JP2014218699A - Method of producing rare earth sintered magnet - Google Patents

Method of producing rare earth sintered magnet Download PDF

Info

Publication number
JP2014218699A
JP2014218699A JP2013098471A JP2013098471A JP2014218699A JP 2014218699 A JP2014218699 A JP 2014218699A JP 2013098471 A JP2013098471 A JP 2013098471A JP 2013098471 A JP2013098471 A JP 2013098471A JP 2014218699 A JP2014218699 A JP 2014218699A
Authority
JP
Japan
Prior art keywords
mold
rare earth
sintered magnet
fatty acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013098471A
Other languages
Japanese (ja)
Other versions
JP5942922B2 (en
Inventor
光雄 北川
Mitsuo Kitagawa
光雄 北川
一晃 榊
Kazuaki Sakaki
一晃 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013098471A priority Critical patent/JP5942922B2/en
Publication of JP2014218699A publication Critical patent/JP2014218699A/en
Application granted granted Critical
Publication of JP5942922B2 publication Critical patent/JP5942922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a rare earth sintered magnet which is excellent in moldability and lubricity of a mold in a molding step, compared with conventional production methods, and eliminates the need of a decarbonization treatment for removing solvent, resulting in improved efficiency of steps.SOLUTION: In a method of producing a rare earth sintered magnet that comprises charging an alloy powder for rare earth magnets into a cavity formed with a mold and a lower punch, molding in a magnetic field by uniaxial compression and heat-treating the molding to produce a rare earth sintered magnet, a liquid mold lubricant comprising 95-99.5 mass% of a fatty acid ester with a melting point or a freezing point of 15°C or lower and 0.5-5 mass% of a 10-24C fatty acid with a melting point of 30°C or higher is sprayed onto the mold as particles of an average particle size of 1-50 μm, and then the alloy powder for rare earth magnet is charged into the cavity to mold in a magnetic field so that a molding is obtained, which is then heat-treated.

Description

本発明は、希土類焼結磁石の製造方法に関し、特に希土類磁石用合金粉末を磁場中にて成形する際に用いる金型を潤滑する方法に関するものである。   The present invention relates to a method for producing a rare earth sintered magnet, and more particularly to a method for lubricating a mold used when a rare earth magnet alloy powder is molded in a magnetic field.

Nd磁石を代表とする希土類磁石は高い磁気特性を有していることから、近年、ハードディスク用やエアコン用、ハイブリッド車等に使用される各種モーターやセンサー等に広く使用されるようになっている。   Since rare earth magnets typified by Nd magnets have high magnetic properties, they have been widely used in recent years for various motors and sensors used in hard disks, air conditioners, hybrid vehicles, and the like. .

希土類磁石は、通常、粉末冶金法により、次のような工程を経て製造される。まず、所定の組成となるよう原料を配合し、高周波溶解炉等を用いて溶解、鋳造することにより合金を作製し、その合金をジョークラッシャー、ブラウンミル、ピンミル及び水素化等で粗粉砕し、更にジェットミル等により微粉砕して、平均粒子径1〜10μmの微粉末を得る。次いで、磁気異方性を付与するため、その微粉末を磁場中にて所望の形状に成形することで成形体を作製し、焼結及び熱処理を施すことによって焼結磁石とする。   Rare earth magnets are usually manufactured through the following steps by powder metallurgy. First, the raw materials are blended so as to have a predetermined composition, and an alloy is prepared by melting and casting using a high-frequency melting furnace or the like, and the alloy is roughly pulverized by a jaw crusher, a brown mill, a pin mill, hydrogenation, etc. Furthermore, it is finely pulverized by a jet mill or the like to obtain a fine powder having an average particle diameter of 1 to 10 μm. Next, in order to impart magnetic anisotropy, the fine powder is formed into a desired shape in a magnetic field to produce a molded body, and sintered and heat-treated to obtain a sintered magnet.

一般的な粉末冶金法による希土類磁石の製造における磁場中成形法としては、微粉末を金型及び下パンチから形成されるキャビティーに充填し、一軸加圧する金型成形が行われている。この金型成形においては、微粉末を金型内で圧縮成形するため、金型と微粉末あるいは摺動するパンチとの摩擦が非常に大きい。そのことが原因で、金型内面では疵が生じることがあり、生じた疵は成形体に転写され、その疵が起点となって成形体に微細なクラックやカケを発生させる場合がある。加えて、その摩擦が、金型からパンチを摺動させる際に生じる抜き圧の増大につながり、それが成形体のクラック、ワレ、カケ等を発生し易くするばかりか、最悪の場合、パンチ、金型の破損及び成形機の故障を招く場合がある。   As a molding method in a magnetic field in the production of a rare earth magnet by a general powder metallurgy method, a die molding is performed in which fine powder is filled into a cavity formed from a die and a lower punch and uniaxially pressed. In this mold forming, since the fine powder is compression-molded in the mold, the friction between the mold and the fine powder or the sliding punch is very large. For this reason, wrinkles may occur on the inner surface of the mold, and the generated wrinkles may be transferred to the molded body, and the wrinkles may be the starting point and cause fine cracks or chips in the molded body. In addition, the friction leads to an increase in the punching pressure generated when the punch is slid from the mold, which not only easily causes cracking, cracking, chipping, etc. of the molded body, but in the worst case, the punch, It may cause damage to the mold and failure of the molding machine.

金型の摩擦の軽減、ひいては疵を防止するため、金型内面を鏡面研磨したり、超硬合金などの硬い素材を金型材料として用いたり、1ショット或いは数ショット毎に金型内面に付着した微粉末を除去するなどの処置を施すが、これらだけでは充分な効果が得られない。   To reduce mold friction and prevent wrinkles, the inner surface of the mold is mirror-polished, a hard material such as cemented carbide is used as the mold material, and it adheres to the inner surface of the mold every one or several shots. However, it is not possible to obtain a sufficient effect.

また、あらかじめ、ステアリン酸、ステアリン酸亜鉛及びビスアマイドのうち少なくとも1種を潤滑剤として微粉末に混合する方法(特許文献1:特開平4−214803号公報)により、成形性を改善して、微粉末と金型の摩擦を低減することによる成形体への疵等の発生を抑制できる。しかし、微粉末と金型との潤滑効果は認められるものの、金型とパンチの潤滑には寄与せず、更に潤滑効果を高めるために微粉末への潤滑剤の添加量を増加させると、潤滑剤中に存在する炭素が焼結磁石中に多く残存することによる保磁力の低下及び角形性の悪化などの磁気特性に問題を生じる。   In addition, the moldability is improved by a method of mixing at least one of stearic acid, zinc stearate, and bisamide with a fine powder as a lubricant in advance (Patent Document 1: JP-A-4-214803). Generation | occurrence | production of the wrinkles etc. to a molded object by reducing the friction of powder and a metal mold | die can be suppressed. However, although the lubrication effect between the fine powder and the mold is recognized, it does not contribute to the lubrication of the mold and the punch, and if the amount of the lubricant added to the fine powder is increased to further enhance the lubrication effect, the lubrication Problems arise in magnetic properties such as a decrease in coercive force and deterioration in squareness due to a large amount of carbon present in the agent remaining in the sintered magnet.

金型の摩擦の軽減に対し、最も効果的な方法は、金型を潤滑剤にて潤滑することである。その金型潤滑剤としては、ステアリン酸、ベヘン酸などの脂肪酸又はそのエステルをエタノール、ノルマルプロピルアルコール、イソプロピルアルコールなどのアルコール単体もしくは混合物からなる溶剤に溶かした溶液及び、カプロン酸メチル、カプリル酸メチル、飽和脂肪酸、炭化水素系溶剤からなる溶液(特許文献2:特開2000−109903号公報)などが用いられている。しかし、上記金型潤滑剤を多量に使用すると潤滑性は改善されるものの、上記金型潤滑剤が成形体に浸透して焼結後に炭素が大量に残存し、磁石特性を劣化させる場合がある。また、上記金型潤滑剤が必要量に満たなければ、焼結体への炭素の残存量が少なくはなるが、潤滑性は乏しく、成形体のクラック、ワレ、カケ等の成形不良が問題となる。上記金型潤滑剤の使用が最適量であった場合、潤滑性は良好となるが、焼結磁石中の残存炭素量を保磁力、角形に影響はない量にするため、溶剤に用いたアルコールや炭化水素系溶剤を所定温度で揮発させる脱炭素処理が必要となる。加えて、揮発した溶剤が、真空ポンプに蓄積し、真空能力の低下を招くことがあるため、通常真空ポンプとして用いられるロータリーポンプでなく、ドライポンプ等のより高価な設備を用いなければならないので、工程及びその設備的にも合理化が図りにくい。   The most effective way to reduce mold friction is to lubricate the mold with a lubricant. As the mold lubricant, a solution in which a fatty acid such as stearic acid or behenic acid or an ester thereof is dissolved in a solvent consisting of a simple substance or a mixture of ethanol, normal propyl alcohol, isopropyl alcohol, etc., methyl caproate, methyl caprylate , A solution composed of a saturated fatty acid and a hydrocarbon solvent (Patent Document 2: JP 2000-109903 A) and the like are used. However, when a large amount of the above-mentioned mold lubricant is used, the lubricity is improved, but the mold lubricant penetrates into the molded body and a large amount of carbon remains after sintering, which may deteriorate the magnet characteristics. . In addition, if the above-mentioned mold lubricant is less than the required amount, the amount of carbon remaining in the sintered body is reduced, but the lubricity is poor, and molding defects such as cracks, cracks and chipping of the molded product are problematic. Become. When the above mold lubricant is used in an optimum amount, the lubricity will be good, but the residual carbon content in the sintered magnet will not affect coercive force and squareness. And a decarbonization process for volatilizing a hydrocarbon solvent at a predetermined temperature is required. In addition, since the solvent that has volatilized may accumulate in the vacuum pump and reduce the vacuum capacity, it is necessary to use more expensive equipment such as a dry pump instead of a rotary pump that is normally used as a vacuum pump. It is difficult to rationalize the process and its facilities.

特開平4−214803号公報JP-A-4-214803 特開2000−109903号公報JP 2000-109903 A

本発明は、上記事情に鑑みなされたもので、従来の製造方法よりも、成形工程における成形性、金型の潤滑性に優れ、更に溶剤を除去するための脱炭素処理が不要で工程を効率化することができる希土類焼結磁石の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has superior moldability and mold lubricity in the molding process than conventional manufacturing methods, and further eliminates the need for decarbonization treatment to remove the solvent, thereby making the process more efficient. It is an object of the present invention to provide a method for producing a rare earth sintered magnet that can be converted into a magnet.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、融点又は凝固点が15℃以下の脂肪酸エステル95〜99.5質量%と炭素数10〜24で融点が30℃以上の脂肪酸0.5〜5質量%とからなる金型潤滑剤を平均粒子径1〜50μmの粒子として金型に噴霧後、キャビティーに希土類磁石用合金粉末を充填し、磁場中成形することで、成形工程における成形性、金型の潤滑性に優れる製造方法となることを見出した。加えて、溶剤を用いていないため、溶剤を除去するための脱炭素処理が不要であり、工程の効率化にも有効であることを知見し、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the melting point or the freezing point is 95 to 99.5% by mass of a fatty acid ester having 10 to 24 carbon atoms and the fatty acid having 10 to 24 carbon atoms and a melting point of 30 ° C. or more. After spraying a mold lubricant consisting of 0.5 to 5% by mass as particles with an average particle diameter of 1 to 50 μm on the mold, filling the cavity with alloy powder for rare earth magnet and molding in a magnetic field, It has been found that the manufacturing method is excellent in moldability in the process and lubricity of the mold. In addition, since no solvent is used, it has been found that decarbonization treatment for removing the solvent is unnecessary, and it is effective for improving the efficiency of the process, and the present invention has been made.

即ち、本発明は、下記の希土類焼結磁石の製造方法を提供する。
〔1〕 希土類磁石用合金粉末を金型と下パンチで形成されるキャビティーに充填後、磁場中で一軸加圧により成形し、その後に熱処理して希土類焼結磁石を製造する方法において、磁場中で金型成形する際に、融点又は凝固点が15℃以下の脂肪酸エステル95〜99.5質量%と炭素数10〜24で融点が30℃以上の脂肪酸0.5〜5質量%とからなる液状の金型潤滑剤を平均粒子径1〜50μmの粒子として金型に噴霧した後、上記キャビティーに上記希土類磁石用合金粉末を充填し、磁場中成形することで成形体を得て、その後に熱処理することを特徴とする希土類焼結磁石の製造方法。
〔2〕 上記金型潤滑剤をキャビティー内に噴霧量1×10-4〜1×10-2kg/m2で噴霧することを特徴とする〔1〕に記載の希土類焼結磁石の製造方法。
〔3〕 上記金型潤滑剤は、20℃における動粘度が2×10-6〜1×10-52/sであることを特徴とする〔1〕又は〔2〕に記載の希土類焼結磁石の製造方法。
That is, the present invention provides the following method for producing a rare earth sintered magnet.
[1] In a method of manufacturing a rare earth sintered magnet by filling rare earth magnet alloy powder into a cavity formed by a mold and a lower punch, then forming it by uniaxial pressing in a magnetic field, and then heat-treating it. When molding in a mold, the melting point or freezing point is comprised of 95 to 99.5% by mass of a fatty acid ester having a melting point of 15 ° C. or less and 0.5 to 5% by mass of a fatty acid having 10 to 24 carbon atoms and a melting point of 30 ° C. or more. After spraying a liquid mold lubricant as a particle having an average particle diameter of 1 to 50 μm on a mold, the cavity is filled with the alloy powder for rare earth magnets, and molded in a magnetic field to obtain a molded body. A method for producing a rare earth sintered magnet, characterized by heat treatment.
[2] The rare earth sintered magnet according to [1], wherein the mold lubricant is sprayed into the cavity at a spray amount of 1 × 10 −4 to 1 × 10 −2 kg / m 2. Method.
[3] The rare earth firing according to [1] or [2], wherein the mold lubricant has a kinematic viscosity at 20 ° C. of 2 × 10 −6 to 1 × 10 −5 m 2 / s. A manufacturing method of a magnet.

本発明の希土類焼結磁石の製造方法によれば、成形性、金型潤滑性に優れているため、安定して高品質な希土類焼結磁石を提供することができ、更には脱炭素処理も不要なため、工程の効率化も図られ、工業的利用価値は極めて高い。   According to the method for producing a rare earth sintered magnet of the present invention, since it is excellent in moldability and mold lubricity, a stable and high quality rare earth sintered magnet can be provided, and further, decarbonization treatment can be performed. Since it is unnecessary, the efficiency of the process can be improved and the industrial utility value is extremely high.

実施例1及び比較例1の成形ショット数と成形体密度との関係を示す図である。It is a figure which shows the relationship between the number of shaping | molding shots of Example 1 and Comparative Example 1, and a molded object density.

以下に、本発明に係る希土類焼結磁石の製造方法について説明する。
本発明に係る希土類焼結磁石の製造方法は、希土類磁石用合金粉末を金型と下パンチで形成されるキャビティーに充填後、磁場中で一軸加圧により成形し、その後に熱処理して希土類焼結磁石を製造する方法において、磁場中で金型成形する際に、融点又は凝固点が15℃以下の脂肪酸エステル95〜99.5質量%と炭素数10〜24で融点が30℃以上の脂肪酸0.5〜5質量%とからなる液状の金型潤滑剤を平均粒子径1〜50μmの粒子として金型に噴霧した後、上記キャビティーに上記希土類磁石用合金粉末を充填し、磁場中成形することで成形体を得て、その後に熱処理することを特徴とする。
Below, the manufacturing method of the rare earth sintered magnet which concerns on this invention is demonstrated.
The method for producing a rare earth sintered magnet according to the present invention comprises filling rare earth magnet alloy powder into a cavity formed by a mold and a lower punch, then forming it by uniaxial pressing in a magnetic field, and then heat-treating it. In the method for producing a sintered magnet, when molding a mold in a magnetic field, 95 to 99.5% by mass of a fatty acid ester having a melting point or freezing point of 15 ° C. or lower and a fatty acid having 10 to 24 carbon atoms and a melting point of 30 ° C. or higher. After spraying a liquid mold lubricant consisting of 0.5 to 5% by mass as particles having an average particle diameter of 1 to 50 μm onto the mold, the cavity is filled with the alloy powder for rare earth magnets and molded in a magnetic field. Thus, a molded body is obtained and then heat-treated.

ここで、本発明が適用される希土類永久磁石は、特にNd系希土類焼結磁石が好ましく、その組成としてR(Rは、Nd、Pr、Dy、Tb及びHoから選択される1種又は2種以上の希土類元素)を20〜35質量%、Coを15質量%以下、Bを0.2〜8質量%、添加元素としてNi、Nb、Al、Ti、Zr、Cr、V、Mn、Mo、Si、Sn、Ga、Cu及びZnから選ばれる少なくとも1種の元素を8質量%以下であって、残部がFe及び不可避的不純物からなり、ジェットミル等で微粉砕された好ましくは平均粒子径1〜10μmの希土類磁石用合金微粉末を磁場中で金型を用いて成形したものである。
なお、粉砕した希土類合金微粉末の平均粒子径(平均微粉粒径)は、例えば、レーザー光回折法による重量平均値(又はメジアン径)として求めることができる。
Here, the rare earth permanent magnet to which the present invention is applied is particularly preferably an Nd-based rare earth sintered magnet, and its composition is R (R is one or two selected from Nd, Pr, Dy, Tb and Ho). The above rare earth element) is 20 to 35% by mass, Co is 15% by mass or less, B is 0.2 to 8% by mass, and Ni, Nb, Al, Ti, Zr, Cr, V, Mn, Mo, Preferably at least one element selected from Si, Sn, Ga, Cu and Zn is 8% by mass or less, the remainder is made of Fe and inevitable impurities, and is finely pulverized by a jet mill or the like. The alloy fine powder for rare earth magnets of 10 μm is molded using a mold in a magnetic field.
In addition, the average particle diameter (average fine particle diameter) of the pulverized rare earth alloy fine powder can be obtained, for example, as a weight average value (or median diameter) by a laser light diffraction method.

本発明では、上記微粉末を磁場中で金型を用いて成形する際に、融点又は凝固点が15℃以下の脂肪酸エステル95〜99.5質量%と炭素数10〜24で融点が30℃以上の脂肪酸0.5〜5質量%とからなる溶液(脂肪酸エステルと脂肪酸の合計で100質量%となる)を金型潤滑剤として用いる。   In the present invention, when the fine powder is molded using a mold in a magnetic field, the melting point or the freezing point is 95 to 99.5% by mass of a fatty acid ester having a melting point of 15 ° C. or less and the carbon number is 10 to 24 and the melting point is 30 ° C. or more. A solution containing 0.5 to 5% by mass of the fatty acid (100% by mass in total of fatty acid ester and fatty acid) is used as a mold lubricant.

即ち、本発明で用いる脂肪酸エステルは、融点又は凝固点が15℃以下であり、5℃以下であることが好ましい。作業環境である20〜25℃において金型潤滑剤を液状とするためである。作業環境である20〜25℃において液体の脂肪酸エステルであれば、その融点又は凝固点の下限に制限はない。また、融点又は凝固点が15℃以下の脂肪酸エステルであれば、単独或いはその混合物など特に限られるものではなく、例としてラウリン酸メチル(融点5℃)、オレイン酸メチル(融点−20℃)などを挙げることができる。   That is, the fatty acid ester used in the present invention has a melting point or freezing point of 15 ° C. or lower, and preferably 5 ° C. or lower. This is because the mold lubricant is liquefied in the working environment of 20 to 25 ° C. If it is a liquid fatty acid ester in the working environment of 20 to 25 ° C., the melting point or the lower limit of the freezing point is not limited. Moreover, if it is fatty acid ester whose melting | fusing point or freezing point is 15 degrees C or less, it will not restrict | limit especially individually or its mixture, For example, methyl laurate (melting | fusing point 5 degreeC), methyl oleate (melting point -20 degreeC), etc. Can be mentioned.

本発明で用いる脂肪酸は、炭素数が10〜24、好ましくは14〜22で融点が30℃以上、好ましくは50℃以上であり、作業環境である20〜25℃において固体でなければならない。脂肪酸の炭素数が10未満では作業環境である20〜25℃において液体となり、24超では作業環境である20〜25℃において固体であるが入手しにくく、高価であることが問題となる。また、融点が30℃未満では本発明における充分な効果が得られない。なお、炭素数10〜24で作業環境である20〜25℃において固体の脂肪酸であれば、その融点の上限に制限はない。また、炭素数10〜24で融点が30℃以上の脂肪酸であれば、単独或いはその混合物など特に限られるものではなく、例としてステアリン酸(融点69.6℃)、ベヘン酸(融点81.5℃)などを挙げることができる。   The fatty acid used in the present invention has a carbon number of 10 to 24, preferably 14 to 22, a melting point of 30 ° C. or higher, preferably 50 ° C. or higher, and must be solid at 20 to 25 ° C. which is a working environment. When the number of carbon atoms of the fatty acid is less than 10, it becomes liquid at 20 to 25 ° C. which is a working environment, and when it exceeds 24, it is solid at 20 to 25 ° C. which is a working environment, but it is difficult to obtain and expensive. Further, if the melting point is less than 30 ° C., sufficient effects in the present invention cannot be obtained. The upper limit of the melting point is not limited as long as it is a fatty acid having 10 to 24 carbon atoms and a solid fatty acid at 20 to 25 ° C. which is a working environment. Further, any fatty acid having 10 to 24 carbon atoms and a melting point of 30 ° C. or higher is not particularly limited alone or a mixture thereof. Examples thereof include stearic acid (melting point 69.6 ° C.) and behenic acid (melting point 81.5). ° C).

本発明で用いる金型潤滑剤は、上記脂肪酸エステル95〜99.5質量%と上記脂肪酸0.5〜5質量%とからなる溶液であり、液体の脂肪酸エステルに対して固体の脂肪酸を溶解することにより調製された使用環境20〜25℃において液状のものである。脂肪酸エステル95質量%未満、脂肪酸5質量%超の場合、脂肪酸の脂肪酸エステルに対する溶解量を超えるため、溶け残りが生じる。これは、噴霧ノズルの詰まりを招くため、好ましくない。また、脂肪酸エステル99.5質量%超、脂肪酸0.5質量%未満の場合、金型の潤滑性が低下する傾向にある。そのため、金型潤滑剤を脂肪酸エステル95〜99.5質量%と脂肪酸0.5〜5質量%とからなるものとし、好ましくは脂肪酸エステル95〜99質量%と脂肪酸1〜5質量%とからなるものとする。
脂肪酸エステルと脂肪酸とからなる溶液を金型潤滑剤として用いることで、流体潤滑と境界潤滑を合わせた相乗効果により、優れた潤滑性及び成形性が得られる。
The mold lubricant used in the present invention is a solution comprising 95 to 99.5% by mass of the fatty acid ester and 0.5 to 5% by mass of the fatty acid, and dissolves a solid fatty acid in a liquid fatty acid ester. It is liquid in a use environment of 20 to 25 ° C. When the amount of the fatty acid ester is less than 95% by mass and the amount of the fatty acid exceeds 5% by mass, the dissolution amount of the fatty acid with respect to the fatty acid ester is exceeded, resulting in undissolved residue. This is not preferable because it causes clogging of the spray nozzle. Moreover, when the fatty acid ester exceeds 99.5 mass% and the fatty acid is less than 0.5 mass%, the lubricity of the mold tends to decrease. Therefore, the mold lubricant is composed of 95 to 99.5% by mass of fatty acid ester and 0.5 to 5% by mass of fatty acid, preferably 95 to 99% by mass of fatty acid ester and 1 to 5% by mass of fatty acid. Shall.
By using a solution composed of a fatty acid ester and a fatty acid as a mold lubricant, excellent lubricity and moldability can be obtained by a synergistic effect combining fluid lubrication and boundary lubrication.

本発明では上記金型潤滑剤を平均粒子径1〜50μm、好ましくは5〜30μmの粒子として金型に噴霧する。金型潤滑剤の粒子が平均粒子径1μm未満の場合、金型潤滑剤粒子の比表面積が大きくなるため、蒸気圧が低い脂肪酸エステルであっても揮発量を無視することができなくなり、更に個々の粒子がより軽量になるので噴霧した際、舞い上がってしまうことから、キャビティー内に付着させる金型潤滑剤の噴霧量の調整が難しい。また、平均粒子径50μm超の場合は、噴霧量の微調整が困難となり、目標噴霧量よりも少なくなって金型の潤滑性が低下して成形不良となったり、目標噴霧量よりも多くなって焼結後に炭素が磁石中に大量に残存して磁石特性を劣化させてしまう。
なお、金属潤滑剤の粒子の平均粒子径は、例えば、レーザー光回折法による重量平均値(又はメジアン径)として求めることができる。
In the present invention, the mold lubricant is sprayed onto the mold as particles having an average particle diameter of 1 to 50 μm, preferably 5 to 30 μm. When the mold lubricant particles have an average particle diameter of less than 1 μm, the specific surface area of the mold lubricant particles increases, so even if the fatty acid ester has a low vapor pressure, the volatilization amount cannot be ignored. Since the particles become so light that they rise when sprayed, it is difficult to adjust the spray amount of the mold lubricant to be deposited in the cavity. In addition, when the average particle diameter exceeds 50 μm, it is difficult to finely adjust the spray amount, and it becomes smaller than the target spray amount and the mold lubricity is lowered, resulting in poor molding, or more than the target spray amount. As a result, a large amount of carbon remains in the magnet after sintering, thereby deteriorating the magnet characteristics.
In addition, the average particle diameter of the metal lubricant particles can be obtained, for example, as a weight average value (or median diameter) by a laser light diffraction method.

また、金型潤滑剤の噴霧方法としては、金型潤滑剤の液圧及び窒素圧を低圧精密レギュレータにより制御し、それを噴霧ノズルからキャビティー内に噴霧する方法が好ましい。   Further, as a method for spraying the mold lubricant, a method in which the hydraulic pressure and nitrogen pressure of the mold lubricant are controlled by a low-pressure precision regulator and sprayed from the spray nozzle into the cavity is preferable.

このとき、金型潤滑剤をキャビティー内に噴霧する量としては、キャビティー深さ、金型の形状によらず、金型及び下パンチで構成されるキャビティー内面積の単位面積あたりの噴霧量1×10-4〜1×10-2kg/m2となるようにすることが好ましい。噴霧量1×10-4kg/m2未満の場合、金型の潤滑性が低下するため、抜き圧が上昇し、成形体のクラック、ワレ、カケ等の成形不良が発生し易くなる。また、噴霧量1×10-2kg/m2超の場合、成形性、潤滑性は良好であるが、潤滑剤中の炭素成分が焼結磁石中に多く残存することによって、保磁力の低下及び角形性の悪化など磁気特性に問題を生じるおそれがある。 At this time, the amount of the mold lubricant sprayed into the cavity is sprayed per unit area of the cavity inner area composed of the mold and the lower punch, regardless of the cavity depth and the shape of the mold. The amount is preferably 1 × 10 −4 to 1 × 10 −2 kg / m 2 . When the spray amount is less than 1 × 10 −4 kg / m 2 , the lubricity of the mold is lowered, so that the release pressure is increased, and molding defects such as cracks, cracks and chipping of the molded body are likely to occur. In addition, when the spray amount exceeds 1 × 10 −2 kg / m 2 , the moldability and lubricity are good, but the coercive force decreases due to the large amount of carbon components in the lubricant remaining in the sintered magnet. In addition, there is a risk of problems in magnetic properties such as deterioration of squareness.

また、金型潤滑剤の20℃における動粘度が2×10-6〜1×10-52/sであることが好ましく、4×10-6〜1×10-52/sであることがより好ましい。20℃での動粘度が2×10-62/s未満の場合、キャビティー内に付着した金型潤滑剤が流動してその付着状態が維持されないため、潤滑性の低下を招くことがあり、1×10-52/s超の場合、動粘度が高すぎるため、流動性が悪く安定した噴霧ができないおそれがある。
なお、動粘度は20℃においてオストワルド粘度計を用いて測定した値である。
Further, the kinematic viscosity at 20 ° C. of the mold lubricant is preferably 2 × 10 −6 to 1 × 10 −5 m 2 / s, and 4 × 10 −6 to 1 × 10 −5 m 2 / s. More preferably. When the kinematic viscosity at 20 ° C. is less than 2 × 10 −6 m 2 / s, the mold lubricant adhering to the cavity flows and the adhering state is not maintained, so that the lubricity may be lowered. Yes , if it exceeds 1 × 10 −5 m 2 / s, the kinematic viscosity is too high, and thus there is a possibility that stable spraying cannot be performed due to poor fluidity.
The kinematic viscosity is a value measured at 20 ° C. using an Ostwald viscometer.

上記条件にて金型への金型潤滑剤の噴霧を行った後、キャビティー内に希土類磁石用合金粉末を充填し、1.0〜2.5Tの磁場を印加しながら、20〜200MPaの圧力を加え、磁場中成形することで成形体を得る。
上記条件にて得られた成形体を、熱処理炉により高真空中又はアルゴンなどの非酸化性雰囲気ガス中、1,000〜1,200℃で1〜10時間の焼結を行い、続いて、真空中又はアルゴンなどの非酸化性雰囲気ガス中で、焼結温度よりも低い温度で、好ましくは400〜700℃の温度で熱処理を施して希土類磁石を得る。
After spraying the mold lubricant onto the mold under the above conditions, the alloy powder for rare earth magnet is filled in the cavity, and a magnetic field of 1.0 to 2.5 T is applied, and a pressure of 20 to 200 MPa is applied. A compact is obtained by applying pressure and molding in a magnetic field.
The molded body obtained under the above conditions was sintered in a high-vacuum or non-oxidizing atmosphere gas such as argon in a heat treatment furnace at 1,000 to 1,200 ° C. for 1 to 10 hours, A rare earth magnet is obtained by performing a heat treatment in a vacuum or in a non-oxidizing atmosphere gas such as argon at a temperature lower than the sintering temperature, preferably at a temperature of 400 to 700 ° C.

以上の希土類焼結磁石の製造方法によれば、成形性、金型潤滑性に優れているため、安定して高品質な希土類焼結磁石を提供することができ、更には脱炭素処理も不要なため、工程の効率化も図られ、工業的利用価値は極めて高い。   According to the above method for producing a rare earth sintered magnet, since it is excellent in moldability and mold lubricity, a stable and high quality rare earth sintered magnet can be provided, and decarbonization treatment is unnecessary. Therefore, the efficiency of the process can be improved and the industrial utility value is extremely high.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記例で、動粘度は20℃においてオストワルド粘度計を用いて測定した値である。また、粉砕した合金粉末の平均微粉粒径は、レーザー光回折法による重量平均値として求め、噴霧した金型潤滑剤の平均粒子径は、レーザー光回折法によるメジアン径として求めた。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following examples, the kinematic viscosity is a value measured using an Ostwald viscometer at 20 ° C. Further, the average fine particle diameter of the pulverized alloy powder was determined as a weight average value by a laser light diffraction method, and the average particle diameter of the sprayed mold lubricant was determined as a median diameter by a laser light diffraction method.

[実施例1、比較例1]
Nd:31.0質量%、Co:1.0質量%、B:1.0質量%、Al:0.2質量%、Cu:0.2質量%、Fe:残部の組成であるNd系磁石合金を、水素化による粗粉砕、ジェットミルによる微粉砕を行い、平均微粉粒径3.0μmの微粉末を作製し、磁場中成形にて成形体を得た。詳しくは、この金型の形状が20×40mm、キャビティー深さ50mmであり、表1に示す条件で金型潤滑剤を金型に噴霧した後に、上記希土類合金の微粉末を充填し、成形圧力100MPaで磁場中成形にて成形体を得た。ここで、この金属潤滑剤噴霧から磁場中成形までの工程を300回繰り返して行い(成形ショット数300)、成形ショット数と得られた成形体の密度の関係を調査した。その結果を図1に示す。
なお、実施例1で使用した金型潤滑剤の20℃における動粘度は6×10-62/sであった。
[Example 1, Comparative Example 1]
Nd magnet having Nd: 31.0 mass%, Co: 1.0 mass%, B: 1.0 mass%, Al: 0.2 mass%, Cu: 0.2 mass%, Fe: balance The alloy was coarsely pulverized by hydrogenation and finely pulverized by a jet mill to produce a fine powder having an average fine particle diameter of 3.0 μm, and a compact was obtained by molding in a magnetic field. Specifically, the mold has a shape of 20 × 40 mm and a cavity depth of 50 mm. After spraying a mold lubricant on the mold under the conditions shown in Table 1, the rare earth alloy fine powder is filled and molded. A molded body was obtained by molding in a magnetic field at a pressure of 100 MPa. Here, the steps from the metal lubricant spraying to forming in a magnetic field were repeated 300 times (number of forming shots 300), and the relationship between the number of forming shots and the density of the obtained formed body was investigated. The result is shown in FIG.
The kinematic viscosity at 20 ° C. of the mold lubricant used in Example 1 was 6 × 10 −6 m 2 / s.

Figure 2014218699
Figure 2014218699

図1から明らかなように、実施例1は成形数300ショットを通じて、ほぼ一定の成形体密度が得られているのに対し、比較例1は約50ショットから成形体密度の低下傾向がみられる。更に100ショットを超えたあたりから急激な低下を生じたため、170ショットで成形を中止した。このことは、比較例1において、金型との摩擦の増大による成形圧力不足、つまり潤滑性が不足していることを示している。一方、実施例1は良好な潤滑性を保っていることが分かる。   As is clear from FIG. 1, in Example 1, a substantially constant molded body density was obtained through 300 shots of molding, whereas in Comparative Example 1, there was a tendency to decrease the molded body density from about 50 shots. . Furthermore, since a sharp drop occurred from around 100 shots, molding was stopped at 170 shots. This indicates that in Comparative Example 1, the molding pressure is insufficient due to increased friction with the mold, that is, the lubricity is insufficient. On the other hand, it can be seen that Example 1 maintains good lubricity.

[実施例2、3、比較例2、3]
Nd:31.0質量%、Co:1.0質量%、B:1.0質量%、Al:0.2質量%、Cu:0.2質量%、Fe:残部の組成であるNd系磁石合金を、水素化により粗粉砕、ジェットミルにより微粉砕を行い、平均微粉粒径3.0μmの微粉末を作製し、磁場中成形にて成形体を得た。詳しくは、この金型の形状が20×20mm、キャビティー深さ40mmであり、表2に示す条件で金型潤滑剤を金型に噴霧した後に、上記希土類合金の微粉末を充填し、成形圧力100MPaの磁場中成形及び表2に示す抜き圧にて成形体を得た。得られた成形体は、熱処理炉にて真空中、1,060℃、3時間で焼結した後、真空中で500℃、3時間の低温熱処理を行い、焼結磁石を作製した。表3に作製した焼結磁石の磁気特性を示す。
なお、本実施例で使用した金型潤滑剤の20℃における動粘度は4×10-62/sであった。
[Examples 2 and 3, Comparative Examples 2 and 3]
Nd magnet having Nd: 31.0 mass%, Co: 1.0 mass%, B: 1.0 mass%, Al: 0.2 mass%, Cu: 0.2 mass%, Fe: balance The alloy was coarsely pulverized by hydrogenation and finely pulverized by a jet mill to produce a fine powder having an average fine particle diameter of 3.0 μm, and a compact was obtained by molding in a magnetic field. Specifically, the mold has a shape of 20 × 20 mm and a cavity depth of 40 mm. After spraying a mold lubricant on the mold under the conditions shown in Table 2, the rare earth alloy fine powder is filled and molded. A molded body was obtained by molding in a magnetic field at a pressure of 100 MPa and a drawing pressure shown in Table 2. The obtained molded body was sintered in a heat treatment furnace in vacuum at 1,060 ° C. for 3 hours, and then subjected to low temperature heat treatment in vacuum at 500 ° C. for 3 hours to produce a sintered magnet. Table 3 shows the magnetic properties of the sintered magnets produced.
The kinematic viscosity at 20 ° C. of the mold lubricant used in this example was 4 × 10 −6 m 2 / s.

Figure 2014218699
Figure 2014218699

Figure 2014218699
Figure 2014218699

表2は、実施例2、3及び比較例3において成形体の外観、抜き圧に差がないことに対して、比較例2は、抜き圧が他に比べ約30%高く、成形体にカケを生じたことから潤滑性、成形性に劣ることを示している。
表3における焼結体炭素量1は、焼結体側面から約1mm内部までの領域の炭素量を、炭素量2は焼結体中央部分の炭素量を示している。表3に示すように実施例2、3及び比較例2は磁気特性に差がなく良好であるが、比較例3は保磁力、角形が劣っている。これは、比較例3の焼結体の炭素量が全体的に多く、特に炭素量1が多いことから、金型潤滑剤起因で焼結体中に残存した炭素量の影響と考えられる。
以上のように、表2、3から、実施例2、3は成形性、磁気特性ともに良好であるが、比較例2においては、金型潤滑不足による成形の不具合が生じ、比較例3においては金型潤滑剤過多による磁気特性の劣化が生じていることが分かる。
Table 2 shows that in Examples 2 and 3 and Comparative Example 3, there is no difference in the appearance and the punching pressure of the molded body. In Comparative Example 2, the punching pressure is about 30% higher than the others, and the molded body is broken. This indicates that the lubricity and moldability are poor.
The amount of carbon 1 in the sintered body in Table 3 indicates the amount of carbon in the region from the side of the sintered body to the inside of about 1 mm, and the amount of carbon 2 indicates the amount of carbon in the central portion of the sintered body. As shown in Table 3, Examples 2 and 3 and Comparative Example 2 are good with no difference in magnetic properties, but Comparative Example 3 is inferior in coercive force and squareness. This is considered to be due to the influence of the amount of carbon remaining in the sintered body due to the mold lubricant because the carbon amount of the sintered body of Comparative Example 3 is large as a whole, and especially the carbon amount 1 is large.
As described above, from Tables 2 and 3, Examples 2 and 3 are good in both formability and magnetic properties, but in Comparative Example 2, there is a molding defect due to insufficient mold lubrication. It can be seen that the magnetic properties are deteriorated due to excessive mold lubricant.

Claims (3)

希土類磁石用合金粉末を金型と下パンチで形成されるキャビティーに充填後、磁場中で一軸加圧により成形し、その後に熱処理して希土類焼結磁石を製造する方法において、磁場中で金型成形する際に、融点又は凝固点が15℃以下の脂肪酸エステル95〜99.5質量%と炭素数10〜24で融点が30℃以上の脂肪酸0.5〜5質量%とからなる液状の金型潤滑剤を平均粒子径1〜50μmの粒子として金型に噴霧した後、上記キャビティーに上記希土類磁石用合金粉末を充填し、磁場中成形することで成形体を得て、その後に熱処理することを特徴とする希土類焼結磁石の製造方法。   In the method of manufacturing rare earth sintered magnet by filling cavities formed by rare earth magnet with mold and lower punch, molding by uniaxial pressing in magnetic field and then heat treating When molding, liquid gold consisting of 95 to 99.5% by mass of a fatty acid ester having a melting point or freezing point of 15 ° C. or less and 0.5 to 5% by mass of a fatty acid having 10 to 24 carbon atoms and a melting point of 30 ° C. or more. After spraying the mold lubricant as particles having an average particle diameter of 1 to 50 μm onto the mold, the cavity is filled with the alloy powder for rare earth magnets and molded in a magnetic field to obtain a molded body, which is then heat-treated. A method for producing a rare earth sintered magnet. 上記金型潤滑剤をキャビティー内に噴霧量1×10-4〜1×10-2kg/m2で噴霧することを特徴とする請求項1に記載の希土類焼結磁石の製造方法。 2. The method for producing a rare earth sintered magnet according to claim 1, wherein the mold lubricant is sprayed into the cavity at a spraying amount of 1 × 10 −4 to 1 × 10 −2 kg / m 2 . 上記金型潤滑剤は、20℃における動粘度が2×10-6〜1×10-52/sであることを特徴とする請求項1又は2に記載の希土類焼結磁石の製造方法。 3. The method for producing a rare earth sintered magnet according to claim 1, wherein the mold lubricant has a kinematic viscosity at 20 ° C. of 2 × 10 −6 to 1 × 10 −5 m 2 / s. .
JP2013098471A 2013-05-08 2013-05-08 Manufacturing method of rare earth sintered magnet Active JP5942922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098471A JP5942922B2 (en) 2013-05-08 2013-05-08 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098471A JP5942922B2 (en) 2013-05-08 2013-05-08 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2014218699A true JP2014218699A (en) 2014-11-20
JP5942922B2 JP5942922B2 (en) 2016-06-29

Family

ID=51937442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098471A Active JP5942922B2 (en) 2013-05-08 2013-05-08 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP5942922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409495A (en) * 2015-06-24 2017-02-15 株式会社捷太格特 Manufacturing method for magnet and magnet

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104902A (en) * 1995-10-05 1997-04-22 Shin Etsu Chem Co Ltd Powder compacting method
JP2000109903A (en) * 1998-10-06 2000-04-18 Sumitomo Special Metals Co Ltd RELEASING AGENT FOR FORMING R-Fe-B MAGNET
JP2001342502A (en) * 2000-03-28 2001-12-14 Sumitomo Special Metals Co Ltd Powder pressing apparatus and method for producing molded article of rare earth metal alloy magnetic powder
US20020006348A1 (en) * 2000-07-17 2002-01-17 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus and powder pressing method
US20020018730A1 (en) * 2000-03-28 2002-02-14 Shuichi Okuyama Powder compacting apparatus and method of making rare-earth alloy magnetic powder compact
JP2002096198A (en) * 2000-07-17 2002-04-02 Sumitomo Special Metals Co Ltd Powder molding device and powder molding method
JP3309970B2 (en) * 1999-12-14 2002-07-29 株式会社豊田中央研究所 Molding method of powder compact
JP2003082401A (en) * 2001-06-13 2003-03-19 Toyota Central Res & Dev Lab Inc Sintered soft magnetic body, and production method therefor
JP2003171701A (en) * 2001-12-10 2003-06-20 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth magnet
JP2007266026A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth sintered magnet
JP2007266038A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth permanent magnet
JP2007327102A (en) * 2006-06-08 2007-12-20 Tdk Corp Method for removing lubricant
JP2009084626A (en) * 2007-09-28 2009-04-23 Hitachi Metals Ltd Quenched alloy for r-t-b-based sintered permanent magnet, and r-t-b-based sintered permanent magnet using the same
WO2009081978A1 (en) * 2007-12-25 2009-07-02 Ulvac, Inc. Permanent magnet manufacturing method
JP2014220373A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104902A (en) * 1995-10-05 1997-04-22 Shin Etsu Chem Co Ltd Powder compacting method
JP2000109903A (en) * 1998-10-06 2000-04-18 Sumitomo Special Metals Co Ltd RELEASING AGENT FOR FORMING R-Fe-B MAGNET
JP3309970B2 (en) * 1999-12-14 2002-07-29 株式会社豊田中央研究所 Molding method of powder compact
JP2001342502A (en) * 2000-03-28 2001-12-14 Sumitomo Special Metals Co Ltd Powder pressing apparatus and method for producing molded article of rare earth metal alloy magnetic powder
US20020018730A1 (en) * 2000-03-28 2002-02-14 Shuichi Okuyama Powder compacting apparatus and method of making rare-earth alloy magnetic powder compact
US20020006348A1 (en) * 2000-07-17 2002-01-17 Sumitomo Special Metals Co., Ltd. Powder pressing apparatus and powder pressing method
JP2002096198A (en) * 2000-07-17 2002-04-02 Sumitomo Special Metals Co Ltd Powder molding device and powder molding method
JP2003082401A (en) * 2001-06-13 2003-03-19 Toyota Central Res & Dev Lab Inc Sintered soft magnetic body, and production method therefor
JP2003171701A (en) * 2001-12-10 2003-06-20 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth magnet
JP2007266026A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth sintered magnet
JP2007266038A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth permanent magnet
JP2007327102A (en) * 2006-06-08 2007-12-20 Tdk Corp Method for removing lubricant
JP2009084626A (en) * 2007-09-28 2009-04-23 Hitachi Metals Ltd Quenched alloy for r-t-b-based sintered permanent magnet, and r-t-b-based sintered permanent magnet using the same
WO2009081978A1 (en) * 2007-12-25 2009-07-02 Ulvac, Inc. Permanent magnet manufacturing method
JP2014220373A (en) * 2013-05-08 2014-11-20 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409495A (en) * 2015-06-24 2017-02-15 株式会社捷太格特 Manufacturing method for magnet and magnet

Also Published As

Publication number Publication date
JP5942922B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
KR101378090B1 (en) R-t-b sintered magnet
JP5532745B2 (en) Magnetic anisotropic magnet and manufacturing method thereof
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP2012142388A (en) Method for producing rare earth magnet
JPWO2016140350A1 (en) Manufacturing method of magnetic refrigeration module
JP5967010B2 (en) Manufacturing method of rare earth sintered magnet
CN105132799B (en) Powder metallurgy material for unilateral bearing and preparing method of powder metallurgy material
JP2007270235A (en) Molding device in magnetic field, mold, and method for producing rare earth sintered magnet
JPWO2019151244A1 (en) permanent magnet
JP5942922B2 (en) Manufacturing method of rare earth sintered magnet
CN107919200B (en) Method for preparing sintered RETMB permanent magnetic powder
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JP4305927B2 (en) Lubricant removal method
JP2008214661A (en) Manufacturing method of sintered rare-earth magnet
JP4285666B2 (en) Manufacturing method of rare earth sintered magnet
JP4159775B2 (en) Rare earth magnet manufacturing method
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
JP2008045214A (en) Powder for producing sintered rare earth magnet alloy
JP6222518B2 (en) Method for producing RTB-based sintered magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP2005294556A (en) Method of manufacturing rare-earth sintered magnet
WO2022209466A1 (en) Method for producing r-t-b-based sintered magnet
JP2009295638A (en) Method for manufacturing r-t-b magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5942922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150