JPH04136131A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH04136131A
JPH04136131A JP2257645A JP25764590A JPH04136131A JP H04136131 A JPH04136131 A JP H04136131A JP 2257645 A JP2257645 A JP 2257645A JP 25764590 A JP25764590 A JP 25764590A JP H04136131 A JPH04136131 A JP H04136131A
Authority
JP
Japan
Prior art keywords
cast
ingot
permanent magnet
alloy
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2257645A
Other languages
Japanese (ja)
Inventor
Seiji Ihara
清二 伊原
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2257645A priority Critical patent/JPH04136131A/en
Publication of JPH04136131A publication Critical patent/JPH04136131A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet having high performance at low cost by subjecting the cast ingot of an allay in which rare earth elements, Fe and B are used as material essential components to remelting and casting, subjecting it to specified hot working and thereafter executing heat treatment at a specified temp. CONSTITUTION:R (where R denotes at least one kinds among rare earth elements including Y), Fe and B are used as material essential components. An alloy contg. the above essential components is melted and cast. Next, the cast ingot or the alloy obtd. by executing hot working to the above ingot is remelted and cast. After that, the cast ingot is hot-worked at >=500 deg.C and is then heat-treated at 250 to 1100 deg.C. Furthermore, for attaining its different high coercive force and high performance, after the hot working, it is heat-treated at 750 to 1100 deg.C and is thereafter heat-treated at 250 to 750 deg.C. In this way, the amt. of impurities therein is reduced, by which a fine and uniform columnar structure can be obtd. to the central part of the ingot.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的配向による磁気異方性を有する永久磁
石の製造方法シ 特にR(ただしRはYを含む希土類元
素のうち少なくとも1種)、Fe。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation. ), Fe.

Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
This invention relates to a method for producing a permanent magnet using B as a basic raw material component.

[従来の技術] 永久磁石は、一般家庭の各種電気製品がら大型コンピュ
ーターの周辺端末機器まで、幅広い分野で使用されてい
る重要な電気・電子材料の一つであり、最近の電気製品
の小型化、高効率化の要求にともない、永久磁石も益々
高性能化が求められている。
[Prior art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers, and have been used in recent years due to the miniaturization of electrical appliances. With the demand for higher efficiency, permanent magnets are also required to have increasingly higher performance.

永久磁石は、外部から電気的エネルギーを供給しないで
磁界を発生するための材料であり、保磁力が大きく、ま
た残留磁束密度も高いものが適している。
A permanent magnet is a material that generates a magnetic field without supplying electrical energy from the outside, and one that has a large coercive force and a high residual magnetic flux density is suitable.

現在使用されている永久磁石のうち代表的なものはアル
ニコ系鋳造磁石、フェライト磁石及び希土類−遷移金属
系磁石であり、特tこ希土類−遷移金属系磁石であるR
−Co系永久磁石やR−Fe−B系永久磁石は、極めて
高い保磁力とエネルギー積を持つ永久磁石と・して、従
来がら多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, with special emphasis on rare earth-transition metal magnets.
-Co-based permanent magnets and R-Fe-B-based permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

従来、これらR−Fe−E系の高性nと異方性永久磁石
の製造方法には、孜のようなものがある。
Conventionally, there are methods for manufacturing these R-Fe-E based high-strength n and anisotropic permanent magnets, such as the one described above.

(1)まず、特開昭59−46008号公報や H,S
agawa。
(1) First, Japanese Patent Application Laid-open No. 59-46008 and H.S.
Agawa.

ε、Fujimura、N、Togawa、H,Yam
amoto and Y、Matsu−ura;J、^
pp1.Phys、Vo1.55(6)、15 Mar
ch 1984.p2083等には、原子百分比で8〜
3oχのR(ただしRはYを含む希土類元素の少なくと
も1種)、2〜28%のB及び残部Feからなる磁気異
方性焼結体であることを特徴とする永久磁石が粉末冶金
法に基づく焼結によって製造されることが開示されてい
る。
ε, Fujimura, N., Togawa, H. Yam.
amoto and Y, Matsu-ura; J, ^
pp1. Phys, Vo1.55(6), 15 Mar
ch 1984. p2083 etc. have an atomic percentage of 8~
A permanent magnet characterized by being a magnetically anisotropic sintered body consisting of 30x of R (where R is at least one rare earth element including Y), 2 to 28% of B, and the balance Fe is produced using a powder metallurgy method. is disclosed to be manufactured by based sintering.

この焼結法では、溶解・鋳造により合金インゴットを作
製し、粉砕して適当な粒度(数μm)の磁性粉を得る。
In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with an appropriate particle size (several μm).

磁性粉は成形助剤のバインダーと混練され、磁場中でプ
レス成形されて成形体が出来上がる。成形体はアルゴン
中で11006C前後の温度1時間焼結され、その後室
温まで急冷される。
The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 11006C for 1 hour and then rapidly cooled to room temperature.

焼結後、1600℃前後の温度で熱処理する事により永
久磁石はさらに保磁力を向上させる。
After sintering, the permanent magnet is heat treated at a temperature of around 1600°C to further improve its coercive force.

また、この焼結磁石°の熱処理に関しては特開昭61−
217540号公報、特開昭62−165305号公報
等に、多段熱処理の効果が開示されている。
Furthermore, regarding the heat treatment of this sintered magnet,
No. 217540, Japanese Unexamined Patent Publication No. 62-165305, etc. disclose the effects of multistage heat treatment.

(2)特開昭59−211549号公報やR,W、Le
e;  Appl。
(2) JP-A-59-211549, R, W, Le
e; Appl.

Phys、Lett、tlol、46(8)、15  
April  1985.p790には、非常に微細な
結晶性の磁性相を持つ、メルトスピニングされた合金リ
ボンの微細片が樹脂によって接着されたR−Fe−B磁
石が開示されている。
Phys, Lett, troll, 46(8), 15
April 1985. P790 discloses an R-Fe-B magnet in which fine pieces of melt-spun alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.

この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

(3)特開昭60−100402号公報やR,W、Le
e: Appl。
(3) JP-A-60-100402, R, W, Le
e: Appl.

Phys、Lett、Vol、46(8)、15  A
pril  1985.p790には、前記(2)の方
法で使用した急冷薄片を、真空中あるいは不活性雰囲気
中で2段階ホットプレス法と呼ばれる方法で緻密で異方
性を有するR−Fe−B 6M石を得ることが開示され
ている。
Phys, Lett, Vol, 46(8), 15 A
pril 1985. For p790, a dense and anisotropic R-Fe-B 6M stone is obtained by using the rapidly cooled flakes used in the method (2) above in a vacuum or in an inert atmosphere using a method called a two-step hot pressing method. This is disclosed.

(4)特開昭62−276803号公報には、R(ただ
しRはYを含む希土類元素のうち少なくとも1種)8〜
30原子%、B2〜28原子%、Co50原子%以下、
A115原子%以下、及び残部が鉄及びその他の製造上
不可避な不純物からなる合金を溶解・紡道後、該鋳造イ
ンゴットを500 ’C以上の温度で熱間加工すること
により結晶粒を微細化しまたその結晶軸を特定の方向に
配向せしめて、該鋳造合金を磁気的に異方性化すること
を特徴とする希土類−鉄系永久磁石が開示されている。
(4) Japanese Patent Application Laid-Open No. 62-276803 states that R (where R is at least one rare earth element including Y) 8 to
30 atom%, B2 to 28 atom%, Co50 atom% or less,
After melting and spinning an alloy consisting of 115 at. A rare earth-iron permanent magnet is disclosed in which the cast alloy is made magnetically anisotropic by orienting its crystal axis in a specific direction.

[R明が解法しようとする課M] 叙上の(1)〜(4)の従来のR−Fe−B系永久磁石
の製造方法は、次のごとき欠点を有している。
[Problem M to be solved by R-ming] The conventional manufacturing methods of R-Fe-B permanent magnets described in (1) to (4) above have the following drawbacks.

(1)の永久磁石の製造方法は、合金を粉末にすること
を必須とするものであるが、R−Fe−B系合金はたい
へん酸素に対して活性を有するので、粉末化すると余計
酸化が激しくなり、焼結体中の酸素濃度はどうしても高
くなってしまう。
The manufacturing method for permanent magnets in (1) requires that the alloy be made into powder, but since R-Fe-B alloys are highly active against oxygen, making them into powder will cause additional oxidation. The oxygen concentration in the sintered body inevitably increases.

また粉末を成形するときに、例えばステアリン酸亜鉛の
様な成形助剤を使用しなければならず、これは焼結工程
で前もって取り除がれるのであるが、成形助剤中の数割
は、磁石体の中に炭素の形で残ってしまい、この・炭素
は著しくR−Fe−B磁石の磁気性能を低下させ好まし
くない。
Furthermore, when molding the powder, a molding aid such as zinc stearate must be used, and this is removed beforehand during the sintering process, but several percent of the molding aid is This carbon remains in the magnet body in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

成形助剤を加えてプレス成形した後の成形体はグリーン
体と言われ、これは大変脆く、ハンドリングが難しい、
従って焼結炉にきれいに並べて入れるのには、相当の手
間が掛がることも大きな欠点である。
The molded product after press molding with a molding aid added is called a green body, which is extremely brittle and difficult to handle.
Therefore, another major drawback is that it takes a considerable amount of time and effort to neatly line up the pieces in the sintering furnace.

これらの欠点があるので、−殻内に言ってR−Fe−B
系の焼結磁石の製造には、高価な設備が必要になるばか
りでなく、その製造方法は生産効率が悪く、結局磁石の
製造コストが高くなってしまう、従って、比較的原料費
の安いR−Fe−B系磁石の長所を活かすことが出来な
い。
Because of these drawbacks, - in the shell, R-Fe-B
Not only does the production of sintered magnets require expensive equipment, but the production method has poor production efficiency, resulting in high magnet production costs. -The advantages of Fe-B magnets cannot be utilized.

次に (2)並びに(3)の永久磁石の製造方法は、真
空メルトスピニング装置を使用するが、この装置は、現
在では大変生産性が悪くしがも高価である。
Next, the permanent magnet manufacturing methods (2) and (3) use a vacuum melt spinning device, but this device currently has very low productivity and is expensive.

(2)の永久磁石は、原理的に等方性であるので低エネ
ルギー積であり、ヒステリシスループの角形性も悪く、
温度特性に対しても、使用する面においても不利である
The permanent magnet (2) is isotropic in principle, so it has a low energy product, and the squareness of the hysteresis loop is also poor.
It is disadvantageous both in terms of temperature characteristics and in terms of use.

(3)の永久磁石を製造する方法は、ホットプレスを二
段階に使うというユニークな方法であるが、実際に量産
を考えると非効率であることは否めないであろう。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production.

更にこの方法では、高温例えば800℃以上では結晶粒
の粗大化が著しく、それによって保磁力iHcが極端に
低下し、実用的な永久磁石にはならない。
Furthermore, in this method, at high temperatures, for example, 800° C. or higher, the crystal grains become significantly coarsened, resulting in an extremely low coercive force iHc, making it impossible to produce a practical permanent magnet.

(4)の永久磁石を製造する方法は、粉末工程を含まず
、ホットプレスも一段階でよいために、最も製造工程が
簡略化され量産コストの低減が図れる製造法であるが、
鋳造組織の均一化が離しく、磁気特性が焼結法に比べる
とやや低いという問題があった。
The method (4) for manufacturing permanent magnets does not involve a powder process and only requires one step of hot pressing, so it is the manufacturing method that can simplify the manufacturing process and reduce mass production costs the most.
There were problems in that the casting structure was not uniform enough and the magnetic properties were slightly lower than in the sintering method.

本発明は、以上の従来技術の欠点特に(4)の鋳造組織
に関する問題と永久磁石の性能面での欠点を解決するも
のであり、その目的とするところは、高性能かつ低コス
トの永久磁石の製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, particularly the problem (4) regarding the cast structure and the performance of permanent magnets, and its purpose is to provide a high-performance, low-cost permanent magnet. The purpose of this invention is to provide a method for manufacturing the same.

[課題を解決するため・の手段] 本発明の永久磁石の製造方法は、R(ただしRはYを含
む希土類元素のうち少なくとも1種)。
[Means for Solving the Problems] The method for manufacturing a permanent magnet of the present invention uses R (where R is at least one rare earth element including Y).

Fe、Bを原料基本成分とし、該基本成分とする合金を
溶解して鋳造し、次いで鋳造インゴットあるいは前記イ
ンゴットに熱間加工を施して得られた合金を再度溶解・
鋳造後、該鋳造インゴットを500°C以上の温度にて
熱間加工し次に250〜1100℃の温度において熱処
理する事を特徴とする。
Fe and B are used as basic raw material components, and the alloy containing the basic components is melted and cast, and then the cast ingot or the alloy obtained by subjecting the ingot to hot working is melted and cast again.
After casting, the cast ingot is hot worked at a temperature of 500°C or higher, and then heat treated at a temperature of 250 to 1100°C.

また更なる高保磁力化、高性能化のためには、熱間加工
後750〜1100℃において熱処理した後に250〜
750°Cの温度において熱処理する事を特徴とする。
In addition, in order to further increase coercive force and improve performance, heat treatment at 750 to 1100 °C after hot working is required.
It is characterized by heat treatment at a temperature of 750°C.

ここにおいて、鋳造インゴットとは以前に2回以上鋳造
されたものも含み、鋳造インゴットに熱間加工を施して
得られた合金とは以前に2回以上熱間加工を施されたも
の、また、熱間加工後に1回以上熱処理を施されたもの
も含む。
Here, cast ingots include those that have been previously cast twice or more, and alloys obtained by hot working cast ingots include those that have been previously hot worked two or more times, and Also includes those that have been heat treated one or more times after hot working.

前記のように、鋳造により永久磁石を製造する方法では
、鋳造組織の均一化が離しいという欠点を有している。
As mentioned above, the method of manufacturing permanent magnets by casting has the disadvantage that it is difficult to make the casting structure uniform.

これは、溶湯中に存在する不純物が凝固の際に凝固核と
“なり、また、゛鋳壁部からの柱状晶の成長を妨げるた
め、均一な柱状晶組織の形成が阻害されるためである。
This is because impurities present in the molten metal become solidification nuclei during solidification, and also prevent the growth of columnar crystals from the casting wall, inhibiting the formation of a uniform columnar crystal structure. .

ここで、本発明では、再溶解・鋳造を行なうことにより
、不純物型が減少し、それによってインゴット中央部ま
で微細で均一な柱状晶組織を得ることができる事を見い
だした。
In the present invention, it has been found that by performing remelting and casting, the number of impurity types is reduced, thereby making it possible to obtain a fine and uniform columnar crystal structure up to the center of the ingot.

以下、本発明における永久磁石の好ましい組成範囲につ
いて説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

希土類としては、Y、  La、  Ce、  Pr、
  Nd。
Rare earths include Y, La, Ce, Pr,
Nd.

Sm、  Eu、  Gd、  Tb、  Dy、  
Ho、  Er、  Tm、Yb、Luが候補として挙
げられ、これらのうちの1種あるいは2種以上を組み合
わせて用いる。最も高い磁気性能はPrで得られるので
、実用的には Pr、Pr−Nd合金、Ce−Pr−N
d合金等が用いられる。少量の重希土元素、例えばDV
、Tb等は保磁力の向上に有効である。
Sm, Eu, Gd, Tb, Dy,
Candidates include Ho, Er, Tm, Yb, and Lu, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr, so Pr, Pr-Nd alloy, Ce-Pr-N
d alloy etc. are used. Small amounts of heavy rare earth elements, e.g. DV
, Tb, etc. are effective in improving coercive force.

R−Fe−B系磁石の主相はRaFe+aB  である
、従ってRが8w、子%未満では、もはや上記化合物を
形成せず高磁気特性は得られない、一方Rが30原子%
を越える・と非磁性のRリッチ相が多くなり磁気特性は
著しく低下する。よってRの範囲は8〜30原子%が適
当である。しかし高い残留磁束密度のためには、好まし
くはR8〜25w。
The main phase of an R-Fe-B magnet is RaFe+aB. Therefore, if R is less than 8 w, %, the above compound will no longer be formed and high magnetic properties will not be obtained; on the other hand, if R is 30 atomic %
If it exceeds 100%, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the appropriate range of R is 8 to 30 atomic %. However, for high residual magnetic flux density, preferably R8~25w.

子%が適当である。child% is appropriate.

Bは、R2Fe+*B 相を形成するための必須元素で
あり、2原子%未満では菱面体のR−Fe系になるため
に高保磁力は望めない、また28原子%を越えるとBに
富む非磁性相が多くなり、残留磁束密度は著しく低下し
てくる。しかじ高保磁力を得るためには、好ましくはB
88原子以下がよく、それ以上では微細なR2Fe+a
B 相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R2Fe+*B phase, and if it is less than 2 atomic %, it becomes a rhombohedral R-Fe system, so high coercive force cannot be expected, and if it exceeds 28 atomic %, B-rich non- As the magnetic phase increases, the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, preferably B
It is better to have 88 atoms or less, and if it is more than 88 atoms, fine R2Fe+a
It is difficult to obtain phase B, and the coercive force is small.

COは本系磁石のキュリー点を増加させるのに有効な元
素であるが、保磁力を小さくするので50原子%以下が
よい。
CO is an effective element for increasing the Curie point of the present magnet, but since it reduces the coercive force, it is preferably 50 atomic % or less.

Cu、Ag、Au、Pd、Ga等のRリッチ相とともに
存在し、その相の融点を低下させる元素は、保磁力の増
大効果を有する。しかし、これらの元素は非磁性元素で
あるため、その量を増すと残留磁束密度が減少す・るの
で、6原子%以下が好ましい。
Elements such as Cu, Ag, Au, Pd, and Ga that exist together with the R-rich phase and lower the melting point of the phase have the effect of increasing coercive force. However, since these elements are non-magnetic elements, increasing the amount will reduce the residual magnetic flux density, so it is preferably 6 at % or less.

熱間加工における温度は再結晶温度以上が望ましく、本
発明R−Fe−B系合金においては好ましくは500℃
以上である。
The temperature during hot working is desirably higher than the recrystallization temperature, preferably 500°C in the R-Fe-B alloy of the present invention.
That's all.

そして、熱処理温度は粒界の清浄化及び初品のFeを拡
散するために250℃以上が好ましく、R2FezB 
相が11006C以上では急激に粒成長して保磁力を失
うのでそれ以下の温度が好ましい。
The heat treatment temperature is preferably 250°C or higher in order to clean the grain boundaries and diffuse the initial Fe.
If the phase exceeds 11006C, grains will grow rapidly and the coercive force will be lost, so a temperature lower than that is preferable.

また、2段階以上の熱処理を施す場合の温度は、1段目
は初品のFeが早く拡散するように7500C以上が好
ましく、2段目は粒界のRリッチ相の融点付近以下の温
度、すなわち750°C以下が好ましく、250°C以
下では熱処理の効果に時間が掛かりすぎるのでそれ以上
がよい。
In addition, when performing heat treatment in two or more stages, the temperature in the first stage is preferably 7500C or higher so that the initial Fe diffuses quickly, and in the second stage, the temperature is around the melting point of the R-rich phase at the grain boundaries or below. That is, the temperature is preferably 750°C or lower, and the temperature higher than 250°C is preferable because it takes too much time for the effect of heat treatment to occur.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] [実施例1] 本発明による製造法の工程図を第1図に示す。[Example] [Example 1] A process diagram of the manufacturing method according to the present invention is shown in FIG.

この工程に従い、アル・ボン雰囲気中で誘導加熱炉を用
いて、P r 17F 8765B5Cu I5なる組
成の合金を溶解し、鋳造した。この時、希土類、鉄及び
銅の原料としては99.9%の純度のものを用い、ボロ
ンはフェロボロンを用いた0次いで、得られた鋳造イン
ゴットを、アルゴン雰囲気中でRg’JJ加熱炉を用い
て再度溶解し、鋳造した。
According to this process, an alloy having the composition P r 17F 8765B5Cu I5 was melted and cast using an induction heating furnace in an Albon atmosphere. At this time, rare earth, iron and copper raw materials with a purity of 99.9% were used, and boron was ferroboron.Then, the obtained cast ingot was heated in an Rg'JJ heating furnace in an argon atmosphere. It was melted again and cast.

こうして得られた鋳造インゴットの組織は、柱状晶であ
り、均一な組織で、インゴット中央まで配向していた。
The structure of the thus obtained cast ingot was a columnar crystal structure, which was uniform and oriented to the center of the ingot.

これは、インゴット中の不純物法度が減少したためと推
定される。また、このインゴットにおけるR2FezB
 の結晶粒の平均粒径は17.1μmであった。
This is presumed to be due to a decrease in the level of impurities in the ingot. In addition, R2FezB in this ingot
The average grain size of the crystal grains was 17.1 μm.

次に、この鋳造インゴットからサンプルを円柱状に切り
出しこれを鉄のリングにはめ込んで側面を拘束する形で
、アルゴン雰囲気中、1000″Cにおいて、加工度8
0%までホットプレスした。この時のプレス圧力は0.
2〜0.8ton/cm2であり、歪速度は10− ”
 〜10− ’ /secであった。
Next, a sample was cut into a cylindrical shape from this cast ingot, and the sample was fitted into an iron ring to restrain the sides.
Hot pressed to 0%. The press pressure at this time was 0.
2 to 0.8 ton/cm2, and the strain rate is 10-''
~10-'/sec.

またこの熱間加工時においては、合金の押される方向に
平行になるよ・うに結晶の磁化容易軸は配向した。
Also, during this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed.

この後、1000℃において24時間の熱処理を施し、
次に475℃において 2時間の熱処理を施した後、切
断、研磨されて磁気特性が測定された。
After that, heat treatment was performed at 1000°C for 24 hours,
Next, it was heat treated at 475°C for 2 hours, then cut and polished, and its magnetic properties were measured.

この磁石の磁気特性及び平均粒径を、 再溶解・鋳造を
行わない場合(比較例1)における値と共に第1表に示
す。
The magnetic properties and average particle size of this magnet are shown in Table 1 along with the values when remelting and casting were not performed (Comparative Example 1).

第  1  表 なお、磁気特性はすべて最大印加磁界25kOeでB−
)1 トレーサーを用いて測定した。
Table 1 All magnetic properties are B- at the maximum applied magnetic field of 25 kOe.
)1 Measured using a tracer.

第1表に示すごとく、本発明磁石は、−回tE造したも
のを再度溶解・鋳造することにより、結晶粒径を小さく
し、また、保磁力の向上に有効であることが解る。また
、最大エネルギー槓が向上することも明らかである。
As shown in Table 1, it can be seen that the magnet of the present invention is effective in decreasing the crystal grain size and improving the coercive force by melting and casting the magnet again after having been produced by -times tE. It is also clear that the maximum energy output is improved.

[実施例2] 実施例1と同様に、第1図に示す製造工程に従い、アル
ゴン雰囲気中で誘導加熱炉を用いて、Pr+vFe76
.5BsCu+、sなる組成の合金を溶解し、t4造し
た。この時、希土類、鉄及び銅の原料としては、実施例
1と同様に99.9%の純度のものを用い、ボロンはフ
ェロボロンを用いた。
[Example 2] Similarly to Example 1, Pr+vFe76 was produced using an induction heating furnace in an argon atmosphere according to the manufacturing process shown in FIG.
.. An alloy having the composition 5BsCu+,s was melted to produce t4. At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used as in Example 1, and boron was ferroboron.

こうして得られた鋳造インゴットから、サンプル2aを
切り出した。また、この鋳造インゴットを鉄製のカプセ
ルに入れ、脱気し、密封した。これに950°Cで加工
度30%の熱間圧延を空気中で4回行い、最終的に加工
度が76%になるようにした。
Sample 2a was cut out from the cast ingot thus obtained. Additionally, this cast ingot was placed in an iron capsule, degassed, and sealed. This was hot-rolled four times in air at 950°C with a working degree of 30%, so that the final working degree was 76%.

こうして得られた圧延インゴットから、サンプル2bを
切り出した。
Sample 2b was cut out from the rolled ingot thus obtained.

次いで、この圧延インゴット中ト再度Ml加熱炉を用い
てアルゴン雰囲気中で溶解し、鋳造した。
Next, this rolled ingot was melted again in an argon atmosphere using an M1 heating furnace and cast.

こうして得られたインゴットをS失製のカブセlしに入
れ、脱気し、密封した。これに950°Cで加工度30
%の熱間圧延を空気中で4回行い、最終的に加工度が7
6%になるようにした。そして、圧延インゴットから、
サンプル2cを切り出した。
The ingot thus obtained was placed in a S-made cover, degassed, and sealed. This is processed at 950°C with a processing degree of 30
% hot rolling in air four times, and the final workability was 7.
It was set to 6%. And from the rolled ingot,
Sample 2c was cut out.

次に、−回目の溶解・鋳造後に熱間圧延を行わないイン
ゴットを、再度溶解・鋳造した。この鋳造インゴットを
鉄製のカプセルに入れ、脱気・密封し、 950°Cで
加工度30%の熱間圧延を空気中で4回行い、最終的に
加工度が76%になるようにした。そして、圧延インゴ
ットからサンプル2dを明り出した。
Next, the ingot that was not hot rolled after the -th melting and casting was melted and cast again. This cast ingot was placed in an iron capsule, degassed and sealed, and hot-rolled at 950°C with a workability of 30% in air four times to achieve a final workability of 76%. Sample 2d was then exposed from the rolled ingot.

サンプル2a、2b、2c、2dともに、1000℃に
おいて24時間の熱処理を施し、次に475℃において
4時間の熱処理を施した。
Samples 2a, 2b, 2c, and 2d were all heat-treated at 1000°C for 24 hours, and then heat-treated at 475°C for 4 hours.

第2表に4種類のサンプルの磁気特性を示す。Table 2 shows the magnetic properties of the four types of samples.

第  2 表 第2表に示すごとく熱間圧延により、特に保磁力が大幅
に向上するが、再度溶解・鋳造を行うことにより、さら
に磁気特性、特に保磁力と最大エネルギー積が向上する
ことは明らかである。
As shown in Table 2, hot rolling significantly improves coercive force in particular, but it is clear that melting and casting again improves magnetic properties, particularly coercive force and maximum energy product. It is.

[実施例3] 実施例1と同様に、第1図に示す製造工程に従い、アル
ゴン雰囲気中で誘導加熱炉を用いて、第3表に示す組成
の合金を溶解し、鋳造した。この時用いた原料も同様の
純度のものを用いた。そして、得られた鋳造インゴット
を再度溶解し、鋳造した。
[Example 3] Similarly to Example 1, an alloy having the composition shown in Table 3 was melted and cast using an induction heating furnace in an argon atmosphere according to the manufacturing process shown in FIG. The raw materials used at this time were also of similar purity. Then, the obtained cast ingot was melted again and cast.

次に、これらの鋳造インゴットからサンプルを円柱状に
切り出し、これを鉄のリングにはめ込んで側面を拘束す
る形で、アルゴン雰囲気中、1000℃において加工度
80%までホットプレスした。この時のプレス圧力は0
.2〜0.8ton/cm2であり、歪速度は10−3
〜10− ’ /secであった。
Next, samples were cut into cylindrical shapes from these cast ingots, and the samples were hot-pressed in an argon atmosphere at 1000° C. to a degree of workability of 80% by fitting them into iron rings to restrict the sides. The press pressure at this time is 0
.. 2 to 0.8 ton/cm2, and the strain rate is 10-3
~10-'/sec.

この後、1000°Cにおいて24時間の熱処理を施し
、次に475°Cにおいて 2時間の熱処理を施した後
、切断・研磨されて磁気特性が測定された。
After that, it was heat treated at 1000°C for 24 hours, then at 475°C for 2 hours, then cut and polished, and its magnetic properties were measured.

これらの磁石の磁気特性を第4表に示す。The magnetic properties of these magnets are shown in Table 4.

第  4  表 第  3  表 以上の実施例から、R(ただしRはYを含む希土類元素
のうち少なくとも1種)、Fe、Bを原料基本成分とす
る永久磁石は、500 ”C以上で熱間加工されれば異
方性化され、250〜750″Cの熱処理により高保磁
力を示し、最高の(BH)maxは40MGOeを越え
ており、また、−度溶解・鋳造したインゴットあるいは
そのインゴットに熱間加工を施したものを再溶解・鋳造
することにより、結晶粒が微細化し、その磁気特性、特
に保磁力が大幅に向上することは明らかである。
Table 4 Table 3 From the above examples, it is clear that permanent magnets whose basic raw material components are R (where R is at least one rare earth element including Y), Fe, and B can be hot worked at 500"C or higher. It becomes anisotropic when heat treated at 250 to 750"C, and the highest (BH)max exceeds 40 MGOe. It is clear that by remelting and casting the processed material, the crystal grains become finer and the magnetic properties, especially the coercive force, are greatly improved.

[発明の効果] 以上のごとく本発明の永久磁石の製造方法は、次のごと
き効果を持つ。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

(1)C軸配向率を高めることができ、残留磁束密度B
rを著しく高めることができ、結晶粒を微細化でき、そ
れにより保磁力iHcを高めることができ、最大エネル
ギー8’l(B)I)maxを格段に向上させることが
出来た。
(1) The C-axis orientation rate can be increased, and the residual magnetic flux density B
r could be significantly increased, crystal grains could be made finer, coercive force iHc could be increased, and maximum energy 8'l(B)I)max could be significantly improved.

(2)製造プロセスが簡単であり、また、鋳造インゴッ
トあるいは熱間加工後の合金の未利用部分を再利用でき
るため、コストが安い。
(2) The manufacturing process is simple, and the cost is low because the unused portion of the cast ingot or hot-worked alloy can be reused.

(3)fi!石中の不純物濃度が低い。(3) fi! The concentration of impurities in the stone is low.

(4)従来の焼結法と比較して、加工工数及び生産投資
額を著しく低減させることが出来る。
(4) Compared to conventional sintering methods, processing man-hours and production investment can be significantly reduced.

(5)従来のメルトスピニング法によるiff石の製造
方法と比較して、高性能でしかも低コストの磁石を作る
ことが出来る。
(5) Compared to the conventional method of producing IF stones using melt spinning, it is possible to produce magnets with high performance and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のR−F 程図である。 e−B系磁石の製造上 以上 Figure 1 shows the R-F of the present invention. This is a diagram. Manufacturing of e-B magnets that's all

Claims (2)

【特許請求の範囲】[Claims] (1)R(ただしRはYを含む希土類元素のうち少なく
とも1種),Fe,Bを原料基本成分とし、該基本成分
とする合金を溶解・鋳造して得られた鋳造インゴットあ
るいは前記鋳造インゴットに熱間加工を施して得られた
合金を再度溶解・鋳造後、該鋳造インゴットを500℃
以上の温度にて熱間加工し、次に250〜1100℃の
温度において熱処理する事を特徴とする永久磁石の製造
方法。
(1) A cast ingot obtained by melting and casting an alloy containing R (where R is at least one rare earth element including Y), Fe, and B as basic raw material components, or the above-mentioned cast ingot. After melting and casting the alloy obtained by hot working, the cast ingot was heated to 500°C.
A method for producing a permanent magnet, which comprises hot working at a temperature above and then heat treatment at a temperature of 250 to 1100°C.
(2)熱間加工後の熱処理において750〜1100℃
において熱処理した後に250〜750℃の温度におい
て熱処理する事を特徴とする請求項1記載の永久磁石の
製造方法。
(2) 750-1100℃ in heat treatment after hot working
2. The method of manufacturing a permanent magnet according to claim 1, wherein the permanent magnet is heat-treated at a temperature of 250 to 750°C.
JP2257645A 1990-09-27 1990-09-27 Manufacture of permanent magnet Pending JPH04136131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2257645A JPH04136131A (en) 1990-09-27 1990-09-27 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257645A JPH04136131A (en) 1990-09-27 1990-09-27 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH04136131A true JPH04136131A (en) 1992-05-11

Family

ID=17309124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257645A Pending JPH04136131A (en) 1990-09-27 1990-09-27 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH04136131A (en)

Similar Documents

Publication Publication Date Title
US5536334A (en) Permanent magnet and a manufacturing method thereof
US5076861A (en) Permanent magnet and method of production
JPH04143221A (en) Production of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH04187722A (en) Production of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH04136131A (en) Manufacture of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JP2992808B2 (en) permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH0418707A (en) Manufacture of permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPH04324907A (en) Manufacture of permanent magnet
JPH0418709A (en) Manufacture of permanent magnet
JPH023209A (en) Permanent magnet and its manufacture
JPH04134805A (en) Manufacture of permanent magnet