JP3367726B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP3367726B2
JP3367726B2 JP30230393A JP30230393A JP3367726B2 JP 3367726 B2 JP3367726 B2 JP 3367726B2 JP 30230393 A JP30230393 A JP 30230393A JP 30230393 A JP30230393 A JP 30230393A JP 3367726 B2 JP3367726 B2 JP 3367726B2
Authority
JP
Japan
Prior art keywords
master alloy
phase
alloy
permanent magnet
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30230393A
Other languages
Japanese (ja)
Other versions
JPH07130522A (en
Inventor
信也 橋本
確 竹渕
弘一 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30230393A priority Critical patent/JP3367726B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to DE69434323T priority patent/DE69434323T2/en
Priority to DE69431096T priority patent/DE69431096T2/en
Priority to US08/333,982 priority patent/US5595608A/en
Priority to EP02017128A priority patent/EP1260995B1/en
Priority to EP00120135A priority patent/EP1073069A1/en
Priority to EP94308097A priority patent/EP0651401B1/en
Publication of JPH07130522A publication Critical patent/JPH07130522A/en
Application granted granted Critical
Publication of JP3367726B2 publication Critical patent/JP3367726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類永久磁石を製造
する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a rare earth permanent magnet.

【0002】[0002]

【従来の技術】高性能を有する希土類磁石としては、粉
末冶金法によるSm−Co系磁石でエネルギー積32M
GOeのものが量産されている。しかし、このものは、
Sm、Coの原料価格が高いという欠点を有する。希土
類元素の中では原子量の小さい元素、例えば、CeやP
r、Ndは、Smよりも豊富にあり価格が安い。また、
FeはCoに比べ安価である。そこで、近年Nd−Fe
−B磁石やNd−Fe−Co−B磁石等のR−T−B系
磁石が開発され、特開昭59−46008号公報には焼
結磁石が開示されている。焼結法による磁石では、従来
のSm−Co系の粉末冶金プロセス(溶解→母合金イン
ゴット鋳造→インゴット粗粉砕→微粉砕→成形→焼結→
磁石)を適用でき、また、高い磁気特性を得ることも容
易である。鋳造により製造された母合金インゴットは、
一般に、結晶粒を構成する強磁性のR214B相(以
後、この相を主相という)を、非磁性でRに富む相(以
後、粒界相という)が被覆している組織構造をもってい
る。母合金インゴットは、その結晶粒径よりも小さな粒
径まで粉砕されて磁石粉末とされる。粒界相は、液相化
することにより焼結を促進する作用を有し、また、焼結
磁石の保磁力発生に重要な働きを果たす。
2. Description of the Related Art As a rare earth magnet having high performance, an Sm-Co type magnet manufactured by powder metallurgy has an energy product of 32M.
GOe's are in mass production. But this one
It has a drawback that the raw material prices of Sm and Co are high. Among the rare earth elements, elements with small atomic weight, such as Ce and P
r and Nd are more abundant and cheaper than Sm. Also,
Fe is cheaper than Co. Therefore, in recent years, Nd-Fe
RTB type magnets such as -B magnets and Nd-Fe-Co-B magnets have been developed, and a sintered magnet is disclosed in JP-A-59-46008. In the magnet by the sintering method, the conventional Sm-Co-based powder metallurgy process (melting → master alloy ingot casting → ingot coarse crushing → fine crushing → molding → sintering →
(A magnet) can be applied and high magnetic properties can be easily obtained. The master alloy ingot produced by casting is
In general, a non-magnetic R-rich phase (hereinafter referred to as a grain boundary phase) covers a ferromagnetic R 2 T 14 B phase (hereinafter referred to as a main phase) constituting a crystal grain I have The mother alloy ingot is crushed to a particle size smaller than the crystal grain size thereof to obtain magnet powder. The grain boundary phase has a function of promoting sintering by becoming a liquid phase, and also plays an important role in generating coercive force of the sintered magnet.

【0003】R−T−B系磁石は、Sm−Co系磁石に
比べて熱安定性が低い。例えば、室温から180℃の範
囲におけるΔ iHc /ΔTが−0.60〜−0.55%
/℃程度にも達し、また、高温にさらされると、不可逆
的に著しい減磁が生じる。このため、R−T−B系磁石
を、高温環境下で使用される機器、例えば、自動車用の
各種電機・電子機器等に適用する場合、実用性に欠ける
という問題がある。
R-T-B magnets have lower thermal stability than Sm-Co magnets. For example, ΔiHc / ΔT in the range of room temperature to 180 ° C. is −0.60 to −0.55%
When the temperature reaches about / ° C and is exposed to a high temperature, irreversible marked demagnetization occurs. Therefore, when the RTB magnet is applied to a device used in a high temperature environment, for example, various electric and electronic devices for automobiles, there is a problem that it is not practical.

【0004】R−T−B系磁石の加熱による不可逆減磁
を減少させるために、特開昭62−165305号公報
では、Ndの一部をDyで置換し、かつFeの一部をC
oで置換することが提案されている。しかし、Dyおよ
びCoを添加しただけでは、Δ iHc /ΔTを顕著に減
少させることはできず、Dy置換量が多いと最大エネル
ギー積(BH)max が低下してしまう。
In order to reduce the irreversible demagnetization due to the heating of the RTB-based magnet, in JP-A-62-165305, a part of Nd is replaced with Dy and a part of Fe is replaced with C.
It is proposed to replace it with o. However, ΔiHc / ΔT cannot be remarkably reduced only by adding Dy and Co, and the maximum energy product (BH) max decreases if the Dy substitution amount is large.

【0005】また、特開昭64−7503号公報では、
Gaを添加して熱安定性を改善する提案がなされてお
り、IEEE Trans.Magn.MAG-26(1990)1960では、Mo、V
の添加により熱安定性を改善する提案がなされている。
しかし、Ga、Mo、Vなどを添加した場合、熱安定性
は向上するが最大エネルギー積が低下してしまう。
Further, in Japanese Patent Laid-Open No. 64-7503,
Proposals have been made to improve thermal stability by adding Ga. In IEEE Trans.Magn.MAG-26 (1990) 1960, Mo, V
Has been proposed to improve the thermal stability.
However, when Ga, Mo, V or the like is added, the thermal stability is improved but the maximum energy product is reduced.

【0006】一方、本出願人は、熱安定性を改善し、か
つ最大エネルギー積の低下を抑えるために、SnとAl
とを添加することを提案している(特開平3−2362
02号公報)。しかし、Sn添加によっても最大エネル
ギー積は低下する傾向があるため、Snの添加量を最小
限に抑えることが望まれる。
On the other hand, the applicant of the present invention, in order to improve the thermal stability and suppress the decrease of the maximum energy product, Sn and Al
Has been proposed (Japanese Patent Laid-Open No. 32362/1993).
No. 02). However, the maximum energy product tends to decrease even if Sn is added, so it is desirable to minimize the amount of Sn added.

【0007】いわゆる2合金法により磁石にSnを添加
する方法も報告されている。2合金法は、組成の異なる
2種の合金粉末、具体的には、主相組成に近い組成の合
金粉末と粒界相組成に近い組成の合金粉末とを混合して
焼結する方法である。Proc.11th Inter.Workshop on Ra
re-Earth Magnets and their Applications,Pittsburg
h,1990,p.313では、Nd14.5Dy1.5 Fe75AlB8
金粉末に、Fe2 Sn粉末またはCoSn粉末を2.5
重量%以下混合して焼結磁石を製造している。この焼結
後の磁石の粒界相にはNd6 Fe13Sn相が析出してお
り、この焼結磁石において保磁力の熱依存性が改善され
たことが報告されている。
A method of adding Sn to a magnet by the so-called two-alloy method has also been reported. The two-alloy method is a method in which two kinds of alloy powders having different compositions, specifically, an alloy powder having a composition close to the main phase composition and an alloy powder having a composition close to the grain boundary phase composition are mixed and sintered. . Proc.11th Inter.Workshop on Ra
re-Earth Magnets and their Applications, Pittsburg
H., 1990, p.313, Nd 14.5 Dy 1.5 Fe 75 AlB 8 alloy powder, Fe 2 Sn powder or CoSn powder 2.5.
Sintered magnets are manufactured by mixing less than or equal to wt%. The Nd 6 Fe 13 Sn phase is precipitated in the grain boundary phase of the magnet after the sintering, and it has been reported that the thermal dependence of the coercive force is improved in this sintered magnet.

【0008】しかし、本発明者らの実験によれば、Fe
2 SnおよびCoSnは粉砕性が悪いため、粒径の揃っ
た微粉末を得にくい。このため、Fe2 SnやCoSn
の粉末をR−T−B系合金の粉末と混合して焼結した磁
石中では、Nd6 Fe13Sn相の大きさが不揃いとな
り、また、分布が不均一となる。このことは、同報告の
Fig.5からも明らかである。このため、良好な熱安定性
を安定して得ることができない。また、SnをFe2
n粉末やCoSn粉末として添加した場合、Nd6 Fe
13Snを形成するために主相中のRやFeが使われるた
め、主相の組成が影響を受け、磁気特性が低下してしま
う。
However, according to the experiments by the present inventors, Fe
2 Since Sn and CoSn have poor grindability, it is difficult to obtain a fine powder having a uniform particle size. Therefore, Fe 2 Sn and CoSn
In the magnet obtained by mixing the above powder with the powder of the RTB-based alloy and sintering, the sizes of the Nd 6 Fe 13 Sn phase become uneven and the distribution becomes uneven. This is
It is also clear from Fig. 5. Therefore, good thermal stability cannot be stably obtained. In addition, Sn is replaced with Fe 2 S
Nd 6 Fe when added as n powder or CoSn powder
Since R and Fe in the main phase are used to form 13Sn, the composition of the main phase is affected and the magnetic characteristics deteriorate.

【0009】[0009]

【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、高い熱安定性が安定して得
られ、しかも、磁気特性、特に最大エネルギー積の高い
R−T−B系焼結永久磁石を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is possible to stably obtain a high thermal stability, and further, the magnetic properties, especially the R-T-B having a high maximum energy product. An object is to provide a system sintered permanent magnet.

【0010】[0010]

【課題を解決するための手段】このような目的は、下記
(1)〜(12)の本発明により達成される。 (1) 主相用母合金の粉末と粒界相用母合金の粉末と
の混合物を成形した後、焼結することにより、R(R
は、Yを含む希土類元素の少なくとも1種である)、T
(Tは、Fe、または、FeならびにCoおよび/また
はNiである)およびBを主成分とし、実質的にR2
14Bから構成される主相を有する永久磁石を製造する方
法であって、前記主相用母合金が、実質的にR214
から構成される主相と、R214BよりもRの含有率が
高いRリッチ相を主体とする結晶粒界とを有し、前記粒
界相用母合金が、R、T’(T’は、Fe、Coおよび
Niの少なくとも1種である)およびM(Mは、Sn
と、InおよびGaの少なくとも1種とである)を含有
し、M中の30〜100重量%がSnであり、これらの
含有量が、 R:40〜65重量%、 T’:30〜60重量%、 M:1〜12重量% であり、R6 T’13M相を有する永久磁石の製造方法。 (2) 前記混合物中における粒界相用母合金の比率が
0.2〜10重量%である上記(1)の永久磁石の製造
方法。 (3) 前記主相用母合金が、平均径が3〜50μm で
ある柱状結晶粒の主相を有する上記(1)または(2)
の永久磁石の製造方法。 (4) 製造される永久磁石の組成が、 R:27〜38重量%、 B:0.5〜4.5重量%、 M:0.03〜0.5重量%、 T:51〜72重量% である上記(1)〜(3)のいずれかの永久磁石の製造
方法。 (5) 結晶粒界にR6 T’13M相が含まれる永久磁石
が製造される上記(1)〜(4)のいずれかの永久磁石
の製造方法。 (6) 合金溶湯を、一方向または対向する二方向から
冷却して前記主相用母合金を製造し、前記主相用母合金
の冷却方向の厚さが0.1〜2mmであり、前記主相用母
合金がα−Fe相を実質的に含まない請求項(1)〜
(5)のいずれかの永久磁石の製造方法。 (7) 合金溶湯を、一方向または対向する二方向から
冷却して前記粒界相用母合金を製造し、前記粒界相用母
合金が、平均径20μm 以下の結晶粒を有し、前記粒界
相用母合金の冷却方向の厚さが0.1〜2mmである上記
(6)の永久磁石の製造方法。 (8) 前記合金溶湯を、単ロール法、双ロール法また
は回転ディスク法により冷却する上記(6)または
(7)の永久磁石の製造方法。 (9) 水素を吸蔵させた後、前記主相用母合金をジェ
ットミルにより粉砕する粉砕工程を有する上記(1)〜
(8)のいずれかの永久磁石の製造方法。 (10) 水素を吸蔵させた後、前記粒界相用母合金を
ジェットミルにより粉砕する粉砕工程を有する上記
(1)〜(9)のいずれかの永久磁石の製造方法。 (11) 前記粉砕工程において、母合金の温度を30
0〜600℃の範囲に昇温した後、水素吸蔵処理を施
し、次いで、水素放出処理を施すことなく粉砕を行なう
上記(9)または(10)の永久磁石の製造方法。 (12) 母合金に水素を吸蔵させた後、水素の放出を
行なう上記(9)または(10)の永久磁石の製造方
法。
The above objects are achieved by the present invention described in (1) to (12) below. (1) A mixture of the powder of the main phase master alloy and the powder of the grain boundary phase master alloy is molded and then sintered to obtain R (R
Is at least one rare earth element including Y), T
(T is Fe or Fe and Co and / or Ni) and B as a main component, and substantially R 2 T
A method for producing a permanent magnet having a main phase composed of 14 B, wherein the main phase master alloy is substantially R 2 T 14 B
And a crystal grain boundary mainly composed of an R-rich phase having a higher R content than R 2 T 14 B, and the master alloy for the grain boundary phase is R, T '( T'is at least one of Fe, Co and Ni) and M (M is Sn
And at least one of In and Ga), 30 to 100% by weight of M is Sn, and these contents are R: 40 to 65% by weight, T ′: 30 to 60. % By weight, M: 1 to 12% by weight, and a method for producing a permanent magnet having an R 6 T ′ 13 M phase. (2) The method for producing a permanent magnet according to (1), wherein the ratio of the grain boundary phase master alloy in the mixture is 0.2 to 10% by weight. (3) The above-mentioned (1) or (2), wherein the main phase master alloy has a main phase of columnar crystal grains having an average diameter of 3 to 50 μm.
Manufacturing method of permanent magnet of. (4) The composition of the manufactured permanent magnet has R: 27 to 38% by weight, B: 0.5 to 4.5% by weight, M: 0.03 to 0.5% by weight, T: 51 to 72% by weight. %, The method for producing a permanent magnet according to any one of (1) to (3) above. (5) The method for producing a permanent magnet according to any one of the above (1) to (4), wherein a permanent magnet having an R 6 T ′ 13 M phase in a grain boundary is produced. (6) The molten alloy is cooled from one direction or two opposite directions to manufacture the main phase master alloy, and the main phase master alloy has a thickness in the cooling direction of 0.1 to 2 mm, and The master alloy for main phase is substantially free of α-Fe phase.
The method for producing a permanent magnet according to any one of (5). (7) The molten alloy is cooled from one direction or two opposite directions to produce the grain boundary phase master alloy, and the grain boundary phase master alloy has crystal grains with an average diameter of 20 μm or less, The method for producing a permanent magnet according to the above (6), wherein the grain boundary phase master alloy has a thickness in the cooling direction of 0.1 to 2 mm. (8) The method for producing a permanent magnet according to the above (6) or (7), wherein the molten alloy is cooled by a single roll method, a twin roll method or a rotating disk method. (9) The above (1) to (1) including a crushing step of crushing the main phase master alloy by a jet mill after absorbing hydrogen
The method for producing a permanent magnet according to any one of (8). (10) The method for producing a permanent magnet according to any one of the above (1) to (9), which comprises a crushing step of crushing the master alloy for grain boundary phase by a jet mill after absorbing hydrogen. (11) In the crushing step, the temperature of the mother alloy is set to 30
The method for producing a permanent magnet according to the above (9) or (10), in which the temperature is raised to a range of 0 to 600 ° C., hydrogen storage treatment is performed, and then pulverization is performed without hydrogen release treatment. (12) The method for producing a permanent magnet according to the above (9) or (10), wherein hydrogen is released in the mother alloy and then hydrogen is released.

【0011】[0011]

【作用および効果】本発明者らは、Snを添加したR−
T−B系合金粉末を焼結して製造した磁石において、結
晶粒界にR613Snが存在することから、結晶粒界で
生成したR613Snが熱安定性を向上させることを見
いだした。また、主相中に残存するSnにより最大エネ
ルギー積が低下することを見いだした。
ACTIONS AND EFFECTS The present inventors have found that Sn-added R-
In the magnet produced by sintering a T-B type alloy powder, since the R 6 T 13 Sn is present in the grain boundaries, it was produced at the grain boundaries R 6 T 13 Sn improves the thermal stability I found it. It was also found that Sn remaining in the main phase reduces the maximum energy product.

【0012】このため本発明では、R−T−B系磁石に
M(Mは、Sn、InおよびGaの少なくとも1種)を
添加するに際して2合金法を用い、主相用母合金にMを
添加せず、粒界相用母合金にMを含む合金を用いる。こ
のように粒界相用母合金にだけMを添加するので、微量
のMで十分な熱安定性効果が得られる。
Therefore, in the present invention, the two-alloy method is used when M (M is at least one of Sn, In and Ga) is added to the RTB magnet, and M is added to the master alloy for the main phase. An alloy containing M is used as the grain boundary phase master alloy without addition. Thus, since M is added only to the grain boundary phase master alloy, a sufficient amount of M can provide a sufficient thermal stability effect.

【0013】本発明では、粒界相用母合金として、R6
T’13M(T’は、Fe、CoおよびNiの少なくとも
1種)を中心とする組成の合金を用いる。この組成の合
金は、Fe2 SnやCoSnと異なり粉砕が容易であ
り、水素吸蔵により微細な粉末にまで容易に粉砕するこ
とができる。このため、焼結後の磁石中において結晶粒
界におけるR6 T’13M相の寸法が揃い、その分布の均
一性が良好となる。したがって、熱安定性が良好な磁石
を安定して量産することができる。これに対し、前述し
たFe2 SnおよびCoSnは、水素を殆ど吸蔵しない
ため、水素吸蔵粉砕は不可能である。また、R6 T’13
Mを中心とする組成の合金を粒界相用母合金に用いる
と、結晶粒界にR6 T’13M相を存在させるに際し主相
組成へ影響を与えることが殆どなくなり、主相用母合金
の組成に応じた磁気特性が劣化なく得られる。
In the present invention, R 6 is used as the grain boundary phase master alloy.
An alloy having a composition centered on T ′ 13 M (T ′ is at least one of Fe, Co and Ni) is used. The alloy of this composition is easy to grind unlike Fe 2 Sn and CoSn, and can be easily grinded into a fine powder by hydrogen storage. Therefore, in the magnet after sintering, the R 6 T ′ 13 M phase has uniform sizes in the crystal grain boundaries, and the uniformity of the distribution is good. Therefore, it is possible to stably mass-produce magnets having good thermal stability. On the other hand, Fe 2 Sn and CoSn described above hardly occlude hydrogen, and therefore hydrogen occluding and pulverizing is impossible. In addition, R 6 T '13
When an alloy having a composition centering on M is used as the master alloy for the grain boundary phase, when the R 6 T ′ 13 M phase is present in the crystal grain boundaries, the main phase composition is hardly affected, and the master alloy for the main phase is almost eliminated. Magnetic properties according to the composition of the alloy can be obtained without deterioration.

【0014】本発明において、粒界相用母合金の結晶粒
径を上記範囲とした場合には、より微細な粉末が得られ
るため、磁石中におけるR6 T’13M相の寸法がさらに
揃い、その分散もさらに良好となる。このため、より高
い磁気特性およびその熱安定性が得られる。このような
結晶粒径を有する粒界相用母合金は、単ロール法や双ロ
ール法など、合金溶湯を一方向または対向する二方向か
ら冷却することにより製造することができる。
[0014] In the present invention, when the crystal grain size of the grain boundary phase for mother alloy was within the above range, since the finer the powder is obtained, R 6 T '13 M phase dimension is more uniform in the magnet , Its dispersion is even better. Therefore, higher magnetic properties and its thermal stability can be obtained. The grain boundary phase master alloy having such a crystal grain size can be produced by cooling the molten alloy from one direction or two opposing directions by a single roll method, a twin roll method, or the like.

【0015】2合金法では、一般に主相用母合金として
214Bに近い組成の合金を用いるが、これを溶解鋳
造法で製造した場合、軟磁性のα−Fe相が析出して高
磁気特性が得られない。このため、溶体化処理が必要で
ある。溶体化処理は、一般に900℃程度以上で1時間
以上行なう必要があり、例えば、特開平5−21219
号公報では、高周波溶解法で製造したR214B合金に
1070℃で20時間の溶体化処理を施している。この
ように高温・長時間の溶体化処理が必要なため、溶解鋳
造法を用いた場合には低コストで製造することができな
い。また、特開平5−105915号公報のように、2
合金法に用いるR2 Fe14B合金を直接還元拡散法で製
造した場合、合金中のCaの含有率が高くなるため、高
特性の磁石が得られない。
In the two-alloy method, an alloy having a composition close to that of R 2 T 14 B is generally used as a master alloy for the main phase. However, when this alloy is manufactured by a melt casting method, a soft magnetic α-Fe phase is precipitated. High magnetic properties cannot be obtained. For this reason, solution treatment is required. Solution treatment generally needs to be performed at about 900 ° C. or higher for 1 hour or longer. For example, JP-A-5-21219
In the publication, the R 2 T 14 B alloy produced by the high frequency melting method is subjected to solution treatment at 1070 ° C. for 20 hours. Since the solution treatment at high temperature and for a long time is required as described above, it is not possible to manufacture at a low cost when the melt casting method is used. In addition, as disclosed in Japanese Patent Laid-Open No. 5-105915, 2
When the R 2 Fe 14 B alloy used in the alloying method is manufactured by the direct reduction diffusion method, the content of Ca in the alloy becomes high, so that a high-performance magnet cannot be obtained.

【0016】これに対し、本発明の好ましい態様では、
平均径が3〜50μm の柱状結晶粒を有する主相用母合
金を用いる。この主相用母合金はRリッチ相の分散が良
好であり、α−Fe相を実質的に含まない。このため、
主相用母合金を粉砕した磁石粉末中において、Rリッチ
相を有しない磁石粒子の割合が極めて低く、しかも、各
磁石粒子のRリッチ相の含有量が揃っている。このた
め、焼結性が良好であり、また、焼結後の磁石中におい
てもRリッチ相の分散が良好となるため高保磁力が得ら
れる。また、粉砕が極めて容易となって鋭い粒度分布が
得られるので、焼結後の結晶粒径の揃いが良好となり、
高保磁力が得られる。また、粉砕時間が短くて済むため
酸素混入量が低くなり、高い残留磁束密度が得られる。
特に、水素吸蔵により粉砕を行なった場合、極めて鋭い
粒度分布が得られる。また、α−Fe相を消滅させるた
めの溶体化処理を施す必要がない。
On the other hand, in the preferred embodiment of the present invention,
A main phase master alloy having columnar crystal grains with an average diameter of 3 to 50 μm is used. This master alloy for the main phase has a good dispersion of the R-rich phase and does not substantially contain the α-Fe phase. For this reason,
In the magnet powder obtained by crushing the master alloy for main phase, the proportion of magnet particles having no R-rich phase is extremely low, and the content of the R-rich phase in each magnet particle is uniform. Therefore, the sinterability is good, and the R-rich phase is well dispersed even in the magnet after sintering, so that a high coercive force can be obtained. Further, since pulverization is extremely easy and a sharp particle size distribution is obtained, the uniformity of the crystal grain size after sintering becomes good,
High coercive force can be obtained. Further, since the crushing time is short, the amount of oxygen mixed is low, and a high residual magnetic flux density can be obtained.
In particular, when pulverization is performed by storing hydrogen, a very sharp particle size distribution is obtained. Further, it is not necessary to perform solution treatment for extinguishing the α-Fe phase.

【0017】このような主相用母合金は、上記した粒界
相用母合金と同様に、単ロール法や双ロール法など、合
金溶湯を一方向または対向する二方向から冷却すること
により製造することができる。
Such a master alloy for the main phase is produced by cooling the molten alloy from one direction or two opposite directions, such as the single roll method and the twin roll method, as in the above grain boundary phase master alloy. can do.

【0018】なお、上記した特開平4−338607号
公報では、10μm 以下の微細結晶粒を有する結晶質ま
たはアモルファスのRE2141 合金粉末とRE−T
合金とを単ロール法により製造しているが、合金の冷却
方向の厚さの開示はない。また、RE−T合金の結晶粒
径についての開示もない。また、RE−T合金は本発明
で用いる粒界相用母合金とは組成が異なる。
In the above-mentioned Japanese Patent Laid-Open No. 4-338607, a crystalline or amorphous RE 2 T 14 B 1 alloy powder having fine crystal grains of 10 μm or less and RE-T are used.
Although the alloy and the alloy are manufactured by the single roll method, there is no disclosure of the thickness of the alloy in the cooling direction. Further, there is no disclosure about the crystal grain size of the RE-T alloy. The composition of the RE-T alloy is different from that of the grain boundary phase master alloy used in the present invention.

【0019】[0019]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0020】本発明では、主相用母合金の粉末と粒界相
用母合金の粉末との混合物を成形して焼結し、希土類焼
結磁石を製造する。
In the present invention, a mixture of the main phase master alloy powder and the grain boundary phase master alloy powder is molded and sintered to produce a rare earth sintered magnet.

【0021】<主相用母合金>主相用母合金は、R(R
は、Yを含む希土類元素の少なくとも1種である)、T
(Tは、Fe、または、FeならびにCoおよび/また
はNiである)およびBを主成分とし、実質的に正方晶
のR214Bから構成される柱状結晶粒と、R214
よりもRの含有率が高いRリッチ相を主体とする結晶粒
界とを有する。
<Main Phase Master Alloy> The main phase master alloy is R (R
Is at least one rare earth element including Y), T
(T is Fe or Fe and Co and / or Ni) and B as main components, and columnar crystal grains composed of substantially tetragonal R 2 T 14 B and R 2 T 14 B
And a crystal grain boundary mainly composed of an R-rich phase having a higher R content.

【0022】この場合の希土類元素とは、Y、ランタニ
ドおよびアクチニドであり、Rとしては、Nd、Pr、
Tbのうち少なくとも1種、特にNdが好ましく、さら
にDyを含むことが好ましい。また、La、Ce、G
d、Er、Ho、Eu、Pm、Tm、Yb、Yのうち1
種以上を含んでもよい。
The rare earth elements in this case are Y, lanthanides and actinides, and R is Nd, Pr,
At least one of Tb, particularly Nd, is preferable, and it is preferable that Dy is further contained. Also, La, Ce, G
1 of d, Er, Ho, Eu, Pm, Tm, Yb, Y
It may include more than one species.

【0023】希土類元素の原料としては、ミッシュメタ
ル等の混合物を用いることもできる。
A mixture of misch metal or the like can be used as the raw material of the rare earth element.

【0024】主相用母合金の組成は特に限定されず、目
的とする磁石組成に応じ、粒界相用母合金の組成とその
混合比率とを考慮して適宜決定すればよいが、好ましく
は、 R:27〜38重量%、 B:0.9〜2重量% T:残部 とする。主相用母合金には、R、T、Bの他に、Al、
Cr、Mn、Mg、Si、Cu、C、Nb、W、V、Z
r、Ti、Moなどの元素を添加してもよいが、添加量
が6重量%を超えると残留磁束密度が低下してくる。
The composition of the master alloy for the main phase is not particularly limited and may be appropriately determined in consideration of the composition of the master alloy for the grain boundary phase and the mixing ratio thereof, depending on the intended magnet composition. , R: 27 to 38% by weight, B: 0.9 to 2% by weight, T: the balance. In addition to R, T, B, Al,
Cr, Mn, Mg, Si, Cu, C, Nb, W, V, Z
Elements such as r, Ti and Mo may be added, but if the addition amount exceeds 6% by weight, the residual magnetic flux density will decrease.

【0025】主相用母合金中には、これらの元素の他、
不可避的不純物あるいは微量添加物として、例えば炭素
や酸素が含有されていてもよい。
In the main phase master alloy, in addition to these elements,
Carbon or oxygen, for example, may be contained as the unavoidable impurities or trace additives.

【0026】主相用母合金の柱状結晶粒の平均径は、好
ましくは3〜50μm 、より好ましくは5〜50μm 、
さらに好ましくは5〜30μm 、最も好ましくは5〜1
5μm とする。平均径が小さすぎると、粉砕して得られ
る磁石粒子が多結晶体となって高い配向度が得られず、
平均径が大きすぎると、前述した効果が実現しない。
The average diameter of the columnar crystal grains of the master alloy for the main phase is preferably 3 to 50 μm, more preferably 5 to 50 μm,
More preferably 5 to 30 μm, most preferably 5 to 1
5 μm. If the average diameter is too small, the magnet particles obtained by pulverization become a polycrystalline body and a high degree of orientation cannot be obtained,
If the average diameter is too large, the above-mentioned effects cannot be realized.

【0027】柱状結晶粒の平均径は、以下のようにして
求める。まず、柱状結晶粒の長軸方向とほぼ平行な断面
が露出するように主相用母合金の切断や研磨を行なう。
この断面において、少なくとも100個の柱状結晶粒の
幅を測定して平均値を求め、これを柱状結晶粒の平均径
とする。なお、柱状結晶粒の幅とは、長軸方向に垂直な
方向の長さを意味する。
The average diameter of columnar crystal grains is determined as follows. First, the master alloy for main phase is cut or polished so that the cross section of the columnar crystal grains that is substantially parallel to the major axis direction is exposed.
In this cross section, the width of at least 100 columnar crystal grains is measured to obtain an average value, which is taken as the average diameter of the columnar crystal grains. The width of the columnar crystal grains means the length in the direction perpendicular to the major axis direction.

【0028】柱状結晶粒の軸比(長軸方向長さ/径)は
特に限定されないが、通常、2〜50程度、特に5〜3
0程度であることが好ましい。
The axial ratio (longitudinal length / diameter) of the columnar crystal grains is not particularly limited, but is usually about 2 to 50, and particularly 5 to 3.
It is preferably about 0.

【0029】このような主相用母合金ではRリッチ相の
分散が良好であり、この様子は、例えば、電子顕微鏡写
真(反射電子像)により確認することができる。
In such a master alloy for main phase, the dispersion of the R-rich phase is good, and this state can be confirmed by, for example, an electron micrograph (backscattered electron image).

【0030】Rリッチ相を主体とする結晶粒界の幅は、
R含有量によっても異なるが、通常、0.5〜5μm 程
度である。
The width of the crystal grain boundary mainly composed of the R-rich phase is
Although it varies depending on the R content, it is usually about 0.5 to 5 μm.

【0031】このような組織構造を有する主相用母合金
は、R、TおよびBを主成分とする合金溶湯を、一方向
または対向する二方向から冷却することにより製造する
ことが好ましい。これらの方法により製造された場合、
柱状結晶粒の長軸方向は冷却方向とほぼ一致する。
The main phase master alloy having such a structural structure is preferably manufactured by cooling the molten alloy containing R, T and B as the main components from one direction or two opposite directions. When manufactured by these methods,
The major axis direction of the columnar crystal grains substantially coincides with the cooling direction.

【0032】なお、本明細書において冷却方向とは、冷
却ロール周面などの冷却基体表面に垂直な方向、すなわ
ち熱移動方向を意味する。
In the present specification, the cooling direction means a direction perpendicular to the surface of the cooling substrate such as the peripheral surface of the cooling roll, that is, the heat transfer direction.

【0033】一方向から冷却する方法としては、単ロー
ル法や回転ディスク法が好ましい。
As a method of cooling from one direction, a single roll method and a rotating disk method are preferable.

【0034】単ロール法は、ノズルから射出した合金溶
湯を冷却ロールの周面と接触させて冷却する方法であ
り、装置の構造が簡単で耐久性が高く、また、冷却速度
の制御が容易である。単ロール法により製造された主相
用母合金は、通常、薄帯状である。単ロール法における
各種条件に特に制限はなく、上記した組織構造を有する
主相用母合金が得られるように適宜設定すればよいが、
通常は以下に示すような条件とする。冷却ロールは、C
u、Cu−Be等のCu合金など、通常の溶湯冷却法に
用いる各種材質から構成すればよい。また、前記材質か
ら構成されるロール状基材の周面に、基材と異なる金属
からなる表面層を有する冷却ロールを用いてもよい。前
記表面層は、通常、熱伝導率の調整や耐摩耗性向上のた
めに設けられる。例えば、基材をCuやCu合金から構
成し、表面層をCrから構成した場合、主相用母合金の
冷却方向において冷却速度の差が小さくなり、均質な主
相用母合金が得られる。また、Crは耐摩耗性が良好で
あるため、多量の主相用母合金を連続的に製造する場合
に、特性の揃った主相用母合金が得られる。
The single roll method is a method in which the molten alloy injected from a nozzle is brought into contact with the peripheral surface of a cooling roll to cool it. The structure of the device is simple and the durability is high, and the cooling rate is easy to control. is there. The master alloy for main phase produced by the single roll method is usually in the form of a ribbon. There is no particular limitation on various conditions in the single roll method, it may be appropriately set so as to obtain a main phase master alloy having the above-described structural structure,
Usually, the conditions are as shown below. Cooling roll is C
It may be made of various materials such as u and Cu alloys such as Cu-Be which are used in a normal melt cooling method. A cooling roll having a surface layer made of a metal different from that of the base material may be used on the peripheral surface of the roll-shaped base material made of the above material. The surface layer is usually provided for adjusting thermal conductivity and improving wear resistance. For example, when the base material is made of Cu or a Cu alloy and the surface layer is made of Cr, the difference in cooling rate in the cooling direction of the main phase master alloy is small, and a homogeneous main phase master alloy is obtained. Further, since Cr has good wear resistance, a master alloy for main phase having uniform characteristics can be obtained when continuously manufacturing a large amount of master alloy for main phase.

【0035】回転ディスク法は、ノズルから射出した合
金溶湯を回転するディスク状の冷却基体の主面に接触さ
せて冷却する方法である。回転ディスク法により製造さ
れた主相用母合金は、通常、鱗片状である。回転ディス
ク法では、鱗片状主相用母合金の周縁部の冷却速度が高
くなりやすいため、単ロール法に比べ均一な冷却速度が
得にくい。
The rotary disk method is a method in which the molten alloy injected from a nozzle is brought into contact with the main surface of a rotating disk-shaped cooling substrate to cool it. The main phase master alloy produced by the rotating disk method is usually in the form of scales. In the rotating disk method, the cooling rate of the peripheral portion of the scale-like main phase master alloy is likely to be high, so that it is difficult to obtain a uniform cooling rate as compared with the single roll method.

【0036】対向する二方向から合金溶湯を冷却する方
法としては、双ロール法が好ましい。双ロール法では、
前述した単ロール法と同様な冷却ロールを2個用い、両
ロールの周面を対向させて配置し、これらの周面間に合
金溶湯を射出する。双ロール法により製造された主相用
母合金は、通常、薄帯状ないし薄片状である。双ロール
法における各種条件は特に限定されず、上記した組織構
造が得られるように適宜設定すればよい。
A twin roll method is preferable as a method for cooling the molten alloy from two opposite directions. In the twin roll method,
Two cooling rolls similar to the single roll method described above are used, the peripheral surfaces of both rolls are arranged so as to face each other, and the molten alloy is injected between these peripheral surfaces. The main phase master alloy produced by the twin roll method is usually in the form of a ribbon or flakes. Various conditions in the twin roll method are not particularly limited, and may be appropriately set so as to obtain the above-described tissue structure.

【0037】これらの各種冷却法のうちでは、単ロール
法が最も好ましい。
Of these various cooling methods, the single roll method is most preferable.

【0038】なお、合金溶湯の冷却は、窒素やAr等の
非酸化性雰囲気中あるいは真空中で行なうことが好まし
い。
The molten alloy is preferably cooled in a non-oxidizing atmosphere such as nitrogen or Ar or in vacuum.

【0039】一方向または対向する二方向から合金溶湯
を冷却して主相用母合金を製造する場合、主相用母合金
の冷却方向の厚さは、好ましくは0.1〜2mm、より好
ましくは0.2〜1.0mm、さらに好ましくは0.2〜
0.5mmとする。冷却方向の厚さが小さすぎると、柱状
結晶粒の平均径を3μm 以上とすることが難しくなる。
一方、冷却方向の厚さが大きすぎると、特に一方向から
冷却する方法を用いた場合、冷却方向で組織構造の不均
一が大きくなる。具体的には、冷却面側で結晶粒径が小
さくなりすぎるので、粉砕したときに多結晶粒子となり
やすく、このため、焼結密度の低下や配向性の悪化を招
き、良好な磁気特性が得られなくなる。また、冷却方向
の厚さが大きすぎると、柱状結晶粒の平均径を50μm
以下とすることが難しくなる。
When the molten alloy is cooled in one direction or in two opposite directions to produce the master alloy for the main phase, the thickness of the master alloy for the main phase in the cooling direction is preferably 0.1 to 2 mm, more preferably Is 0.2 to 1.0 mm, more preferably 0.2 to
0.5mm. If the thickness in the cooling direction is too small, it becomes difficult to set the average diameter of the columnar crystal grains to 3 μm or more.
On the other hand, if the thickness in the cooling direction is too large, especially when the method of cooling from one direction is used, the unevenness of the tissue structure in the cooling direction becomes large. Specifically, since the crystal grain size becomes too small on the cooling surface side, it tends to become polycrystalline grains when pulverized, which leads to a decrease in sintered density and deterioration of orientation, and good magnetic properties are obtained. I will not be able to. If the thickness in the cooling direction is too large, the average diameter of the columnar crystal grains will be 50 μm.
It becomes difficult to do the following.

【0040】このような冷却方法を用いた場合、比較的
R含有量が少ない組成、例えば、Rの含有量が26〜3
2重量%程度であっても、α−Fe相を実質的に含有し
ない主相用母合金を製造することができる。具体的に
は、α−Fe相の含有率を5体積%以下、特に2体積%
以下とすることができる。従って、異相の比率を減少さ
せるための溶体化処理が不要となる。
When such a cooling method is used, a composition having a relatively small R content, for example, an R content of 26 to 3 is used.
Even if the amount is about 2% by weight, it is possible to manufacture a main phase master alloy that does not substantially contain the α-Fe phase. Specifically, the content of the α-Fe phase is 5% by volume or less, particularly 2% by volume.
It can be: Therefore, the solution treatment for reducing the ratio of different phases is unnecessary.

【0041】<粒界相用母合金>粒界相用母合金は、
R、T’(T’は、Fe、CoおよびNiの少なくとも
1種である)およびM(Mは、Sn、InおよびGaの
少なくとも1種である)を含有する。これらの含有量
は、R:40〜65重量%、T’:30〜60重量%、
M:1〜12重量%であり、好ましくは、R:50〜6
0重量%、T’:40〜50重量%、M:4〜10重量
%である。
<Master Alloy for Grain Boundary Phase> The master alloy for grain boundary phase is
It contains R, T ′ (T ′ is at least one of Fe, Co and Ni) and M (M is at least one of Sn, In and Ga). These contents are R: 40 to 65% by weight, T ': 30 to 60% by weight,
M: 1 to 12% by weight, preferably R: 50 to 6
0% by weight, T ': 40 to 50% by weight, M: 4 to 10% by weight.

【0042】Rが多すぎると酸化されやすくなるので、
出発原料として不適当となる。T’が多すぎるとα−F
e等の軟磁性の異相が析出して磁気特性が劣化してしま
う。そして、RまたはT’が少なすぎても多すぎても、
焼結時に後述するR6 T’13M相が生成する際に、主相
組成が影響を受けて磁気特性が劣化してしまう。なお、
粒界相用母合金におけるRの構成(R中の各希土類元素
の比率)は特に限定されないが、最終組成の調整が容易
になることから、主相用母合金のRの構成とほぼ同様と
することが好ましい。
If the amount of R is too large, it is likely to be oxidized.
Unsuitable as a starting material. If T'is too much, α-F
The magnetic phase deteriorates due to the precipitation of soft magnetic heterogeneous phase such as e. And if R or T'is too small or too large,
When the R 6 T ′ 13 M phase, which will be described later, is generated during sintering, the main phase composition is affected and the magnetic properties deteriorate. In addition,
The composition of R in the grain boundary phase master alloy (the ratio of each rare earth element in R) is not particularly limited, but since the final composition is easily adjusted, it is almost the same as the composition of R of the main phase master alloy. Preferably.

【0043】CoおよびNiは、磁石の耐食性を向上さ
せるが、磁石の主相中に存在すると保磁力を低下させる
ため、焼結磁石中ではCoやNiが主として粒界相中に
存在することが好ましい。このため、粒界相用母合金に
Coおよび/またはNiを含有させることが好ましい。
Co and Ni improve the corrosion resistance of the magnet, but when they are present in the main phase of the magnet, they lower the coercive force. Therefore, Co and Ni are mainly present in the grain boundary phase in the sintered magnet. preferable. Therefore, it is preferable that the master alloy for the grain boundary phase contains Co and / or Ni.

【0044】Mとしては、特にSnが好ましく、M中の
30〜100重量%がSnであることが好ましい。
As M, Sn is particularly preferable, and 30 to 100% by weight of M is preferably Sn.

【0045】粒界相用母合金には、Al、Si、Cu、
Nb、W、V、Moなどの元素の1種以上を添加しても
よいが、残留磁束密度の低下を抑えるために、合計添加
量は5重量%以下とすることが好ましい。
For the grain boundary phase master alloy, Al, Si, Cu,
One or more elements such as Nb, W, V and Mo may be added, but the total addition amount is preferably 5% by weight or less in order to suppress a decrease in the residual magnetic flux density.

【0046】粒界相用母合金中には、これらの元素の
他、不可避的不純物あるいは微量添加物として、例えば
炭素や酸素が含有されていてもよい。
In addition to these elements, the mother alloy for the grain boundary phase may contain carbon or oxygen as unavoidable impurities or trace additives.

【0047】粒界相用母合金は、R6 T’13M相を含
み、さらに、RT’2 、RT’3 、RT’7 、R5 T’
13の少なくとも1種、他のR−T’相やR−T’−M相
を含み得る混合相からなり、これは製造方法に依存しな
い。R6 T’13M相は体心立方晶である。各相の存在
は、例えば、J.Magnetism and Magnetic Materials 101
(1991)417-418 に示されるように、電子線回折などによ
り確認することができる。
The master alloy for grain boundary phase, 'comprises 13 M phase, further, RT' R 6 T 2, RT '3, RT' 7, R 5 T '
It consists of a mixed phase which may contain at least one of the 13 and other RT ′ and RT′-M phases, which is independent of the manufacturing method. The R 6 T ′ 13 M phase is body-centered cubic. The existence of each phase is described in, for example, J. Magnetism and Magnetic Materials 101
(1991) 417-418, it can be confirmed by electron diffraction or the like.

【0048】アークメルト法や、高周波溶解法、あるい
は単ロール法等の急冷法により製造された結晶質の粒界
相用母合金には、通常、上記各相が存在し、冷却速度が
大きい場合にはアモルファス状となる。本発明では、通
常、このような合金をそのまま粉砕して用いるが、この
ような粒界相用母合金にアニールを施して、R6 T’13
M相の比率を増大させたり、あるいはR6 T’13M相を
生成したりしてもよい。この場合のアニールは、600
〜900℃程度で1〜20時間程度行なえばよい。アニ
ールの際の温度が高すぎるとNdが溶解してしまい、低
すぎると相構造の変化が殆ど認められない。
In the crystalline grain boundary phase master alloy produced by the quenching method such as the arc melting method, the high frequency melting method, or the single roll method, when the above-mentioned phases are usually present and the cooling rate is high. It becomes amorphous. In the present invention, such an alloy is usually crushed and used as it is. However, such a grain boundary phase master alloy is annealed to obtain R 6 T ′ 13
The ratio of the M phase may be increased, or the R 6 T ′ 13 M phase may be generated. The annealing in this case is 600
It may be carried out at about 900 ° C. for about 1 to 20 hours. If the temperature during annealing is too high, Nd will dissolve, and if it is too low, almost no change in the phase structure will be observed.

【0049】粒界相用母合金の平均結晶粒径の上限は、
好ましくは20μm 、より好ましくは10μm である。
平均結晶粒径が大きすぎると、上記した各相の分布が不
均一となる。このため、粉砕したときに粒子ごとの組成
が大きく異なってしまう。このような粒子からなる粒界
相用母合金の粉末を主相用母合金の粉末と混合すると、
組成分布が均一にならず、特性向上のために重要なR6
T’13M相の析出が難しくなる他、R6 T’13M相析出
のために主相組成が影響を受ける領域が生じ、熱安定性
や磁気特性(保磁力、角形性)が不十分となる。平均結
晶粒径の下限は特になく、アモルファス状態の粒界相用
母合金を用いてもよい。ただし、平均結晶粒径が小さい
と粉砕が容易となるため、粉砕条件によっては微粉砕時
に超微粉が多く発生することがある。超微粉は回収が難
しいため、超微粉が発生すると、両母合金の粗粉の混合
物を微粉砕する際に粒界相用母合金の回収率が選択的に
低下し、また、回収率がばらつくことがある。このた
め、組成ずれ(RやMの含有率低下)およびそのばらつ
きが生じて、熱安定性、保磁力、焼結密度等の低下およ
びそのばらつきを招くことがある。したがって、粉砕条
件に応じて、平均結晶粒径を0.1μm 以上、特に0.
5μm 以上としてもよい。
The upper limit of the average crystal grain size of the grain boundary phase master alloy is
It is preferably 20 μm, more preferably 10 μm.
If the average crystal grain size is too large, the distribution of each phase described above becomes non-uniform. Therefore, the composition of each particle is greatly different when crushed. When the powder of the grain boundary phase master alloy consisting of such particles is mixed with the powder of the main phase master alloy,
R 6 which is important for improving the characteristics because the composition distribution is not uniform
'Our 13 M phase precipitation becomes difficult, R 6 T' T occurs region primary phase composition is affected for 13 M-phase deposition, thermal stability and magnetic properties (coercivity, squareness) Insufficient Becomes There is no particular lower limit to the average crystal grain size, and a grain boundary phase master alloy in an amorphous state may be used. However, if the average crystal grain size is small, pulverization becomes easy, and therefore, depending on the pulverization conditions, a large amount of ultrafine powder may be generated during pulverization. Since it is difficult to collect ultrafine powder, if ultrafine powder is generated, the recovery rate of the grain boundary phase master alloy is selectively reduced when the mixture of coarse powders of both mother alloys is pulverized, and the recovery rate also fluctuates. Sometimes. For this reason, compositional deviation (reduction of the content ratio of R and M) and its variation may occur, resulting in reduction of thermal stability, coercive force, sintering density and the like and variation thereof. Therefore, depending on the pulverization conditions, the average crystal grain size is 0.1 μm or more, and particularly, 0.1.
It may be 5 μm or more.

【0050】粒界相用母合金の製造方法は特に限定され
ず、通常の鋳造法などにより製造すればよいが、好まし
くは、前述した主相用母合金の製造と同様に、合金溶湯
を一方向または対向する二方向から冷却する方法により
製造する。これらの冷却方法における各種条件は、前述
した主相用母合金の場合と同様とすることが好ましい。
また、粒界相用母合金の冷却方向の厚さも、前述した主
相用母合金と同範囲であることが好ましい。
The method for producing the grain boundary phase master alloy is not particularly limited, and may be produced by an ordinary casting method or the like, but it is preferable to use one of the molten alloys as in the case of the main phase mother alloy described above. It is manufactured by a method of cooling from one direction or two opposite directions. Various conditions in these cooling methods are preferably the same as those in the case of the main phase master alloy described above.
The thickness of the grain boundary phase master alloy in the cooling direction is preferably in the same range as the main phase master alloy described above.

【0051】<粉砕工程および混合工程>主相用母合金
の粉末と粒界相用母合金の粉末との混合物の製造方法
は、特に限定されない。例えば、両母合金を同時に粗粉
砕し、さらに微粉砕することにより混合物を製造しても
よく、各母合金を粗粉砕した後、両母合金の粗粉同士を
混合し、次いで微粉砕して混合物を製造してもよく、各
母合金を粗粉砕した後、微粉砕し、両母合金の微粉同士
を混合してもよい。ただし、両母合金を別個に微粉砕し
た後、混合する方法は、工程が複雑になり低コスト化が
難しい。
<Pulverizing Step and Mixing Step> The method for producing the mixture of the main phase master alloy powder and the grain boundary phase master alloy powder is not particularly limited. For example, a mixture may be produced by coarsely pulverizing both mother alloys at the same time and further finely pulverizing them. After coarsely pulverizing each mother alloy, coarse powders of both mother alloys are mixed and then finely pulverized. A mixture may be produced, and each master alloy may be roughly pulverized and then finely pulverized to mix fine powders of both mother alloys. However, the method in which both mother alloys are separately finely pulverized and then mixed is complicated in process and difficult to reduce the cost.

【0052】単ロール法などで製造した平均結晶粒径の
小さい粒界相用母合金を用いる場合には、両母合金を混
合して同時に粗粉砕し、さらに微粉砕する方法が好まし
い。この方法では、均質な混合物が容易に得られる。こ
れに対し、溶解法により製造した粒界相用母合金を用い
る場合には、各母合金を粗粉砕した後、各母合金の粗粉
同士を混合し、次いで微粉砕する方法、または、各母合
金を粗粉砕した後、微粉砕し、各母合金の微粉同士を混
合する方法を用いることが好ましい。溶解法により製造
した粒界相用母合金は結晶粒径が大きいため、主相用母
合金と同時に粗粉砕を行なうことが困難である。
When a master alloy for grain boundary phases having a small average crystal grain size produced by a single roll method or the like is used, it is preferable to mix both master alloys, simultaneously pulverize them, and further pulverize them. In this way, a homogeneous mixture is easily obtained. On the other hand, in the case of using the grain boundary phase master alloy produced by the melting method, after coarsely pulverizing each mother alloy, the coarse powders of each mother alloy are mixed, and then finely pulverized, or each It is preferable to use a method in which the mother alloys are roughly pulverized and then finely pulverized, and the fine powders of the respective mother alloys are mixed. Since the grain boundary phase master alloy produced by the melting method has a large crystal grain size, it is difficult to perform coarse pulverization at the same time as the main phase master alloy.

【0053】混合物中における粒界相用母合金の比率
は、好ましくは0.2〜10重量%、より好ましくは
0.5〜10重量%とする。この比率が低すぎると粒界
相用母合金を添加することによる効果が不十分となり、
この比率が高すぎると磁気特性、特に残留磁束密度が不
十分となる。
The ratio of the grain boundary phase master alloy in the mixture is preferably 0.2 to 10% by weight, more preferably 0.5 to 10% by weight. If this ratio is too low, the effect of adding the grain boundary phase master alloy becomes insufficient,
If this ratio is too high, the magnetic properties, especially the residual magnetic flux density will be insufficient.

【0054】各母合金の粉砕方法は特に限定されず、機
械的粉砕法や水素吸蔵粉砕法などを適宜選択すればよ
く、これらを組み合わせて粉砕を行なってもよい。ただ
し、粒度分布の鋭い磁石粉末が得られることから、水素
吸蔵粉砕を行なうことが好ましい。
The method of crushing each mother alloy is not particularly limited, and a mechanical crushing method, a hydrogen absorbing crushing method or the like may be appropriately selected, and crushing may be performed by combining these methods. However, it is preferable to carry out hydrogen storage pulverization because a magnet powder having a sharp particle size distribution can be obtained.

【0055】水素は、薄帯状等の母合金に直接吸蔵させ
てもよく、スタンプミル等の機械的粉砕手段により母合
金を粗粉砕した後に吸蔵させてもよい。粗粉砕は、通
常、平均粒子径15〜500μm 程度となるまで行な
う。
Hydrogen may be absorbed directly in the ribbon-shaped mother alloy, or may be absorbed after the mother alloy is roughly ground by a mechanical grinding means such as a stamp mill. Coarse pulverization is usually carried out until the average particle size becomes about 15 to 500 μm.

【0056】水素吸蔵粉砕の際の各種条件は特に限定さ
れず、通常の水素吸蔵粉砕法、例えば、水素吸蔵処理お
よび水素放出処理を少なくとも各1回行ない、さらに、
水素放出後、必要に応じて機械的粉砕を行なう方法を用
いることができる。
Various conditions for hydrogen storage and pulverization are not particularly limited, and a usual hydrogen storage and pulverization method, for example, hydrogen storage treatment and hydrogen release treatment are performed at least once each, and further,
After releasing hydrogen, a method of performing mechanical pulverization can be used if necessary.

【0057】ただし、母合金の温度を300〜600℃
の範囲、好ましくは350〜450℃の範囲に昇温して
から水素吸蔵処理を施し、水素放出処理を施すことなく
機械的粉砕を行なってもよい。この方法では、水素放出
処理を施す必要がないため、製造時間が短縮できる。ま
た、主相用母合金においてこのような水素吸蔵処理を施
せば、粒度分布の鋭い粉末が得られる。
However, the temperature of the mother alloy is 300 to 600 ° C.
The temperature may be raised to the range of, preferably 350 to 450 ° C., hydrogen storage treatment may be performed, and mechanical pulverization may be performed without hydrogen release treatment. According to this method, it is not necessary to perform the hydrogen releasing treatment, so that the manufacturing time can be shortened. Further, if such a hydrogen storage treatment is applied to the main phase master alloy, a powder having a sharp particle size distribution can be obtained.

【0058】主相用母合金に水素吸蔵処理を施すと、水
素は結晶粒界を構成するRリッチ相に選択的に吸蔵され
てRリッチ相の体積が増大するため、主相に圧力が加わ
り、Rリッチ相と接する領域が起点となって主相にクラ
ックが生じる。前記クラックは、柱状結晶粒の長軸方向
にほぼ垂直な面内に層状に発生する傾向を示す。一方、
主相には殆ど水素が吸蔵されていないため、主相内部に
不規則なクラックは発生しにくい。このため、続く機械
的粉砕の際に微粉および粗粉の発生が防止され、径の揃
った磁石粒子が得られる。
When the main phase master alloy is subjected to hydrogen storage treatment, hydrogen is selectively stored in the R-rich phase constituting the crystal grain boundaries and the volume of the R-rich phase increases, so that pressure is applied to the main phase. , The region in contact with the R-rich phase becomes a starting point and cracks occur in the main phase. The cracks tend to occur in layers in a plane substantially perpendicular to the long axis direction of the columnar crystal grains. on the other hand,
Since hydrogen is hardly occluded in the main phase, irregular cracks are less likely to occur inside the main phase. Therefore, generation of fine powder and coarse powder is prevented during the subsequent mechanical pulverization, and magnet particles having uniform diameters are obtained.

【0059】また、上記温度範囲で吸蔵された水素は、
主相用母合金のRリッチ相においてRの二水素化物を形
成するが、Rの二水素化物は極めて破断し易いため、粗
粉の発生が防止される。
The hydrogen stored in the above temperature range is
R dihydride is formed in the R-rich phase of the main phase master alloy, but since the R dihydride is extremely easy to break, generation of coarse powder is prevented.

【0060】水素吸蔵時の主相用母合金の温度が前記範
囲未満であると、水素が主相中にも多量に吸蔵されてし
まう他、Rリッチ相のRが三水素化物となってH2 Oと
反応するため、磁石中の酸素量が増加する傾向にある。
また、主相用母合金の温度が前記範囲を超えると、R二
水素化物が生成しなくなってしまう。
If the temperature of the main phase master alloy during hydrogen storage is less than the above range, a large amount of hydrogen will be stored in the main phase, and R in the R-rich phase will become a trihydride and become H. Since it reacts with 2 O, the amount of oxygen in the magnet tends to increase.
If the temperature of the main phase master alloy exceeds the above range, R dihydride will not be produced.

【0061】従来の水素吸蔵粉砕では微粉が多量に発生
しており、微粉を除去した後に焼結していたため、粉砕
前の組成と粉砕後の組成との間のR含有率のずれが問題
となっていたが、この方法では微粉の発生が防がれるた
め、Rの組成ずれは殆どなくなる。また、水素は主相用
母合金の結晶粒界に選択的に吸蔵され、主相には殆ど吸
蔵されないため、水素使用量が約1/6にまで著減す
る。
In the conventional hydrogen storage pulverization, a large amount of fine powder was generated, and since the fine powder was removed and then sintered, there was a problem in the deviation of the R content between the composition before pulverization and the composition after pulverization. However, since the generation of fine powder is prevented by this method, the composition deviation of R is almost eliminated. Further, hydrogen is selectively occluded in the crystal grain boundaries of the master alloy for the main phase and hardly occluded in the main phase, so that the amount of hydrogen used is remarkably reduced to about 1/6.

【0062】水素は、焼結の際に放出される。Hydrogen is released during sintering.

【0063】なお、粒界相用母合金の水素吸蔵処理の際
にも、水素吸蔵により体積が増加してクラックが生じ、
粉砕される。
Even during hydrogen storage treatment of the grain boundary phase master alloy, the volume increases due to hydrogen storage and cracks occur,
Be crushed.

【0064】水素吸蔵工程は水素雰囲気中で行なうこと
が好ましいが、He、Ar等の不活性ガスおよびその他
の非酸化性ガスを含んだ混合雰囲気でもよい。水素分圧
は、通常、0.05〜20気圧程度であるが、一般に1
気圧以下とすることが好ましい。また、吸蔵時間は0.
5〜5時間程度とすることが好ましい。
The hydrogen storage step is preferably carried out in a hydrogen atmosphere, but may be a mixed atmosphere containing an inert gas such as He and Ar and other non-oxidizing gas. The hydrogen partial pressure is usually about 0.05 to 20 atm, but generally 1
It is preferable that the pressure is not more than atmospheric pressure. Also, the occlusion time is 0.
It is preferably about 5 to 5 hours.

【0065】水素吸蔵後の機械的粉砕には、ジェットミ
ル等の気流式粉砕機を用いることが好ましい。気流式粉
砕機を用いることにより、粒子径の揃った磁石粉末が得
られる。
For mechanical pulverization after hydrogen storage, it is preferable to use an air flow type pulverizer such as a jet mill. By using the air flow type pulverizer, magnet powder having a uniform particle size can be obtained.

【0066】ジェットミルは一般的に、流動層を利用す
るジェットミル、渦流を利用するジェットミル、衝突板
を用いるジェットミルなどに分類される。流動層を利用
するジェットミルの概略構成図を図1に、渦流を利用す
るジェットミルの主要部の概略構成端面図を図2に、衝
突板を用いるジェットミルの主要部の概略構成断面図を
図3に示す。
The jet mill is generally classified into a jet mill using a fluidized bed, a jet mill using a vortex, a jet mill using a collision plate, and the like. FIG. 1 is a schematic configuration diagram of a jet mill that uses a fluidized bed, FIG. 2 is a schematic configuration end view of a main portion of a jet mill that uses a vortex flow, and FIG. 2 is a schematic configuration cross-sectional view of a main portion of a jet mill that uses a collision plate. As shown in FIG.

【0067】図1に示される構成を有するジェットミル
では、筒状の容器21の周側面に複数個設けられたガス
導入管22および容器の底面に設けられたガス導入管2
3から、容器21内に気流が導入される構成となってい
る。一方、原料(水素吸蔵後の母合金)は、原料投入管
24から容器21内に投入される。投入された原料は、
容器21内に導入された気流により流動層25を形成
し、この流動層25内で衝突を繰り返し、また、容器2
1の壁面とも衝突して、微粉砕される。粉砕により得ら
れた微粉は、容器21上部に設けられた分級機26によ
り分級され、容器21外へ排出される。一方、十分に微
粉化されていない粉は、再び流動層25に戻り、粉砕が
続けられる。
In the jet mill having the structure shown in FIG. 1, a plurality of gas introducing pipes 22 are provided on the peripheral side surface of the cylindrical container 21 and the gas introducing pipes 2 are provided on the bottom surface of the container.
From 3, the air flow is introduced into the container 21. On the other hand, the raw material (the mother alloy after hydrogen storage) is charged into the container 21 through the raw material charging pipe 24. The input raw materials are
The fluidized bed 25 is formed by the air flow introduced into the container 21, and collisions are repeated in the fluidized bed 25.
It also collides with the wall surface of No. 1 and is pulverized. The fine powder obtained by the pulverization is classified by the classifier 26 provided on the upper part of the container 21, and is discharged to the outside of the container 21. On the other hand, the powder that has not been sufficiently pulverized returns to the fluidized bed 25 again and continues to be pulverized.

【0068】図2の(a)は平面端面図、(b)は側面
端面図である。図2に示される構成を有するジェットミ
ルでは、容器31の壁面に原料導入管32と、複数のガ
ス導入管33とが配設されている。原料導入管32から
は、キャリアガスと共に原料が容器31内に導入され、
ガス導入管33からは容器31内にガスが噴射される。
原料導入管32およびガス導入管33はそれぞれ容器3
1の内壁面に対して傾斜して配設されており、噴射され
たガスは、容器31内において水平面内における渦流を
形成すると共に垂直方向の運動成分により流動層を形成
する構成となっている。原料は、容器31内の渦流およ
び流動層中において衝突を繰り返し、また、容器31の
壁面とも衝突して、微粉砕される。粉砕により得られた
微粉は容器31上部から排出される。また、粉砕が不十
分な粉末は容器31内で分級され、ガス導入管33側面
の孔から吸入されて、さらにガスと共に再び容器31内
に噴射され、粉砕が繰り返される。
FIG. 2A is a plan end view and FIG. 2B is a side end view. In the jet mill having the configuration shown in FIG. 2, a raw material introducing pipe 32 and a plurality of gas introducing pipes 33 are arranged on the wall surface of the container 31. From the raw material introduction pipe 32, the raw material is introduced into the container 31 together with the carrier gas,
Gas is injected into the container 31 from the gas introduction pipe 33.
The raw material introducing pipe 32 and the gas introducing pipe 33 are respectively the containers 3
It is arranged so as to be inclined with respect to the inner wall surface of No. 1 and the injected gas forms a vortex in a horizontal plane in the container 31 and forms a fluidized bed by a vertical motion component. . The raw material repeatedly collides in the swirl flow and the fluidized bed in the container 31, and collides with the wall surface of the container 31 to be finely pulverized. The fine powder obtained by the pulverization is discharged from the upper part of the container 31. Further, the powder which has not been sufficiently pulverized is classified in the container 31, sucked through the hole on the side surface of the gas introduction pipe 33, further injected into the container 31 together with the gas, and the pulverization is repeated.

【0069】図3に示される構成を有するジェットミル
では、原料投入口41から投入された原料が、ノズル4
2から導入された気流により加速されて衝突板43に衝
突し、粉砕される。粉砕された原料は分級されて、微粉
はジェットミルの外に排出され、微粉化が不足している
ものは再び原料投入口41に戻り、上記と同様にして粉
砕が繰り返される。
In the jet mill having the structure shown in FIG. 3, the raw material charged from the raw material charging port 41 is supplied to the nozzle 4
It is accelerated by the air flow introduced from 2 and collides with the collision plate 43 to be crushed. The crushed raw material is classified, the fine powder is discharged to the outside of the jet mill, and the fine powder that has been insufficiently pulverized is returned to the raw material input port 41 again, and the pulverization is repeated in the same manner as above.

【0070】なお、気流式粉砕機中の気流は、N2 ガス
やArガス等の非酸化性ガスにより構成することが好ま
しい。
The air flow in the air flow type crusher is preferably composed of a non-oxidizing gas such as N 2 gas or Ar gas.

【0071】粉砕により得られる粉末の平均径は、1〜
10μm 程度であることが好ましい。
The average diameter of the powder obtained by pulverization is from 1 to
It is preferably about 10 μm.

【0072】粉砕の際の条件は、母合金の寸法、組成等
や、用いる気流式粉砕機の構成などにより異なるので適
宜設定すればよい。
The conditions for the pulverization differ depending on the dimensions and composition of the mother alloy, the configuration of the air flow type pulverizer used, etc., and therefore may be appropriately set.

【0073】なお、水素吸蔵により、クラック発生だけ
でなく母合金の少なくとも一部が崩れることがある。水
素吸蔵後の母合金の寸法が大きすぎる場合には、気流式
粉砕機による粉砕の前に、他の機械的手段により予備粉
砕を行なってもよい。
Incidentally, due to hydrogen absorption, not only cracks may occur but also at least part of the mother alloy may collapse. When the size of the mother alloy after hydrogen storage is too large, preliminary pulverization may be performed by other mechanical means before pulverization by the gas stream pulverizer.

【0074】<成形工程>主相用母合金の粉末と粒界相
用母合金の粉末との混合物は、通常、磁場中で成形す
る。この場合、磁場強度は15kOe 以上、成形圧力は
0.5〜3t/cm2 程度とすることが好ましい。
<Molding Step> The mixture of the main phase master alloy powder and the grain boundary phase master alloy powder is usually molded in a magnetic field. In this case, the magnetic field strength is preferably 15 kOe or more, and the molding pressure is preferably about 0.5 to 3 t / cm 2 .

【0075】<焼結工程>成形体の焼結条件は、通常、
1000〜1200℃で0.5〜5時間程度とし、焼結
後、急冷することが好ましい。なお、焼結雰囲気は、A
rガス等の不活性ガス雰囲気あるいは真空中であること
が好ましい。そして、焼結後、非酸化性雰囲気中あるい
は真空中で時効処理を施すことが好ましい。この時効処
理としては、2段時効処理が好ましい。1段目の時効処
理工程では、700〜900℃の範囲内に1〜3時間保
持する。次いで、室温〜200℃の範囲内にまで急冷す
る第1急冷工程を設ける。2段目の時効処理工程では、
500〜700℃の範囲内に1〜3時間保持する。次い
で、室温まで急冷する第2急冷工程を設ける。第1急冷
工程および第2急冷工程における冷却速度は、それぞれ
10℃/min以上、特に10〜30℃/minとすることが好
ましい。また、各時効処理工程における保持温度にまで
昇温する速度は特に限定されないが、通常、2〜10℃
/min程度とすればよい。
<Sintering Step> The sintering conditions of the molded body are usually
It is preferable that the temperature is set to 1000 to 1200 ° C. for 0.5 to 5 hours, and after the sintering, it is rapidly cooled. The sintering atmosphere is A
The atmosphere is preferably an inert gas such as r gas, or vacuum. Then, after sintering, it is preferable to perform an aging treatment in a non-oxidizing atmosphere or in a vacuum. As this aging treatment, a two-step aging treatment is preferable. In the first-step aging treatment step, the temperature is maintained in the range of 700 to 900 ° C. for 1 to 3 hours. Next, a first quenching step of quenching to within the range of room temperature to 200 ° C. is provided. In the second aging process,
Hold in the range of 500 to 700 ° C. for 1 to 3 hours. Then, a second quenching step of quenching to room temperature is provided. The cooling rate in each of the first and second quenching steps is preferably 10 ° C./min or more, and particularly preferably 10 to 30 ° C./min. Further, the rate of raising the temperature to the holding temperature in each aging treatment step is not particularly limited, but is usually 2 to 10 ° C.
It should be about / min.

【0076】時効処理後、必要に応じて着磁する。After the aging treatment, it is magnetized if necessary.

【0077】<磁石組成>磁石組成は、主相用母合金の
組成、粒界相用母合金の組成、両母合金の混合比率によ
り決定される。本発明では焼結後の磁石の組成が、R:
27〜38重量%、B:0.5〜4.5重量%、M:
0.03〜0.5重量%、特に0.05〜0.3重量
%、T:51〜72重量%であることが好ましい。
<Magnet Composition> The magnet composition is determined by the composition of the main phase master alloy, the composition of the grain boundary phase master alloy, and the mixing ratio of both master alloys. In the present invention, the composition of the magnet after sintering is R:
27-38% by weight, B: 0.5-4.5% by weight, M:
It is preferably 0.03 to 0.5% by weight, particularly preferably 0.05 to 0.3% by weight, and T: 51 to 72% by weight.

【0078】R含有量が少なくなるにつれて残留磁束密
度は向上するが、R含有量が少なくなるとα−Fe相等
の鉄に富む相が析出して粉砕に悪影響を与え、磁気特性
も低下する。また、Rリッチ相の割合が減少するため、
焼結が困難となって焼結密度が低くなってしまうので、
残留磁束密度向上は頭打ちになってしまう。しかし本発
明ではR含有量が27重量%と少ない場合でも焼結密度
を高くすることができ、α−Fe相の析出も実質的にな
い。ただし、Rが27重量%未満であると、磁石化が困
難となる。R含有量が多すぎると、高残留磁束密度が得
られなくなる。B含有量が少なすぎると高保磁力が得ら
れなくなり、B含有量が多すぎると高残留磁束密度が得
られなくなる。
The residual magnetic flux density improves as the R content decreases, but when the R content decreases, an iron-rich phase such as the α-Fe phase precipitates, which adversely affects the pulverization and deteriorates the magnetic properties. Moreover, since the ratio of the R-rich phase decreases,
Since it becomes difficult to sinter and the sintered density becomes low,
The improvement of the residual magnetic flux density will reach the ceiling. However, in the present invention, even when the R content is as small as 27% by weight, the sintered density can be increased and the precipitation of the α-Fe phase is substantially not present. However, if R is less than 27% by weight, magnetization becomes difficult. If the R content is too large, a high residual magnetic flux density cannot be obtained. If the B content is too small, a high coercive force cannot be obtained, and if the B content is too large, a high residual magnetic flux density cannot be obtained.

【0079】[0079]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention.

【0080】<サンプルNo. 1−1〜1−8(実施例)
>それぞれ純度99.9%のNd、Fe、Co、Sn、
Ga、Inを用いて、Ar雰囲気中でアーク溶解により
粒界相用母合金を製造した。また、それぞれ純度99.
9%のNd、Dy、Fe、Co、Al、フェロボロンを
用いて、Ar雰囲気中で高周波溶解により主相用母合金
を製造した。各母合金の組成を、表1に示す。
<Sample No. 1-1 to 1-8 (Example)
> Nd, Fe, Co, Sn, each having a purity of 99.9%,
A Ga-In master alloy was prepared by arc melting in an Ar atmosphere using Ga and In. In addition, the purity is 99.
Using 9% of Nd, Dy, Fe, Co, Al and ferroboron, a master alloy for main phase was manufactured by high frequency melting in an Ar atmosphere. The composition of each master alloy is shown in Table 1.

【0081】次いで、各母合金を別個に粗粉砕した。粗
粉砕は、窒素雰囲気中でジョークラッシャーおよびブラ
ウンミルにより行なった。次に、粒界相用母合金の粗粉
と主相用母合金の粗粉とを、窒素雰囲気中で混合した。
混合比率(重量比)と、得られた混合物の組成(磁石組
成)とを、表1に示す。次いで、混合物を、高圧窒素ガ
スを用いたジェットミルにより粒子径3〜5μm にまで
微粉砕した。得られた微粉を12kOe の磁場中で1.5
t/cm2 の圧力で成形し、成形体を得た。この成形体を真
空中において1080℃で4時間焼結した後、急冷し
た。得られた焼結体に、Ar雰囲気中で2段時効処理を
施した。1段目の時効処理は、850℃で1時間行な
い、冷却速度は15℃/minとした。2段目の時効処理は
620℃で1時間行ない、冷却速度は15℃/minとし
た。時効処理後、着磁し、磁石サンプルとした。
Next, each mother alloy was separately crushed. Coarse crushing was performed with a jaw crusher and a brown mill in a nitrogen atmosphere. Next, the coarse powder of the grain boundary phase master alloy and the coarse powder of the main phase master alloy were mixed in a nitrogen atmosphere.
Table 1 shows the mixing ratio (weight ratio) and the composition (magnet composition) of the obtained mixture. Then, the mixture was finely pulverized by a jet mill using high-pressure nitrogen gas to a particle size of 3 to 5 μm. The obtained fine powder was applied in a magnetic field of 12 kOe for 1.5
Molding was performed at a pressure of t / cm 2 to obtain a molded body. The compact was sintered in vacuum at 1080 ° C. for 4 hours and then rapidly cooled. The obtained sintered body was subjected to a two-step aging treatment in an Ar atmosphere. The first aging treatment was performed at 850 ° C. for 1 hour and the cooling rate was 15 ° C./min. The second stage aging treatment was performed at 620 ° C. for 1 hour and the cooling rate was 15 ° C./min. After the aging treatment, it was magnetized to obtain a magnet sample.

【0082】各サンプルについて、保磁力Hcj、最大エ
ネルギー積(BH)max 、25〜180℃におけるdHcj/
dTを、BHトレーサーおよびVSMにより測定した。
また、各サンプルをパーミアンス係数が2となるように
加工し、50 kOeの磁場で着磁した後、恒温槽で2時間
保存し、さらに室温まで冷却した。次いで、フラックス
メーターにて不可逆減磁率を測定し、不可逆減磁率が5
%に達する温度T(5%)を求めた。結果を表1に示
す。
For each sample, coercive force Hcj, maximum energy product (BH) max, dHcj / 25-180 ° C.
dT was measured by BH tracer and VSM.
Each sample was processed to have a permeance coefficient of 2, magnetized with a magnetic field of 50 kOe, stored in a thermostat for 2 hours, and further cooled to room temperature. Then, measure the irreversible demagnetization rate with a flux meter and confirm that the irreversible demagnetization rate is 5
The temperature T (5%) which reaches 100% was determined. The results are shown in Table 1.

【0083】<サンプルNo. 2−1〜2−4(比較例)
>上記実施例サンプルに用いた主相用母合金と同様にし
て、表2に示す組成の磁石用母合金を製造した。
<Sample No. 2-1 to 2-4 (comparative example)
A master alloy for magnet having the composition shown in Table 2 was manufactured in the same manner as the master alloy for main phase used in the above-mentioned example samples.

【0084】次いで、上記実施例サンプルと同様にし
て、粗粉砕、微粉砕、成形、焼結、時効および着磁の各
処理を施し、磁石サンプルを得た。これらのサンプルに
ついても、上記と同様な測定を行なった。結果を表2に
示す。
Then, in the same manner as the above-mentioned example samples, coarse pulverization, fine pulverization, molding, sintering, aging, and magnetizing were performed to obtain magnet samples. The same measurement as above was performed on these samples. The results are shown in Table 2.

【0085】[0085]

【表1】 [Table 1]

【0086】[0086]

【表2】 [Table 2]

【0087】サンプルNo. 1−1と2−3との比較、サ
ンプルNo. 1−2と2−2との比較、サンプルNo. 1−
3および1−4と2−4との比較から明らかなように、
実施例サンプルはSn含有量が比較例サンプルの半分で
あっても同等以上の熱安定性が得られており、Sn含有
量が少ないため、より高い磁気特性が得られている。ま
た、サンプルNo. 1−1と2−2との比較から、Sn量
を同じにした場合には、本発明により熱安定性と共に磁
気特性も向上することがわかる。また、サンプルNo. 1
−2と1−5との比較から、粒界相用母合金の組成比が
6 T’13Mに近ければ、熱安定性および磁気特性が向
上することがわかる。なお、サンプルNo. 1−2に用い
た粒界相用母合金の組成50.5Nd−42.5Fe−
7.0Sn(重量%)は、原子比に換算するとNd6
13Snである。また、サンプルNo. 1−6とサンプル
No. 2−3との比較から、Sn含有量が同じ場合でも本
発明により磁気特性低下が抑えられることがわかる。そ
して、サンプルNo. 1−7と1−8とから、Ga、In
の添加も有効であることがわかる。
Comparison between sample Nos. 1-1 and 2-3, comparison between sample Nos. 1-2 and 2-2, sample No. 1-
As is clear from the comparison between 3 and 1-4 and 2-4,
Even if the Sn content of the example sample is half that of the comparative example sample, thermal stability equal to or higher than that is obtained, and since the Sn content is small, higher magnetic characteristics are obtained. Further, from the comparison between Sample Nos. 1-1 and 2-2, it is understood that the present invention improves the magnetic properties as well as the thermal stability when the Sn content is the same. Also, sample No. 1
Comparison with -2 and 1-5, the composition ratio of the grain boundary phase for master alloy the closer the R 6 T '13 M, it can be seen that the improved thermal stability and magnetic properties. The composition of the grain boundary phase master alloy used in Sample No. 1-2 was 50.5Nd-42.5Fe-
7.0Sn (wt%) is Nd 6 F when converted to atomic ratio
e 13 Sn. Also, sample No. 1-6 and sample
From the comparison with No. 2-3, it is understood that the present invention can suppress the deterioration of magnetic properties even when the Sn content is the same. Then, from sample Nos. 1-7 and 1-8, Ga, In
It can be seen that addition of is also effective.

【0088】なお、表1に示す実施例サンプルに用いた
粒界相用母合金は、R6 T’13M、RT’2 、RT’
3 、RT’7 、R5 T’13の各相を含み、平均結晶粒径
は20μm であった。相構成の同定および結晶粒径の測
定は、合金を研磨した後、SEM−EDXにより行なっ
た。
[0088] Incidentally, the grain boundary phase for mother alloy used in Example samples shown in Table 1, R 6 T '13 M, RT' 2, RT '
3 , RT ' 7 and R 5 T' 13 phases were included, and the average crystal grain size was 20 μm. Identification of the phase constitution and measurement of the crystal grain size were carried out by SEM-EDX after polishing the alloy.

【0089】<サンプルNo. 3−1(実施例)>単ロー
ル法により、主相用母合金を製造した。冷却ロールには
Cuロールを用い、その周速度は2m/s とした。得られ
た合金は、厚さ0.3mm、幅15mmの薄帯状であった。
主相用母合金の組成を、表3に示す。主相用母合金を、
冷却方向を含む面があらわれるように切断し、断面を研
磨して電子顕微鏡により反射電子像の写真を撮影した。
得られた写真には、冷却方向(薄帯の厚さ方向)を長軸
方向とする柱状結晶粒が認められた。この柱状結晶粒1
00個の平均径を求めたところ、10μm であった。な
お、母合金にはα−Fe相の存在は認められなかった。
この主相用母合金を、上記実施例サンプルと同様にして
粗粉砕した。
<Sample No. 3-1 (Example)> A master alloy for main phase was manufactured by a single roll method. A Cu roll was used as the cooling roll, and its peripheral speed was 2 m / s. The obtained alloy was a ribbon having a thickness of 0.3 mm and a width of 15 mm.
Table 3 shows the composition of the master alloy for the main phase. Main phase master alloy,
It was cut so that the surface including the cooling direction appeared, the cross section was polished, and a photograph of the backscattered electron image was taken with an electron microscope.
In the obtained photograph, columnar crystal grains whose major axis direction was the cooling direction (thickness direction of the ribbon) were observed. This columnar crystal grain 1
When the average diameter of 00 pieces was calculated, it was 10 μm. The existence of α-Fe phase was not recognized in the mother alloy.
This master alloy for main phase was roughly pulverized in the same manner as in the above-described example sample.

【0090】粒界相用母合金は、上記実施例サンプルと
同様に製造し、同様に粗粉砕した。粒界相用母合金の組
成を、表3に示す。
The master alloy for the grain boundary phase was manufactured in the same manner as in the sample of the above-mentioned example, and similarly crushed. The composition of the grain boundary phase master alloy is shown in Table 3.

【0091】主相用母合金の粗粉と粒界相用母合金の粗
粉とを、窒素雰囲気中で混合した。混合比率(重量比)
を、表3に示す。
The coarse powder of the main phase master alloy and the coarse powder of the grain boundary phase master alloy were mixed in a nitrogen atmosphere. Mixing ratio (weight ratio)
Is shown in Table 3.

【0092】次に、混合物に下記の条件で水素吸蔵処理
を施し、水素放出処理を施すことなく機械的粉砕を行な
った。
Next, the mixture was subjected to a hydrogen storage treatment under the following conditions and mechanically pulverized without performing a hydrogen desorption treatment.

【0093】水素吸蔵処理 混合物温度 400℃処理時間 1時間処理雰囲気 0.5気圧の水素雰囲気 Hydrogen storage treatment mixture temperature 400 ° C. treatment time 1 hour treatment atmosphere 0.5 atmosphere of hydrogen atmosphere

【0094】機械的粉砕には、図2に示される構成を有
するジェットミルを用いた。粉砕は各磁石粉末の平均粒
子径が3.5μm となるまで行なった。
A jet mill having the structure shown in FIG. 2 was used for mechanical grinding. The pulverization was performed until the average particle diameter of each magnet powder became 3.5 μm.

【0095】微粉砕以降の工程は上記実施例サンプルと
同様にして磁石サンプルを得、上記と同様な測定を行な
った。結果を表3に示す。
In the steps after fine pulverization, magnet samples were obtained in the same manner as the above-mentioned example samples, and the same measurements as above were performed. The results are shown in Table 3.

【0096】<サンプルNo. 3−2(実施例)>粒界相
用母合金を、サンプルNo. 3−1の主相用母合金と同様
な条件で単ロール法により製造した以外は、サンプルN
o. 3−1と同様にして磁石サンプルを得た。粒界相用
母合金は、厚さ0.3mm、幅15mmの薄帯状であった。
このサンプルについても上記と同様な測定を行なった。
結果を表3に示す。
<Sample No. 3-2 (Example)> Sample No. 3-2 was manufactured by the single roll method under the same conditions as those of the main phase master alloy of Sample No. 3-1. N
A magnet sample was obtained in the same manner as in o.3-1. The master alloy for the grain boundary phase was a ribbon having a thickness of 0.3 mm and a width of 15 mm.
The same measurement as above was performed for this sample.
The results are shown in Table 3.

【0097】<サンプルNo. 3−3(実施例)>粒界相
用母合金を単ロール法により製造する際に、冷却ロール
の周速度を30m/s とした以外は、サンプルNo. 3−2
と同様にして磁石サンプルを得た。このサンプルについ
ても上記と同様な測定を行なった。結果を表3に示す。
<Sample No. 3-3 (Example)> Sample No. 3-3 except that the peripheral speed of the cooling roll was 30 m / s when the master alloy for the grain boundary phase was manufactured by the single roll method. Two
A magnet sample was obtained in the same manner as in. The same measurement as above was performed for this sample. The results are shown in Table 3.

【0098】<サンプルNo. 3−4〜3−5(比較例)
>溶解法または単ロール法により、表3に示す組成の磁
石用母合金を製造した。単ロール法は、上記実施例サン
プルNo. 3−1と同条件で行なった。次いで、上記実施
例サンプルと同様にして粗粉砕、微粉砕、成形、焼結、
時効および着磁の各処理を施し、磁石サンプルを得た。
これらのサンプルについても、上記と同様な測定を行な
った。結果を表3に示す。
<Sample No. 3-4 to 3-5 (comparative example)
A master alloy for a magnet having a composition shown in Table 3 was manufactured by a melting method or a single roll method. The single roll method was carried out under the same conditions as in the above-mentioned Example Sample No. 3-1. Then, roughly crushed, finely crushed, molded, sintered, similarly to the above-mentioned example samples,
Each treatment of aging and magnetization was performed to obtain a magnet sample.
The same measurement as above was performed on these samples. The results are shown in Table 3.

【0099】[0099]

【表3】 [Table 3]

【0100】なお、サンプルNo. 3−1および3−2に
それぞれ用いた粒界相用母合金は、R6 T’13M、R
T’2 、RT’3 、RT’7 、R5 T’13の各相を含
み、平均結晶粒径はサンプルNo. 3−1が25μm 、サ
ンプルNo. 3−2が10μm であった。また、サンプル
No. 3−3に用いた粒界相用母合金は、アモルファス状
であった。
[0100] Incidentally, the sample No. 3-1 and the grain boundary phase for mother alloy used each 3-2, R 6 T '13 M, R
T '2, RT' 3, RT comprises the phases of '7, R 5 T' 13 , the average crystal grain size sample No. 3-1 is 25 [mu] m, the sample No. 3-2 was 10 [mu] m. Also a sample
The grain boundary phase master alloy used in No. 3-3 was amorphous.

【0101】表3に示される結果から、平均径3〜50
μm の柱状結晶粒を有する主相用母合金を用いた場合、
極めて高い(BH)max が得られることがわかる。そして、
サンプルNo. 3−2および3−3のように、平均径20
μm 以下の結晶粒を有する粒界相用母合金を用いた場
合、熱安定性および磁気特性がさらに向上することがわ
かる。
From the results shown in Table 3, the average diameter is 3 to 50.
When using the master alloy for the main phase with columnar crystal grains of μm,
It can be seen that extremely high (BH) max is obtained. And
An average diameter of 20 as in Sample Nos. 3-2 and 3-3
It can be seen that the thermal stability and magnetic properties are further improved when the master alloy for grain boundary phase having crystal grains of μm or less is used.

【0102】なお、上記各実施例において、粒界相用母
合金のFeの一部をNiに置換した場合でも同等の効果
が得られた。また、粒界相用母合金に700℃で20時
間のアニールを施した場合、R6 T’13M相の割合が増
加したが、これを用いた磁石サンプルの磁気特性および
熱安定性は、上記各サンプルと同等であった。
In each of the above examples, the same effect was obtained even when a part of Fe in the grain boundary phase master alloy was replaced with Ni. Further, when the grain boundary phase master alloy was annealed at 700 ° C. for 20 hours, the proportion of the R 6 T ′ 13 M phase increased, but the magnetic properties and thermal stability of the magnet sample using this were It was equivalent to each sample above.

【図面の簡単な説明】[Brief description of drawings]

【図1】流動層を利用するジェットミルの一部を切り欠
いて示す側面図である。
FIG. 1 is a side view showing a jet mill using a fluidized bed by cutting out a part thereof.

【図2】渦流を利用するジェットミルの主要部を示す端
面図であり、(a)は平面端面図、(b)は側面端面図
である。
FIG. 2 is an end view showing a main part of a jet mill that uses a vortex flow, (a) is a plan end view, and (b) is a side end view.

【図3】衝突板を用いるジェットミルの主要部を示す断
面図である。
FIG. 3 is a sectional view showing a main part of a jet mill using a collision plate.

【符号の説明】[Explanation of symbols]

21 容器 22,23 ガス導入管 24 原料投入管 25 流動層 26 分級機 31 容器 32 原料導入管 33 ガス導入管 41 原料投入口 42 ノズル 43 衝突板 21 containers 22,23 Gas introduction pipe 24 Raw material input pipe 25 fluidized bed 26 classifier 31 containers 32 Raw material introduction pipe 33 gas introduction pipe 41 Raw material input port 42 nozzles 43 collision plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−119604(JP,A) 特開 昭64−706(JP,A) 特開 平5−222488(JP,A) 特開 平5−117701(JP,A) 特開 平5−182814(JP,A) 特開 平5−74618(JP,A) 特開 平4−268050(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F C22C ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 4-119604 (JP, A) JP 64-706 (JP, A) JP 5-222488 (JP, A) JP 5- 117701 (JP, A) JP 5-182814 (JP, A) JP 5-74618 (JP, A) JP 4-268050 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/00-1/117 B22F C22C

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主相用母合金の粉末と粒界相用母合金の
粉末との混合物を成形した後、焼結することにより、R
(Rは、Yを含む希土類元素の少なくとも1種であ
る)、T(Tは、Fe、または、FeならびにCoおよ
び/またはNiである)およびBを主成分とし、実質的
にR214Bから構成される主相を有する永久磁石を製
造する方法であって、 前記主相用母合金が、実質的にR214Bから構成され
る主相と、R214BよりもRの含有率が高いRリッチ
相を主体とする結晶粒界とを有し、 前記粒界相用母合金が、R、T’(T’は、Fe、Co
およびNiの少なくとも1種である)およびM(Mは、
Snと、InおよびGaの少なくとも1種とである)を
含有し、M中の30〜100重量%がSnであり、これ
らの含有量が、 R:40〜65重量%、 T’:30〜60重量%、 M:1〜12重量% であり、R6 T’13M相を有する永久磁石の製造方法。
1. A mixture of a main phase master alloy powder and a grain boundary phase master alloy powder is molded and then sintered to obtain R.
(R is at least one kind of rare earth element including Y), T (T is Fe, or Fe and Co and / or Ni) and B as main components, and substantially R 2 T 14 a method of manufacturing a permanent magnet having formed main phase from B, the main-phase master alloy is substantially a main phase consisting of R 2 T 14 B, than R 2 T 14 B The grain boundary phase master alloy has R and T ′ (T ′ is Fe and Co).
And Ni is at least one kind) and M (M is
Sn and at least one of In and Ga), 30 to 100% by weight of M is Sn, and the content of these is R: 40 to 65% by weight, T ': 30 to. 60 wt%, M: 1 to 12 percent by weight, method of manufacturing a permanent magnet having a R 6 T '13 M phase.
【請求項2】 前記混合物中における粒界相用母合金の
比率が0.2〜10重量%である請求項1の永久磁石の
製造方法。
2. The method for producing a permanent magnet according to claim 1, wherein a ratio of the grain boundary phase master alloy in the mixture is 0.2 to 10% by weight.
【請求項3】 前記主相用母合金が、平均径が3〜50
μm である柱状結晶粒の主相を有する請求項1または2
の永久磁石の製造方法。
3. The main phase master alloy has an average diameter of 3 to 50.
The main phase of columnar crystal grains having a size of μm.
Manufacturing method of permanent magnet of.
【請求項4】 製造される永久磁石の組成が、 R:27〜38重量%、 B:0.5〜4.5重量%、 M:0.03〜0.5重量%、 T:51〜72重量% である請求項1〜3のいずれかの永久磁石の製造方法。4. The composition of the manufactured permanent magnet is R: 27 to 38% by weight, B: 0.5 to 4.5% by weight, M: 0.03 to 0.5% by weight, T: 51 to 72% by weight The method for producing a permanent magnet according to claim 1, wherein 【請求項5】 結晶粒界にR6 T’13M相が含まれる永
久磁石が製造される請求項1〜4のいずれかの永久磁石
の製造方法。
5. The method for producing a permanent magnet according to claim 1, wherein a permanent magnet having an R 6 T ′ 13 M phase in a grain boundary is produced.
【請求項6】 合金溶湯を、一方向または対向する二方
向から冷却して前記主相用母合金を製造し、 前記主相用母合金の冷却方向の厚さが0.1〜2mmであ
り、 前記主相用母合金がα−Fe相を実質的に含まない請求
項1〜5のいずれかの永久磁石の製造方法。
6. The molten alloy is cooled from one direction or two opposite directions to manufacture the main phase master alloy, and the main phase master alloy has a thickness in the cooling direction of 0.1 to 2 mm. The method for producing a permanent magnet according to claim 1, wherein the main phase master alloy does not substantially include an α-Fe phase.
【請求項7】 合金溶湯を、一方向または対向する二方
向から冷却して前記粒界相用母合金を製造し、 前記粒界相用母合金が、平均径20μm 以下の結晶粒を
有し、 前記粒界相用母合金の冷却方向の厚さが0.1〜2mmで
ある請求項6の永久磁石の製造方法。
7. The molten alloy is cooled in one direction or in two opposite directions to produce the grain boundary phase master alloy, and the grain boundary phase master alloy has crystal grains with an average diameter of 20 μm or less. The method for producing a permanent magnet according to claim 6, wherein the mother alloy for the grain boundary phase has a thickness in the cooling direction of 0.1 to 2 mm.
【請求項8】 前記合金溶湯を、単ロール法、双ロール
法または回転ディスク法により冷却する請求項6または
7の永久磁石の製造方法。
8. The method for producing a permanent magnet according to claim 6, wherein the molten alloy is cooled by a single roll method, a twin roll method, or a rotating disk method.
【請求項9】 水素を吸蔵させた後、前記主相用母合金
をジェットミルにより粉砕する粉砕工程を有する請求項
1〜8のいずれかの永久磁石の製造方法。
9. The method for producing a permanent magnet according to claim 1, further comprising a pulverizing step of pulverizing the master alloy for main phase with a jet mill after occluding hydrogen.
【請求項10】 水素を吸蔵させた後、前記粒界相用母
合金をジェットミルにより粉砕する粉砕工程を有する請
求項1〜9のいずれかの永久磁石の製造方法。
10. The method for producing a permanent magnet according to claim 1, further comprising a pulverization step of pulverizing the grain boundary phase master alloy with a jet mill after occluding hydrogen.
【請求項11】 前記粉砕工程において、母合金の温度
を300〜600℃の範囲に昇温した後、水素吸蔵処理
を施し、次いで、水素放出処理を施すことなく粉砕を行
なう請求項9または10の永久磁石の製造方法。
11. The crushing step according to claim 9, wherein after the temperature of the mother alloy is raised to a range of 300 to 600 ° C., hydrogen storage treatment is performed, and then pulverization is performed without hydrogen release treatment. Manufacturing method of permanent magnet of.
【請求項12】 母合金に水素を吸蔵させた後、水素の
放出を行なう請求項9または10の永久磁石の製造方
法。
12. The method for producing a permanent magnet according to claim 9, wherein hydrogen is released after the mother alloy stores the hydrogen.
JP30230393A 1993-11-02 1993-11-08 Manufacturing method of permanent magnet Expired - Lifetime JP3367726B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP30230393A JP3367726B2 (en) 1993-11-08 1993-11-08 Manufacturing method of permanent magnet
DE69431096T DE69431096T2 (en) 1993-11-02 1994-11-02 Manufacture of a permanent magnet
US08/333,982 US5595608A (en) 1993-11-02 1994-11-02 Preparation of permanent magnet
EP02017128A EP1260995B1 (en) 1993-11-02 1994-11-02 Preparation of permanent magnet
DE69434323T DE69434323T2 (en) 1993-11-02 1994-11-02 Preparation d'un aimant permanent
EP00120135A EP1073069A1 (en) 1993-11-02 1994-11-02 Preparation of permanent magnet
EP94308097A EP0651401B1 (en) 1993-11-02 1994-11-02 Preparation of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30230393A JP3367726B2 (en) 1993-11-08 1993-11-08 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH07130522A JPH07130522A (en) 1995-05-19
JP3367726B2 true JP3367726B2 (en) 2003-01-20

Family

ID=17907353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30230393A Expired - Lifetime JP3367726B2 (en) 1993-11-02 1993-11-08 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP3367726B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460650B1 (en) * 2002-09-30 2007-11-14 TDK Corporation R-t-b based rare earth element permanent magnet
JP4702522B2 (en) * 2005-02-23 2011-06-15 Tdk株式会社 R-T-B system sintered magnet and manufacturing method thereof
CN100334657C (en) * 2005-05-18 2007-08-29 西北有色金属研究院 Permanent magnetic material in heat-resistant R-Fe-D series, and preparation method
JP5103428B2 (en) * 2009-03-30 2012-12-19 インターメタリックス株式会社 Rare earth sintered magnet manufacturing method
CN101958171B (en) * 2010-04-14 2012-02-15 无锡南理工科技发展有限公司 Method for preparing corrosion-resistant sintered neodymium iron boron (NdFeB) magnet
JP6642838B2 (en) * 2015-02-17 2020-02-12 日立金属株式会社 Method for producing RTB based sintered magnet
JP7021578B2 (en) * 2017-03-30 2022-02-17 日立金属株式会社 Manufacturing method of RTB-based sintered magnet

Also Published As

Publication number Publication date
JPH07130522A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
EP0651401B1 (en) Preparation of permanent magnet
JP3932143B2 (en) Magnet manufacturing method
US7867343B2 (en) Rare earth magnet and method for production thereof
EP1780736A1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP3724513B2 (en) Method for manufacturing permanent magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
WO2015146888A1 (en) R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
JP3367726B2 (en) Manufacturing method of permanent magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP4853629B2 (en) Manufacturing method of rare earth sintered magnet
JP4282002B2 (en) Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet
JP4650218B2 (en) Method for producing rare earth magnet powder
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3209292B2 (en) Magnetic material and its manufacturing method
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JPH06112019A (en) Nitride magnetic material
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JP3171640B2 (en) Method for producing magnet and method for producing magnet powder
JP2002088451A (en) Rare earth magnet and its manufacturing method
JP3053344B2 (en) Rare earth magnet manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term