JPH06231923A - Manufacture of rare earth sintered magnet, and its rare earth magnet - Google Patents

Manufacture of rare earth sintered magnet, and its rare earth magnet

Info

Publication number
JPH06231923A
JPH06231923A JP5013088A JP1308893A JPH06231923A JP H06231923 A JPH06231923 A JP H06231923A JP 5013088 A JP5013088 A JP 5013088A JP 1308893 A JP1308893 A JP 1308893A JP H06231923 A JPH06231923 A JP H06231923A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
temperature
earth sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5013088A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
亮 菊地
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5013088A priority Critical patent/JPH06231923A/en
Priority to US08/187,007 priority patent/US5489343A/en
Publication of JPH06231923A publication Critical patent/JPH06231923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To raise the density of a sintered substance by soaking the fine powder of an alloy for a rare earth sintered magnet in hydrophobic solvent, and applying an orientating magnetic field in that condition and pressuring it for molding, and performing the processing for removing the residual hydrophobic solvent in the molded item in specified temperature range, and then, sintering it. CONSTITUTION:The mixture between material powder for an R-Fe-B (R is one kind or two kinds or more out of rare earth elements including Y) and a hydrophobic solvent is wet-molded as it is in condition that powder is oriented, having an orienting magnetic field applied. This is the manufacture of sintering it after applying dehydrophobic solvent processing, which holds it for thirty minutes or more under the condition that the temperature is 100-500 deg.C and the pressure is 10<-1>Torr or under, or applying dehydrophobic solvent processing, which puts the speed of temperature rise within the range from normal temperature to 500 deg.C to 10 deg.C/min. or less under the pressure of 10<-1> Torr or under, to the obtained molded item. Hereby, oxidation or adsorption of water is prevented, and also the density of a sintered substance is improved, and a rare earth sintered magnet having high magnetic property can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−Fe−B系希土類
焼結磁石の製造方法および製造された希土類焼結磁石に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R--Fe--B system rare earth sintered magnet and the produced rare earth sintered magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石は、原料金属を溶解し、
鋳型に注湯して得られたインゴットを粉砕、成形、焼
結、熱処理、加工の粉末冶金技術を用いて製造される
が、その中でR−Fe−B系希土類焼結磁石(RはYを
含む希土類元素のうち一種または二種以上)は、高性能
磁石として注目されている。しかし、インゴットを粉砕
して得られた希土類焼結磁石用合金粉末は、化学的に非
常に活性であるため、大気中において極めて急激に酸化
し、磁気特性の劣化を招いてしまう。また、希土類焼結
磁石用合金粉末は、急激な酸化により発熱するだけでな
く甚だしい場合は、発火してしまうため安全性の面でも
問題があった。従来は、このような急激な酸化を防止す
る方法として、窒素、アルゴン等の不活性ガス中に長時
間放置し表面を安定化する処理が行われていたが、処理
に長時間を要するため量産性に問題があった。更に、希
土類焼結磁石用合金粉末は吸湿性があり、大気中に放置
すると大気中の水分を吸着し、製造された希土類焼結磁
石の特性を劣化させるという問題点があった。
2. Description of the Related Art Sintered rare earth magnets dissolve raw metal,
The ingot obtained by pouring into a mold is crushed, molded, sintered, heat-treated, and processed by a powder metallurgical technique, such as R-Fe-B rare earth sintered magnet (where R is Y. One or more of rare earth elements including is attracting attention as a high-performance magnet. However, the alloy powder for a rare earth sintered magnet obtained by crushing an ingot is chemically very active, so that it is extremely rapidly oxidized in the atmosphere, resulting in deterioration of magnetic properties. Further, the alloy powder for a rare earth sintered magnet not only generates heat due to abrupt oxidation but also ignites in an extreme case, which is also a problem in terms of safety. Conventionally, as a method of preventing such a rapid oxidation, a process of stabilizing the surface by leaving it in an inert gas such as nitrogen or argon for a long time has been performed, but it takes a long time to perform mass production. There was a problem with sex. Further, the alloy powder for a rare earth sintered magnet has a hygroscopic property, and when left in the atmosphere, it adsorbs moisture in the atmosphere, thereby deteriorating the characteristics of the manufactured rare earth sintered magnet.

【0003】[0003]

【発明が解決しようとする問題点】この問題に関し特開
昭61-114505号では、R−Fe−B系(RはY
を含む希土類元素のうち一種または二種以上)合金粉末
と有機溶媒との混合物を作成しこの混合物を磁場中にて
圧縮し有機溶媒をろ過して得た成形体を乾燥、焼結およ
び熱処理する永久磁石の製造方法が提案されている。こ
の製造方法によれば、湿式で成形するため酸化、水分の
吸着の問題が解決される。近時R−Fe−B系永久磁石
でより高い磁気特性を得るための検討が盛んに行われて
おり、本発明者も特開昭61-114505号の湿式成
形法を用いて検討を行った。その結果、確かに含有酸素
量の低下はなされるものの焼結体の密度が乾式成形法に
よる焼結体よりも低く、そのため磁気特性の向上が十分
にはかれないことが判明した。そこで、本発明は酸化お
よび水分の吸着を防止するとともに、焼結体の密度を向
上して高い磁気特性を有する希土類焼結磁石、およびそ
の製造方法を提供するものである。
With respect to this problem, JP-A-61-114505 discloses an R-Fe-B system (where R is Y).
One or more kinds of rare earth elements including) alloy powder and an organic solvent are prepared, the mixture is compressed in a magnetic field, the organic solvent is filtered, and the resulting compact is dried, sintered and heat treated. A method of manufacturing a permanent magnet has been proposed. According to this manufacturing method, since the molding is performed by a wet method, the problems of oxidation and moisture adsorption can be solved. Recently, R-Fe-B system permanent magnets have been extensively studied for obtaining higher magnetic properties, and the present inventor also conducted the study using the wet molding method disclosed in JP-A-61-114505. . As a result, it was found that although the oxygen content was certainly reduced, the density of the sintered body was lower than that of the sintered body obtained by the dry molding method, and therefore the magnetic properties could not be sufficiently improved. Therefore, the present invention provides a rare earth sintered magnet that prevents oxidation and adsorption of moisture, improves the density of the sintered body, and has high magnetic properties, and a method for producing the same.

【0004】[0004]

【問題を解決するための手段】本発明者らは湿式成形法
による焼結体の密度が低い原因について種々検討を行っ
たところ、焼結温度に至るまでの昇温過程で成形体内温
度が急激に上昇し成形体内に残留する疎水性有機物液体
(以下、疎水性溶媒と表記する)と成形体内のRつまり
希土類元素とが反応して液相焼結に寄与する希土類元素
が不必要に消費され、そのために焼結に必要な液相が十
分に発生しないことが密度の向上を阻害する原因である
と推察された。そしてこの問題を解消するためには、焼
結前に成形体を100〜500℃、圧力10-1Torr
以下の条件下で30分以上保持する処理を施すか、焼結
における昇温過程で10-1Torr以下の圧力で常温か
ら500℃までの温度範囲の昇温速度を10℃/min以
下とすればよいことを知見した。すなわち本発明の希土
類焼結磁石の製造方法は、R−Fe−B系(RはYを含
む希土類元素のうち一種または二種以上)希土類焼結磁
石用原料粉末と疎水性溶媒との混合物に配向磁場を印加
し粉末を配向させた状態のまま湿式成形し、得られた成
形体を温度100〜500℃、圧力10-1Torr以下
の条件下で30分以上保持する脱疎水性溶媒処理を施し
た後焼結する事を特徴とし、またR−Fe−B系(Rは
Yを含む希土類元素のうち一種または二種以上)希土類
焼結磁石用粉末と疎水性溶媒との混合物に配向磁場を印
加し粉末を配向させた状態のまま湿式成形し、得られた
成形体に10-1Torr以下の圧力下で常温から500
℃までの温度範囲の昇温速度を10℃/min以下とする
脱疎水性溶媒処理を施した後焼結することを特徴とす
る。
[Means for Solving the Problem] The inventors of the present invention have made various investigations on the cause of the low density of the sintered body by the wet forming method. As a result, the temperature inside the formed body suddenly increases during the temperature rising process up to the sintering temperature. The rare-earth element that contributes to the liquid-phase sintering is unnecessarily consumed by the reaction between the hydrophobic organic liquid (hereinafter referred to as a hydrophobic solvent) that rises in the compact and remains in the compact and R in the compact, that is, the rare-earth element. Therefore, it was speculated that the reason why the increase in density was hindered was that the liquid phase necessary for sintering was not sufficiently generated. Then, in order to solve this problem, the compact is sintered at a temperature of 100 to 500 ° C. and a pressure of 10 −1 Torr before sintering.
A treatment for holding for 30 minutes or more under the following conditions is performed, or a temperature rising rate in a temperature range from room temperature to 500 ° C is set to 10 ° C / min or less at a pressure of 10 -1 Torr or less in a temperature rising process in sintering. I found that it was good. That is, the method for producing a rare earth sintered magnet according to the present invention is applied to a mixture of an R—Fe—B system (R is one or more of rare earth elements including Y) rare earth sintered magnet raw material powder and a hydrophobic solvent. Wet-molding is performed while applying the orientation magnetic field to the powder in an oriented state, and a dehydrophobic solvent treatment in which the obtained compact is kept for 30 minutes or more under conditions of a temperature of 100 to 500 ° C. and a pressure of 10 −1 Torr or less. Characterized in that it is sintered after being applied, and an R-Fe-B system (R is one or more of rare earth elements including Y) rare earth sintered magnet powder and a hydrophobic solvent are used as an orientation magnetic field. Wet compaction is performed with the powder applied to the compact, and the compact thus obtained is subjected to a pressure of 10 -1 Torr or less from room temperature to 500.
It is characterized in that it is sintered after being subjected to a dehydrophobic solvent treatment at a temperature rising rate in the temperature range up to ° C of 10 ° C / min or less.

【0005】以下に、本発明を詳述する。本発明におけ
る希土類焼結磁石用合金はR−Fe−B系であればよい
が、望ましくはR−Fe(Co)−B−M系が良く、R
はYを含む希土類元素のうち一種または二種以上を25
〜35重量%、Bは0.8〜1.2重量%、MはAl、
Nb、Ti、V、Zr、Mo、W、Ga、Cu、Zn、
Ge、Snのうち一種または二種以上を5重量%以下、
残部が不可避的な混入物をのぞきFeまたはFeとCo
からなる。合金系として、Nd−Fe−B−Al−N
b、Nd−Fe−Co−B−Al−Nb、Nd−Fe−
B−Al−Ga、Nd−Fe−Co−B−Al−Ga、
Nd−Dy−Fe−B−Al−Nb、Nd−Dy−Fe
−Co−B−Al−Nb、Nd−Dy−Fe−B−Al
−Ga、Nd−Fe−Dy−Co−B−Al−Ga等が
例示されるが、これらに限定されるものではない。
The present invention will be described in detail below. The rare earth sintered magnet alloy according to the present invention may be an R—Fe—B system, but is preferably an R—Fe (Co) —B—M system.
Is one or more of the rare earth elements including Y 25
~ 35 wt%, B is 0.8-1.2 wt%, M is Al,
Nb, Ti, V, Zr, Mo, W, Ga, Cu, Zn,
5% by weight or less of one or more of Ge and Sn,
The balance is Fe or Fe and Co except for inevitable contaminants.
Consists of. As an alloy system, Nd-Fe-B-Al-N
b, Nd-Fe-Co-B-Al-Nb, Nd-Fe-
B-Al-Ga, Nd-Fe-Co-B-Al-Ga,
Nd-Dy-Fe-B-Al-Nb, Nd-Dy-Fe
-Co-B-Al-Nb, Nd-Dy-Fe-B-Al
-Ga, Nd-Fe-Dy-Co-B-Al-Ga, etc. are exemplified, but not limited thereto.

【0006】これらの合金を粉砕して得られる微粉末を
浸漬させる疎水性溶媒としては、n−ヘキサン、トルエ
ン、フルオロカーボン等を用いることができる。微粉末
を疎水性溶媒に浸漬させるには、原料となる希土類焼結
磁石用合金の粗粉をボールミル等による湿式粉砕の場合
は粉砕前の粗粉の状態で疎水性溶媒に浸漬すれば良く、
ジェットミル等による乾式粉砕の場合は微粉砕直後に不
活性または還元性雰囲気中で疎水性溶媒に浸漬すること
が望ましく、このようにすることにより微粉末を大気か
ら遮断し酸化、水分の吸着を抑制することができる。更
に、これらの疎水性溶媒中にカルボン酸または/および
アミンを溶解させておく事により、疎水性溶媒中に溶解
している酸素による微粉末の酸化を防止することができ
る。カルボン酸およびアミンは、疎水性溶媒中で微粉末
表面に吸着し、微粉への酸素の吸着を防止するため微粉
の酸化を防止できるものと考えられる。
As the hydrophobic solvent in which the fine powder obtained by crushing these alloys is dipped, n-hexane, toluene, fluorocarbon or the like can be used. In order to immerse the fine powder in the hydrophobic solvent, in the case of wet pulverizing the coarse powder of the rare earth sintered magnet alloy as a raw material by a ball mill or the like, it may be immersed in the hydrophobic solvent in the state of the coarse powder before pulverization,
In the case of dry crushing with a jet mill, it is desirable to immerse the powder in a hydrophobic solvent in an inert or reducing atmosphere immediately after crushing.By doing this, the fine powder is shielded from the atmosphere to prevent oxidation and adsorption of moisture. Can be suppressed. Further, by dissolving the carboxylic acid and / or the amine in these hydrophobic solvents, it is possible to prevent the fine powder from being oxidized by oxygen dissolved in the hydrophobic solvent. It is considered that the carboxylic acid and the amine are adsorbed on the surface of the fine powder in the hydrophobic solvent and prevent the adsorption of oxygen to the fine powder, so that the oxidation of the fine powder can be prevented.

【0007】このようにして得られた微粉末と疎水性溶
媒との混合物を湿式成形するのに好適なプレス装置を図
1に示す。図1に示すプレス装置を用いた湿式成形の例
を以下説明する。断続できる配向磁場中に配置された金
型1のキャビティ内に微粉末と疎水性溶媒の混合物を充
填し配向磁場を印加することにより微粉末を配向させ、
上パンチ5を下降させ圧力をかけると疎水性溶媒は、下
パンチ2上に置かれたフィルター4を通し下パンチ2に
設けられた溶媒排出用穴3を通し排出され粉末が圧縮、
成形される。微粉末と疎水性溶媒の混合物を圧縮してい
る間は配向磁場を印加してもしなくても構わないが、粉
末の配向を維持するためおよび金型1と上・下パンチ
5、2のクリアランスから疎水性溶媒とともに微粉末が
吹き出すのを防止するためには圧縮が完了するまで配向
磁場を印加した状態を維持することが望ましい。図1は
配向磁場の方向が圧縮方向に対し垂直の場合を示してい
るが、圧縮方向に平行になるように配向磁場の発生機
構、つまり配向磁場用コイル6およびポールピース7を
設けても構わない。また配向磁場の発生方法もこれらに
限られるものではない。
FIG. 1 shows a pressing apparatus suitable for wet-molding the mixture of the fine powder thus obtained and the hydrophobic solvent. An example of wet molding using the press device shown in FIG. 1 will be described below. Filling the mixture of the fine powder and the hydrophobic solvent in the cavity of the mold 1 arranged in the intermittent orientation magnetic field, and applying the orientation magnetic field to orient the fine powder,
When the upper punch 5 is lowered and pressure is applied, the hydrophobic solvent is discharged through the filter 4 placed on the lower punch 2 and through the solvent discharging hole 3 provided in the lower punch 2 to compress the powder,
Molded. An orientation magnetic field may or may not be applied while the mixture of the fine powder and the hydrophobic solvent is compressed, but in order to maintain the orientation of the powder and the clearance between the die 1 and the upper / lower punches 5 and 2. Therefore, in order to prevent the fine powder from blowing out together with the hydrophobic solvent, it is desirable to maintain the state in which the orientation magnetic field is applied until the compression is completed. Although FIG. 1 shows the case where the direction of the orientation magnetic field is perpendicular to the compression direction, the mechanism for generating the orientation magnetic field, that is, the orientation magnetic field coil 6 and the pole piece 7 may be provided so as to be parallel to the compression direction. Absent. The method of generating the orientation magnetic field is not limited to these.

【0008】得られた成形体は、大気中に放置すると疎
水性溶媒が気化するのに伴い表面から乾燥し疎水性溶媒
で濡れていない部分が生じ徐々に酸化され焼結により得
られる希土類焼結磁石の特性を劣化させる。これを防止
するため、成形体は成形直後に疎水性溶媒もしくは非酸
化性または還元性雰囲気のガス中で焼結炉に挿入するま
で保存することが望ましい。
When the molded body thus obtained is left to stand in the air, the hydrophobic solvent evaporates and the surface is dried to form a portion not wet with the hydrophobic solvent, which is gradually oxidized and sintered by rare earth sintering. It deteriorates the characteristics of the magnet. In order to prevent this, it is desirable to store the molded body immediately after molding in a hydrophobic solvent or a gas in a non-oxidizing or reducing atmosphere until it is inserted into a sintering furnace.

【0009】次に成形体を焼結するが、常温から焼結温
度である950〜1150℃まで連続的に昇温すると成
形体内温度が急激に上昇し、成形体中に残留した疎水性
溶媒と成形体内の希土類元素が反応することにより希土
類炭化物を生成し、焼結に十分な量の液相の発生が妨げ
られ十分な密度の焼結体が得られず磁気特性の劣化を招
く。これを防止するために本発明では、温度100〜5
00℃、圧力10-1Torr以下の条件下で30分以上
保持する脱疎水性溶媒処理を施す。この処理により成形
体中に残留した疎水性溶媒を十分に除去することができ
る。なお、保持は100〜500℃の温度範囲であれば
一点である必要はなく二点以上であってもよい。また本
発明では10-1以下の圧力下で室温から500℃までの
昇温速度を10℃/min以下、好ましくは5℃/min以下
とする脱疎水性溶媒処理を施すことにより温度100〜
500℃、圧力10-1Torr以下の条件下で30分以
上保持する処理と同様な効果を得ることができる。
Next, the molded body is sintered. When the temperature is continuously raised from room temperature to 950 to 1150 ° C. which is the sintering temperature, the temperature inside the molded body rises rapidly, and the hydrophobic solvent remaining in the molded body is removed. The rare earth element in the compact reacts with each other to generate a rare earth carbide, which hinders the generation of a liquid phase in an amount sufficient for sintering, and a sintered body having a sufficient density cannot be obtained, resulting in deterioration of magnetic properties. In order to prevent this, in the present invention, the temperature is 100 to 5
A dehydrophobic solvent treatment is carried out under the conditions of 00 ° C. and a pressure of 10 −1 Torr or less for 30 minutes or more. By this treatment, the hydrophobic solvent remaining in the molded body can be sufficiently removed. The holding is not limited to one point as long as it is in the temperature range of 100 to 500 ° C., and may be two or more points. Further, in the present invention, by applying a dehydrophobic solvent treatment at a temperature rising rate from room temperature to 500 ° C. of 10 ° C./min or less, preferably 5 ° C./min or less under a pressure of 10 −1 or less, a temperature of 100 to
It is possible to obtain the same effect as the treatment of holding for 30 minutes or more under the condition of 500 ° C. and pressure of 10 −1 Torr or less.

【0010】[0010]

【実施例】以下、本発明を実施例をもって具体的に説明
するが、本発明の内容は、これに限定されるものではな
い。 (実施例1)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを粗粉砕し、次いで
ジェットミルを用い雰囲気の酸素量が10ppmの窒素中
で微粉砕した。微粉末の平均粒経は4.1μmであっ
た。粉砕して得られた微粉末を窒素雰囲気でn−ヘキサ
ンに浸漬した。これを図1に示すプレスを用いて湿式成
形を行った。すなわち、n−ヘキサンに浸漬された微粉
末を金型1のキャビティ内に充填し、配向磁場用コイル
6に電流を流し配向磁場強度15kOeでn−ヘキサン中
の微粉末を配向させ、その状態のまま上パンチ5によび
加圧した。加圧されたn−ヘキサンの大部分はフィルタ
ー4を通し下パンチ2に設けられた溶媒排出用穴3を通
し排出された。その後配向磁場電流を切り、成形体を取
り出してこれを直ちにn−ヘキサンに浸漬させた。得ら
れた成形体をn−ヘキサンから取り出し焼結炉に挿入し
圧力5×10-2Torrで室温から150℃まで1.56℃
/minで昇温し、その温度で1時間保持の後500℃まで
1.5℃/minで昇温、成形体中の疎水性溶媒を除去し、
圧力5×10-4Torrで500から1100℃まで20℃
/minで昇温、2時間保持しその後炉冷した。得られた焼
結体を900℃で1時間、600℃で1時間時効処理し
た後、焼結体の酸素量、炭素量、磁気特性を測定したと
ころ表1に示すように十分な特性が得られた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the contents of the present invention are not limited thereto. (Example 1) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 31% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was coarsely pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere having an oxygen content of 10 ppm. The average particle size of the fine powder was 4.1 μm. The fine powder obtained by crushing was immersed in n-hexane in a nitrogen atmosphere. This was wet-molded using the press shown in FIG. That is, the fine powder dipped in n-hexane is filled in the cavity of the mold 1, and a current is passed through the orientation magnetic field coil 6 to orient the fine powder in n-hexane with an orientation magnetic field strength of 15 kOe. Then, the upper punch 5 was used to apply pressure. Most of the pressurized n-hexane was discharged through the filter 4 through the solvent discharge hole 3 provided in the lower punch 2. After that, the orientation magnetic field current was cut off, the molded body was taken out and immediately immersed in n-hexane. The obtained molded body was taken out from n-hexane and inserted into a sintering furnace at a pressure of 5 × 10 -2 Torr from room temperature to 150 ° C at 1.56 ° C.
The temperature is raised at a rate of / min, the temperature is maintained for 1 hour, and the temperature is raised to 500 ° C at a rate of 1.5 ° C / min to remove the hydrophobic solvent in the molded body.
20 ° C from 500 to 1100 ° C at a pressure of 5 × 10 -4 Torr
The temperature was raised at / min, the temperature was maintained for 2 hours, and then the furnace was cooled. The obtained sintered body was aged at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, and the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. Was given.

【0011】(実施例2)希土類焼結磁石用の出発原料
として、電解鉄、フェロボロン、Ndを所定量秤量し、
高周波溶解炉にて溶解、鋳造することにより、重量%で
Nd=31%、B=1.0%、Al=0.3%、残部F
eなるインゴットを製造した。このインゴットを粗粉砕
し、次いでボールミルを用いn−ヘキサンを疎水性溶媒
とする湿式法により微粉砕することにより、微粉末の体
積率が60%の微粉末とn−ヘキサンの混合物を得た。
なお、微粉末の平均粒経は4.0μmであった。この微
粉末を浸漬した疎水性溶媒について実施例1と同様に成
形、焼結および熱処理を行い焼結体の酸素量、炭素量、
磁気特性を測定したところ表1に示すように十分な特性
が得られた。 (実施例3)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを粗粉砕し、次いで
ジェットミルを用い雰囲気の酸素量が10ppmの窒素中
で微粉砕した。なお、微粉末の平均粒経は4.1μmで
あった。粉砕して得られた微粉末を窒素雰囲気中で微粉
末の重量に対し1%の重量のn−ヘキサデシルアミンを
溶解させたn−ヘキサンに浸漬した。この微粉を浸漬し
た疎水性溶媒について実施例1と同様に成形、焼結およ
び熱処理を行い焼結体の酸素量、炭素量、磁気特性を測
定したところ表1に示すように十分な特性が得られた。 (実施例4)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを粗粉砕し、次いで
ボールミルを用い粗粉重量に対し1%の重量のn−ヘキ
サデシルアミンを溶解させたn−ヘキサンを疎水性溶媒
とする湿式法により微粉砕することにより、微粉末の体
積率が60%の微粉末とn−ヘキサンの混合物を得た。
なお、微粉末の平均粒経は4.2μmであった。この微
粉末を浸漬した疎水性溶媒について実施例1と同様に成
形、焼結および熱処理を行い焼結体の酸素量、炭素量、
磁気特性を測定したところ表1に示すように十分な特性
が得られた。 (実施例5)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを粗粉砕し、次いで
ジェットミルを用い雰囲気の酸素量が10ppmの窒素中
で微粉砕した。粉砕して得られた平均粒経3.9μmの
微粉末を窒素雰囲気中で微粉末の重量に対し1%の重量
のステアリン酸を溶解させたn−ヘキサンに浸漬させた
混合物とした。これについて実施例1と同様に成形、焼
結、熱処理を行い得られた焼結体の酸素量、炭素量、磁
気特性の測定を行ったところ表1に示すように十分な特
性が得られた。 (実施例6)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=31
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを粗粉砕し、次いで
ボールミルを用い粗粉重量に対し1%の重量のステアリ
ン酸を溶解させたn−ヘキサンを疎水性溶媒とする湿式
法により微粉砕することにより、微粉末の体積率が60
%の微粉末とステアリン酸を溶解させたn−ヘキサンの
混合物を得た。なお、微粉末の平均粒経は4.3μmで
あった。これについて実施例1と同様に成形、焼結およ
び熱処理を行い焼結体の酸素量、炭素量、磁気特性を測
定したところ表1に示すように十分な特性が得られた。 (実施例7)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例1と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。 (実施例8)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例2と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。 (実施例9)希土類焼結磁石用の出発原料として、電解
鉄、フェロボロン、Ndを所定量秤量し、高周波溶解炉
にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例3と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。 (実施例10)希土類焼結磁石用の出発原料として、電
解鉄、フェロボロン、Ndを所定量秤量し、高周波溶解
炉にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例4と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。 (実施例11)希土類焼結磁石用の出発原料として、電
解鉄、フェロボロン、Ndを所定量秤量し、高周波溶解
炉にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例5と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。 (実施例12)希土類焼結磁石用の出発原料として、電
解鉄、フェロボロン、Ndを所定量秤量し、高周波溶解
炉にて溶解、鋳造することにより、重量%でNd=29
%、B=1.0%、Al=0.3%、残部Feなるイン
ゴットを製造した。このインゴットを実施例6と同様の
工程により熱処理した焼結体とし、焼結体の酸素量、炭
素量、磁気特性を測定したところ表1に示すように十分
な特性が得られた。
Example 2 As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron and Nd were weighed in predetermined amounts,
By melting and casting in a high-frequency melting furnace, weight% Nd = 31%, B = 1.0%, Al = 0.3%, balance F
An ingot called e was manufactured. This ingot was roughly pulverized, and then finely pulverized by a wet method using n-hexane as a hydrophobic solvent using a ball mill to obtain a mixture of fine powder having a volume ratio of fine powder of 60% and n-hexane.
The average particle size of the fine powder was 4.0 μm. The hydrophobic solvent in which the fine powder was dipped was molded, sintered and heat treated in the same manner as in Example 1, and the oxygen content, carbon content, and
When the magnetic properties were measured, sufficient properties were obtained as shown in Table 1. (Example 3) As starting materials for a rare earth sintered magnet, electrolytic iron, ferroboron, and Nd were weighed in predetermined amounts, melted and cast in a high-frequency melting furnace, and Nd = 31% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was coarsely pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere having an oxygen content of 10 ppm. The average particle size of the fine powder was 4.1 μm. The fine powder obtained by grinding was immersed in a nitrogen atmosphere in n-hexane in which 1% by weight of n-hexadecylamine was dissolved in the weight of the fine powder. The hydrophobic solvent in which the fine powder was dipped was molded, sintered and heat treated in the same manner as in Example 1, and the oxygen content, carbon content and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. Was given. (Example 4) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 31% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was roughly pulverized and then finely pulverized by a wet method using n-hexane having 1% by weight of n-hexadecylamine dissolved in the ball mill as a hydrophobic solvent to obtain a fine powder. A mixture of fine powder having a volume ratio of 60% and n-hexane was obtained.
The average particle size of the fine powder was 4.2 μm. The hydrophobic solvent in which the fine powder was dipped was molded, sintered and heat treated in the same manner as in Example 1, and the oxygen content, carbon content, and
When the magnetic properties were measured, sufficient properties were obtained as shown in Table 1. (Example 5) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 31% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was coarsely pulverized, and then finely pulverized using a jet mill in a nitrogen atmosphere having an oxygen content of 10 ppm. A fine powder having an average particle diameter of 3.9 μm obtained by pulverization was immersed in n-hexane in which 1% by weight of stearic acid was dissolved in n-hexane in a nitrogen atmosphere. When the sintered body obtained was molded, sintered and heat-treated in the same manner as in Example 1 and the oxygen content, carbon content and magnetic characteristics were measured, sufficient characteristics were obtained as shown in Table 1. . (Example 6) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 31% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was roughly pulverized, and then finely pulverized by a wet method using a ball mill and n-hexane in which 1% by weight of stearic acid was dissolved with respect to the weight of the coarse powder as a hydrophobic solvent. Is 60
% Fine powder and stearic acid dissolved n-hexane mixture was obtained. The average particle size of the fine powder was 4.3 μm. When this was subjected to molding, sintering and heat treatment in the same manner as in Example 1 to measure the oxygen content, carbon content and magnetic characteristics of the sintered body, sufficient characteristics were obtained as shown in Table 1. (Example 7) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29% by weight.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. Using this ingot as a sintered body that was heat-treated by the same steps as in Example 1, the oxygen content, carbon content and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. (Example 8) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. The ingot was heat-treated in the same process as in Example 2 to obtain a sintered body, and the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. (Example 9) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. The ingot was heat-treated in the same process as in Example 3 to obtain a sintered body, and the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. (Example 10) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was made into a sintered body that was heat-treated by the same steps as in Example 4, and the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. (Example 11) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was heat-treated in the same process as in Example 5 to obtain a sintered body, and the oxygen content, carbon content and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1. (Example 12) As starting materials for rare earth sintered magnets, predetermined amounts of electrolytic iron, ferroboron, and Nd were weighed, melted and cast in a high-frequency melting furnace, and Nd = 29 by weight%.
%, B = 1.0%, Al = 0.3%, and the balance Fe was manufactured. This ingot was heat-treated in the same process as in Example 6 to obtain a sintered body, and the oxygen content, carbon content and magnetic characteristics of the sintered body were measured, and sufficient characteristics were obtained as shown in Table 1.

【0012】(比較例1)実施例1と同じインゴットを
実施例1と同様の粉砕を行い、疎水性溶媒中に回収せず
大気中に開放したところ、即座に発火し微粉の回収を行
うことはできなかった。 (比較例2)実施例1と同じインゴットを実施例1と同
様の粉砕を行い、窒素ガス中で気密容器に回収し、48
時間大気圧の窒素ガス中で安定化処理をした微粉末を大
気中、配向磁場強度15kOe、成形圧1ton/cm2で成形
し、得られた成形体を5×10-4Torrで室温から110
0℃まで20℃/minで昇温、2時間保持後炉冷した。得
られた焼結体を900℃で1時間、600℃で1時間熱
処理した後、焼結体の酸素量、炭素量、磁気特性を測定
したところ表1に示すように、実施例より酸素量が高
く、特性も実施例より低い結果となった。 (比較例3)実施例7と同じインゴットを実施例と同様
の粉砕を行い、疎水性溶媒中に回収せずに大気中に開放
したところ、即座に発火し微粉の回収を行うことはでき
なかった。 (比較例4)実施例7と同じインゴットを実施例7と同
様の粉砕を行い、窒素ガス中で気密容器に回収し、48
時間大気圧の窒素ガス中で安定化処理をした微粉末を大
気中、配向磁場強度15kOe、成形圧1ton/cm2で成形
し、得られた成形体を圧力5×10-4Torrで室温から1
100℃まで20℃/minで昇温、2時間保持後炉冷し
た。得られた焼結体を900℃で1時間、600℃で1
時間熱処理した後、焼結体の酸素量、炭素量、磁気特性
を測定したところ表1に示すように、実施例5より酸素
量が高く、焼結体密度、磁気特性も実施例より低い結果
となった。 (比較例5)実施例1と同じインゴットを実施例1と同
様に粉砕、n−ヘキサン中への回収、湿式成形を行い、
得られた成形体を圧力5×10-4Torrで室温から110
0℃まで20℃/minで昇温、2時間保持後炉冷した。得
られた焼結体を900℃で1時間、600℃で1時間熱
処理した後、焼結体の酸素量、炭素量、磁気特性を測定
したところ表1に示すように、酸素量は実施例と同様で
あるが炭素量が高く焼結体密度が小さくなっており、磁
気特性も実施例より低い結果となった。
(Comparative Example 1) The same ingot as in Example 1 was crushed in the same manner as in Example 1 and opened in the atmosphere without being recovered in the hydrophobic solvent, and immediately ignited to recover fine powder. I couldn't. (Comparative Example 2) The same ingot as in Example 1 was crushed in the same manner as in Example 1 and recovered in a gas-tight container in nitrogen gas.
The fine powder that has been stabilized in nitrogen gas at atmospheric pressure is molded in the air at an orientation magnetic field strength of 15 kOe and a molding pressure of 1 ton / cm 2 , and the obtained molded body is heated from room temperature to 110 at 110 × 10 −4 Torr.
The temperature was raised to 0 ° C. at 20 ° C./min, held for 2 hours, and then cooled in the furnace. The obtained sintered body was heat-treated at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, and then the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured. Was higher and the characteristics were lower than those of the examples. (Comparative Example 3) When the same ingot as in Example 7 was crushed in the same manner as in Example and opened in the atmosphere without being recovered in the hydrophobic solvent, it immediately ignited and the fine powder could not be recovered. It was (Comparative Example 4) The same ingot as in Example 7 was crushed in the same manner as in Example 7, and collected in an airtight container in nitrogen gas.
The fine powder that has been stabilized in nitrogen gas at atmospheric pressure is molded in the air at an orientation magnetic field strength of 15 kOe and a molding pressure of 1 ton / cm 2 , and the obtained molded body is heated from room temperature at a pressure of 5 × 10 −4 Torr. 1
The temperature was raised to 100 ° C. at 20 ° C./min, the temperature was maintained for 2 hours, and the furnace was cooled. The obtained sintered body is heated at 900 ° C for 1 hour and then at 600 ° C for 1 hour.
After heat treatment for a period of time, the oxygen content, carbon content, and magnetic characteristics of the sintered body were measured. As shown in Table 1, the oxygen content was higher than that of Example 5, and the sintered body density and magnetic characteristics were also lower than those of the Examples. Became. (Comparative Example 5) The same ingot as in Example 1 was crushed in the same manner as in Example 1, recovered in n-hexane, and wet-molded.
The obtained molded body is heated from room temperature to 110 at a pressure of 5 × 10 −4 Torr.
The temperature was raised to 0 ° C. at 20 ° C./min, held for 2 hours, and then cooled in the furnace. The obtained sintered body was heat-treated at 900 ° C. for 1 hour and at 600 ° C. for 1 hour, and the oxygen content, carbon content, and magnetic properties of the sintered body were measured. Similar to the above, but the carbon content was high and the sintered body density was low, and the magnetic characteristics were lower than those of the examples.

【0013】[0013]

【表1】 ρs:焼結体密度[Table 1] ρs: Sintered body density

【0014】[0014]

【発明の効果】以上詳述したように、本発明によると微
粉砕して得られる希土類焼結磁石用合金の微粉末を、疎
水性溶媒に浸漬させ、その状態で配向磁場を印加、加圧
成形し、室温から500℃まで成形体中の残留疎水性溶
媒を除去するための処理を行った後焼結することによ
り、酸素量が3000ppm以下、焼結体密度が7.45
〜7.62g/cm3の焼結体を得ることができる。
As described in detail above, according to the present invention, fine powder of a rare earth sintered magnet alloy obtained by fine pulverization is immersed in a hydrophobic solvent, and an orienting magnetic field is applied and pressed in that state. By molding and performing a treatment for removing the residual hydrophobic solvent in the molded body from room temperature to 500 ° C., sintering is performed to obtain an oxygen amount of 3000 ppm or less and a sintered body density of 7.45.
It is possible to obtain a sintered body of ~ 7.62 g / cm 3 .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施するに好適なプレス装
置の1例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a pressing apparatus suitable for carrying out a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1・・・金型 2・・・下パンチ 3・・・
溶媒排出用穴 4・・・フィルター 5・・・上パンチ 6・・・
配向磁場用コイル 7・・・ポールピース
1 ... Mold 2 ... Lower punch 3 ...
Solvent drain hole 4 ... Filter 5 ... Upper punch 6 ...
Coil for orientation magnetic field 7 ... Pole piece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系(RはYを含む希土類元
素のうち一種または二種以上)希土類焼結磁石用原料粉
末と疎水性有機物液体との混合物に配向磁場を印加し粉
末を配向させたまま湿式成形し、得られた成形体に温度
100〜500℃、圧力10-1Torr以下の条件下で
30分以上保持する脱疎水性有機物液体熱処理を施し、
その後焼結する事を特徴とする希土類焼結磁石の製造方
法。
1. An R-Fe-B system (R is one or more of rare earth elements containing Y) rare earth sintered magnet raw material powder and a hydrophobic organic liquid mixture are applied with an orientation magnetic field to form a powder. Wet molding is carried out while being oriented, and the resulting molded body is subjected to a heat treatment of a dehydrophobic organic substance liquid which is held for 30 minutes or more under conditions of a temperature of 100 to 500 ° C. and a pressure of 10 −1 Torr or less,
A method for producing a rare earth sintered magnet, which is characterized by sintering thereafter.
【請求項2】 R−Fe−B系(RはYを含む希土類元
素のうち一種または二種以上)希土類焼結磁石用原料粉
末と疎水性有機物液体との混合物に配向磁場を印加し粉
末を配向させたままの状態で湿式成形し、得られた成形
体に10-1Torr以下の圧力下で常温から500℃ま
での温度範囲の昇温速度を10℃/min以下とする脱疎
水性有機物液体処理を施し、その後焼結することを特徴
とする希土類焼結磁石の製造方法。
2. An R-Fe-B system (R is one or more of rare earth elements including Y) rare earth sintered magnet raw material powder and a hydrophobic organic liquid mixture are applied with an orientation magnetic field to form a powder. A dehydrophobic organic substance that is wet-molded in the as-oriented state and has a temperature rise rate of 10 ° C / min or less in the temperature range from room temperature to 500 ° C under a pressure of 10 -1 Torr or less A method for producing a rare earth sintered magnet, which comprises subjecting to liquid treatment and then sintering.
【請求項3】 疎水性有機物液体中にカルボン酸および
/またはアミンが溶解されている請求項1または2に記
載の希土類焼結磁石の製造方法。
3. The method for producing a rare earth sintered magnet according to claim 1, wherein the carboxylic acid and / or amine is dissolved in the hydrophobic organic liquid.
【請求項4】 請求項1〜請求項3のいずれかに記載の
製造方法により得られた焼結体の酸素量が3000ppm
以下、炭素量が600ppm以下、焼結体密度が7.45
〜7.62g/cm3であることを特徴とするR−Fe−B
系希土類焼結磁石。
4. The sintered body obtained by the manufacturing method according to claim 1 has an oxygen content of 3000 ppm.
Hereafter, the carbon content is 600 ppm or less, and the sintered body density is 7.45.
~ 7.62g / cm 3 R-Fe-B characterized by
Rare earth sintered magnet.
JP5013088A 1993-01-29 1993-01-29 Manufacture of rare earth sintered magnet, and its rare earth magnet Pending JPH06231923A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5013088A JPH06231923A (en) 1993-01-29 1993-01-29 Manufacture of rare earth sintered magnet, and its rare earth magnet
US08/187,007 US5489343A (en) 1993-01-29 1994-01-27 Method for producing R-Fe-B-based, sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013088A JPH06231923A (en) 1993-01-29 1993-01-29 Manufacture of rare earth sintered magnet, and its rare earth magnet

Publications (1)

Publication Number Publication Date
JPH06231923A true JPH06231923A (en) 1994-08-19

Family

ID=11823414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013088A Pending JPH06231923A (en) 1993-01-29 1993-01-29 Manufacture of rare earth sintered magnet, and its rare earth magnet

Country Status (1)

Country Link
JP (1) JPH06231923A (en)

Similar Documents

Publication Publication Date Title
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP3294841B2 (en) Rare earth magnet and manufacturing method thereof
EP0576055B1 (en) Fine-grained anisotropic powder from melt-spun ribbons
JP6793958B2 (en) Magnet manufacturing
JP2731337B2 (en) Manufacturing method of rare earth sintered magnet
CN109411225B (en) Preparation process of samarium cobalt magnet
JPH06231923A (en) Manufacture of rare earth sintered magnet, and its rare earth magnet
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JPH1197223A (en) R-fe-b sintered permanent magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JPH06231924A (en) Manufacture of rare earth sintered magnet
JPH1064712A (en) R-fe-b rare earth sintered magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JPH0718366A (en) Production of r-fe-b permanent magnet material
JPS62122108A (en) Manufacture of sintered rare earth magnet
JPH03167803A (en) Manufacture of rare-earth permanent magnet
JPH06325962A (en) Wet molding equipment of rare earth magnet
JP4543713B2 (en) Method for producing R-TM-B permanent magnet using sludge
JPH0790469A (en) Production of rare earth metal sintered magnet
JP4662046B2 (en) Manufacturing method of rare earth sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPS6334606B2 (en)
JPH06124816A (en) Rare earth sintered magnet, its manufacture, and alloy powder for it