JP2007266026A - Manufacturing method of rare-earth sintered magnet - Google Patents

Manufacturing method of rare-earth sintered magnet Download PDF

Info

Publication number
JP2007266026A
JP2007266026A JP2006084903A JP2006084903A JP2007266026A JP 2007266026 A JP2007266026 A JP 2007266026A JP 2006084903 A JP2006084903 A JP 2006084903A JP 2006084903 A JP2006084903 A JP 2006084903A JP 2007266026 A JP2007266026 A JP 2007266026A
Authority
JP
Japan
Prior art keywords
lubricant
sintered magnet
atmosphere
earth sintered
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006084903A
Other languages
Japanese (ja)
Inventor
Tokuji Sakamoto
篤司 坂本
Shuichiro Irie
周一郎 入江
Takeshi Masuda
健 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006084903A priority Critical patent/JP2007266026A/en
Publication of JP2007266026A publication Critical patent/JP2007266026A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare-earth sintered magnet capable of restraining a decrease in magnetic characteristics, and obtaining low-cost and high-characteristic rare-earth sintered magnet. <P>SOLUTION: Fine pulverization and formation in a magnetic field are performed under a low-oxygen atmosphere having an oxygen concentration of not more than 100 ppm. In this case, before the fine pulverization, a low-viscosity lubricant of not more than 10 mPa s, such as octanoic acid, octanoic acid ethyl, octanoic acid methyl, lauric acid ethyl, and lauric acid butyl is added to raw material alloy powder, thus restraining the amount of nitrogen contained in the powder and suppressing a decrease in magnetic characteristics. Processes for fine pulverization and formation in a magnetic field are performed in a nitrogen gas atmosphere, thus reducing oxygen concentration to not more than 100 ppm and restraining manufacturing costs. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、希土類焼結磁石の製造方法に関するものである。   The present invention relates to a method for producing a rare earth sintered magnet.

希土類焼結磁石の中でもR−T−B系希土類焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、需要は年々、増大している。R−T−B系希土類焼結磁石の磁気特性を向上するための研究開発も精力的に行われているが、更なる高性能化が常に望まれている。   Among the rare earth sintered magnets, R-T-B rare earth sintered magnets are excellent in magnetic properties, and Nd, which is the main component, is abundant in resources and relatively inexpensive, so demand is increasing year by year. is doing. Although research and development for improving the magnetic characteristics of the R-T-B rare earth sintered magnet has been energetically performed, higher performance is always desired.

R−T−B系希土類焼結磁石をさらに高性能化させるための手法の一つとして、希土類焼結磁石の酸素量を低下させる、というものがある。そこで、粉砕から焼結までの工程をアルゴンや窒素等の不活性ガス中、あるいは真空中等、低酸素雰囲気中で行うことが行われている(例えば、特許文献1、2参照。)。   One technique for further improving the performance of an R-T-B rare earth sintered magnet is to reduce the oxygen content of the rare earth sintered magnet. Therefore, processes from pulverization to sintering are performed in a low oxygen atmosphere such as in an inert gas such as argon or nitrogen, or in a vacuum (see, for example, Patent Documents 1 and 2).

特開2002−57052号公報JP 2002-57052 A 特許第3240034号公報Japanese Patent No. 3240034

しかしながら、前記の不活性ガスとして窒素ガスを選択した場合、特に粉砕工程において粉末に含まれる窒素量が増加し、磁気特性の低下を招いてしまう。
また、アルゴンガスを選択した場合、アルゴンは高価であり、製造コストに影響を与えるため、特に量産の場合には適さない、という問題もある。
本発明は、磁気特性の低下を抑え、低コストで高特性の希土類焼結磁石を得ることのできる希土類焼結磁石の製造方法を提供することを目的とする。
However, when nitrogen gas is selected as the inert gas, the amount of nitrogen contained in the powder increases particularly during the pulverization process, leading to a decrease in magnetic properties.
In addition, when argon gas is selected, there is a problem that argon is not suitable for mass production because it is expensive and affects the manufacturing cost.
An object of this invention is to provide the manufacturing method of the rare earth sintered magnet which can suppress the fall of a magnetic characteristic and can obtain the rare earth sintered magnet of a high characteristic at low cost.

そこでなされた本発明の希土類焼結磁石の製造方法は、所定組成の原料合金粉末を、酸素濃度が100ppm以下の雰囲気下で、有機物を構成要素とし粘度が10mPa・s以下の潤滑剤が添加された状態で微細に粉砕する微粉砕工程と、酸素濃度が100ppm以下の雰囲気下で、微粉砕工程で得られた粉砕粉末を磁場中成形し、成形体を得る磁場中成形工程と、成形体を焼結する焼結工程と、を備えることを特徴とする。
このように、酸素濃度を100ppm以下とした低酸素雰囲気下で微粉砕、磁場中成形を行う場合、微粉砕工程の前に添加する潤滑剤の粘度を10mPa・sと低粘度のものにするのが、粉砕粉末に含まれる窒素量を抑えるのに有効である。特に、微粉砕工程、磁場中成形工程を、窒素ガス雰囲気とした場合に本発明は有効である。
このような潤滑剤としては、脂肪酸または脂肪酸エステルがあり、具体的には、オクタン酸、オクタン酸エチル、オクタン酸メチル、ラウリン酸エチル、ラウリン酸ブチル等が好適である。
また、本発明においては、焼結工程に先立ち、成形体を、水素(H)を含む雰囲気ガス下で加熱処理することにより潤滑剤を除去する潤滑剤除去工程をさらに含むようにするのが好ましい。これにより残留炭素量を低減することができ、磁気特性を向上させることができる。このとき、加熱処理は、100〜550℃で行うのが好ましい。
Accordingly, the method for producing a rare earth sintered magnet of the present invention is such that a raw material alloy powder having a predetermined composition is added with a lubricant having an organic substance as a component and an viscosity of 10 mPa · s or less in an atmosphere having an oxygen concentration of 100 ppm or less. A finely pulverizing step in which the pulverized powder is finely pulverized in a state in which the pulverized powder is obtained in a magnetic field by molding the pulverized powder obtained in the fine pulverizing step in an atmosphere having an oxygen concentration of 100 ppm or less; And a sintering step for sintering.
Thus, when fine pulverization and molding in a magnetic field are performed in a low oxygen atmosphere with an oxygen concentration of 100 ppm or less, the viscosity of the lubricant added before the fine pulverization step is as low as 10 mPa · s. Is effective in reducing the amount of nitrogen contained in the pulverized powder. In particular, the present invention is effective when the fine pulverization step and the molding step in a magnetic field are performed in a nitrogen gas atmosphere.
Such lubricants include fatty acids or fatty acid esters, and specifically, octanoic acid, ethyl octoate, methyl octoate, ethyl laurate, butyl laurate and the like are suitable.
Further, in the present invention, prior to the sintering step, the molded body may further include a lubricant removing step of removing the lubricant by heat treatment under an atmosphere gas containing hydrogen (H 2 ). preferable. Thereby, the amount of residual carbon can be reduced and the magnetic characteristics can be improved. At this time, it is preferable to perform heat processing at 100-550 degreeC.

本発明によれば、低酸素雰囲気下で微粉砕、磁場中成形を行うときに、粉砕粉末に含まれる窒素量を抑えることができるので、磁気特性の低下を抑制できる。また、低酸素雰囲気を実現するのに窒素を用いた場合に本発明は特に有効であるため、低コストで高特性の希土類焼結磁石を得ることが可能となる。   According to the present invention, when fine pulverization and molding in a magnetic field are performed in a low oxygen atmosphere, the amount of nitrogen contained in the pulverized powder can be suppressed, so that deterioration in magnetic properties can be suppressed. In addition, since the present invention is particularly effective when nitrogen is used to realize a low oxygen atmosphere, it is possible to obtain a rare earth sintered magnet having high characteristics at low cost.

以下、本発明を実施の形態を希土類焼結磁石の製造方法を例にして詳細に説明する。
希土類焼結磁石は、通常、原料合金作製、原料合金の粉砕、粉砕された粉末の磁場中成形、成形体の焼結という基本的な工程を経て作製される。以下、本発明の特徴部分である潤滑剤除去処理工程を含め、工程順にその製造方法を説明する。
Hereinafter, embodiments of the present invention will be described in detail by taking a method for producing a rare earth sintered magnet as an example.
Rare earth sintered magnets are usually produced through the basic steps of producing a raw material alloy, grinding the raw material alloy, forming the pulverized powder in a magnetic field, and sintering the compact. Hereinafter, the manufacturing method will be described in the order of steps including the lubricant removal treatment step which is a characteristic part of the present invention.

原料合金は、真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。   The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably in an Ar atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an Ar gas atmosphere is ejected onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting.

原料合金は粉砕工程に供される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが好ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に排出させることにより粉砕を行なうことが効果的である。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。この場合、例えばストリップキャスト法で得られた原料合金は、数mm〜数十mmのサイズに切断された状態で水素粉砕に供される。   The raw material alloy is subjected to a grinding process. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is preferably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing the raw material alloy to store hydrogen and then discharging it. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted. In this case, for example, the raw material alloy obtained by the strip casting method is subjected to hydrogen pulverization in a state of being cut into a size of several mm to several tens mm.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末を、平均粒径2.5〜6μm、好ましくは3〜5μmの微粉とする。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for the fine pulverization, and the coarsely pulverized powder having a particle size of about several hundred μm is made into a fine powder having an average particle size of 2.5 to 6 μm, preferably 3 to 5 μm. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing.

ここで、原料合金段階で、R14B相を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用い、それぞれを粗粉砕、微粉砕した後、これらを混合して微粉を得ることもできる。その場合、低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。 Here, at the raw material alloy stage, an alloy mainly composed of the R 2 T 14 B phase (low R alloy) and an alloy containing more R than the low R alloy (high R alloy) are used. After pulverization, these can be mixed to obtain a fine powder. In that case, the mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight.

この微粉砕に先立ち、有機物を構成要素とする潤滑剤を0.01〜0.5wt%程度添加する。これにより、微粉砕工程において所望の粒径の微粉末を効率よく製造することができ、次の磁場中成形時に配向性の高い微粉を得ることができる効果に加え、微粉砕粉末に含まれる窒素量を低減することができる。微粉砕前に添加する潤滑剤としては、脂肪酸または脂肪酸エステルを用いるのが好ましいが、この中でも、特に、粘度が10mPa・s(10cP)以下の潤滑剤を用いるのが好ましい。このような潤滑剤としては、オクタン酸、オクタン酸エチル、オクタン酸メチル、ラウリン酸エチル、ラウリン酸ブチル等がある。
さらに微粉砕後に潤滑剤を添加することもできる。微粉砕後に添加する潤滑剤は配向度を向上させるために添加するものである。
Prior to the fine pulverization, about 0.01 to 0.5 wt% of a lubricant containing an organic substance is added. As a result, fine powder having a desired particle diameter can be efficiently produced in the fine pulverization step, and in addition to the effect that fine powder having high orientation can be obtained at the time of molding in the next magnetic field, nitrogen contained in the fine pulverized powder The amount can be reduced. As the lubricant to be added before pulverization, it is preferable to use a fatty acid or a fatty acid ester. Among them, it is particularly preferable to use a lubricant having a viscosity of 10 mPa · s (10 cP) or less. Such lubricants include octanoic acid, ethyl octoate, methyl octoate, ethyl laurate, butyl laurate and the like.
Further, a lubricant can be added after pulverization. The lubricant added after pulverization is added to improve the degree of orientation.

以上のようにして得られた微粉末は磁場中成形に供される。この磁場中成形は、10.1〜25kOe(800〜1975kA/m)の磁場中で、0.5〜2.0ton/cm(50〜200MPa)前後の圧力で行なえばよい。また、印加する磁場は、静磁場に限らずパルス状の磁場を用いることができる。さらに、印加する磁場の方向は、加圧方向と平行な方向、加圧方向と直交する方向のいずれであってもよい。 The fine powder obtained as described above is subjected to molding in a magnetic field. The molding in the magnetic field may be performed at a pressure of about 0.5 to 2.0 ton / cm 2 (50 to 200 MPa) in a magnetic field of 10.1 to 25 kOe (800 to 1975 kA / m). The applied magnetic field is not limited to a static magnetic field, and a pulsed magnetic field can be used. Furthermore, the direction of the magnetic field to be applied may be either a direction parallel to the pressing direction or a direction orthogonal to the pressing direction.

以上で得られた成形体は、前述した潤滑剤を含んでいる。この潤滑剤は、希土類元素と反応するために、R−Fe−B系焼結磁石として希土類元素の量が不足することにより磁気特性の劣化を招く。また、潤滑剤を多く含んでいると焼結時の収縮が焼結体中で不均一となり焼結後に変形するおそれがある。
そこで、潤滑剤の除去のための潤滑剤除去処理を、加熱処理によって行うのが好ましい。このとき、水素を含む雰囲気ガスの下で潤滑剤除去処理を成形体に施すと、真空下又は不活性ガス雰囲気下における潤滑剤除去処理に比べて成形体に残留する炭素の量を迅速に低減することができる。また、潤滑剤除去処理のための加熱処理は、100〜550℃の温度範囲に保持することが好ましい。100℃未満では潤滑剤除去の効果を十分得ることができないためであり、一方、550℃を超えると効果が飽和するためである。ここで、100〜550℃の温度範囲に保持する、とは当該温度範囲の一定温度に成形体を保持する場合に限らず、所定時間だけ当該温度範囲のいずれかの温度に成形体が加熱されていればよい。したがって、100〜550℃にかけて連続的に昇温する形態、100〜550℃の範囲において段階的に温度を上昇させる形態等、種々の形態を包含する。好ましい加熱処理の温度は、100〜450℃、さらに好ましい加熱処理の温度は100〜400℃である。
The molded body obtained as described above contains the lubricant described above. Since this lubricant reacts with a rare earth element, the amount of the rare earth element is insufficient as an R—Fe—B based sintered magnet, thereby deteriorating magnetic properties. In addition, when a large amount of lubricant is contained, shrinkage during sintering becomes non-uniform in the sintered body and there is a risk of deformation after sintering.
Therefore, it is preferable to perform the lubricant removal treatment for removing the lubricant by heat treatment. At this time, if the lubricant removal treatment is performed on the molded body under an atmosphere gas containing hydrogen, the amount of carbon remaining in the molded body is rapidly reduced compared to the lubricant removal treatment in a vacuum or an inert gas atmosphere. can do. Moreover, it is preferable to hold | maintain the heat processing for a lubricant removal process in the temperature range of 100-550 degreeC. This is because the effect of removing the lubricant cannot be sufficiently obtained when the temperature is lower than 100 ° C., and the effect is saturated when the temperature exceeds 550 ° C. Here, holding in the temperature range of 100 to 550 ° C. is not limited to holding the molded body at a constant temperature in the temperature range, and the molded body is heated to any temperature in the temperature range for a predetermined time. It only has to be. Therefore, various forms such as a form in which the temperature is continuously increased over 100 to 550 ° C. and a form in which the temperature is raised stepwise in the range of 100 to 550 ° C. are included. A preferable heat treatment temperature is 100 to 450 ° C., and a more preferable heat treatment temperature is 100 to 400 ° C.

潤滑剤除去処理のための加熱処理の保持時間が短いと潤滑剤除去の効果が不十分であり、一方保持時間が長すぎても潤滑剤除去の効果が飽和してしまう。したがって、加熱処理の保持時間は、0.5〜10時間とすることが好ましく、さらには1〜7時間とすることが好ましい。   If the holding time of the heat treatment for the lubricant removing process is short, the effect of removing the lubricant is insufficient, while if the holding time is too long, the effect of removing the lubricant is saturated. Therefore, the heat treatment holding time is preferably 0.5 to 10 hours, and more preferably 1 to 7 hours.

以上の潤滑剤除去処理が施された成形体は、焼結に供される。焼結は、真空又は不活性ガス雰囲気中、好ましくは真空中で行われる。焼結条件は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃の温度で1〜10時間程度保持すれば緻密な焼結体を得ることができる。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行なう場合には、750〜950℃、500〜700℃での所定時間の保持が有効である。また、500〜700℃の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には500〜700℃の時効処理を施すとよい。
The molded body that has been subjected to the above lubricant removal treatment is subjected to sintering. Sintering is performed in a vacuum or an inert gas atmosphere, preferably in a vacuum. Sintering conditions need to be adjusted according to various conditions such as composition, pulverization method, difference in average particle size and particle size distribution, etc., but a dense sintered body can be maintained at a temperature of 1000 to 1100 ° C. for about 1 to 10 hours. Can be obtained.
After sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. When the aging treatment is performed in two stages, holding for a predetermined time at 750 to 950 ° C. and 500 to 700 ° C. is effective. Further, since the coercive force is greatly increased by heat treatment at 500 to 700 ° C., the aging treatment at 500 to 700 ° C. is preferably performed when the aging treatment is performed in one stage.

なお、高磁気特性を得るべく、水素粉砕(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑え、低酸素雰囲気下で各処理を行う。   In order to obtain high magnetic properties, the atmosphere in each step from hydrogen pulverization (recovery after pulverization) to sintering (put into the sintering furnace) is suppressed to an oxygen concentration of less than 100 ppm, and in a low oxygen atmosphere Perform each process.

本発明はR−T−B(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCo)で示されるR−T−B系焼結磁石について適用することが好ましい。
R−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、RはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。好ましいRの量は28〜35wt%である。
The present invention is preferably applied to an RTB-based sintered magnet represented by RTB (R is one or more rare earth elements, and T is Fe or Fe and Co).
The RTB-based sintered magnet contains 25 to 37 wt% of rare earth element (R). Here, R has a concept including Y. Therefore, one or two of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Selected from more than species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the RTB-based sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A preferable amount of R is 28 to 35 wt%.

また、本発明が適用されるR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。好ましいBの量は0.5〜1.5wt%、さらに好ましいBの量は0.8〜1.2wt%である。
本発明が適用されるR−T−B系焼結磁石は、Coを5.0wt%以下(0を含まず)、好ましくは0.1〜3.0wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上などに効果がある。
Further, the RTB-based sintered magnet to which the present invention is applied contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A preferable amount of B is 0.5 to 1.5 wt%, and a more preferable amount of B is 0.8 to 1.2 wt%.
The RTB-based sintered magnet to which the present invention is applied can contain Co of 5.0 wt% or less (excluding 0), preferably 0.1 to 3.0 wt%. Co forms the same phase as Fe, but is effective in improving the Curie temperature and the corrosion resistance of the grain boundary phase.

本発明が適用されるR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが好ましい。特に磁気特性を害する酸素は、その量を2000ppm以下、さらには1000ppm以下とすることが好ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。   The RTB-based sintered magnet to which the present invention is applied allows the inclusion of other elements. For example, elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is preferable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 2000 ppm or less, more preferably 1000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

以上、R−T−B系焼結磁石について説明したが、本発明は他の希土類焼結磁石、さらには磁石以外の他の焼結体に適用することができることは、当業者であれば、以上の説明あるいは以下の実施例の説明から明らかである。   The R-T-B system sintered magnet has been described above. However, those skilled in the art can apply the present invention to other rare earth sintered magnets, and other sintered bodies other than magnets. It is clear from the above description or the description of the following examples.

ストリップキャスト法により、次に示す原料合金を作製した。
組成:28.0wt%Nd−0.1wt%Pr−0.01wt%Co−0.1wt%Al−0.04wt%Cu−1.0wt%B−0.2wt%Zr−bal.Fe
得られた原料合金に対し水素粉砕を行い、原料合金粗粉を得た。原料合金粗粉に、表1に示す潤滑剤を添加した。このとき、潤滑剤の添加量は0.1wt%とした。なお、添加した潤滑剤の粘度を、添加に先立って測定した。粘度の測定はブルックフィールド社製、「DV−1+LVシリーズ」を用い行った。測定の際の温度は20.0℃であり、スピンドル及び回転数はそれぞれの粘度に応じて変化させた。
なお、本実施例において、水素粉砕処理後、原料合金粗粉の回収時から焼結のために焼結炉に投入するまでの各工程の雰囲気は、窒素雰囲気への置換により100ppm未満の酸素濃度に抑えてある。
The following raw material alloys were produced by strip casting.
Composition: 28.0 wt% Nd-0.1 wt% Pr-0.01 wt% Co-0.1 wt% Al-0.04 wt% Cu-1.0 wt% B-0.2 wt% Zr-bal. Fe
The obtained raw material alloy was hydrogen crushed to obtain raw material alloy coarse powder. The lubricant shown in Table 1 was added to the raw material alloy coarse powder. At this time, the amount of lubricant added was 0.1 wt%. The viscosity of the added lubricant was measured prior to the addition. The viscosity was measured using “DV-1 + LV series” manufactured by Brookfield. The temperature at the time of measurement was 20.0 ° C., and the spindle and the rotational speed were changed according to the respective viscosities.
In this example, after the hydrogen pulverization treatment, the atmosphere of each step from the collection of the raw material alloy coarse powder to the introduction to the sintering furnace for sintering is an oxygen concentration of less than 100 ppm by substitution with a nitrogen atmosphere. It is suppressed to.

Figure 2007266026
Figure 2007266026

次いで、気流式粉砕機(ジェットミル)を使用し、高圧窒素ガス雰囲気中で、平均粒径が約4μmとなるように微粉砕を行った。
得られた微粉の窒素分析値を計測した。その計測結果を表1に示す。
Next, using an airflow pulverizer (jet mill), pulverization was performed in a high-pressure nitrogen gas atmosphere so that the average particle diameter was about 4 μm.
The nitrogen analysis value of the obtained fine powder was measured. The measurement results are shown in Table 1.

固体であるオクタン酸アミド、オレイン酸アミドに対して、液体であり粘度が10mPa・sを下回るオクタン酸、オクタン酸エチル、オクタン酸メチル、ラウリン酸エチル、ラウリン酸ブチルを添加することで窒素量を低減することができることがわかる。一方、液体でありながら粘度が10mPa・sを上回るラウリン酸、オレイン酸、オレイン酸メチル、オレイン酸エチルを添加した場合、固体であるオクタン酸アミド、オレイン酸アミドを用いた場合に比較して窒素量の低下幅が少ないことが確認された。   By adding octanoic acid, ethyl octoate, methyl octoate, ethyl laurate, and butyl laurate that are liquid and have a viscosity of less than 10 mPa · s to solid octoamide and oleic amide, the amount of nitrogen is reduced. It can be seen that it can be reduced. On the other hand, when lauric acid, oleic acid, methyl oleate, and ethyl oleate having a viscosity exceeding 10 mPa · s while being liquid are added, nitrogen is compared with the case where solid octanoic acid amide or oleic acid amide is used. It was confirmed that the amount of decrease was small.

続いて、上記実施例1と同様の手法で、粘度が10mPa・sを下回るオクタン酸(実施例)、固体であるオクタン酸アミド(比較例)を用い(添加量は0.1wt%)、平均粒径が3.5〜6.3μmの微粉を作製した。
そして、得られた微粉の窒素分析値を計測した。その計測結果を図1に示す。
Subsequently, in the same manner as in Example 1, octanoic acid having a viscosity of less than 10 mPa · s (Example) and solid octanoic acid amide (Comparative Example) were used (the addition amount was 0.1 wt%), and the average was used. A fine powder having a particle size of 3.5 to 6.3 μm was prepared.
And the nitrogen analysis value of the obtained fine powder was measured. The measurement results are shown in FIG.

図1に示すように、低酸素の窒素雰囲気中で微粉砕を行うと、オクタン酸アミドを用いた場合、微粉粒径の微細化にともない、窒素量が増加する傾向が見られる。一方、粘度が10mPa・sを下回るオクタン酸を用いた場合、微粉粒径の微細化に関わらず窒素量の増加を抑制できることが分かる。   As shown in FIG. 1, when pulverization is performed in a low-oxygen nitrogen atmosphere, when octanoic acid amide is used, the nitrogen amount tends to increase as the particle size of the fine powder becomes finer. On the other hand, when octanoic acid having a viscosity of less than 10 mPa · s is used, it can be seen that an increase in the amount of nitrogen can be suppressed regardless of the refinement of the fine particle diameter.

さらに、上記の微粉を用いて磁場中成形し、所定の形状の成形体を得た。磁場中成形では、前記微粉を22kOe(1750kA/m)の磁場中において、成形圧1.5ton/cm(147MPa)で成形した。磁場方向はプレス方向と垂直な方向とした。成形体の寸法は20mm×18mm×12mmとした。 Further, the fine powder was molded in a magnetic field to obtain a molded body having a predetermined shape. In molding in a magnetic field, the fine powder was molded at a molding pressure of 1.5 ton / cm 2 (147 MPa) in a magnetic field of 22 kOe (1750 kA / m). The magnetic field direction was perpendicular to the pressing direction. The size of the molded body was 20 mm × 18 mm × 12 mm.

得られた成形体に対し焼結及び時効処理を行って焼結体を得た。焼結は真空中で1090℃で4時間保持する条件とし、時効処理はAr雰囲気中で900℃で1時間保持後、540℃で1時間保持する2段時効処理とした。
得られた焼結体について、保持力HcJを測定した。その結果を図2に示す。
The obtained molded body was sintered and aged to obtain a sintered body. Sintering was performed under the condition of holding at 1090 ° C. for 4 hours in vacuum, and the aging treatment was a two-stage aging treatment of holding at 900 ° C. for 1 hour in an Ar atmosphere and then holding at 540 ° C. for 1 hour.
With respect to the obtained sintered body, the holding force HcJ was measured. The result is shown in FIG.

オクタン酸アミドを用いた場合、全体としては微粉粒径が小さくなるにともない保磁力HcJが向上する傾向があるが、微粉粒径が微細になった領域において保磁力HcJが低下する傾向が見られる。これは、図1との関係から、微粉の窒素量の影響があるものと考えられる。一方、粘度が10mPa・sを下回るオクタン酸を用いた場合、微粉粒径に関わらず、粒径が小さくなるにともない保磁力HcJが向上し、特に微粉粒径が4μm以下の微細になる領域においては、オクタン酸アミドを用いた場合に比較して保磁力HcJが顕著に増加している。   When octanoic acid amide is used, the coercive force HcJ tends to improve as the particle size of the fine powder becomes smaller as a whole, but the coercive force HcJ tends to decrease in the region where the fine particle size becomes finer. . From the relationship with FIG. 1, this is considered to be influenced by the amount of nitrogen in the fine powder. On the other hand, when octanoic acid having a viscosity of less than 10 mPa · s is used, the coercive force HcJ is improved as the particle size is reduced regardless of the particle size of the fine powder, particularly in a region where the fine particle size is 4 μm or less. The coercive force HcJ is remarkably increased as compared with the case of using octanoic acid amide.

続いて、上記実施例1と同様の手法で、粘度が10mPa・sを下回るオクタン酸を0.1wt%添加し、平均粒径が4μmの微粉を作製し、成形体を得た。
そして、得られた成形体について潤滑剤除去処理を行った。その条件は、アルゴン雰囲気中で100、200、300、400、500、600℃までの昇温を行った後、水素を95%以上含む雰囲気ガスへの置換を行い、その状態で2時間、加熱処理するというものである。
得られた成形体に対し焼結及び時効処理を行って焼結体を得た。焼結は真空中で1090℃で4時間保持する条件とし、時効処理はAr雰囲気中で900℃で1時間保持後、540℃で1時間保持する2段時効処理とした。
また、比較のため、潤滑剤除去処理を行わず、成形体を焼結および時効処理することで得た焼結体を用意した。
得られた焼結体について、残留炭素量を測定した。その結果を図3に示す。なお、図3において、温度0℃に示したものは、潤滑剤除去処理を行わなかった場合の残留炭素量である。
Subsequently, 0.1 wt% of octanoic acid having a viscosity of less than 10 mPa · s was added in the same manner as in Example 1 to produce a fine powder having an average particle size of 4 μm to obtain a molded body.
And the lubricant removal process was performed about the obtained molded object. The condition is that after raising the temperature to 100, 200, 300, 400, 500, and 600 ° C. in an argon atmosphere, replacement with an atmosphere gas containing 95% or more of hydrogen is performed, and heating is performed for 2 hours in that state. It is to process.
The obtained molded body was sintered and aged to obtain a sintered body. Sintering was performed under the condition of holding at 1090 ° C. for 4 hours in vacuum, and the aging treatment was a two-stage aging treatment of holding at 900 ° C. for 1 hour in an Ar atmosphere and then holding at 540 ° C. for 1 hour.
For comparison, a sintered body obtained by sintering and aging the molded body without preparing the lubricant was prepared.
About the obtained sintered compact, the amount of residual carbon was measured. The result is shown in FIG. In FIG. 3, the temperature indicated at 0 ° C. is the amount of residual carbon when the lubricant removal process is not performed.

図3に示すように、潤滑剤除去処理により残留炭素量が低減し、特に潤滑剤除去処理温度が100〜500℃であるときには残留炭素量が600ppmを大幅に下回っていることが分かる。   As shown in FIG. 3, it can be seen that the residual carbon amount is reduced by the lubricant removal treatment, and particularly when the lubricant removal treatment temperature is 100 to 500 ° C., the residual carbon amount is significantly lower than 600 ppm.

他の潤滑剤についても実施例3と同様に潤滑剤除去処理による効果を確認した。
上記実施例1と同様の手法で、粘度が10mPa・sを下回るオクタン酸、オクタン酸エチル、オクタン酸メチル、ラウリン酸エチル、ラウリン酸ブチルをそれぞれ0.1wt%添加して、平均粒径が4μmの微粉を作製し、成形体を得た。
そして、得られた成形体について潤滑剤除去処理を行った。その条件は、アルゴン雰囲気中で180℃までの昇温を行った後、水素を95%以上含む雰囲気ガスへの置換を行い、その状態で2時間、加熱処理するというものである。
また、比較のため、潤滑剤除去処理を行わず、成形体を焼結および時効処理することで得た焼結体を用意した。
得られた成形体に対し焼結及び時効処理を行って焼結体を得た。焼結は真空中で1090℃で4時間保持する条件とし、時効処理はAr雰囲気中で900℃で1時間保持後、540℃で1時間保持する2段時効処理とした。
得られた焼結体について、磁気特性(残留磁束密度Br、保磁力HcJ)、残留酸素量、残留炭素量、残留窒素量を測定した。その結果を表2に示す。
For other lubricants, the effect of the lubricant removal treatment was confirmed as in Example 3.
In the same manner as in Example 1, 0.1 wt% each of octanoic acid, ethyl octoate, methyl octoate, ethyl laurate, and butyl laurate having a viscosity of less than 10 mPa · s was added, and the average particle size was 4 μm. A fine powder was produced to obtain a molded body.
And the lubricant removal process was performed about the obtained molded object. The condition is that after raising the temperature to 180 ° C. in an argon atmosphere, replacement with an atmospheric gas containing 95% or more of hydrogen is performed, and heat treatment is performed in that state for 2 hours.
For comparison, a sintered body obtained by sintering and aging the molded body without preparing the lubricant was prepared.
The obtained molded body was sintered and aged to obtain a sintered body. Sintering was performed under the condition of holding at 1090 ° C. for 4 hours in vacuum, and the aging treatment was a two-stage aging treatment of holding at 900 ° C. for 1 hour in an Ar atmosphere and then holding at 540 ° C. for 1 hour.
With respect to the obtained sintered body, magnetic properties (residual magnetic flux density Br, coercive force HcJ), residual oxygen amount, residual carbon amount, and residual nitrogen amount were measured. The results are shown in Table 2.

Figure 2007266026
Figure 2007266026

表2に示すように、オクタン酸、オクタン酸エチル、オクタン酸メチル、ラウリン酸メチル、ラウリン酸ブチル、いずれの潤滑剤を用いた場合も、潤滑剤除去処理を行うことで残留炭素量が低減し、保磁力HcJが向上していることがわかり、潤滑剤除去処理の有効性が確認された。   As shown in Table 2, even when any lubricant is used, octanoic acid, ethyl octoate, methyl octoate, methyl laurate, butyl laurate, and the lubricant removal treatment reduces the residual carbon content. The coercive force HcJ was found to be improved, and the effectiveness of the lubricant removal process was confirmed.

また、潤滑剤の添加量による違いを確認した。
上記実施例1と同様の手法で、粘度が10mPa・sを下回るオクタン酸、粘度が10mPa・sを上回るラウリン酸を、それぞれ表3に示す量を添加して、平均粒径が4μmの微粉を作製し、成形体を得た。
そして、得られた成形体について潤滑剤除去処理を行った。その条件は、アルゴン雰囲気中で180℃までの昇温を行った後、水素を95%以上含む雰囲気ガスへの置換を行い、その状態で2時間、加熱処理するというものである。
得られた成形体に対し焼結及び時効処理を行って焼結体を得た。焼結は真空中で1090℃で4時間保持する条件とし、時効処理はAr雰囲気中で900℃で1時間保持後、540℃で1時間保持する2段時効処理とした。
また、比較のため、潤滑剤除去処理を行わず、成形体を焼結および時効処理することで得た焼結体を用意した。
得られた焼結体について、残留炭素量、残留窒素量を測定した。その結果を表3に示す。
Moreover, the difference by the addition amount of a lubricant was confirmed.
In the same manner as in Example 1, octanoic acid having a viscosity of less than 10 mPa · s and lauric acid having a viscosity of more than 10 mPa · s were added in the amounts shown in Table 3 to obtain fine powder having an average particle size of 4 μm. It produced and the molded object was obtained.
And the lubricant removal process was performed about the obtained molded object. The condition is that after raising the temperature to 180 ° C. in an argon atmosphere, replacement with an atmospheric gas containing 95% or more of hydrogen is performed, and heat treatment is performed in that state for 2 hours.
The obtained molded body was sintered and aged to obtain a sintered body. Sintering was performed under the condition of holding at 1090 ° C. for 4 hours in vacuum, and the aging treatment was a two-stage aging treatment of holding at 900 ° C. for 1 hour in an Ar atmosphere and then holding at 540 ° C. for 1 hour.
For comparison, a sintered body obtained by sintering and aging the molded body without preparing the lubricant was prepared.
About the obtained sintered compact, the amount of residual carbon and the amount of residual nitrogen were measured. The results are shown in Table 3.

Figure 2007266026
Figure 2007266026

表3に示すように、粘度が10mPa・sを下回るオクタン酸は、添加量0.1wt%で十分な窒素量の低減効果が得られている。一方、ラウリン酸においては添加量が0.2wt%でオクタン酸と同等の窒素量の低減効果を得ることができるものの、残留炭素量は添加量の増加にともなって増大する傾向にあり、粘度が10mPa・sを上回るラウリン酸ではオクタン酸と同等以下の窒素量および炭素量を得ることができないことが分かる。   As shown in Table 3, octanoic acid having a viscosity of less than 10 mPa · s has a sufficient nitrogen content reduction effect with an addition amount of 0.1 wt%. On the other hand, in lauric acid, although the addition amount is 0.2 wt%, the effect of reducing the amount of nitrogen equivalent to octanoic acid can be obtained, but the residual carbon amount tends to increase as the addition amount increases, and the viscosity is increased. It can be seen that lauric acid exceeding 10 mPa · s cannot obtain an amount of nitrogen and carbon equivalent to or less than that of octanoic acid.

潤滑剤の粘度に応じた、粒径と窒素量との関係を比較するための図である。It is a figure for comparing the relationship between a particle size and the amount of nitrogen according to the viscosity of a lubricant. 同、粒径と保磁力との関係を比較するための図である。It is a figure for comparing the relationship between a particle size and a coercive force similarly. 潤滑剤除去処理温度と残留炭素量の関係を示す図である。It is a figure which shows the relationship between lubricant removal process temperature and residual carbon amount.

Claims (5)

所定組成の原料合金粉末を、酸素濃度が100ppm以下の雰囲気下で、有機物を構成要素とし粘度が10mPa・s以下の潤滑剤が添加された状態で微細に粉砕する微粉砕工程と、
酸素濃度が100ppm以下の雰囲気下で、前記微粉砕工程で得られた粉砕粉末を磁場中成形し、成形体を得る磁場中成形工程と、
前記成形体を焼結する焼結工程と、
を備えることを特徴とする希土類焼結磁石の製造方法。
A fine pulverization step of finely pulverizing the raw material alloy powder having a predetermined composition in an atmosphere having an oxygen concentration of 100 ppm or less and having an organic substance as a constituent element and a lubricant having a viscosity of 10 mPa · s or less;
In an atmosphere with an oxygen concentration of 100 ppm or less, the pulverized powder obtained in the fine pulverization step is molded in a magnetic field, and a molding step in a magnetic field to obtain a molded body,
A sintering step of sintering the molded body;
A method for producing a rare earth sintered magnet.
前記微粉砕工程、前記磁場中成形工程は、窒素ガス雰囲気とすることで、酸素濃度を100ppm以下とすることを特徴とする請求項1に記載の希土類焼結磁石の製造方法。   2. The method for producing a rare earth sintered magnet according to claim 1, wherein the fine pulverizing step and the forming step in a magnetic field are performed in a nitrogen gas atmosphere so that the oxygen concentration is 100 ppm or less. 前記潤滑剤は、脂肪酸または脂肪酸エステルであることを特徴とする請求項1または2に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the lubricant is a fatty acid or a fatty acid ester. 前記潤滑剤は、前記微粉砕工程に先立ち、前記原料合金粉末に添加することを特徴とする請求項1から3のいずれかに記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 3, wherein the lubricant is added to the raw material alloy powder prior to the fine pulverization step. 前記焼結工程に先立ち、前記成形体を、水素(H)を含む雰囲気ガス下で加熱処理することにより前記潤滑剤を除去する潤滑剤除去工程をさらに含むことを特徴とする請求項1から4のいずれかに記載の希土類焼結磁石の製造方法。 Prior to the sintering step, the molded body further includes a lubricant removing step of removing the lubricant by heat-treating the compact under an atmosphere gas containing hydrogen (H 2 ). 5. The method for producing a rare earth sintered magnet according to any one of 4 above.
JP2006084903A 2006-03-27 2006-03-27 Manufacturing method of rare-earth sintered magnet Withdrawn JP2007266026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084903A JP2007266026A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084903A JP2007266026A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth sintered magnet

Publications (1)

Publication Number Publication Date
JP2007266026A true JP2007266026A (en) 2007-10-11

Family

ID=38638777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084903A Withdrawn JP2007266026A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2007266026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231391A (en) * 2008-03-19 2009-10-08 Hitachi Metals Ltd R-t-b based sintered magnet
JP2014218699A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Method of producing rare earth sintered magnet
WO2021107010A1 (en) * 2019-11-27 2021-06-03 Tdk株式会社 R-t-b based permanent magnet
CN113571325A (en) * 2021-07-23 2021-10-29 包头天和磁材科技股份有限公司 Magnet mold release composition, use thereof, and method for producing magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231391A (en) * 2008-03-19 2009-10-08 Hitachi Metals Ltd R-t-b based sintered magnet
JP2014218699A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Method of producing rare earth sintered magnet
WO2021107010A1 (en) * 2019-11-27 2021-06-03 Tdk株式会社 R-t-b based permanent magnet
WO2021107011A1 (en) * 2019-11-27 2021-06-03 Tdk株式会社 R-t-b based permanent magnet
WO2021107012A1 (en) * 2019-11-27 2021-06-03 Tdk株式会社 R-t-b based permanent magnet
CN113571325A (en) * 2021-07-23 2021-10-29 包头天和磁材科技股份有限公司 Magnet mold release composition, use thereof, and method for producing magnet

Similar Documents

Publication Publication Date Title
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP6432406B2 (en) R-T-B system alloy powder and R-T-B system sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP2005150503A (en) Method for manufacturing sintered magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
CN111724955B (en) R-T-B permanent magnet
JP4730550B2 (en) Lubricant removal method
JP4798357B2 (en) Manufacturing method of rare earth sintered magnet
JP2010219499A (en) R-t-b based rare earth sintered magnet and method for manufacturing the same
JP4305927B2 (en) Lubricant removal method
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2005197299A (en) Rare earth sintered magnet and manufacturing method thereof
JP4853629B2 (en) Manufacturing method of rare earth sintered magnet
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4353430B2 (en) Method for removing lubricant and method for producing rare earth sintered magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP4215258B2 (en) Manufacturing method of rare earth sintered magnet
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4753044B2 (en) Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP2006237212A (en) Rare earth sintered magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602