JPH1041114A - Manufacture of powder for high molecular composite type rare earth magnet - Google Patents

Manufacture of powder for high molecular composite type rare earth magnet

Info

Publication number
JPH1041114A
JPH1041114A JP8208963A JP20896396A JPH1041114A JP H1041114 A JPH1041114 A JP H1041114A JP 8208963 A JP8208963 A JP 8208963A JP 20896396 A JP20896396 A JP 20896396A JP H1041114 A JPH1041114 A JP H1041114A
Authority
JP
Japan
Prior art keywords
powder
rare earth
composite type
earth magnet
type rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8208963A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishii
政義 石井
Akio Hasebe
長谷部章雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP8208963A priority Critical patent/JPH1041114A/en
Publication of JPH1041114A publication Critical patent/JPH1041114A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide manufacture of anisotropic powder for high molecular composite type rare earth magnet which has large residual magnetic flux density (Br) and maximum energy product ((BH)max ) and superior magnet characteristics. SOLUTION: When powder for high molecular composite type rare earth magnetic of R-T-B based (R is a rare earth element, with Nd as a main component, containing Y, 2.0<R<13.5at.%, and T is a transition metal with Fe and Co as main components, 70.0<T<89.0at%, and 4.0<B<20.0at% for B) is manufactured, R-T-B based alloy is rapidly quenched to obtain amorphous powder, and then the powder is heat-treated at 650-1000 deg.C in hydrogen, and further, dehydrogenated at 650-1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子複合型希土
類磁石用粉末の製造方法に関し、特に、ボンド磁石用N
d−Fe−B系合金粉末の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder for a polymer composite type rare earth magnet, and more particularly to a method for producing N for a bonded magnet.
The present invention relates to a method for producing a d-Fe-B-based alloy powder.

【0002】[0002]

【従来の技術】近年、R−T−B系合金粉末を用いたボ
ンド磁石(圧縮成形型、射出成形型)の開発が進み、様
々なユーザーに使用されている。こうしたボンド磁石用
Nd−Fe−B系合金粉末の製造方法には、合金インゴ
ットを液体急冷法により作製する方法がある。これによ
り、得られる粉末は、Nd2Fe14Bを主相とする等方
性の粉末である。
2. Description of the Related Art In recent years, the development of bond magnets (compression molding dies, injection molding dies) using an RTB-based alloy powder has been advanced and used by various users. As a method for producing such an Nd—Fe—B alloy powder for bonded magnets, there is a method for producing an alloy ingot by a liquid quenching method. As a result, the obtained powder is an isotropic powder having Nd 2 Fe 14 B as a main phase.

【0003】また、最近注目されているのは、Rの組成
値を低下させ、低RのR−T−B系合金インゴットを液
体急冷法により作製されたFe3B、α−Feを主相と
する等方性の粉末である。この粉末は、スプリング磁石
に用いられる。R−T−B系スプリング磁石は、ソフト
磁性を有するFe3B、α−Feと、ハード磁性を有す
るNd2Fe14Bが同一組織内に共存するナノコンポジ
ットタイプの等方性ハード磁性材料である。その金属組
織は、平均結晶粒径20nm程度の微細結晶集合体から
なり、各粒子は、強い粒子間相互作用で結合し、高い残
留磁束密度(Br)を有し、減磁界中において、磁化が
可逆的にスプリングバックするという特異なリコイル挙
動を示す。
[0003] In recent years, attention has been focused on reducing the composition value of R to obtain an R-T-B-based alloy ingot with a low R as a main phase containing Fe 3 B and α-Fe produced by a liquid quenching method. Isotropic powder. This powder is used for a spring magnet. The RTB-based spring magnet is a nanocomposite isotropic hard magnetic material in which Fe 3 B and α-Fe having soft magnetism and Nd 2 Fe 14 B having hard magnetism coexist in the same tissue. is there. The metal structure is composed of fine crystal aggregates having an average crystal grain size of about 20 nm, and each particle is coupled by strong interparticle interaction, has a high residual magnetic flux density (Br), and has a magnetization in a demagnetizing field. It shows a unique recoil behavior of reversible springback.

【0004】しかし、上記の製造方法により得られる粉
末は、アモルファス及び微細な結晶粒が磁気的にランダ
ムに配列しているため、等方性であり、Brが低い。こ
のため、最大エネルギー積[(BH)max]が低く、こ
れを用いて得られたボンド磁石では、工業的に有益な磁
石特性は得られていない。
However, the powder obtained by the above manufacturing method is isotropic and has a low Br because amorphous and fine crystal grains are magnetically randomly arranged. For this reason, the maximum energy product [(BH) max ] is low, and industrially useful magnet properties are not obtained with a bonded magnet obtained using this.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、上
記の課題を解決し、Br、(BH)maxが大きい、優れ
た磁石特性を有する異方性の高分子複合型希土類磁石用
粉末の製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned problems and provides an anisotropic polymer composite type rare earth magnet powder having a large Br and (BH) max and excellent magnet properties. It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題に対し、種々検討を行った結果、R−T−B系合金イ
ンゴットを用いて液体急冷法により作製された粉末を、
水素中熱処理して水素吸蔵させた後、強制脱水素を行う
ことにより異方性粉末が得られることを見い出した。
Means for Solving the Problems The present inventors have conducted various studies on the above-mentioned problems, and as a result, have found that a powder produced by a liquid quenching method using an RTB-based alloy ingot is used.
It has been found that anisotropic powder can be obtained by performing forced dehydrogenation after heat treatment in hydrogen to occlude hydrogen.

【0007】即ち、Nd−Fe−B系合金インゴットを
水素中熱処理すると、650℃付近でNd2Fe14Bが
NdH2、α−Fe、Fe2B、Fe3Bに分解する。続
く脱水素処理工程でNd2Fe14Bが再結晶する。これ
を粉砕することにより、異方性粉末が得られる。
That is, when a Nd-Fe-B alloy ingot is heat-treated in hydrogen, Nd 2 Fe 14 B is decomposed into NdH 2 , α-Fe, Fe 2 B and Fe 3 B at around 650 ° C. Nd 2 Fe 14 B is recrystallized in the subsequent dehydrogenation process. By grinding this, an anisotropic powder is obtained.

【0008】即ち、本発明は、R−T−B系の高分子
複合型希土類磁石用粉末(RはNdを主成分とするYを
含む希土類元素で、2.0<R<13.5at%、TはF
e、Coを主成分とする遷移金属で、70.0<T<8
9.0at%、Bは4.0<B<20.0at%)の製造
方法において、R−T−B系合金を液体急冷し、アモル
ファス粉末を得、該粉末を650℃〜1000℃で水素
中熱処理し、更に、650℃〜1000℃で脱水素処理
することを特徴とする高分子複合型希土類磁石用粉末の
製造方法である。
That is, the present invention relates to an RTB-based polymer composite type rare earth magnet powder (R is a rare earth element containing Nd as a main component and containing Y, 2.0 <R <13.5 at%). , T is F
e, a transition metal containing Co as a main component, and 70.0 <T <8
9.0 at%, B is 4.0 <B <20.0 at%). In the manufacturing method, the RTB-based alloy is rapidly quenched by liquid to obtain an amorphous powder, and the powder is hydrogenated at 650 to 1000 ° C. This is a method for producing a polymer composite type rare earth magnet powder, which is subjected to a medium heat treatment and further to a dehydrogenation treatment at 650 ° C. to 1000 ° C.

【0009】また、本発明は、R−T−B−M系の高
分子複合型希土類磁石用粉末(RはNdを主成分とする
Yを含む希土類元素で、2.0<R<13.5at%、T
はFe、Coを主成分とする遷移金属で、70.0<T
<89.0at%、Bは4.0<B<20.0at%、M
はGa、Zr、Si、Cr、Ti、V、Alのうち少な
くとも1種以上)の製造方法において、R−T−B−M
系合金を液体急冷し、アモルファス粉末を得、該粉末を
650℃〜1000℃で水素中熱処理し、更に、650
℃〜1000℃で脱水素処理することを特徴とする高分
子複合型希土類磁石用粉末の製造方法である。
Further, the present invention relates to an RTB-M-based polymer composite type rare earth magnet powder (R is a rare earth element containing Nd as a main component and containing Y, and 2.0 <R <13. 5at%, T
Is a transition metal mainly composed of Fe and Co, and is 70.0 <T
<89.0 at%, B is 4.0 <B <20.0 at%, M
Is at least one of Ga, Zr, Si, Cr, Ti, V, and Al).
Liquid quenching of the base alloy to obtain an amorphous powder, and heat treating the powder in hydrogen at 650 ° C. to 1000 ° C .;
This is a method for producing a polymer composite type rare earth magnet powder, which is subjected to a dehydrogenation treatment at a temperature of from 1000C to 1000C.

【0010】また、本発明は、上記またはの高分
子複合型希土類磁石用粉末の製造方法において、水素中
熱処理及び脱水素処理する工程を100Oe以上の一方
向磁界中で行うことを特徴とする高分子複合型希土類磁
石用粉末の製造方法である。
Further, the present invention provides the above method for producing a powder for a polymer composite type rare earth magnet, wherein the heat treatment in hydrogen and the dehydrogenation are performed in a unidirectional magnetic field of 100 Oe or more. This is a method for producing a molecular composite rare earth magnet powder.

【0011】本発明において、Rの組成を2.0〜13.
5at%としたのは、2.0at%未満では、保磁力が
ほとんどないためであり、13.5at%を越えると、
Brが減少し、(BH)maxが低くなるためである。ま
た、70.0<T<89.0at%、4.0<B<20.0
at%としたのは、この範囲を越えると、磁気特性が低
下するからである。
In the present invention, the composition of R is from 2.0 to 13.
The reason for setting it to 5 at% is that if it is less than 2.0 at%, there is almost no coercive force, and if it exceeds 13.5 at%,
This is because Br decreases and (BH) max decreases. Also, 70.0 <T <89.0 at%, 4.0 <B <20.0
The reason for setting at% is that if the ratio exceeds this range, the magnetic properties deteriorate.

【0012】また、水素中熱処理を行う温度を650℃
〜1000℃としたのは、650℃未満では、Nd2
14BがNdH2、α−Fe、Fe2Bに分解せずに、N
2Fe14BHxとして残るためである。逆に、1000
℃を越えると、Nd2Fe14BがNdH2、α−Fe、F
2Bに分解せずに、Nd2Fe14B+H2↑となるため
である。
Further, the temperature for performing the heat treatment in hydrogen is 650 ° C.
The reason why the temperature is set to 1000 ° C. is that Nd 2 F
e 14 B is not decomposed into NdH 2 , α-Fe, Fe 2 B,
It is to remain as d 2 Fe 14 BH x. Conversely, 1000
C., the Nd 2 Fe 14 B becomes NdH 2 , α-Fe, F
This is because Nd 2 Fe 14 B + H 2ず is obtained without being decomposed into e 2 B.

【0013】また、脱水素処理を行う温度を650℃〜
1000℃としたのは、この範囲以外であると、脱水素
処理の効果が得られないからである。
Further, the temperature for performing the dehydrogenation treatment is 650 ° C.
The reason why the temperature is set to 1000 ° C. is that if the temperature is outside this range, the effect of the dehydrogenation treatment cannot be obtained.

【0014】また、本発明において、水素吸蔵に伴い生
成するFe、Fe−Coのキュリー温度は770℃以上
であるため、水素中熱処理、脱水素処理を行う際、磁界
を印加することにより、磁気的に結晶方位をそろえるこ
とが可能となる。
Further, in the present invention, since the Curie temperature of Fe and Fe—Co generated by the occlusion of hydrogen is 770 ° C. or higher, the magnetic field is applied by applying a magnetic field when performing the heat treatment in hydrogen and the dehydrogenation treatment. The crystal orientation can be uniformly aligned.

【0015】また、水素中熱処理、脱水素処理を行う際
の印加磁場を100Oe以上としたのは、100Oe未
満では、粉末の磁気特性が磁場を印加しないで処理した
ものと著しい差がみられず、磁場を印加した効果がない
ためである。
The reason why the applied magnetic field during the heat treatment and the dehydrogenation treatment in hydrogen is set to 100 Oe or more is that when the applied magnetic field is less than 100 Oe, there is no remarkable difference in the magnetic properties of the powder from the powder treated without applying the magnetic field. This is because there is no effect of applying a magnetic field.

【0016】[0016]

【実施例】以下に、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0017】(実施例1)純度95wt%以上のNd、
電解Fe、フェロボロンを用い、Ar中高周波溶解し
て、3.5at%Nd−18.5at%B−balFe等
の組成を有する合金インゴットを得た。次に、このイン
ゴットに、Ar雰囲気中1000℃で24hr熱処理を
施した。このインゴットをAr雰囲気中において再溶解
した後、高速回転する銅製ロール(ロール表面速度5m
/s〜50m/s)に噴射し、アモルファス粉末を得
た。得られた粉末を、大気圧水素下で室温から850℃
まで加熱し、1時間保持した後、炉内を真空ポンプで1
-6torrまで強制排気し、1時間保持した後、Ar
中で室温まで急冷した。
(Example 1) Nd having a purity of 95 wt% or more,
High frequency melting in Ar was performed using electrolytic Fe and ferroboron to obtain an alloy ingot having a composition such as 3.5 at% Nd-18.5 at% B-balFe. Next, this ingot was subjected to a heat treatment at 1000 ° C. for 24 hours in an Ar atmosphere. After remelting this ingot in an Ar atmosphere, a copper roll rotating at a high speed (roll surface speed 5 m
/ S to 50 m / s) to obtain an amorphous powder. The obtained powder is heated from room temperature to 850 ° C. under hydrogen at atmospheric pressure.
And hold it for 1 hour.
After forcibly evacuating to 0 -6 torr and holding for 1 hour, Ar
Quenched to room temperature.

【0018】次に、上記処理を行った急冷薄帯粉末を1
50μm以下に粉砕し、この粉末を30kOeの直流磁
界中で配向させ、パラフィンで固定した後、VSMを使
用して合金粉末の磁気特性を測定した。
Next, the quenched ribbon powder treated as described above
The powder was pulverized to 50 μm or less, the powder was oriented in a DC magnetic field of 30 kOe, fixed with paraffin, and the magnetic properties of the alloy powder were measured using VSM.

【0019】(実施例2)純度95wt%以上のNd、
電解Fe、フェロボロンを用い、Ar中高周波溶解し
て、12.6at%Nd−6.0at%B−balFeの
組成を有する合金インゴットを得た。次に、このインゴ
ットに、Ar雰囲気中1000℃で24hr熱処理を施
した。このインゴットをAr雰囲気中において再溶解し
た後、高速回転する銅製ロール(ロール表面速度5m/
s〜50m/s)に噴射し、アモルファス粉末を得た。
得られた粉末を、大気圧水素下で室温から850℃まで
加熱し、1時間保持した後、炉内を真空ポンプで10-6
torrまで強制排気し、1時間保持した後、Ar中で
室温まで急冷した。
Example 2 Nd having a purity of 95 wt% or more,
High frequency melting was performed in Ar using electrolytic Fe and ferroboron to obtain an alloy ingot having a composition of 12.6 at% Nd-6.0 at% B-balFe. Next, this ingot was subjected to a heat treatment at 1000 ° C. for 24 hours in an Ar atmosphere. After remelting this ingot in an Ar atmosphere, a copper roll rotating at high speed (roll surface speed 5 m /
s to 50 m / s) to obtain an amorphous powder.
The resulting powder was heated to 850 ° C. from room temperature under atmospheric pressure of hydrogen, after the one hour hold, 10-6 in the furnace by a vacuum pump
After forcibly evacuating to torr and holding for 1 hour, the mixture was rapidly cooled to room temperature in Ar.

【0020】次に、上記処理を行った急冷薄帯粉末を1
50μm以下に粉砕し、この粉末を30kOeの直流磁
界中で配向させ、パラフィンで固定した後、VSMを使
用して合金粉末の磁気特性を測定した。
Next, the quenched ribbon powder having been subjected to the above-mentioned treatment is mixed with 1
The powder was pulverized to 50 μm or less, the powder was oriented in a DC magnetic field of 30 kOe, fixed with paraffin, and the magnetic properties of the alloy powder were measured using VSM.

【0021】(比較例1)3.5at%Nd−18.5a
t%B−balFeの組成のインゴットをAr雰囲気中
1000℃で24hrの熱処理を施し、このインゴット
をAr雰囲気中において再溶解した後、高速回転する銅
製ロール(ロール表面速度5m/s〜50m/s)に噴
射し、アモルファス粉末を得た。この粉末を使用し、実
施例1と同様に磁気特性を測定した。
Comparative Example 1 3.5 at% Nd-18.5a
An ingot having a composition of t% B-balFe was subjected to a heat treatment at 1000 ° C. for 24 hours in an Ar atmosphere, and the ingot was redissolved in an Ar atmosphere. Then, a copper roll rotating at high speed (roll surface speed 5 m / s to 50 m / s). ) To obtain an amorphous powder. Using this powder, the magnetic properties were measured in the same manner as in Example 1.

【0022】(比較例2)12.6at%Nd−6.0a
t%B−balFeの組成のインゴットをAr雰囲気中
1000℃で24hrの熱処理を施し、このインゴット
をAr雰囲気中において再溶解した後、高速回転する銅
製ロール(ロール表面速度5m/s〜50m/s)に噴
射し、アモルファス粉末を得た。この粉末を使用し、実
施例1と同様に磁気特性を測定した。
Comparative Example 2 12.6 at% Nd-6.0a
An ingot having a composition of t% B-balFe was subjected to a heat treatment at 1000 ° C. for 24 hours in an Ar atmosphere, and the ingot was redissolved in an Ar atmosphere. Then, a copper roll rotating at high speed (roll surface speed 5 m / s to 50 m / s). ) To obtain an amorphous powder. Using this powder, the magnetic properties were measured in the same manner as in Example 1.

【0023】(比較例3)12.6at%Nd−6.0a
t%B−balFeの組成のインゴットをAr雰囲気中
1000℃で24hrの熱処理を施し、このインゴット
を大気圧水素下で室温から850℃まで加熱し、1時間
保持した後、炉内を真空ポンプで10-6torrまで強
制排気し、1時間保持した後、Ar中で室温まで急冷
し、150μm以下に粉砕して粉末を得た。この粉末を
使用し、実施例1と同様に磁気特性を測定した。
Comparative Example 3 12.6 at% Nd-6.0a
An ingot having a composition of t% B-balFe was subjected to a heat treatment at 1000 ° C. for 24 hours in an Ar atmosphere, and the ingot was heated from room temperature to 850 ° C. under hydrogen at atmospheric pressure, and held for 1 hour. After forced exhaustion to 10 −6 torr and holding for 1 hour, the mixture was rapidly cooled to room temperature in Ar and pulverized to 150 μm or less to obtain a powder. Using this powder, the magnetic properties were measured in the same manner as in Example 1.

【0024】実施例1、2、比較例1〜3の結果を表1
に示した。Br、(BH)maxの値は、粉末試料の密度
を100%に換算した値を示した。
Table 1 shows the results of Examples 1 and 2 and Comparative Examples 1 to 3.
It was shown to. The values of Br and (BH) max are values obtained by converting the density of the powder sample to 100%.

【0025】[0025]

【表1】 [Table 1]

【0026】表1より、本発明では、急冷薄帯を水素中
熱処理、強制脱水素することにより、Br、(BH)
maxが向上することがわかる。更にGa等の添加元素に
より、磁気特性が向上していることがわかる。
According to Table 1, in the present invention, the quenched ribbon is heat-treated in hydrogen and subjected to forced dehydrogenation to obtain Br, (BH).
It can be seen that max is improved. Further, it can be seen that the magnetic properties are improved by the additional elements such as Ga.

【0027】なお、本実施例において、添加元素は、G
a、Zr、Cr、V、Alの単独添加のみについて述べ
ているが、それ以外にもSi、Ti等が使用でき、これ
らを複合添加しても同様の効果が得られる。
In this embodiment, the additive element is G
Although only a single addition of a, Zr, Cr, V, and Al is described, Si, Ti, and the like can be used, and the same effect can be obtained by adding them in combination.

【0028】(実施例3)実施例1のNo.1、No.3
及び実施例2のアモルファス粉末を用いて、一方向磁界
中で、水素中熱処理、脱水素処理した。
(Embodiment 3) Nos. 1 and 3 of Embodiment 1
Using the amorphous powder of Example 2 and a heat treatment in hydrogen and a dehydrogenation treatment in a unidirectional magnetic field.

【0029】即ち、実施例1のNo.1、No.3及び実
施例2のアモルファス粉末を、2000Oeの直流磁界
を一方向に印加した管状心内で、大気圧水素下で室温か
ら850℃まで加熱し、1時間保持した後、炉内を真空
ポンプで10-6torrまで強制排気し、1時間保持し
た後、Ar中で室温まで急冷した。結果を表2に示し
た。また、比較として、磁界を印加しない場合も示し
た。
That is, the amorphous powders of Nos. 1, 3 and 2 of Example 1 were heated from room temperature to 850 ° C. under hydrogen at atmospheric pressure in a tubular core to which a DC magnetic field of 2000 Oe was applied in one direction. After heating and maintaining for 1 hour, the inside of the furnace was forcibly evacuated to 10 −6 torr by a vacuum pump, and after maintaining for 1 hour, rapidly cooled to room temperature in Ar. The results are shown in Table 2. For comparison, a case where no magnetic field is applied is also shown.

【0030】(表2) (Table 2)

【0031】表2より、磁界を一方向に印加しながら水
素中熱処理、脱水素処理を行った粉末は、磁界を印加し
ないで水素中熱処理、脱水素処理を行った粉末に比べ、
優れた磁気特性を示していることがわかる。
From Table 2, it can be seen that the powder subjected to heat treatment and dehydrogenation treatment in hydrogen while applying a magnetic field in one direction is different from the powder subjected to heat treatment and dehydrogenation treatment in hydrogen without application of a magnetic field.
It turns out that it shows excellent magnetic characteristics.

【0032】[0032]

【発明の効果】本発明によれば、Br、(BH)max
大きい、優れた磁石特性を有する異方性の高分子複合型
希土類磁石用粉末の製造方法を提供することができた。
According to the present invention, it is possible to provide a method for producing anisotropic polymer composite type rare earth magnet powder having a large Br and (BH) max and excellent magnet properties.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R−T−B系の高分子複合型希土類磁石
用粉末(RはNdを主成分とするYを含む希土類元素
で、2.0<R<13.5at%、TはFe、Coを主成
分とする遷移金属で、70.0<T<89.0at%、B
は4.0<B<20.0at%)の製造方法において、R
−T−B系合金を液体急冷し、アモルファス粉末を得、
該粉末を650℃〜1000℃で水素中熱処理し、更
に、650℃〜1000℃で脱水素処理することを特徴
とする高分子複合型希土類磁石用粉末の製造方法。
1. An RTB-based polymer composite type rare earth magnet powder (R is a rare earth element containing Nd as a main component and containing Y, 2.0 <R <13.5 at%, T is Fe , Co is a transition metal containing 70.0 <T <89.0 at%, B
Is 4.0 <B <20.0 at%).
-Liquid quenching of the TB-based alloy to obtain an amorphous powder,
A method for producing a powder for a polymer composite type rare earth magnet, comprising subjecting the powder to a heat treatment in hydrogen at 650 ° C. to 1000 ° C., and further performing a dehydrogenation treatment at 650 ° C. to 1000 ° C.
【請求項2】 R−T−B−M系の高分子複合型希土類
磁石用粉末(RはNdを主成分とするYを含む希土類元
素で、2.0〈R〈13.5at%、TはFe、Coを主
成分とする遷移金属で、70.0<T<89.0at%、
Bは4.0<B<20.0at%、MはGa、Zr、S
i、Cr、Ti、V、Alのうち少なくとも1種以上)
の製造方法において、R−T−B−M系合金を液体急冷
し、アモルファス粉末を得、該粉末を650℃〜100
0℃で水素中熱処理し、更に、650℃〜1000℃で
脱水素処理することを特徴とする高分子複合型希土類磁
石用粉末の製造方法。
2. An RTBM-based polymer composite type rare earth magnet powder (R is a rare earth element containing Nd as a main component and containing Y, 2.0 <R <13.5 at%, T Is a transition metal containing Fe and Co as main components, 70.0 <T <89.0 at%,
B is 4.0 <B <20.0 at%, M is Ga, Zr, S
i, at least one of Cr, Ti, V, and Al)
In the production method, the RTBM alloy is rapidly quenched with a liquid to obtain an amorphous powder.
A method for producing a powder for a polymer composite type rare earth magnet, comprising performing a heat treatment in hydrogen at 0 ° C. and further performing a dehydrogenation treatment at 650 ° C. to 1000 ° C.
【請求項3】 請求項1または2記載の高分子複合型希
土類磁石用粉末の製造方法において、水素中熱処理及び
脱水素処理する工程を100Oe以上の一方向磁界中で
行うことを特徴とする高分子複合型希土類磁石用粉末の
製造方法。
3. The method for producing a polymer composite type rare earth magnet powder according to claim 1, wherein the heat treatment in hydrogen and the dehydrogenation treatment are performed in a unidirectional magnetic field of 100 Oe or more. Method for producing powder for molecular composite rare earth magnet.
JP8208963A 1996-07-19 1996-07-19 Manufacture of powder for high molecular composite type rare earth magnet Pending JPH1041114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8208963A JPH1041114A (en) 1996-07-19 1996-07-19 Manufacture of powder for high molecular composite type rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8208963A JPH1041114A (en) 1996-07-19 1996-07-19 Manufacture of powder for high molecular composite type rare earth magnet

Publications (1)

Publication Number Publication Date
JPH1041114A true JPH1041114A (en) 1998-02-13

Family

ID=16565061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8208963A Pending JPH1041114A (en) 1996-07-19 1996-07-19 Manufacture of powder for high molecular composite type rare earth magnet

Country Status (1)

Country Link
JP (1) JPH1041114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872326B2 (en) 2000-07-31 2005-03-29 Seiko Epson Corporation Method of manufacturing magnetic powder, magnetic powder and bonded magnets
JP2014527289A (en) * 2011-07-20 2014-10-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872326B2 (en) 2000-07-31 2005-03-29 Seiko Epson Corporation Method of manufacturing magnetic powder, magnetic powder and bonded magnets
JP2014527289A (en) * 2011-07-20 2014-10-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Magnetic material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP3822031B2 (en) Method for producing replacement spring magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH045740B2 (en)
JPH1041114A (en) Manufacture of powder for high molecular composite type rare earth magnet
JP3469496B2 (en) Manufacturing method of magnet material
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH045739B2 (en)
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH01274401A (en) Permanent magnet
JPH0320048B2 (en)
JP4519118B2 (en) Alloys for rare earth-iron-boron composite magnets used in bonded magnets
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPH06112027A (en) Manufacture of high-quality magnet material
JPH04143221A (en) Production of permanent magnet
JPH05152115A (en) Manufacture of magnetic recording powder
JPH07312307A (en) Powder for polymer composite type rare earth magnets