JPH0418707A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH0418707A
JPH0418707A JP2122582A JP12258290A JPH0418707A JP H0418707 A JPH0418707 A JP H0418707A JP 2122582 A JP2122582 A JP 2122582A JP 12258290 A JP12258290 A JP 12258290A JP H0418707 A JPH0418707 A JP H0418707A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
permanent magnet
alloy
conducted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2122582A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Toshiaki Yamagami
利昭 山上
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2122582A priority Critical patent/JPH0418707A/en
Publication of JPH0418707A publication Critical patent/JPH0418707A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain a highly efficient permanent magnet at low cost by a method wherein a cast ingot of the alloy fundamentally composed of R, Fe, B and Cu is treated at a specific temperature, and then a heat treatment is conducted thereon. CONSTITUTION:An alloy, containing R (provided that when R has Nd or Pr as an essential element and it is formed as R=(PrxNd1-x)R'1z, R' contains Y and one or more kinds of rare-earth element in the form of 1>=z>=0.9), Fe, B and Cu, is melted using an induction heating furnace in an argon atmosphere, and it is cast. At this time, rare-earth, iron and copper of 99.9% purity are used as raw material, feroboron is used as boron. Then, this cast ingot is hot- worked at the temperature of 500 deg.C or higher, and then a heat treatment is conducted at the temperature of T2 to 800 deg.C (T2=490-40x). Also, after performance of hot-working, a heat treatment is conducted at 800 to 1100 deg.C, and then a heat treatment is conducted at the temperature of T2 to 800 deg.C (T2=490-40x) for the purpose of accomplishment of high coercive force and high efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法、特に希土類元素(Yを含む)+  Fe
、Bを原料基本成分とする永久磁石の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a permanent magnet having magnetic anisotropy due to mechanical orientation, particularly a rare earth element (including Y) + Fe
, B as a basic raw material component.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピュ
ーターの周辺端末機器まで、幅広い分野で使用されてい
る重要な電気・電子材料の一つであり、最近の電気製品
の小型化、高効率化の要求にともない、永久磁石も益々
高性能化が求められている。
[Prior art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers, and are becoming more and more compact in recent years. With the demand for higher efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特に希土類−遷移金属系磁石であるR−
Co系永久磁石やR−FeB系永久磁石は、極めて高い
保磁力とエネルギ積を持つ永久磁石として、従来から多
くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, especially rare earth-transition metal magnets.
Co-based permanent magnets and R-FeB-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−B系の高性能異方性永久磁石の
製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R-Fe-B-based high-performance anisotropic permanent magnets.

(1)まず、特開昭59−46008号公報や M、S
agawa。
(1) First, JP-A-59-46008, M, S
Agawa.

S、Fujimura、N、Togawa、I(、Ya
mamoto and Y、Hatsu−ura;J、
Appl、Phys4o1.55(8)、15 Mar
ch 1984.p2083等には、原子百分比で8〜
30%のR(ただしRはYを含む希土類元素の少なくと
も1種)、2〜28%のB及び残部Feからなる磁気異
方性焼結体であることを特徴とする永久磁石が粉末冶金
法に基づく焼結によって製造されることが開示されてい
る。
S., Fujimura, N., Togawa, I.
mamoto and Y, Hatsu-ura; J,
Appl, Phys4o1.55(8), 15 Mar
ch 1984. p2083 etc. have an atomic percentage of 8~
A permanent magnet characterized by being a magnetically anisotropic sintered body consisting of 30% R (where R is at least one rare earth element including Y), 2 to 28% B, and the balance Fe is produced using a powder metallurgy method. It is disclosed that it is manufactured by sintering based on.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で1100℃前後の温度1時間焼結され、その後室温
まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature.

焼結後、600℃前後の温度で熱処理する事により永久
磁石はさらに保磁力を向上させる。
After sintering, the permanent magnet is heat-treated at a temperature of around 600°C to further improve its coercive force.

また、この焼結磁石の熱処理に関しては特開昭61−2
17540号公報、特開昭62−165305号公報等
に、多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-2
The effects of multi-stage heat treatment are disclosed in Japanese Patent Laid-Open No. 17540, Japanese Patent Application Laid-open No. 165305/1983, and the like.

(2)特開昭59−211549号公報やR1ν1.L
ee;  Appl。
(2) JP-A-59-211549 and R1ν1. L
ee; Appl.

Phys、Lett、Vol、46(8)、15  A
pril  1985.p790には、非常に微細な結
晶性の磁性相を持つ、メルトスピニングされた合金リボ
ンの微細片が樹脂によって接着されたR−Fe−B磁石
が開示されている。
Phys, Lett, Vol, 46(8), 15 A
pril 1985. P790 discloses an R-Fe-B magnet in which fine pieces of melt-spun alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.

この永久磁石は、アモルファス合金を製造1”るに用い
る急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を
作り、その薄片を樹脂と混練してプレス成形することに
より製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e; Appl。
(3) JP-A-60-100402, R, W, Le
e; Appl.

Phys、Lett、Vol、46(8)、15 Ap
ril  1985.p790にば、前記(2)の方法
で使用した急冷薄片を、真空中あるいは不活性雰囲気中
で2段階ホットプレス法と呼ばれる方法で緻密で異方性
を有するR−Fe−B磁石を得ることが開示されている
Phys, Lett, Vol, 46(8), 15 Ap
ril 1985. According to p790, the quenched flakes used in the method (2) above are subjected to a method called a two-step hot pressing method in a vacuum or an inert atmosphere to obtain a dense and anisotropic R-Fe-B magnet. is disclosed.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30原子%、B2〜28原子%、Co50原子%以下、
A115原子%以下、及び残部が鉄及びその他の製造上
不可避な不純物からなる合金を溶解・鋳造後、該鋳造イ
ンゴットを500℃以上の温度で熱間加工することによ
り結晶粒を微細化しまたその結晶軸を特定の方向に配向
せしめて、該鋳造合金を磁気的に異方性化することを特
徴とする希土類−鉄系永久磁石が開示されている。
(4) Japanese Patent Application Laid-Open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30 atom%, B2 to 28 atom%, Co50 atom% or less,
After melting and casting an alloy consisting of 115 at. A rare earth-iron permanent magnet is disclosed in which the cast alloy is magnetically anisotropic by orienting its axis in a specific direction.

[発明が解決しようとする課題] 斜上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problems to be Solved by the Invention] The conventional methods for manufacturing R-Fe-B permanent magnets (1) to (4) above have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に大して活性を有するので、粉末化すると余計
酸化が激しくなり、焼結体中の酸素温度はどうしても高
くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but R-Fe-B alloys are highly active towards oxygen, so if they are made into powder, they will oxidize even more violently. Therefore, the oxygen temperature in the sintered body inevitably becomes high.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、成形助剤中の成剤
は、磁石体の中に炭素の形で残ってしまい、この炭素は
著しくR−Fe−B磁石の磁気性能を低下させ好ましく
ない。
Also, when compacting the powder, a compacting aid such as zinc stearate must be used, which is removed beforehand during the sintering process. This carbon remains in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい。
The molded body after press molding with the addition of a molding aid is called a green body, which is extremely brittle and difficult to handle.

従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛かることも大きな欠点である。
Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

これらの欠点があるので、−船釣に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、その製造方法は生産効率が悪く、結局磁石の
製造コストが高くなってしまう。従って、比較的原料費
の安いR−Fe−B系磁石の長所を活かすことが出来な
い。
Because of these drawbacks, -R-Fe-B in terms of boat fishing.
Not only does the production of sintered magnets of this type require expensive equipment, but the production method has poor production efficiency, resulting in an increase in the production cost of the magnets. Therefore, it is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

次に(2)並びに(3)の永久磁石の製造方法は、真空
メルトスピニング装置を使用するが、この装置は、現在
では大変生産性が悪くしかも高価である。
Next, the permanent magnet manufacturing methods (2) and (3) use a vacuum melt spinning device, but this device currently has very low productivity and is expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば8oo℃以上では結晶粒
の粗大化が著しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 80° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化されるが、性能的には(1)−(3)に比してや
や劣るという問題があった。
Method (4) for manufacturing permanent magnets does not involve a powder process and only requires one step of hot pressing, so the manufacturing process is the simplest, but in terms of performance it is There was a problem that it was slightly inferior.

本発明は、以上の従来技術の欠点特に(4)の永久磁石
の性能面での欠点を解決するものであり、その目的とす
るところは、高性能かつ低コストの永久磁石の製造方法
を提供することにある。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, particularly the drawback (4) in terms of performance of permanent magnets, and its purpose is to provide a high-performance, low-cost manufacturing method for permanent magnets. It's about doing.

[課題を解決するための手段] 本発明の永久磁石の製造方法は、R(ただしRはNdま
たはPrを必須として、R= (P r xN d +
−,X) −R’ +−zと表わされた場合に、R′は
Yを含む希土類元素の1種以上であり、1≧z≧0.9
である。)+  Fe、B、Cuを原料基本成分とし、
該基本成分とする合金を溶解・鋳造し、次いで鋳造イン
ゴットを500℃以上の温度にて熱間加工し次にT2〜
8008C(T 2= 490−40x )の温度にお
いて熱処理する事を特徴とする。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention is characterized in that R (where R is essentially Nd or Pr, R= (P r x N d +
-,X) -R' +-z, R' is one or more rare earth elements including Y, and 1≧z≧0.9
It is. ) + Fe, B, Cu as basic raw material components,
The alloy as the basic component is melted and cast, then the cast ingot is hot worked at a temperature of 500°C or higher, and then T2~
It is characterized by heat treatment at a temperature of 8008C (T 2 = 490-40x).

また更なる高保磁力化、高性能化のためには、熱間加工
後800−1100℃において熱処理した後に72〜8
00℃(T 2 = 490 40x )の温度におい
て熱処理する事を特徴とする。
In addition, in order to further increase coercive force and improve performance, heat treatment at 800-1100℃ after hot working is required.
It is characterized by heat treatment at a temperature of 00°C (T 2 = 490 40x).

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] [実施例1] 本発明による製造法の工程図を第1図に示す。[Example] [Example 1] A process diagram of the manufacturing method according to the present invention is shown in FIG.

この工程に従い、アルゴン雰囲気中で誘導加熱炉を用い
て、Pr+5Nd25Fets5B5Cu+I!なる組
成の合金を溶解し、吹いで鋳造した。この時、希土類、
鉄及び銅の原料としては99.9%の純度のものを用い
、ボロンはフェロボロンを用いた。
According to this process, using an induction heating furnace in an argon atmosphere, Pr+5Nd25Fets5B5Cu+I! An alloy with the following composition was melted and blow-cast. At this time, rare earths,
The iron and copper raw materials used were those with a purity of 99.9%, and the boron used was ferroboron.

次ぎに、この鋳造インゴットをアルゴン雰囲気中、10
00 ’Cにおいて、加工度80%までホットプレスし
た。この時のプレス圧力は0.2〜0.9ton/am
2であり、歪速度は10″3〜10−’/secであっ
た。
Next, this cast ingot was placed in an argon atmosphere for 10
At 00'C, hot pressing was carried out to a working degree of 80%. The press pressure at this time is 0.2 to 0.9 ton/am
2, and the strain rate was 10"3 to 10-'/sec.

またこの熱間加工時においては、合金の押される方向に
平行になるように結晶の磁化容易軸は配向した。
Further, during this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed.

この後、1000℃において24時間の熱処理を施し、
吹ぎに515℃において4時間の熱処理を施した後、切
断、研磨されて磁気特性が測定された。
After that, heat treatment was performed at 1000°C for 24 hours,
After being heat treated at 515°C for 4 hours, the pieces were cut and polished, and their magnetic properties were measured.

この磁石の磁気特性及びその他の諸特性値を、比較例と
して515℃の熱処理が無い場合と、前述の従来法にお
ける(1)の焼結磁石(Nd+ 5Fe77Be )と
 (3)の永久磁石(Nd+3Fes2.sBa、a)
における値と共に第1表に示す。
The magnetic properties and other characteristic values of this magnet are compared as a comparison example without heat treatment at 515°C, (1) sintered magnet (Nd+5Fe77Be) and (3) permanent magnet (Nd+3Fes2) in the conventional method described above. .sBa,a)
Table 1 shows the values for .

なお、磁気特性はすべて最大印加磁界25kOeでB−
11トレーサーを用いて測定した。
All magnetic properties are B- at a maximum applied magnetic field of 25 kOe.
Measured using No. 11 tracer.

第1表に示すごとく、本発明磁石は、515℃の熱処理
が無い場合に比して、保磁力と最大エネルギー積が向上
しており、従来の(1)の永久磁石と(3)の永久磁石
に比較して磁気特性は劣らず着磁す生は優れていること
は明かである。
As shown in Table 1, the magnet of the present invention has improved coercive force and maximum energy product compared to the case without heat treatment at 515°C. It is clear that the magnetic properties are not inferior to those of magnets, and the magnetization is superior.

本願発明の永久磁石は、従来の (1)の焼結磁石とは
、0.C含有量及び空孔率が異なり、また従来の(2)
の永久磁石とは、結晶粒径が異なり、着磁性が優れてい
る。
The permanent magnet of the present invention is different from the conventional sintered magnet of (1) by 0. The C content and porosity are different, and the conventional (2)
It has a different crystal grain size from permanent magnets and has excellent magnetization.

第  1  表 比較例1:515℃の熱処理無しの場合比較例2:従来
法(1)の磁石 比較例3:従来法(3)の磁石 [実施例2コ 実施例1と同様に、第1図に示す製造工程に従い、アル
ゴン雰囲気中で誘導加熱炉を用いて、Nd+5Fe79
.sBa、tC+、b+、aなる組成の合金を溶解し、
孜いで鋳造した。
Table 1 Comparative Example 1: No heat treatment at 515°C Comparative Example 2: Conventional method (1) magnet Comparative Example 3: Conventional method (3) magnet [Example 2] Same as Example 1, According to the manufacturing process shown in the figure, using an induction heating furnace in an argon atmosphere, Nd+5Fe79
.. Melting an alloy with the composition sBa, tC+, b+, a,
It was cast in Kei.

この時、希土類及び鉄、銅の原料としては、実施例1と
同様に99.9%の純度のものを用い、ボロンはフェロ
ボロンを用いた。
At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used as in Example 1, and boron was ferroboron.

吹ぎに、この鋳造インゴットを鉄製のカプセルに入れ、
脱気し、密封した。これに950℃で加工度30%の熱
間圧延を空気中で4回行い、最終的に加工度が76%に
なるようにした。
For blowing, put this cast ingot into an iron capsule,
Degassed and sealed. This was hot-rolled in air at 950° C. and a working degree of 30% four times to give a final working degree of 76%.

そして圧延インゴットから切り出されたサンプル2aに
対しては熱処理を施さず、サンプル2bに対しては55
0℃×5時間の熱処理を施し、サンプル2Cに対しては
950℃X10時間と550℃x2時間の熱処理を施し
た。
Sample 2a cut out from the rolled ingot was not subjected to heat treatment, and sample 2b was
Heat treatment was performed at 0°C for 5 hours, and sample 2C was heat treated at 950°C for 10 hours and 550°C for 2 hours.

第2表に3種類のサンプルの磁気特性を示す。Table 2 shows the magnetic properties of the three types of samples.

第  2 表 第2表に示すごどく低温の熱処理により磁気特性、特に
保磁力と最大エネルギー積が向上することは明らかであ
る。更に、高温と低温の熱処理の組合せにより磁気特性
が更に向上することも解る。
Table 2 It is clear that the extremely low temperature heat treatment shown in Table 2 improves the magnetic properties, particularly the coercive force and the maximum energy product. Furthermore, it can be seen that the combination of high and low temperature heat treatments further improves the magnetic properties.

[実施例3] Pr+7Feve、5BsCu+、sなる組成の合金(
リンプル3a)とPr+ +Nd5Dy+ 、eFet
e、5Bs2Cu+[+なる組成の合金(リンプル3b
)とPr5Nd++Fe77BsCu+ 3Ga[1,
v なる組成の合金(リンフ0ル3c)とCe[1,e
Nd+eFes9CoeBs、5Cue、7なる組成の
合金(’7:/7’ル3d)を実施例1及びzと同様に
、溶解・鋳造し鋳造インゴットを得た。
[Example 3] Alloy with composition Pr+7Feve, 5BsCu+, s (
Rimple 3a) and Pr+ +Nd5Dy+, eFet
e, 5Bs2Cu+[+ alloy (Ripple 3b
) and Pr5Nd++Fe77BsCu+ 3Ga[1,
An alloy with the composition v (Linfur 3c) and Ce[1,e
An alloy having a composition of Nd+eFes9CoeBs, 5Cue, 7 ('7:/7'le 3d) was melted and cast in the same manner as in Examples 1 and z to obtain a cast ingot.

次ぎに、この鋳造インゴットを鉄製のカプセルに入れ、
密封した。これに950℃で加工度28%の熱間圧延を
空気中で4回行い、最終的に加工度が73%になるよう
にした。
Next, this cast ingot is placed in an iron capsule,
Sealed. This was hot-rolled four times in air at 950° C. and a working degree of 28%, so that the final working degree was 73%.

この後、この圧延インゴットに対して350℃から90
0℃迄の様々な温度で4時間の熱処理を行ないその保磁
力iHcを測定した。その結果を第1図に示す。なお、
熱処理無しの場合の保磁力はそれぞれ8.8kOe(3
a)、 10.0kOe(3b)、7.4kOe(3c
)、 6.8kOe(3d)である。
After this, the rolled ingot was heated from 350°C to 90°C.
Heat treatment was performed for 4 hours at various temperatures up to 0° C., and the coercive force iHc was measured. The results are shown in FIG. In addition,
The coercive force without heat treatment is 8.8 kOe (3
a), 10.0kOe (3b), 7.4kOe (3c
), 6.8 kOe (3d).

またリンフ0ル3aに対して950℃X4時間の熱処理
を施した後に350℃から900℃迄の様々な温度で4
時間の熱処理を行ないその保磁力iHcを測定した。
In addition, after heat treatment at 950°C for 4 hours on Linf 0ru 3a, heat treatment was performed at various temperatures from 350°C to 900°C.
A heat treatment was performed for a time and the coercive force iHc was measured.

この結果(3a−2)も第1図に示す。This result (3a-2) is also shown in FIG.

この第1図から、12〜800℃の熱処理が保磁力の向
上に効果があることは明らかである。
From FIG. 1, it is clear that heat treatment at 12 to 800° C. is effective in improving coercive force.

以上の実施例から、R(ただしRはNdまたはPrを必
須として、R” (P r x   N d 1−X)
 2R1−zと表わされた場合に、R′はYを含む希土
類元素の1種以上であり、1≧z≧0.9である。)F
e、B、Cuを原料基本成分とする永久磁石は、 50
0℃以上の熱間加工により異方性化され、T2〜800
℃(T 2 = 490−40x )の熱処理により高
保磁力を示し、最高の(BH)maxは308GOeを
越えることは明らかである。
From the above examples, R (where R requires Nd or Pr, R" (P r x N d 1-X)
When expressed as 2R1-z, R' is one or more rare earth elements including Y, and 1≧z≧0.9. )F
Permanent magnets whose basic raw materials are e, B, and Cu are: 50
It is made anisotropic by hot working at 0℃ or higher, and has a T2 to 800
It is clear that the heat treatment at °C (T 2 = 490-40x) shows a high coercive force, and the highest (BH)max exceeds 308 GOe.

[発明の効果] 以上のごとく本発明の永久磁石の製造方法は、次のごと
き効果を持つ。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

(1)c軸配向率を高めることができ、残留磁束密度B
rを著しく高めることができ、結晶粒を微細化すること
により保磁力1[(cを高めることができ、最大エネル
ギー積(BH)maxを格段に向上させることが出来た
(1) The c-axis orientation rate can be increased, and the residual magnetic flux density B
By making the crystal grains finer, the coercive force 1 [(c) could be increased, and the maximum energy product (BH) max could be significantly improved.

(2)製造プロセスが簡単なのでコストが安い。(2) The cost is low because the manufacturing process is simple.

(3)磁石中の02漬度が低い。(3) The degree of 02 immersion in the magnet is low.

(4)従来の焼結法と比較して、加工工数及び生産投資
額を著しく低減させることが出来る。
(4) Compared to conventional sintering methods, processing man-hours and production investment can be significantly reduced.

(5)従来のメルトスピニング法による磁石の製造方法
と比較して、高性能でしかも低コストの磁石を作ること
が出来る。
(5) Compared to the conventional method of producing magnets using melt spinning, it is possible to produce magnets with high performance and at low cost.

(6)従来の熱間加工磁石と比較して、磁気特性、特に
保磁力を向上させることができる。
(6) Magnetic properties, especially coercive force, can be improved compared to conventional hot-worked magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱処理温度と保磁力の関係を示す図である。 以上 FIG. 1 is a diagram showing the relationship between heat treatment temperature and coercive force. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)R(ただしRはNdまたはPrを必須として、R
=(Pr_xNd_1_−_x)_zR’_1_−_z
と表わされた場合に、R’はYを含む希土類元素の1種
以上、1≧z≧0.9である。),Fe,B,Cuを原
料基本成分とし、該基本成分とする合金を溶解・鋳造し
、次いで鋳造インゴットを500℃以上の温度にて熱間
加工し次にT_2〜800℃(T_2=490−40x
)の温度において熱処理する事を特徴とする永久磁石の
製造方法。
(1) R (However, R requires Nd or Pr, and R
=(Pr_xNd_1_-_x)_zR'_1_-_z
When expressed as, R' is one or more rare earth elements including Y, and 1≧z≧0.9. ), Fe, B, and Cu are the basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot is hot worked at a temperature of 500℃ or higher, and then T_2 to 800℃ (T_2=490℃). -40x
) A method for manufacturing a permanent magnet, characterized by heat treatment at a temperature of
(2)熱間加工後800〜1100℃において熱処理し
た後にT_2〜800℃(T_2=490−40x)の
温度において熱処理する事を特徴とする請求項1記載の
永久磁石の製造方法。
(2) The method for manufacturing a permanent magnet according to claim 1, characterized in that after hot working, heat treatment is performed at a temperature of 800 to 1100°C, and then heat treatment is performed at a temperature of T_2 to 800°C (T_2 = 490-40x).
JP2122582A 1990-05-11 1990-05-11 Manufacture of permanent magnet Pending JPH0418707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2122582A JPH0418707A (en) 1990-05-11 1990-05-11 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122582A JPH0418707A (en) 1990-05-11 1990-05-11 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH0418707A true JPH0418707A (en) 1992-01-22

Family

ID=14839484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122582A Pending JPH0418707A (en) 1990-05-11 1990-05-11 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH0418707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125968A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine and arcuate magnet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125968A (en) * 2020-02-05 2021-08-30 本田技研工業株式会社 Rotor for rotary electric machine and arcuate magnet manufacturing method

Similar Documents

Publication Publication Date Title
JPS62198103A (en) Rare earth-iron permanent magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JPH0418707A (en) Manufacture of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH023201A (en) Permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04187722A (en) Production of permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH02252208A (en) Manufacture of permanent magnet
JPH0422102A (en) Method of manufacturing permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH023210A (en) Permanent magnet
JPH04134805A (en) Manufacture of permanent magnet
JPH04136131A (en) Manufacture of permanent magnet
JP2992808B2 (en) permanent magnet
JPH04324907A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH04324904A (en) Manufacture of permanent magnet
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet