JPS61214402A - Manufacture of sintered magnet - Google Patents

Manufacture of sintered magnet

Info

Publication number
JPS61214402A
JPS61214402A JP60055465A JP5546585A JPS61214402A JP S61214402 A JPS61214402 A JP S61214402A JP 60055465 A JP60055465 A JP 60055465A JP 5546585 A JP5546585 A JP 5546585A JP S61214402 A JPS61214402 A JP S61214402A
Authority
JP
Japan
Prior art keywords
raw material
molding
zinc stearate
sintered magnet
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60055465A
Other languages
Japanese (ja)
Inventor
Izumi Nakazono
中園 和泉
Norio Toyosaki
豊崎 則男
Akio Kobayashi
明男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60055465A priority Critical patent/JPS61214402A/en
Publication of JPS61214402A publication Critical patent/JPS61214402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To control friction appearing between a molded body and a metallic mold, and enable industrial mass production of Nd-Fe-B permanent magnets based on by changing a mixture of raw material powders and zinc stearate into the molding space, subjecting the mixture to magnetic orientation and sintering process, followed by heat-treatment. CONSTITUTION:Molding raw material powders, which have been obtained by mixing raw material powders of 1-50mum mean grain size with zinc stearate in the range of 0.005-0.1wt%, is charged into the molding space, oriented in a magnetic field, molded, sintered at a temperature ranging from 900-1,200 deg.C and subjected to heat-treatment. If the added amount of zinc stearate is below 0.005wt%, little is improved in molding efficiency and reducing friction between the metallic mold and the molded body. On the other hand, if that amount exceeds 0.1%, the magnetic property of the sintered magnet obtained deteriorates significantly to lose a feature possessing such a high energy produce reaching 45MGOe as in the case of permanent magnets of a Fe-B-R family.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はFe −B−R系磁気異方性焼結磁石の製造方
法において、成形時における金型と成形体と間のI!I
iIを減少する焼結磁石の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing a Fe-B-R magnetic anisotropic sintered magnet, in which the I! I
The present invention relates to a method of manufacturing a sintered magnet that reduces iI.

[従来の技術] 従来、特開昭59−46008号、同59−64733
号の各公報に記載されているようなFe −8−R系磁
気異方性焼結磁石を製造する場合において、成形工程に
おいては、最終的に得られる焼結磁石にほぼ相当する成
分組成を持つ原料合金粉末をダイス、下パンチで形成す
る成形空間に充填した後、上パンチが下降して原料粉末
の圧密を終了するまで、約10KOeの一定磁場を原料
粉末に印加し続けることにより、配向を行っていた。
[Prior art] Conventionally, Japanese Patent Application Laid-open Nos. 59-46008 and 59-64733
When manufacturing Fe-8-R magnetic anisotropic sintered magnets as described in the publications of the above issues, in the forming process, a component composition approximately corresponding to the final sintered magnet is used. After filling the molding space formed by the die and the lower punch with the raw material alloy powder, a constant magnetic field of approximately 10 KOe is continuously applied to the raw material powder until the upper punch descends to complete the consolidation of the raw material powder. was going on.

[発明の解決しようとする問題点] しかしながら、従来のサマリウム−コバルト系永久磁石
原料粉末と相異して、Fe −B−R系永久磁石原料粉
末の成形においては成形時における金型壁と成形体との
間の摩擦がはなはだしく、成形体の形状寸法が予測とは
違ったものになったり、又、ダイスの交換をひんばんに
しなければならず、成形作業能率の低下、全型代の出費
増をもたらすという問題点があった。
[Problems to be Solved by the Invention] However, unlike the conventional samarium-cobalt permanent magnet raw powder, in the molding of the Fe-B-R permanent magnet raw powder, the mold wall and molding The friction between the molded body and the molded body is excessive, and the shape and dimensions of the molded body are different from those expected. Also, the die must be replaced frequently, which reduces molding efficiency and increases the cost of the entire mold. There was a problem in that it caused an increase.

[問題点を解決するための手段] 本発明者は、種々検討の結果、成形前にFe −B−R
系磁石原料粉末に極く受註のステアリン酸亜鉛の粉末を
混合しておくことにより、成形能率を著しく改善するこ
とが出来、又金型内壁と成形体との間の摩擦が著しく減
少することを見出して本発明を完成するに到ったもので
ある。
[Means for Solving the Problems] As a result of various studies, the inventor of the present invention discovered that Fe-B-R before molding.
By mixing powder of zinc stearate, which is extremely sensitive, into the raw material powder for magnets, the molding efficiency can be significantly improved, and the friction between the inner wall of the mold and the molded object can be significantly reduced. This discovery led to the completion of the present invention.

即ち、本発明は、原子百分比で、8〜30%のR(但し
RはYを含む希土類元素の少なくとも1種以上)、2〜
28%のB、50%以下のC015%以下の添加元素M
(但し、MはAl、Ti 、Ni 。
That is, the present invention has an atomic percentage of 8 to 30% R (wherein R is at least one kind of rare earth element including Y), 2 to 30%
28% B, 50% or less C0 15% or less additional element M
(However, M is Al, Ti, Ni.

C−Ca 、Z n −M Q 、Cu N S i 
−V −N b −Ta 1Cr %Mo 、W、Mn
 、Zr 、Hfの少なくとも1種以上)及び残部1”
eからなる磁気異方性焼結磁石の製造方法において、平
均粒度1〜50μmの原料粉末に、ステアリン酸亜鉛を
0.005〜0.1wt%の範囲で混合して成形用原料
粉末とし、これをダイス、下パンチで形成する成形空間
内に充填し、磁場により原、料粉末を配向させ成形を終
了した後、900〜1200℃の範囲内の温度で焼結し
た後、熱処理を施すことを特徴とするものである。
C-Ca, Zn-MQ, CuNSi
-V -N b -Ta 1Cr %Mo, W, Mn
, Zr, Hf) and the remainder 1"
In the method for manufacturing a magnetically anisotropic sintered magnet consisting of e, raw material powder with an average particle size of 1 to 50 μm is mixed with zinc stearate in a range of 0.005 to 0.1 wt% to obtain a raw material powder for molding. is filled into the molding space formed by the die and lower punch, and after completing the molding by orienting the raw material powder using a magnetic field, it is sintered at a temperature within the range of 900 to 1200°C, and then heat treated. This is a characteristic feature.

[作用] ステアリン酸亜鉛の添加量は、0.005〜0.1wt
%の範囲が適当である。これは添加量が0.005wt
%より少ないと、成形能率向上又は金型と成形体との間
のFJIIの減少に対する効果が薄く、又、0、twt
%を越えると得られた焼結磁石の磁気特性劣化がはなは
だしくFe−B−R系永久磁石の45MGOeにも至る
高エネルギー積を持つと云う特色が失われるからである
。またステアリン酸亜鉛の添加量の最適範囲は0.01
〜o、oewt%である。
[Effect] The amount of zinc stearate added is 0.005 to 0.1wt
A range of % is appropriate. The amount added is 0.005wt
If it is less than 0, twt, the effect on improving molding efficiency or reducing FJII between the mold and the molded object is weak, and
%, the magnetic properties of the obtained sintered magnet will deteriorate significantly and the feature of Fe-BR permanent magnets, which have a high energy product of up to 45 MGOe, will be lost. Also, the optimal range of the amount of zinc stearate added is 0.01
~o, oewt%.

次に磁場の印加方法について述べる; Fe−B−R系永久磁石原料粉末は一度強い直流磁場を
印加すると、得られた配向がいつまでも持続するという
特徴があり、又、印加磁場強度が大きい程、配向度は向
上するので配向にはパルス磁場を利用することが有利で
ある。パルス磁場の強度は20)(Qeより小さければ
通常の10KOeの直流磁場印加の場合と比較して配向
度の向上は余り見られない。又、1501(Qeを越え
るパルス磁場を印加する場合には、磁場発生装置が大が
かりとなり、又取り扱い上の危険が著しく増加するので
、20K Oe〜150K Q 8位の磁場強度のパル
ス磁場が適当である。パルス磁場の磁石原料粉末への印
加時期は、ダイスと下パンチで形成する成形空間内に原
料粉末を充填した後、上パンチの下降を開始する前に1
回印加すれば十分であるが、多、数回印加すれば配向度
は更に向上する。
Next, the method of applying a magnetic field will be described; Fe-B-R permanent magnet raw powder has the characteristic that once a strong direct current magnetic field is applied, the obtained orientation will continue indefinitely, and the higher the applied magnetic field strength, the more Since the degree of orientation is improved, it is advantageous to use a pulsed magnetic field for orientation. If the strength of the pulsed magnetic field is smaller than 20) (Qe), there will not be much improvement in the degree of orientation compared to the case of applying a normal DC magnetic field of 10KOe. Since the magnetic field generator becomes large-scale and the handling danger increases significantly, a pulsed magnetic field with a field strength of 20K Oe to 150K Q8 is appropriate.The timing of applying the pulsed magnetic field to the magnet raw powder is determined by the die After filling the raw material powder into the molding space formed by the lower punch and the lower punch, 1.
Although it is sufficient to apply it several times, the degree of orientation can be further improved by applying it many or several times.

実施例 以下、不発咀について実施例を参照しながら、更に詳し
く述べる。
EXAMPLES Hereinafter, misexposure will be described in more detail with reference to examples.

実施例1 出発、原料として純度99.9wt%の電解鉄、純度9
9.5wt%の電解コバルト、Bとして99wt%の純
度のポロンを用い、Rとして純度99.7wt%以上の
Ndを使用して、原子%で15%Nd−8%B−5%C
〇−残Feの最終焼結体を得る様に秤量して、高周波溶
解し、水冷!lIs型に鋳造し、合金インゴットを得た
。合金インゴットをスタンプミルにより粗粉砕した後、
ジェットミルにより平均粒径約3μmの微粉とした。得
られた微粉にステアリン酸亜鉛粉末を混合して成形用原
料とした。ダイスと下パンチで形成する成形空間内に成
形用原料を充填した後、磁場強度32KOeのパルス磁
場(ブレス方向と配向方向が直交するいわゆる横磁場成
形法)を印加して圧密成形を行った。得られた成形体を
非酸化性の雰囲気中で1080℃で1時間焼結した後、
一度900℃X1h保持後室温まで徐冷した侵、再度6
60℃X1hの処理を加え室温まで急冷した。
Example 1 Starting material: electrolytic iron with a purity of 99.9 wt%, purity 9
Using 9.5wt% electrolytic cobalt, 99wt% purity poron as B, and 99.7wt% or higher purity Nd as R, 15%Nd-8%B-5%C in atomic%
〇-Weigh to obtain the final sintered body of residual Fe, melt with high frequency, and cool with water! An alloy ingot was obtained by casting into a IIs type. After coarsely crushing the alloy ingot using a stamp mill,
It was made into a fine powder with an average particle size of about 3 μm using a jet mill. Zinc stearate powder was mixed with the obtained fine powder to prepare a raw material for molding. After filling the molding material into the molding space formed by the die and the lower punch, compression molding was performed by applying a pulsed magnetic field with a magnetic field strength of 32 KOe (so-called transverse magnetic field molding method in which the pressing direction and the orientation direction are perpendicular to each other). After sintering the obtained molded body at 1080°C for 1 hour in a non-oxidizing atmosphere,
Once held at 900°C for 1 hour, slowly cooled to room temperature, and then heated again at 6°C.
The mixture was treated at 60°C for 1 hour and rapidly cooled to room temperature.

原料微粉に対するステアリン酸亜鉛粉末の添加量を変化
させて、磁気特性の比較を行った結果を第1表に示す。
Table 1 shows the results of comparing magnetic properties by varying the amount of zinc stearate powder added to the raw material fine powder.

第1表 第1表に示される様に、ステアリン酸亜鉛粉末を混合し
たものを成形用原料とすることにより、ダイス内周面と
成形体の間の摩擦は著しく少なくなり、成形スピードを
約3倍にもすることが出来た。ダイス内周面補修は不要
となり、製造能率の向上効果も得られた。
Table 1 As shown in Table 1, by using a mixture of zinc stearate powder as the raw material for molding, the friction between the inner circumferential surface of the die and the molded object is significantly reduced, and the molding speed is reduced to approximately 3. I was able to double it. Repairs to the inner peripheral surface of the die were no longer necessary, and manufacturing efficiency was improved.

[発明の効果] 本発明に依り、従来成形不可能になる程の金型と成形体
との間の摩擦は抑制されてNd −1”e −日系永久
磁石の工業的大量生産の道が開かれた。
[Effects of the invention] According to the present invention, the friction between the mold and the molded body to the extent that conventional molding was impossible has been suppressed, opening the way to industrial mass production of Nd-1”e-Japanese permanent magnets. It was written.

Claims (1)

【特許請求の範囲】 1、原子百分比で、8〜30%のR(但し、RはYを含
む希土類元素の少なくとも1種以上)2〜28%のB、
50%以下のCo、5%以下の添加元素M(但しMはA
l、Ti、Ni、C、Ca、Zn、Mg、CU、Si、
V、Nb、Ta、Cr、Mo、W、Mn、Zr、Hfの
少なくとも1種以上)及び残部Feからなる磁気異方性
焼結磁石の製造方法において、平均粒径1〜50μmの
原料粉末に、ステアリン酸亜鉛を0.005〜0.1w
t%混合して成形用原料粉末とし、これをダイス、下パ
ンチで形成する成形空間内に充填し、磁場により原料粉
末を配向させ成形を終了した後、900〜1200℃の
範囲内の温度で焼結した後、熱処理を施すことを特徴と
する焼結磁石の製造方法。 2、原料粉末を成形空間内に充填した後、20KOe〜
150KOeのパルス磁場を成形終了に至るまでの間、
少なくとも1回印加して原料粉末を配向させることを特
徴とする特許請求の範囲第1項記載の焼結磁石の製造方
法。
[Claims] 1. 8 to 30% R (wherein R is at least one kind of rare earth element including Y) 2 to 28% B, in terms of atomic percentage;
50% or less Co, 5% or less additional element M (however, M is A
l, Ti, Ni, C, Ca, Zn, Mg, CU, Si,
In a method for manufacturing a magnetically anisotropic sintered magnet consisting of at least one of V, Nb, Ta, Cr, Mo, W, Mn, Zr, Hf) and the remainder being Fe, raw material powder with an average particle size of 1 to 50 μm is used. , 0.005-0.1w zinc stearate
t% mixed to obtain a raw material powder for molding, this is filled into the molding space formed by a die and a lower punch, and after completing the molding by orienting the raw material powder by a magnetic field, it is heated at a temperature within the range of 900 to 1200 ° C. A method for manufacturing a sintered magnet, which comprises performing heat treatment after sintering. 2. After filling the raw material powder into the molding space, 20KOe ~
A pulsed magnetic field of 150 KOe is applied until the end of molding.
2. The method of manufacturing a sintered magnet according to claim 1, wherein the application is applied at least once to orient the raw material powder.
JP60055465A 1985-03-19 1985-03-19 Manufacture of sintered magnet Pending JPS61214402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055465A JPS61214402A (en) 1985-03-19 1985-03-19 Manufacture of sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055465A JPS61214402A (en) 1985-03-19 1985-03-19 Manufacture of sintered magnet

Publications (1)

Publication Number Publication Date
JPS61214402A true JPS61214402A (en) 1986-09-24

Family

ID=12999354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055465A Pending JPS61214402A (en) 1985-03-19 1985-03-19 Manufacture of sintered magnet

Country Status (1)

Country Link
JP (1) JPS61214402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398105A (en) * 1986-10-15 1988-04-28 Mitsubishi Metal Corp Permanent magnet made of metal carbide dispersion type fe based sintered alloy
JPS63119205A (en) * 1986-11-06 1988-05-23 Shin Etsu Chem Co Ltd Sintered permanent magnet
JPH024939A (en) * 1987-10-08 1990-01-09 Kawasaki Steel Corp Rare earth-transition metallic magnetic alloy
EP0680054A1 (en) * 1994-04-29 1995-11-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398105A (en) * 1986-10-15 1988-04-28 Mitsubishi Metal Corp Permanent magnet made of metal carbide dispersion type fe based sintered alloy
JPS63119205A (en) * 1986-11-06 1988-05-23 Shin Etsu Chem Co Ltd Sintered permanent magnet
JPH024939A (en) * 1987-10-08 1990-01-09 Kawasaki Steel Corp Rare earth-transition metallic magnetic alloy
JPH0518898B2 (en) * 1987-10-08 1993-03-15 Kawasaki Steel Co
EP0680054A1 (en) * 1994-04-29 1995-11-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same

Similar Documents

Publication Publication Date Title
US4081297A (en) RE-Co-Fe-transition metal permanent magnet and method of making it
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
JPS61214402A (en) Manufacture of sintered magnet
JPH0320046B2 (en)
EP0286357A2 (en) Multiphase permanent magnet of the Fe-B-MM type
Fuerst et al. Die‐upset PrCo5‐type magnets from melt‐spun ribbons
JPH08181009A (en) Permanent magnet and its manufacturing method
JPS61208808A (en) Manufacture of sintered magnet
JPS61208809A (en) Manufacture of sintered magnet
JPS61119006A (en) Manufacture of sintered magnet
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH04143221A (en) Production of permanent magnet
JPS6119084B2 (en)
JPH0231483B2 (en)
JPS62167842A (en) Production of rare earth magnet
JPH0418707A (en) Manufacture of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPH0422104A (en) Method of manufacturing permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH1041114A (en) Manufacture of powder for high molecular composite type rare earth magnet