rare earth contents are used as the rare earth alloy.
【請求項8】 前記第1粉砕工程は、前記希土類含有量
の異なる複数種類の希土類合金に対して別々に行ない、 前記第2粉砕工程は、前記希土類含有量の異なる複数種
類の希土類合金に対して同時に行なう請求項7に記載の
R−Fe−B系希土類磁石用合金粉末の製造方法。
8. The first pulverizing step is separately performed on a plurality of types of rare earth alloys having different rare earth contents, and the second pulverizing step is performed on a plurality of types of rare earth alloys having different rare earth contents. The method for producing an alloy powder for an R-Fe-B-based rare earth magnet according to claim 7, which is carried out simultaneously.
【請求項9】 前記第1および第2粉砕工程は、前記希
土類含有量の異なる複数種類の希土類合金に対して別々
に行ない、 前記第2粉砕工程の後、前記複数種類の希土類合金の粉
末を混合する請求項7に記載のR−Fe−B系希土類磁
石用合金粉末の製造方法。
9. The first and second pulverizing steps are separately performed on a plurality of kinds of rare earth alloys having different rare earth contents. After the second pulverizing step, powders of the plurality of kinds of rare earth alloys are mixed. The method for producing an alloy powder for an R-Fe-B-based rare earth magnet according to claim 7, which is mixed.
【請求項10】 前記合金の微粉砕はジェットミル粉砕
装置を用いて実行する請求項9に記載のR−Fe−B系
希土類磁石用合金粉末の製造方法。
10. The method according to claim 9, wherein the fine pulverization of the alloy is performed using a jet mill pulverizer.
【請求項11】 前記ジェットミル粉砕装置の後段に分
級機を接続し、前記ジェットミル粉砕装置から出た粉末
を分級する請求項10に記載のR−Fe−B系希土類磁
石用合金粉末の製造方法。
11. The production of an alloy powder for an R—Fe—B-based rare earth magnet according to claim 10, wherein a classifier is connected to the subsequent stage of the jet mill pulverizer to classify the powder discharged from the jet mill pulverizer. Method.
【請求項12】 前記希土類磁石用原料合金は、原料合
金溶湯を102℃/秒以上104℃/秒以下の冷却速度で
冷却されたものである請求項1または3に記載のR−F
e−B系希土類磁石用合金粉末の製造方法。
12. The RF according to claim 1, wherein the raw material alloy for a rare earth magnet is obtained by cooling a molten material alloy at a cooling rate of 10 2 ° C / sec or more and 10 4 ° C / sec or less.
A method for producing an eB-based rare earth magnet alloy powder.
【請求項13】 前記原料合金溶湯の冷却はストリップ
キャスト法によって行う請求項12に記載のR−Fe−
B系希土類磁石用合金粉末の製造方法。
13. The R-Fe- according to claim 12, wherein the cooling of the raw material alloy melt is performed by a strip casting method.
A method for producing a B-based rare earth magnet alloy powder.
【請求項14】 前記第1粉砕工程によって得られた粉
末の平均粒径が500μm以下である請求項1または3
に記載のR−Fe−B系希土類磁石用合金粉末の製造方
法。
14. The powder obtained by the first pulverizing step has an average particle size of 500 μm or less.
The method for producing an alloy powder for an R-Fe-B-based rare earth magnet according to the above.
【請求項15】 前記第2粉砕工程によって得られた粉
末の平均粒径が2μm以上10μm以下の範囲内にある
ことを特徴とする請求項1または3に記載のR−Fe−
B系希土類磁石用合金粉末の製造方法。
15. The R-Fe- according to claim 1, wherein the average particle diameter of the powder obtained in the second pulverization step is in a range of 2 μm or more and 10 μm or less.
A method for producing a B-based rare earth magnet alloy powder.
【請求項16】 前記第2粉砕工程によって得られた粉
末に対して、潤滑剤を添加する工程を更に含む請求項1
または3に記載のR−Fe−B系希土類磁石用合金粉末
の製造方法。
16. The method according to claim 1, further comprising a step of adding a lubricant to the powder obtained in the second grinding step.
Or the method for producing an alloy powder for an R-Fe-B-based rare earth magnet according to 3 above.
【請求項17】 請求項1または3に記載の製造方法に
よって作製されたR−Fe−B系希土類磁石用合金粉末
を用意する工程と、 前記R−Fe−B系希土類磁石用合金粉末を成形し、永
久磁石を作製する工程とを含むR−Fe−B系希土類磁
石の製造方法。
17. A step of preparing an R—Fe—B-based rare earth magnet alloy powder produced by the production method according to claim 1; and molding the R—Fe—B-based rare earth magnet alloy powder. And a step of producing a permanent magnet.
【請求項18】 請求項1または3に記載の製造方法に
よって作製された第1のR−Fe−B系希土類磁石用合
金粉末を用意する工程と、 前記第1のR−Fe−B系希土類磁石用合金粉末とは希
土類の含有量が異なる第2のR−Fe−B系希土類磁石
用合金粉末を用意する工程と、 前記第1および第2の合金粉末を混合して混合粉末を形
成する工程と、 前記混合粉末を成形し、成形体を作製する工程と、 前記成形体を焼結し、永久磁石を作製する工程とを含む
R−Fe−B系希土類磁石の製造方法。
18. A step of preparing a first R-Fe-B-based rare earth magnet alloy powder produced by the production method according to claim 1 or 3, and the first R-Fe-B-based rare earth element A step of preparing a second R-Fe-B-based rare earth magnet alloy powder having a rare earth content different from that of the magnet alloy powder; and forming a mixed powder by mixing the first and second alloy powders. A method for producing an R-Fe-B-based rare earth magnet, comprising: a step of molding the mixed powder to produce a molded body; and sintering the molded body to produce a permanent magnet.
【請求項19】 平均粒径が2μm以上10μm以下で
あり、1.0μm以下の微粉の個数が粉末全体の粒子個
数の10%以下に調節されているR−Fe−B系希土類
磁石用合金粉末。
19. An R-Fe-B-based rare earth magnet alloy powder having an average particle diameter of 2 μm or more and 10 μm or less, and wherein the number of fine powders of 1.0 μm or less is adjusted to 10% or less of the total number of particles. .
【請求項20】 原料合金溶湯を102℃/秒以上104
℃/秒以下の冷却速度で冷却した合金を粉砕して得られ
たものである請求項19に記載のR−Fe−B系希土類
磁石用合金粉末。
20. A raw material alloy melt is heated to 10 2 ° C./sec or more and 10 4
The R-Fe-B-based rare-earth magnet alloy powder according to claim 19, which is obtained by pulverizing an alloy cooled at a cooling rate of not more than ° C / sec.
【請求項21】 請求項19または20に記載のR−F
e−B系希土類磁石用合金粉末から作製されたことを特
徴とするR−Fe−B系希土類磁石。
21. The RF according to claim 19 or 20.
An R-Fe-B-based rare-earth magnet produced from an alloy powder for an e-B-based rare-earth magnet.
JP2001136960A 2001-05-08 2001-05-08 Rare earth magnet and production method therefor Pending JP2002332507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136960A JP2002332507A (en) 2001-05-08 2001-05-08 Rare earth magnet and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136960A JP2002332507A (en) 2001-05-08 2001-05-08 Rare earth magnet and production method therefor

Publications (1)

Publication Number Publication Date
JP2002332507A true JP2002332507A (en) 2002-11-22

Family

ID=18984134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136960A Pending JP2002332507A (en) 2001-05-08 2001-05-08 Rare earth magnet and production method therefor

Country Status (1)

Country Link
JP (1) JP2002332507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040525A1 (en) * 2012-09-12 2014-03-20 厦门钨业股份有限公司 Alloy powder for rare-earth magnet, rare-earth magnet manufacturing method and powder pulverizing device
WO2014123020A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Fuel cell system
CN104308165A (en) * 2014-08-29 2015-01-28 北京京磁永磁科技发展有限公司 Jet mill
JP2018163038A (en) * 2017-03-27 2018-10-18 株式会社Ihi検査計測 Mass measurement fixture and mass measurement system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166901A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet
JP2000054011A (en) * 1998-08-10 2000-02-22 Sumitomo Metal Mining Co Ltd Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JP2001081503A (en) * 1999-09-13 2001-03-27 Sumitomo Special Metals Co Ltd Method for orienting raw material alloy powder for anisotropic rare earth magnet, and manufacture of the magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166901A (en) * 1985-01-16 1986-07-28 Sumitomo Special Metals Co Ltd Production of raw material powder for permanent magnet
JP2000054011A (en) * 1998-08-10 2000-02-22 Sumitomo Metal Mining Co Ltd Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JP2001081503A (en) * 1999-09-13 2001-03-27 Sumitomo Special Metals Co Ltd Method for orienting raw material alloy powder for anisotropic rare earth magnet, and manufacture of the magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040525A1 (en) * 2012-09-12 2014-03-20 厦门钨业股份有限公司 Alloy powder for rare-earth magnet, rare-earth magnet manufacturing method and powder pulverizing device
WO2014123020A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Fuel cell system
CN104308165A (en) * 2014-08-29 2015-01-28 北京京磁永磁科技发展有限公司 Jet mill
JP2018163038A (en) * 2017-03-27 2018-10-18 株式会社Ihi検査計測 Mass measurement fixture and mass measurement system

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
JP3489741B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3932143B2 (en) Magnet manufacturing method
JP3724513B2 (en) Method for manufacturing permanent magnet
JP4329318B2 (en) Rare earth sintered magnet and manufacturing method thereof
US6648984B2 (en) Rare earth magnet and method for manufacturing the same
JP2003293008A (en) Rare-earth sintered magnet and manufacturing method
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
JP3367726B2 (en) Manufacturing method of permanent magnet
JP2002332507A (en) Rare earth magnet and production method therefor
JP2002033207A (en) Rare-earth magnet and manufacturing method thereof
JP2002175931A (en) Rare earth magnet and its manufacturing method
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP2004137582A (en) Sintered rare earth magnet and its production method
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP7408921B2 (en) RTB series permanent magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3984850B2 (en) Rare earth permanent magnet manufacturing method
JPH064884B2 (en) Manufacturing method of rare earth alloy powder
JP2005136354A (en) Method of manufacturing sintered rare-earth magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005