JPH05152115A - Manufacture of magnetic recording powder - Google Patents

Manufacture of magnetic recording powder

Info

Publication number
JPH05152115A
JPH05152115A JP3335635A JP33563591A JPH05152115A JP H05152115 A JPH05152115 A JP H05152115A JP 3335635 A JP3335635 A JP 3335635A JP 33563591 A JP33563591 A JP 33563591A JP H05152115 A JPH05152115 A JP H05152115A
Authority
JP
Japan
Prior art keywords
temperature
magnetic recording
atom
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3335635A
Other languages
Japanese (ja)
Inventor
Koichi Ishiyama
宏一 石山
Yoshinari Ishii
義成 石井
Takuo Takeshita
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3335635A priority Critical patent/JPH05152115A/en
Publication of JPH05152115A publication Critical patent/JPH05152115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the room-temperature coercive force of the title powder by a method wherein a primary hydrogen occlusion treatment and a secondary hydrogen occlusion treatment at respectively specific temperatures are executed, in hydrogen gas or in the mixed gas of hydrogen with an inert gas, to the ingot or the alloy powder of an R (rare-earth element)-B-Mn-Fe-based alloy and, after that, a dehydrogenation treatment is executed under a specific condition. CONSTITUTION:A hydrogen occlusion treatment is executed, in hydrogen gas or in the mixed gas of hydrogen gas with an inert gas, to the following while a temperature is raised and held at room temperature to 500 deg.C and, in addition, the temperature is set at 500 to 1000 deg.C: an alloy in which 4 to 20atomic% of Mn has been added to an alloy which is composed of 5 to 20atomic% of one or more kinds of Y and rare-earth elements, 5 to 20atomic% of B and Fe as its residual part; or an alloy in which one kind or two kinds out of 1 to 10atomic% of Al and 1 to 10atomic% of Cr have been added to 4 to 20atomic% of Mn. Thereby, it is possible to manufacture a magnetic recording powder whose Curie point is low and whose room-temperature coercive force is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁器テープ、磁器カ
ードなどの磁気記録媒体の製造に用いられる、常温で高
保磁力を有しかつキュリー点が低い磁気記録粉末の製造
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing magnetic recording powder having a high coercive force at room temperature and a low Curie point, which is used for producing magnetic recording media such as porcelain tapes and porcelain cards.

【0002】[0002]

【従来の技術】従来、磁気記録粉末として、γ−Fe2
3 粉末、Baフェライト粉末、RCo5 粉末(Rは、
Yを含む希土類元素のうちの一種で、Smが主として使
用されている。)、Nd−Fe−B系合金粉末(特開昭
59−229461参照)などが知られている。これら
磁気記録粉末の常温における保磁力(iHc)、キュリ
ー点(Tc)および平均粒径(γ)はおよそ表1に示さ
れる通りである。
2. Description of the Related Art Conventionally, γ-Fe 2 has been used as a magnetic recording powder.
O 3 powder, Ba ferrite powder, RCo 5 powder (R is
One of the rare earth elements including Y, Sm is mainly used. ), Nd-Fe-B alloy powder (see Japanese Patent Laid-Open No. 59-229461), and the like. The coercive force (iHc), Curie point (Tc) and average particle size (γ) at room temperature of these magnetic recording powders are as shown in Table 1.

【0003】[0003]

【表1】 [Table 1]

【0004】これら磁気記録粉末をテープまたは合成樹
脂板の表面に塗布することにより、それぞれ磁気テープ
または磁気カードなどの磁気記録媒体を製造し、上記製
造された磁気テープまたは磁気カードなどの磁気記録媒
体は、磁気記録粉末のもつキュリー点直下の温度まで昇
温加熱し、保磁力の弱まった状態で通常の磁気的書込み
および消去を行っていた。
A magnetic recording medium such as a magnetic tape or a magnetic card is manufactured by applying the magnetic recording powder to the surface of a tape or a synthetic resin plate, and the magnetic recording medium such as the manufactured magnetic tape or magnetic card is manufactured. Of the magnetic recording powder was heated to a temperature just below the Curie point of the magnetic recording powder to perform normal magnetic writing and erasing with the coercive force weakened.

【0005】[0005]

【発明が解決しようとする課題】上述のように、通常の
磁気的書込みおよび消去を行うには、磁気テープまたは
磁気カードなどの磁気記録媒体を上記磁気記録粉末のも
つキュリー点直下の温度まで昇温加熱する必要がある
が、従来の磁気記録粉末は、いずれものキュリー点が高
いために昇温加熱に多大のエネルギーを必要とし、ま
た、キュリー点の高い磁気記録粉末を使用した磁気テー
プまたは磁気カードに磁気的書込みおよび消去を行うに
は高いキュリー点直下まで昇温加熱する必要があり、上
記加熱温度が高いと磁気テープまたは磁気カードを構成
するプラスチックが高温のために劣化することもあっ
た。
As described above, in order to perform ordinary magnetic writing and erasing, a magnetic recording medium such as a magnetic tape or a magnetic card is heated to a temperature just below the Curie point of the magnetic recording powder. Although conventional magnetic recording powders require high energy to heat up due to their high Curie points, magnetic tapes or magnetic tapes using magnetic recording powders with high Curie points are required. In order to magnetically write and erase the card, it is necessary to heat it up to a temperature just below the high Curie point, and if the heating temperature is high, the magnetic tape or the plastic forming the magnetic card may be deteriorated due to the high temperature. ..

【0006】そのため、キュリー点の低い磁気記録粉末
の研究も進められているが、一般に、キュリー点を低下
せしめると、常温における保磁力も同時に低下するとい
う問題点があった。
Therefore, researches on magnetic recording powders having a low Curie point have been conducted, but generally, when the Curie point is lowered, the coercive force at room temperature is also lowered.

【0007】さらに、従来のR−Fe−B系合金は、微
粉砕するにつれて保磁力が低下し、磁気記録粉末として
適当な平均粒径:1μm以下になると十分な保磁力が得
られないという問題点があった。
Furthermore, the coercive force of the conventional R-Fe-B alloy decreases as it is finely pulverized, and sufficient coercive force cannot be obtained when the average particle diameter suitable for magnetic recording powder is 1 μm or less. There was a point.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
キュリー点を低下せしめると同時に平均粒径:1μm以
下に微粉砕しても常温における保磁力の高い磁気記録粉
末を製造すべく研究を行った結果、Yおよび希土類元素
のうち少なくとも一種(以下、Rで示す):5〜20原
子%、B:5〜20原子%を含有し、残りがFeおよび
不可避不純物からなる組成を有する合金に、Mn:4〜
20原子%を添加してなる合金、またはMn:4〜20
原子%にさらにAl:1〜10原子%およびCr:1〜
10原子%のうち一種または二種を添加してなる合金
に、水素ガス雰囲気中または水素ガスと不活性ガスの混
合ガス雰囲気中で、室温から500℃未満に昇温保持
し、さらに500〜1000℃の範囲内の温度に保持す
る水素吸蔵処理を施し、続いて上記500〜1000℃
の範囲内の温度に保持したまま排気し、1×10-1Torr
以下の真空雰囲気中に保持する脱水素処理を施し、つい
で冷却することに得られた合金を平均粒径:1μm以下
に粉砕した合金粉末は、キュリー点が低いと同時に常温
における保磁力も高く、磁気記録粉末としては好ましい
合金粉末であるという知見を得たのである。
Therefore, the present inventors have
As a result of conducting research to produce a magnetic recording powder having a high coercive force at room temperature even if the average particle diameter is reduced to 1 μm or less while reducing the Curie point, at least one of Y and a rare earth element (hereinafter, R 5 to 20 atomic%, B: 5 to 20 atomic%, and the balance of Fe and inevitable impurities in the alloy, Mn: 4 to
Alloy formed by adding 20 atomic% or Mn: 4 to 20
Atomic%, Al: 1-10 atomic% and Cr: 1-
An alloy formed by adding one or two of 10 atomic% is kept at a temperature from room temperature to less than 500 ° C. in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas, and further 500 to 1000 The hydrogen storage treatment is carried out by keeping the temperature within the range of ℃, and then the above 500 to 1000 ℃.
Evacuated while maintaining the temperature within the range of 1 × 10 -1 Torr
The alloy powder obtained by subjecting the alloy obtained by subjecting to a dehydrogenation treatment held in the following vacuum atmosphere and then cooling to an average particle diameter of 1 μm or less has a low Curie point and a high coercive force at room temperature, We have found that it is a preferable alloy powder as a magnetic recording powder.

【0009】この発明は、かかる知見に基づいてなされ
たものであって、 (a) R :5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、を含有し、残りがFeおよび不
可避不純物からなる組成を有するインゴットまたは合金
粉末、 (b) R :5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、を含有し、さらに、 Al:1〜10原子%およびCr:1〜10原子%のう
ち一種または二種を含有し、残りがFeおよび不可避不
純物からなる組成を有するインゴットまたは合金粉末、 上記(a)または(b)のインゴットまたは合金粉末
を、水素ガス雰囲気中または水素ガスと不活性ガスの混
合ガス雰囲気中で、室温から500℃未満までの温度範
囲で昇温したのち保持または保持したのち昇温する1次
水素吸蔵処理を施し、さらに温度:500〜1000℃
の範囲内の温度に昇温したのち保持または保持したのち
昇温する2次水素吸蔵処理を施し、続いて、上記500
〜1000℃の範囲内の温度に保持したまま排気して1
×10-1Torr以下の真空雰囲気中に保持して脱水素処理
し、ついで、冷却する、磁気記録粉末の製造法に特徴を
有するものである。
The present invention has been made on the basis of such findings, and contains (a) R: 5 to 20 atom%, B: 5 to 20 atom%, and Mn: 4 to 20 atom. %, With the balance being Fe and unavoidable impurities, and (b) R: 5 to 20 atom%, B: 5 to 20 atom%, and Mn: 4 To 20 atomic%, and further, one or two of Al: 1 to 10 atomic% and Cr: 1 to 10 atomic%, and the balance of Fe and inevitable impurities. The powder, the ingot or the alloy powder of (a) or (b) above is heated in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas in a temperature range from room temperature to less than 500 ° C. and then kept. Or subjected to primary hydrogen absorbing process of heated After holding, further temperature: 500 to 1000 ° C.
The secondary hydrogen storage treatment is carried out in which the temperature is raised to a temperature within the range and then held or held and then raised.
Evacuate while maintaining the temperature within the range of ~ 1000 ℃ 1
It is characterized by a method for producing a magnetic recording powder in which it is held in a vacuum atmosphere of 10 -1 Torr or less for dehydrogenation, and then cooled.

【0010】つぎに、この発明の成分組成を上記のごと
く限定した理由について説明する。 (1) Yおよび希土類元素のうち少なくとも一種:R Rは、Nd,Pr,La,Ce,Tb,Dy,Ho,E
r,Eu,Sm,Gd,Pr,Tm,Yb、およびYの
うち一種または二種以上からなるものであるが、そのな
かでも特にNdおよびDyが好ましい。Rの含有量が5
原子%未満であると、α鉄と同一構造の立方晶組織が多
量に現われ、良好な保磁力が得られなくなるので好まし
くなく、一方、20原子%を越えて含有しても、Rリッ
チな非磁性相が多くなり、飽和磁化の低下および酸化の
問題が生じるので好ましくない。
Next, the reason why the component composition of the present invention is limited as described above will be explained. (1) Y and at least one of rare earth elements: RR is Nd, Pr, La, Ce, Tb, Dy, Ho, E
It is composed of one or more of r, Eu, Sm, Gd, Pr, Tm, Yb, and Y. Of these, Nd and Dy are particularly preferable. R content is 5
If it is less than atomic%, a large amount of cubic crystal structure having the same structure as α iron appears and good coercive force cannot be obtained, which is not preferable, while if it exceeds 20 atomic%, it is not rich in R. This is not preferable because the amount of magnetic phase increases, and the problems of reduced saturation magnetization and oxidation occur.

【0011】したがって、Rの含有量は、5〜20原子
%に定めた。 (2) B Bの含有量は、5原子%未満であると、菱面体組織とな
り良好な保磁力が得られなくなるので好ましくなく、一
方、20原子%を越えて含有しても、飽和磁化が低下
し、保磁力が得られなくなるので好ましくない。
Therefore, the content of R is set to 5 to 20 atomic%. (2) When the content of B B is less than 5 atomic%, it is not preferable because a rhombohedral structure is not obtained and a good coercive force cannot be obtained. It is not preferable because it decreases and coercive force cannot be obtained.

【0012】したがってBの含有量は、5〜20原子%
に定めた。 (3) Mn Mnは、R−B−Fe系磁石合金に含有してキュリー点
を低下させる作用があるが、その含有量が4原子%未満
であるとその作用が現われず、一方、20原子%を越え
て含有すると常温での保磁力が低下し、好ましくない。
Therefore, the content of B is 5 to 20 atomic%.
Stipulated in. (3) Mn Mn has an action of lowering the Curie point by being contained in the RB-Fe based magnet alloy, but if the content is less than 4 atom%, the action does not appear, while on the other hand, 20 atom %, The coercive force at room temperature decreases, which is not preferable.

【0013】したがって、Mnの含有量は、4〜20原
子%に定めた。 (4) AlおよびCr AlおよびCr成分のうち一種または二種を、Mnとと
もにR−B−Fe系磁石合金に添加することにより、キ
ュリー点を一層低下させる作用があるが、その含有量が
1原子%未満ではその作用が顕著に現われず、一方、1
0原子%を越えて含有すると常温での保磁力が低下し、
好ましくない。
Therefore, the Mn content is set to 4 to 20 atomic%. (4) Al and Cr Addition of one or two of Al and Cr components to the RB-Fe based magnet alloy together with Mn has an action of further lowering the Curie point, but the content thereof is 1 If it is less than atomic%, its effect does not appear significantly, while 1
If the content exceeds 0 atom%, the coercive force at room temperature will decrease,
Not preferable.

【0014】したがって、AlおよびCrの含有量は、
1〜10原子%に定めた。
Therefore, the contents of Al and Cr are
It was set to 1 to 10 atom%.

【0015】しかし、AlおよびCrのうち一種または
二種をMnとともに添加するには、4原子%≦Mn+A
l+Cr≦20原子%なる条件を満足するように添加す
る必要がある。 (5) 水素吸蔵処理および脱水素処理条件 上記成分組成を有する合金を、水素ガス雰囲気中または
水素ガスと不活性ガスの混合ガス雰囲気中で温度:室温
〜500℃未満の第1水素吸蔵処理したのち、さらに温
度:500〜1000℃で第2水素吸蔵処理を施し、そ
の後温度:500〜1000℃の範囲内で脱水素処理を
施す必要があり、上記脱処理温度が500℃より低いと
常温での高保磁力および低キュリー点が認められず、一
方、1000℃より高いと粉末の場合には粉末が互いに
溶着してしまう欠点があり、また常温での高保磁力およ
び低キュリー点も得られないという理由によるものであ
る。
However, in order to add one or two of Al and Cr together with Mn, 4 atomic% ≦ Mn + A
It is necessary to add so as to satisfy the condition of l + Cr ≦ 20 atomic%. (5) Hydrogen Storage Treatment and Dehydrogenation Treatment Conditions The alloy having the above component composition was subjected to a first hydrogen storage treatment at a temperature of room temperature to less than 500 ° C. in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas. After that, it is necessary to further perform a second hydrogen storage treatment at a temperature of 500 to 1000 ° C., and then perform a dehydrogenation treatment within a range of a temperature of 500 to 1000 ° C. No high coercive force and low Curie point are observed. On the other hand, when the temperature is higher than 1000 ° C, there is a drawback that the powders are welded to each other, and the high coercive force and low Curie point at room temperature cannot be obtained. This is due to the reason.

【0016】なお、従来からRを含む合金を水素ガス雰
囲気中に保持して水素を吸蔵せしめ、ついで脱水素して
粉砕しやすくする処理を施すことは知られているが、こ
の従来の粉砕しやすくする処理は常温で行なわれるもの
で、上記500〜1000℃の高温で行なわれるもので
はなく、上記磁気記録粉末の特性として必要な常温高保
磁力および低キュリー点を得るためには、特定の成分組
成を有する合金を温度:室温〜500℃未満の温度で第
1水素吸蔵処理し、続いて温度:500〜1000℃で
第2水素吸蔵処理し、ついで温度:500〜1000℃
の範囲内の高温で脱水素処理することが必須の条件であ
り、従来の粉砕しやすくする処理とは全く相違する。
It has been conventionally known that an alloy containing R is kept in a hydrogen gas atmosphere to occlude hydrogen, and then dehydrogenated so as to facilitate pulverization. The treatment for facilitating is carried out at room temperature, not at a high temperature of 500 to 1000 ° C., and in order to obtain a room temperature high coercive force and a low Curie point required for the properties of the magnetic recording powder, a specific component is required. The alloy having the composition is subjected to a first hydrogen storage treatment at a temperature: room temperature to a temperature lower than 500 ° C., then a second hydrogen storage treatment at a temperature: 500 to 1000 ° C., and a temperature: 500 to 1000 ° C.
The dehydrogenation treatment at a high temperature within the range is essential condition, which is completely different from the conventional treatment for facilitating pulverization.

【0017】この発明の上記第1水素吸蔵処理および第
2水素吸蔵処理における昇温保持は、昇温したのち保持
してもよく、また保持したのち昇温してもよい。さらに
上記昇温はいかなる昇温パターンを取ることも可能であ
る。
In the above-mentioned first hydrogen storage process and second hydrogen storage process of the present invention, the temperature holding may be carried out after the temperature is raised, or it may be held and then the temperature is raised. Further, the above temperature rise can take any temperature rise pattern.

【0018】[0018]

【実施例】原料として、純鉄、金属Nd、金属Dy、F
e−B合金(B:20%)、Fe−Mn合金(Mn:7
5%)、Fe−Al合金(Al:50%)およびFe−
Cr合金(Cr:60%)を用意し、これら原料を高周
波溶解炉で溶解、鋳造して表2に示される成分組成の希
土類合金インゴットA〜Zを作製した。
[Example] As raw materials, pure iron, metal Nd, metal Dy, F
e-B alloy (B: 20%), Fe-Mn alloy (Mn: 7)
5%), Fe-Al alloy (Al: 50%) and Fe-
A Cr alloy (Cr: 60%) was prepared, and these raw materials were melted and cast in a high-frequency melting furnace to produce rare earth alloy ingots A to Z having the component compositions shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】これら希土類合金インゴットA〜Zを、A
rガス雰囲気中でスタンプミルを用いて粗粉砕し、さら
に振動ボールミルにて微粉砕して希土類合金微粉末と
し、この希土類合金微粉末を適量ボートに装入して熱処
理炉に入れ、0.1×10-5Torrの真空に排気した後、
1atm の水素ガスを炉内に流入せしめてその水素ガス圧
力を維持しつつ室温保持または室温から表3および表4
に示される第1処理温度に昇温保持したのちさらに第2
処理温度に昇温保持し、ついで、30分間排気を行い、
再び熱処理炉内の雰囲気を1.0×10-5Torrの真空に
し、表3および表4に示される温度および時間保持の脱
水素処理を施し、その後、炉内に1atm になるまでAr
ガスを流入せしめ、微粉末を急冷した。凝集した微粉末
を乳バチで解きほぐし、さらに振動ボールミルて微粉砕
し、表3および表4示される平均粒度の磁気記録粉末と
することにより本発明法1〜18および比較法1〜10
を実施した。上記本発明法1〜18および比較法1〜1
0で得られた上記磁気記録粉末の常温における保磁力
(iHc)およびキュリー点(Tc)を測定して、それ
らの結果を表3および表4に示した。
These rare earth alloy ingots A to Z are
Roughly crushed using a stamp mill in an r gas atmosphere, and further finely crushed by a vibrating ball mill to obtain a rare earth alloy fine powder. After evacuating to a vacuum of × 10 -5 Torr,
1 atm of hydrogen gas was made to flow into the furnace and the hydrogen gas pressure was maintained and kept at room temperature or from room temperature to Table 3 and Table 4.
After the temperature is raised and maintained at the first processing temperature shown in
Hold the temperature raised to the processing temperature, then evacuate for 30 minutes,
The atmosphere in the heat treatment furnace was again evacuated to 1.0 × 10 −5 Torr, and the dehydrogenation treatment was carried out at the temperature and the time shown in Tables 3 and 4, and then Ar in the furnace was reduced to 1 atm.
Gas was allowed to flow in and the fine powder was quenched. The agglomerated fine powder is disentangled with a dairy bee and further finely pulverized by a vibrating ball mill to obtain magnetic recording powders having an average particle size shown in Tables 3 and 4, and thus the present invention methods 1 to 18 and comparative methods 1 to 10 are obtained.
Was carried out. Inventive methods 1 to 18 and comparative methods 1 to 1
The coercive force (iHc) and Curie point (Tc) of the above magnetic recording powder obtained in No. 0 were measured, and the results are shown in Tables 3 and 4.

【0021】さらに比較のために、Nd:15原子%、
B:8原子%、Mn:2原子%を含有し、残りがFeお
よび不可避不純物からなる成分組成を有する表2の希土
類合金インゴットWを、常温で15気圧の水素雰囲気中
に保持し、さらに真空中で20時間保持して水素を除去
し、その後、ジョークラッシャーで粗粉砕し、さらにボ
ールミルで微粉砕し、平均粒径:0.8μmの従来磁気
記録粉末を得ることにより従来法を実施した。上記従来
法により得られた従来磁気記録粉末の常温における保磁
力(iTc)およびキュリー点(Tc)を測定し、その
結果を表4に示した。
Further, for comparison, Nd: 15 atomic%,
The rare earth alloy ingot W of Table 2 containing B: 8 atomic%, Mn: 2 atomic% and the balance of Fe and inevitable impurities was kept in a hydrogen atmosphere at room temperature at 15 atm and further vacuumed. The conventional method was carried out by removing the hydrogen by keeping it in the glass for 20 hours, coarsely pulverizing it with a jaw crusher, and then finely pulverizing it with a ball mill to obtain a conventional magnetic recording powder having an average particle diameter of 0.8 μm. The coercive force (iTc) and Curie point (Tc) of the conventional magnetic recording powder obtained by the above conventional method were measured at room temperature, and the results are shown in Table 4.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】表2〜表4に示される結果から、この発
明の製造法で作製された磁気記録粉末は、いずれも従来
法で作製された磁気記録粉末よりもキュリー点が大幅に
低く、かつ常温における保磁力は磁気記録粉末として使
用するには十分に高いことがわかる。
From the results shown in Tables 2 to 4, the magnetic recording powders produced by the production method of the present invention have significantly lower Curie points than the magnetic recording powders produced by the conventional method. Moreover, it can be seen that the coercive force at room temperature is sufficiently high for use as a magnetic recording powder.

【0025】さらに、比較法に見られるように、Mn,
Al,Crをそれぞれこの発明の条件から外れた希土類
合金インゴットを使用するかまたは水素吸蔵処理および
脱水素処理の処理温度をこの発明の条件から外して実施
しても十分な効果が得られないことがわかる。
Further, as seen in the comparative method, Mn,
A sufficient effect cannot be obtained even if a rare earth alloy ingot in which Al and Cr are out of the conditions of the present invention is used, or the hydrogen storage treatment and dehydrogenation treatment temperatures are outside the conditions of the present invention. I understand.

【0026】したがって、この発明の製造法によると、
キュリー点が低くて常温保磁力の高い磁気記録粉末を製
造することができ、この粉末を用いて製造した磁気テー
プまたは磁気カードなどの磁気記録媒体は、キュリー点
直下に昇温加熱するためのエネルギーが小さくてすみ、
昇温加熱用の装置も小型で簡単なものとすることができ
るので、省エネルギー上および産業上優れた効果を奏す
るものである。
Therefore, according to the manufacturing method of the present invention,
Magnetic recording powders with low Curie point and high coercive force at room temperature can be produced, and magnetic recording media such as magnetic tapes or magnetic cards produced using this powder have energy for heating up just below the Curie point. Is small,
Since the device for heating and heating at a high temperature can be made small and simple, it has an excellent effect in energy saving and in industry.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22F 9/04 C C21D 1/74 Z C22C 28/00 A 6919−4K 38/00 303 H 7325−4K 38/04 7217−4K Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI Technical display location B22F 9/04 C C21D 1/74 Z C22C 28/00 A 6919-4K 38/00 303 H 7325-4K 38 / 04 7217-4K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Yおよび希土類元素のうち少なくとも1
種(以下、Rで示す):5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、を含有し、残りがFeおよび不
可避不純物からなる組成を有するインゴットまたは合金
粉末に、 水素ガス雰囲気中または水素ガスと不活性ガスの混合ガ
ス雰囲気中で、室温から500℃未満の温度範囲内で昇
温したのち保持または保持したのち昇温する1次水素吸
蔵処理を施し、引続いて温度:500〜1000℃の範
囲内で昇温したのち保持または保持したのち昇温する2
次水素吸蔵処理を施し、 ついで、上記500〜1000℃の範囲内の温度に保持
したまま排気して1×10-1Torr以下の真空雰囲気中に
保持する脱水素処理を施したのち、冷却することを特徴
とする磁気記録粉末の製造法。
1. At least one of Y and rare earth elements
Composition containing 5 to 20 atomic% of B (5 to 20 atomic%), 5 to 20 atomic% of B, and 4 to 20 atomic% of Mn, and the balance of Fe and inevitable impurities. To an ingot or alloy powder having a temperature in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas within a temperature range from room temperature to less than 500 ° C. A hydrogen storage treatment is performed, and subsequently, the temperature is raised within the range of 500 to 1000 ° C. and then held or held and then raised. 2
Next, hydrogen storage treatment is performed, then, exhaustion is performed while maintaining the temperature within the range of 500 to 1000 ° C. above, dehydrogenation treatment is performed to maintain in a vacuum atmosphere of 1 × 10 −1 Torr or less, and then cooling is performed. A method for producing a magnetic recording powder, which is characterized in that
【請求項2】 上記インゴットまたは合金粉末は、 R :5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、 Al:1〜10原子%、を含有し、残りがFeおよび不
可避不純物からなる組成を有することを特徴とする請求
項1記載の磁気記録粉末の製造法。
2. The ingot or alloy powder contains R: 5 to 20 atom%, B: 5 to 20 atom%, Mn: 4 to 20 atom%, Al: 1 to 10 atom%, 2. The method for producing a magnetic recording powder according to claim 1, wherein the magnetic recording powder has a composition including: and the balance being Fe and inevitable impurities.
【請求項3】 上記インゴットまたは合金粉末は、 R :5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、 Cr:1〜10原子%、を含有し、残りがFeおよび不
可避不純物からなる組成を有することを特徴とする請求
項1記載の磁気記録粉末の製造法。
3. The ingot or alloy powder contains R: 5 to 20 atom%, B: 5 to 20 atom%, Mn: 4 to 20 atom%, Cr: 1 to 10 atom%, 2. The method for producing a magnetic recording powder according to claim 1, wherein the magnetic recording powder has a composition including: and the balance being Fe and inevitable impurities.
【請求項4】 上記インゴットまたは合金粉末は、 R :5〜20原子%、 B :5〜20原子%、を含有し、さらに、 Mn:4〜20原子%、 Al:1〜10原子%、 Cr:1〜10原子%、を含有し、残りがFeおよび不
可避不純物からなる組成を有することを特徴とする請求
項1記載の磁気記録粉末の製造法。
4. The ingot or alloy powder contains R: 5-20 atom%, B: 5-20 atom%, Mn: 4-20 atom%, Al: 1-10 atom%, 2. The method for producing a magnetic recording powder according to claim 1, wherein the composition contains Cr: 1 to 10 atomic%, and the balance is Fe and inevitable impurities.
JP3335635A 1991-11-25 1991-11-25 Manufacture of magnetic recording powder Pending JPH05152115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335635A JPH05152115A (en) 1991-11-25 1991-11-25 Manufacture of magnetic recording powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335635A JPH05152115A (en) 1991-11-25 1991-11-25 Manufacture of magnetic recording powder

Publications (1)

Publication Number Publication Date
JPH05152115A true JPH05152115A (en) 1993-06-18

Family

ID=18290805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335635A Pending JPH05152115A (en) 1991-11-25 1991-11-25 Manufacture of magnetic recording powder

Country Status (1)

Country Link
JP (1) JPH05152115A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048210A1 (en) * 1999-02-10 2000-08-17 Hitachi Maxell, Ltd. Magnetic recording medium, and magnetic powder and method for preparing the same
CN102886523A (en) * 2012-11-01 2013-01-23 山西京宇天成科技有限公司 Neodymium iron boron unsaturated hydrogen absorption technique
JP2018528602A (en) * 2015-07-01 2018-09-27 ザ ユニバーシティ オブ バーミンガム Magnet manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048210A1 (en) * 1999-02-10 2000-08-17 Hitachi Maxell, Ltd. Magnetic recording medium, and magnetic powder and method for preparing the same
US6517934B1 (en) 1999-02-10 2003-02-11 Hitachi Maxell, Ltd. Magnetic recording medium containing nanometer-size substantially spherical or ellipsoidal fe-b-re magnetic powder and method for producing magnetic powder
CN102886523A (en) * 2012-11-01 2013-01-23 山西京宇天成科技有限公司 Neodymium iron boron unsaturated hydrogen absorption technique
JP2018528602A (en) * 2015-07-01 2018-09-27 ザ ユニバーシティ オブ バーミンガム Magnet manufacturing
JP2021013031A (en) * 2015-07-01 2021-02-04 ザ ユニバーシティ オブ バーミンガム Magnet manufacturing
US11270840B2 (en) 2015-07-01 2022-03-08 The University Of Birmingham Magnet production

Similar Documents

Publication Publication Date Title
JPH0531807B2 (en)
JP3724513B2 (en) Method for manufacturing permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH07130522A (en) Manufacture of permanent magnet
JPH05152115A (en) Manufacture of magnetic recording powder
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3463911B2 (en) Anisotropic magnet powder
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3860372B2 (en) Rare earth magnet manufacturing method
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
JPS6077959A (en) Permanent magnet material and its manufacture
US5211770A (en) Magnetic recording powder having a high coercive force at room temperatures and a low curie point
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH0461041B2 (en)
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPH06112019A (en) Nitride magnetic material
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JPH11121215A (en) Manufacture of rare-earth magnetic powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991005