JPH06290919A - Rare earth-iron-boron permanent magnet and manufacture thereof - Google Patents

Rare earth-iron-boron permanent magnet and manufacture thereof

Info

Publication number
JPH06290919A
JPH06290919A JP5073541A JP7354193A JPH06290919A JP H06290919 A JPH06290919 A JP H06290919A JP 5073541 A JP5073541 A JP 5073541A JP 7354193 A JP7354193 A JP 7354193A JP H06290919 A JPH06290919 A JP H06290919A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
iron
boron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5073541A
Other languages
Japanese (ja)
Inventor
Munehisa Hasegawa
統久 長谷川
Shigeo Tanigawa
茂穂 谷川
Takeo Omori
健雄 大森
Chitoshi Hagi
千敏 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5073541A priority Critical patent/JPH06290919A/en
Publication of JPH06290919A publication Critical patent/JPH06290919A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the cavity in a permanent magnet, and to suppress the deterioration in corrosion resistance by a method wherein the friction generating between the mold and raw material powder when a molding operation is conducted is reduced by adding the specific quantity of alkali metal stearate to rare earth-iron-boron permanent magnet alloy coarse powder. CONSTITUTION:This rare earth-iron-boron permanent magnet is mainly composed in atomic % of rare earth element R (among rare-earth elements containing Y, one or two or more elements are combined) of 10 to 25%, B of 1 to 12%, and the remaining part consisting of Fe (a part of Fe is replaced at least with one or more kinds of elements selected from Co, Ni, Al, Nb, Ti, W, Mo, V, Ga, Zn and Si, if necessary). After alkali metal stearate of 0.001 to 0.2wt.% has been mixed to the alloy coarse powder, the mixture is dry- pulverized and the permanent magnet is manufactured. As a result, the lubricating property can be improved by reducing the friction between raw material powder and the wall surface of mold, or between the raw material powder, and the residual carbon quantity can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄−ボロン系永
久磁石の製造方法において、潤滑剤を少量添加するだけ
で成形時の金型と原料粉末との間の摩擦を減少させ磁気
特性を向上させるとともに耐食性を向上させる技術に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-boron-based permanent magnet, in which a small amount of a lubricant is added to reduce friction between a die and a raw material powder at the time of molding to improve magnetic characteristics. The present invention relates to a technique for improving the corrosion resistance as well as improving the corrosion resistance.

【0002】[0002]

【従来の技術】近年、電子機器や精密機器の小型化、軽
量化の市場傾向に伴い、永久磁石においては従来のアル
ニコやフェライト磁石に代わり希土類磁石が多くの分野
で利用されるようになってきた。希土類永久磁石の中で
も、特に、高いエネルギ−積が得られる希土類−鉄−ボ
ロン系磁石の需要が増加しており、従来以上に高エネル
ギ−積でかつ高保磁力が要求される傾向にある。希土類
−鉄−ボロン系磁石の磁気特性を改善する試みは、種々
検討されており、種々添加元素による発明は多数開示さ
れている。また、従来の粉末冶金法に代わる手法である
超急冷法による希土類−鉄−ボロン系磁石の発明も多数
開示されている。超急冷法では、粉末冶金法とは違い、
高いエネルギ−積を得るために熱間で据え込み加工や押
し出し加工などの塑性加工を必要とし製造コストがかさ
むために実用的ではない。それゆえ、現在、市場で実用
化されているエネルギ−積が30MGOe以上の特性を
有する希土類−鉄−ボロン系磁石のほとんどは粉末冶金
法を利用し製造されている。
2. Description of the Related Art In recent years, along with the market trend toward miniaturization and weight reduction of electronic equipment and precision equipment, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. It was Among rare earth permanent magnets, there is an increasing demand for rare earth-iron-boron-based magnets that can obtain a high energy product, and there is a tendency for higher energy products and higher coercive force to be required than ever. Various attempts have been made to improve the magnetic properties of rare earth-iron-boron magnets, and many inventions based on various additive elements have been disclosed. In addition, many inventions of rare earth-iron-boron magnets by superquenching method, which is an alternative to the conventional powder metallurgy method, have been disclosed. Unlike the powder metallurgy method, the ultra-quenching method
It is not practical because it requires hot plastic working such as upsetting or extrusion to obtain a high energy product, which increases manufacturing costs. Therefore, most of the rare earth-iron-boron magnets having the energy product of 30 MGOe or more which are currently put to practical use in the market are manufactured by using the powder metallurgy method.

【0003】ところで、この希土類−鉄−ボロン系焼結
磁石を粉末冶金法により製造する方法は、目的組成に希
土類−鉄−ボロン系合金を溶解し、これを平均粒子径が
1〜50μm程度の粉末に微粉砕した後、磁場中で成形
し、焼結、熱処理の工程を経る方法が一般的である。こ
の工程の中で、溶解鋳造インゴットから磁界中成形する
ための微粉末を得る方法には、ジョ−クラッシャ−、デ
ィスクミル、ジェットミル、ボールミルなどを用いて機
械的粉砕により製造する方法および特開昭60−633
04号などで開示されているように希土類−鉄−ボロン
系磁石溶解鋳造インゴットに水素を吸蔵させ平均粒子径
が500μm以下に自然崩壊させ、その粗粉をジェット
ミルなどにより微粉砕する方法がある。この水素を吸蔵
させ平均粒子径が500μm以下に粉砕する方法は、機
械的粉砕よりも1/4程度の時間で、所定粒度の微粉砕
粉を得ることができ、粉砕時間の短縮、粉砕歩留、粉砕
能率が向上するという特徴があり、現在では、希土類−
鉄−ボロン系磁石粉末の製造方法として一般に行われて
いる。成形工程においては、平均粒子径が1〜50μm
の微粉砕粉をダイス、下パンチで形成する成形空間に充
填した後上パンチが下降して原料粉末の圧密を終了する
まで配向磁場を原料粉末に印加し続けることにより配向
を行っていた。
By the way, in the method for producing the rare earth-iron-boron system sintered magnet by the powder metallurgy method, the rare earth-iron-boron system alloy is dissolved in the target composition and the average particle size thereof is about 1 to 50 μm. A general method is to pulverize the powder into fine powders, then form the powder in a magnetic field, and then perform the steps of sintering and heat treatment. In this step, as a method for obtaining fine powder for molding in a magnetic field from a melt-casting ingot, a method of mechanical grinding using a jaw crusher, a disc mill, a jet mill, a ball mill, etc. 60-633
As disclosed in No. 04, there is a method of occluding hydrogen in a rare earth-iron-boron magnet melting and casting ingot to spontaneously disintegrate it into particles having an average particle diameter of 500 μm or less and finely pulverizing the coarse powder with a jet mill or the like. . This method of occluding hydrogen and pulverizing it to an average particle size of 500 μm or less makes it possible to obtain finely pulverized powder having a predetermined particle size in about 1/4 of the time required for mechanical pulverization. , Crushing efficiency is improved, and now, rare earth-
It is generally used as a method for producing iron-boron magnet powder. In the molding step, the average particle size is 1 to 50 μm
After the finely pulverized powder of No. 1 was filled in the forming space formed by the die and the lower punch, the orientation magnetic field was continuously applied to the raw material powder until the upper punch descended to complete the consolidation of the raw material powder for orientation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、希土類
−鉄−ボロン系永久磁石原料粉末の成形においては成形
時における金型内壁と原料粉末あるいは成形体との間の
摩擦がはなはだしく、時には原料粉末が金型内壁に付着
し金型かじりが発生しダイスの交換を頻繁にしなければ
ならず、成形作業能率の低下、金型代の出費増をもたら
していた。そこで、原料粉末と金型との摩擦を低減する
ために、金型壁面に高級脂肪酸などの潤滑剤を塗布する
方法が提案されている。しかし、潤滑剤を金属壁面に塗
布する方法は手間がかかり作業能率を低下させる。本出
願人は特開昭61−214402号に平均粒子径が1〜
50μmの微粉砕粉にステアリン酸亜鉛を添加混合し、
この混合粉を成形することを要旨とする方法を提案し
た。この方法によると、作業能率を低下させることなく
原料粉末と金型の摩擦を低減することができる。しか
し、特開昭61−214402号の方法による永久磁石
を注意深く観察したところ、永久磁石中に存在する巣の
数が多く、そのような磁石は耐食性が劣るということを
知見した。そこで本発明は、成形時の金型と原料粉末と
の間の摩擦を減少させ磁気特性を向上させるとともに、
磁石中の巣を低減して耐食性の劣化を防止することを目
的とする。
However, in the molding of rare earth-iron-boron permanent magnet raw material powder, friction between the inner wall of the die and the raw material powder or the shaped body during molding is great, and sometimes the raw material powder is gold. The die adhered to the inner wall of the die and galling of the die occurred, which required frequent replacement of the die, resulting in a decrease in molding work efficiency and an increase in die cost. Therefore, in order to reduce the friction between the raw material powder and the mold, a method of applying a lubricant such as a higher fatty acid to the wall surface of the mold has been proposed. However, the method of applying the lubricant to the metal wall surface is time-consuming and reduces the work efficiency. The applicant of the present invention has disclosed in JP-A-61-214402 that the average particle diameter is 1 to
Zinc stearate is added to and mixed with 50 μm finely pulverized powder,
A method has been proposed in which molding of this mixed powder is the gist. According to this method, the friction between the raw material powder and the mold can be reduced without lowering the work efficiency. However, careful observation of the permanent magnet according to the method of Japanese Patent Laid-Open No. 61-214402 revealed that the number of cavities present in the permanent magnet was large and such a magnet had poor corrosion resistance. Therefore, the present invention reduces the friction between the mold and the raw material powder during molding to improve the magnetic characteristics, and
The purpose is to reduce the number of cavities in the magnet and prevent deterioration of corrosion resistance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本永久磁石の製造方法は、原子百分比で希土類元素R
(Yを含む希土類元素のうち1種または2種以上の組み
合わせ)が10〜25%、ボロンBが1〜12%含み残
部が鉄Fe(Feの一部を必要に応じてCo,Ni,A
l,Nb,Ti,W,Mo,V,Ga,Zn,Siから
選択される少なくとも1種以上の元素で0〜15%の範
囲で置換することもできる)を主成分とする希土類−鉄
−ボロン系永久磁石合金粗粉にステアリン酸金属塩を
0.001〜0.2wt.%添加混合した後、乾式で微
粉砕することを特徴とする。本発明のステアリン酸金属
としては、Zn,K,Ca,Al,Fe,Cu,Ni,
Coから選択される少なくとも1種以上の元素を用いる
ことができる。
A method of manufacturing a permanent magnet according to the present invention for solving the above-mentioned problems includes a rare earth element R in atomic percentage.
(One or a combination of two or more rare earth elements including Y) is 10 to 25%, boron B is 1 to 12%, and the balance is iron Fe (a part of Fe is Co, Ni, A if necessary).
Rare earth-iron-containing at least one element selected from 1, Nb, Ti, W, Mo, V, Ga, Zn and Si within the range of 0 to 15%) 0.001 to 0.2 wt.% Of stearic acid metal salt is added to the boron-based permanent magnet alloy coarse powder. % Addition and mixing, followed by dry pulverization. Examples of the metal stearate of the present invention include Zn, K, Ca, Al, Fe, Cu, Ni,
At least one element selected from Co can be used.

【0006】以上の本発明製造方法によると、原子百分
比で希土類元素R(Yを含む希土類元素のうち1種また
は2種以上の組み合わせ)が10〜25%、ボロンBが
1〜12%含み残部が鉄Fe(Feの一部を必要に応じ
てCo,Ni,Al,Nb,Ti,W,Mo,V,G
a,Zn,Siから選択される少なくとも1種以上の元
素で0〜15%の範囲で置換することもできる)を主成
分とする焼結体であって、配向度が99.5%以上、永
久磁石鏡面研磨面1mm2における5μm以上の大きさ
の巣が150個以下の磁石が得られる。なお、本発明に
おける配向度とは、後述の実施例で示す数式で求められ
るものとする。
According to the above-mentioned production method of the present invention, the rare earth element R (one or a combination of two or more rare earth elements including Y) is contained in an atomic percentage of 10 to 25% and the boron B is contained in an amount of 1 to 12%. Is iron Fe (a part of Fe may be Co, Ni, Al, Nb, Ti, W, Mo, V, G
a, Zn, Si can be substituted with at least one or more elements selected from the range of 0 to 15%) as a main component, and the degree of orientation is 99.5% or more, A magnet having 150 or less cavities with a size of 5 μm or more in 1 mm 2 of the permanent magnet mirror-polished surface is obtained. In addition, the degree of orientation in the present invention is obtained by a mathematical formula shown in Examples described later.

【0007】[0007]

【作用】本発明は、前記特開昭61−214402号と
は異なり、粗粉にステアリン酸金属塩を添加した点に特
徴がある。そうすることにより、磁石中の巣を低減し耐
食性の劣化が抑制された。また、微粉に添加した場合に
比べ、配向度が向上することも確認された。本発明によ
り以上のような効果が得られる理由は明かでないが、粗
粉にステアリン酸金属塩を添加した後に微粉砕を行うた
め、ステアリン酸金属塩の微粉末に対する分散度が向上
したことに起因するものと推測される。本発明では潤滑
剤としてステアリン酸金属塩を採用するが、この金属イ
オンと希土類−鉄−ホウ素系磁石合金との結合しやすさ
を利用し、他端のC,H,Oで構成される基で潤滑性を
向上させる。その結果、潤滑剤としてのステアリン酸金
属塩の添加を少量に抑えることができる。この場合、磁
石中に残存する炭素量が低減され、磁気特性に悪影響を
及ぼす希土類炭化物の生成を抑制できる。
The present invention is different from JP-A-61-214402 in that the stearic acid metal salt is added to the coarse powder. By doing so, the cavities in the magnet were reduced and the deterioration of corrosion resistance was suppressed. It was also confirmed that the degree of orientation was improved as compared with the case where it was added to the fine powder. Although the reason why the present invention can obtain the above effects is not clear, because fine pulverization is performed after adding the metal stearate to the coarse powder, the dispersity of the metal stearate in the fine powder is improved. It is supposed to do. In the present invention, a stearic acid metal salt is adopted as the lubricant, but the group composed of C, H, and O at the other end is used by utilizing the ease of binding of this metal ion and the rare earth-iron-boron magnet alloy. To improve lubricity. As a result, the addition of the metal stearate as a lubricant can be suppressed to a small amount. In this case, the amount of carbon remaining in the magnet is reduced, and the generation of rare earth carbide that adversely affects the magnetic properties can be suppressed.

【0008】以下、本発明の詳細を説明する。先ず、本
発明の対象となる磁石溶解鋳造インゴット組成は希土類
元素(Yを含む希土類元素のうち1種または2種以上の
組み合わせ)が10〜25%、ボロンを必須元素として
1〜12原子%含み残部がFeを主成分とし、Feの一
部を必要に応じてCo,Ni,Mn,Al,Nb,Z
r,Ti,W,Mo,V,Ga,Zn,Si他の元素で
0〜15原子%の範囲で置換した希土類−鉄−ボロン系
の永久磁石合金である。この溶解鋳造インゴットを金属
面が露出するように破断したのち、破断塊を密閉容器内
に収容した後、該容器内に水素ガスを供給し、溶解鋳造
インゴットを自然崩壊させ平均粒子径が50〜1000
μmの粗粉にする。粗粉の酸化に対する活性度を下げる
ために、水素処理後、粗粉を真空中またはアルゴンガス
中100〜900℃で脱水素処理しても良い。また、粗
粉の作製には鋳造インゴットをジョークラッシャー、ブ
ラウンミル等で機械的に粉砕しても良い。
The details of the present invention will be described below. First, the composition of a magnet melt-casting ingot to be the subject of the present invention contains 10 to 25% rare earth elements (one or a combination of two or more rare earth elements including Y) and 1 to 12 atomic% boron as an essential element. The balance is Fe as a main component, and a part of Fe is optionally Co, Ni, Mn, Al, Nb, Z.
It is a rare earth-iron-boron-based permanent magnet alloy that is substituted with other elements such as r, Ti, W, Mo, V, Ga, Zn, and Si in the range of 0 to 15 atomic%. After breaking this molten cast ingot so that the metal surface is exposed, after storing the broken mass in a closed container, hydrogen gas is supplied into the container to spontaneously collapse the molten cast ingot and the average particle size is 50 to 50. 1000
Make a coarse powder of μm. In order to reduce the activity of the coarse powder against oxidation, the coarse powder may be subjected to dehydrogenation treatment at 100 to 900 ° C. in vacuum or in argon gas after the hydrogen treatment. In addition, the casting ingot may be mechanically crushed by a jaw crusher, a brown mill, or the like to prepare the coarse powder.

【0009】次に、この粗粉にステアリン酸金属塩を添
加混合した後、ジェトミルなどの乾式粉砕機により平均
粒子径が1〜50μmに微粉砕する。得られた微粉砕粉
をダイスと下パンチで形成される成形空間内に充填した
後、配向磁場を印加して圧密成形を行い成形体を作製す
る。成形体は真空中あるいは窒素、Arガス等の非酸化
性雰囲気にて1000〜1200℃の範囲内の温度で焼
結され、350℃〜焼結温度の範囲内の温度で熱処理さ
れ永久磁石が作製される。
Next, metal salt of stearic acid is added to and mixed with the coarse powder, and then finely ground to an average particle size of 1 to 50 μm by a dry grinding machine such as a jet mill. After filling the obtained finely pulverized powder into a molding space formed by a die and a lower punch, an orientation magnetic field is applied to carry out consolidation molding to produce a molded body. The formed body is sintered in a vacuum or in a non-oxidizing atmosphere such as nitrogen or Ar gas at a temperature in the range of 1000 to 1200 ° C., and heat-treated at a temperature in the range of 350 ° C. to the sintering temperature to produce a permanent magnet. To be done.

【0010】次いで、限定理由について示す。ステアリ
ン酸金属塩を採用すると金属イオンが希土類−鉄−ホウ
素系磁石粉末と結合しやすく、他端のC,H,Oで構成
される基同志の間における潤滑性で摩擦が低減すると考
えられる。それゆえ、少量の添加により原料粉末と金型
壁面との摩擦、原料粉末同志の摩擦を低下させる。ま
た、添加量は、0.001wt.%未満では添加効果が
十分でなく、また0.20wt.%を越えると成形体強
度が低下し成形体にはがれが生じ易く、その結果ハンド
リングが難しく量産性に欠けるので0.001〜0.2
0wt.%とする。添加効果を顕著に得るためには0.
02wt.%以上添加することが望ましく、高い磁気特
性を望む場合には炭素含有量が高くなることを考慮する
と0.08wt.%以下とするのが望ましい。
Next, the reasons for limitation will be described. It is considered that when a stearic acid metal salt is adopted, metal ions are easily bonded to the rare earth-iron-boron magnet powder, and friction is reduced due to lubricity between the bases composed of C, H, and O at the other end. Therefore, addition of a small amount reduces the friction between the raw material powder and the wall surface of the mold and the friction between the raw material powders. The addition amount is 0.001 wt. %, The effect of addition is not sufficient, and 0.20 wt. %, The strength of the molded body is lowered and the molded body is liable to peel off, resulting in difficulty in handling and lack of mass productivity.
0 wt. %. In order to obtain a remarkable addition effect,
02 wt. % Or more, and when high magnetic properties are desired, considering that the carbon content becomes high, 0.08 wt. % Or less is desirable.

【0011】次に、ステアリン酸金属塩の添加方法であ
るが、粗粉に添加混合した後乾式で微粉砕する方が微粉
で添加混合したものよりもステアリン酸金属塩の分散性
も良く、しかも磁気特性の向上および金型かじり、磁石
中に存在する巣の数の低減効果が顕著に見られ、巣の数
の低減により耐食性も向上する。永久磁石鏡面研磨面1
mm2における5μm以上の大きさの巣の数であるが、
5μm以上の巣の数が150個を越えると耐食性が著し
く低下する。
Next, regarding the method of adding the metal stearate, the dispersibility of the metal stearate is better by adding and mixing it to the coarse powder and then finely pulverizing it in a dry method than by adding and mixing the fine powder. The effect of improving the magnetic properties, the galling of the mold, and the reduction of the number of cavities present in the magnet are conspicuous. The reduction of the number of cavities also improves the corrosion resistance. Permanent magnet mirror polished surface 1
The number of nests with a size of 5 μm or more in mm 2 ,
If the number of cavities with a size of 5 μm or more exceeds 150, the corrosion resistance is significantly reduced.

【0012】[0012]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0013】(実施例)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
不活性雰囲気中で高周波溶解し鋳造インゴットを得た。
このインゴット1.5kgを50mm角以下に破断した
後、破断塊を密閉容器内に挿入し水素ガスを20分時間
流入させて空気と置換し、1kg/cm2の水素ガスで
2時間処理し平均粒子径が500μm以下にした。この
粗粉1.2kgに粗粉重量の0.03wt.%(実施例
1)、0.07wt.%(実施例2)、0.10wt.
%(実施例3)、0.40wt.%(比較例1)のステ
アリン酸亜鉛を添加し、V型混合機により10分間混合
した。次に、この粗粉をジェットミルを用いて微粉砕し
平均粒子径が3.8μmの粉末を得て成形用原料を作製
した。この原料粉末をダイス、下パンチで形成される成
形空間内に充填し、約10kOeの配向磁場で配向さ
せ、2ton/cm2にて加圧成形した。成形体を10
80℃、2時間の条件で焼結し、600℃、2時間の熱
処理を施し永久磁石を作製した。これらの永久磁石の磁
気特性、配向度および成形体強度等を表1および表2
に、永久磁石鏡面研磨面1mm2を倍率50倍の実体顕
微鏡観察した時の5μm以上の大きさの巣の数を表3に
示す。
(Example) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. A magnet alloy having a balance of Fe was subjected to high frequency melting in an inert atmosphere to obtain a cast ingot.
After breaking 1.5 kg of this ingot to 50 mm square or less, the broken mass was inserted into a closed container, hydrogen gas was allowed to flow in for 20 minutes to replace air, and treated with 1 kg / cm 2 of hydrogen gas for 2 hours and averaged. The particle size was set to 500 μm or less. 1.2 kg of this coarse powder contained 0.03 wt. % (Example 1), 0.07 wt. % (Example 2), 0.10 wt.
% (Example 3), 0.40 wt. % (Comparative Example 1) zinc stearate was added and mixed with a V-type mixer for 10 minutes. Next, this coarse powder was finely pulverized using a jet mill to obtain a powder having an average particle diameter of 3.8 μm, and a raw material for molding was produced. This raw material powder was filled in a molding space formed by a die and a lower punch, oriented with an orientation magnetic field of about 10 kOe, and pressure-molded at 2 ton / cm 2 . Molded body 10
Sintering was performed at 80 ° C. for 2 hours, and heat treatment was performed at 600 ° C. for 2 hours to produce a permanent magnet. Tables 1 and 2 show the magnetic characteristics, orientation degree, molded body strength, etc. of these permanent magnets.
Table 3 shows the number of nests having a size of 5 μm or more when the 1 mm 2 mirror-polished surface of the permanent magnet was observed under a stereoscopic microscope at a magnification of 50 times.

【0014】(比較例2)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
不活性雰囲気中で高周波溶解し鋳造インゴットを得た。
このインゴット1.5kgを50mm角以下に破断した
後、破断塊を密閉容器内に挿入し水素ガスを20分間流
入させて空気と置換し、1kg/cm2の水素ガスで2
時間処理し平均粒子径が500μm以下にした。この粗
粉1.2kgをジェットミルを用いて微粉砕し平均粒子
径が4.5μmの粉末を得て成形用原料を作製した。こ
の原料粉末をダイス、下パンチで形成される成形空間内
に充填し、約10kOeの配向磁場で配向させ、2to
n/cm2にて加圧成形した。成形体を1080℃、2
時間の条件で焼結し、600℃、2時間の熱処理を施し
永久磁石を作製した。これらの永久磁石の磁気特性、配
向度および成形体強度等を表1および表2に、永久磁石
鏡面研磨面1mm2を倍率50倍の実体顕微鏡観察した
時の5μm以上の大きさの巣の数を表3に示す。
(Comparative Example 2) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. A magnet alloy having a balance of Fe was subjected to high frequency melting in an inert atmosphere to obtain a cast ingot.
After breaking 1.5 kg of this ingot into 50 mm square or less, the broken mass was inserted into a closed container, hydrogen gas was introduced for 20 minutes to replace the air, and 1 kg / cm 2 of hydrogen gas was used for 2
It was treated for a time so that the average particle diameter was 500 μm or less. 1.2 kg of this coarse powder was finely pulverized using a jet mill to obtain a powder having an average particle size of 4.5 μm, and a raw material for molding was prepared. This raw material powder is filled in a molding space formed by a die and a lower punch, and oriented by an orientation magnetic field of about 10 kOe, and 2 to
Pressure molding was performed at n / cm 2 . Molded body at 1080 ℃, 2
Sintering was performed under the condition of time, and heat treatment was performed at 600 ° C. for 2 hours to produce a permanent magnet. Magnetic properties of these permanent magnets, the degree of orientation and strength of the shaped body or the like in Table 1 and Table 2, the number of 5μm or more the size of the nest when the permanent magnet polished mirror surface 1 mm 2 was observed 50 magnifications stereomicroscope Is shown in Table 3.

【0015】(比較例3)Nd30.0wt.%、Dy
2.0wt.%、Al0.3wt.%、Nb1.0w
t.%、B1.0wt.%残部Feよりなる磁石合金を
不活性雰囲気中で高周波溶解し鋳造インゴットを得た。
このインゴット1.5kgを50mm角以下に破断した
後、破断塊を密閉容器内に挿入し水素ガスを20分間流
入させて空気と置換し、1kg/cm2の水素ガスで2
時間処理し平均粒子径が500μm以下にした。この粗
粉をジェットミルを用いて微粉砕し平均粒子径が3.7
μmの粉末にした。次に、この微粉砕粉1.2kgに
0.03wt.%のステアリン酸亜鉛を添加し、V型混
合機により10分間混合し成形用原料を作製した。この
原料粉末をダイス、下パンチで形成される成形空間内に
充填し、約10kOeの配向磁場で配向させ、2ton
/cm2にて加圧成形した。成形体を1080℃、2時
間の条件で焼結し、600℃、2時間の熱処理を施し永
久磁石を作製した。これらの永久磁石の磁気特性、配向
度および成形体強度等を表1および表2に、永久磁石鏡
面研磨面1mm2を倍率50倍の実体顕微鏡観察した時
の5μm以上の大きさの巣の数を表3に示す。
(Comparative Example 3) Nd 30.0 wt. %, Dy
2.0 wt. %, Al 0.3 wt. %, Nb 1.0w
t. %, B 1.0 wt. A magnet alloy having a balance of Fe was subjected to high frequency melting in an inert atmosphere to obtain a cast ingot.
After breaking 1.5 kg of this ingot into 50 mm square or less, the broken mass was inserted into a closed container, hydrogen gas was introduced for 20 minutes to replace the air, and 1 kg / cm 2 of hydrogen gas was used for 2
It was treated for a time so that the average particle diameter was 500 μm or less. This coarse powder was finely pulverized using a jet mill to give an average particle size of 3.7.
It was made into a powder of μm. Next, 0.03 wt. % Zinc stearate was added and mixed with a V-type mixer for 10 minutes to prepare a raw material for molding. This raw material powder is filled in a molding space formed by a die and a lower punch, and is oriented by an orientation magnetic field of about 10 kOe, and 2 ton.
Pressure molding was performed at / cm 2 . The molded body was sintered under the condition of 1080 ° C. for 2 hours and heat-treated at 600 ° C. for 2 hours to produce a permanent magnet. Magnetic properties of these permanent magnets, the degree of orientation and strength of the shaped body or the like in Table 1 and Table 2, the number of 5μm or more the size of the nest when the permanent magnet polished mirror surface 1 mm 2 was observed 50 magnifications stereomicroscope Is shown in Table 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】本発明によれば、原料粉末と金型壁面あ
るいは原料粉末同志の摩擦低減により潤滑性も向上し永
久磁石の配向度も向上し、工業上その利用価値は極めて
高いものである。また、ステアリン酸金属塩の添加を少
量に抑えることができ磁石中に残存する炭素量も抑制で
き非磁性相も低減できる。
According to the present invention, by reducing the friction between the raw material powder and the wall surface of the mold or the raw material powders, the lubricity is improved, the orientation degree of the permanent magnet is also improved, and its industrial utility value is extremely high. . Further, the addition of the metal stearate can be suppressed to a small amount, the amount of carbon remaining in the magnet can be suppressed, and the nonmagnetic phase can be reduced.

フロントページの続き (72)発明者 萩 千敏 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社熊谷工場内Front Page Continuation (72) Inventor Chitoshi Hagi 5200 Sankejiri, Kumagaya City, Saitama Hitachi Metals Co., Ltd. Kumagaya Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子百分比で希土類元素R(Yを含む希
土類元素のうち1種または2種以上の組み合わせ)が1
0〜25%、ボロンBが1〜12%含み残部が鉄Fe
(Feの一部を必要に応じてCo,Ni,Al,Nb,
Ti,W,Mo,V,Ga,Zn,Siから選択される
少なくとも1種以上の元素で0〜15%の範囲で置換す
ることもできる)を主成分とする焼結体であって、配向
度が99.5%以上、永久磁石鏡面研磨面1mm2におけ
る5μm以上の大きさの巣が150個以下であることを
特徴とする希土類−鉄−ボロン系永久磁石。
1. A rare earth element R (one or a combination of two or more rare earth elements including Y) is 1 in atomic percentage.
0 to 25%, boron B 1 to 12% and the balance iron Fe
(A part of Fe may be Co, Ni, Al, Nb,
Ti, W, Mo, V, Ga, Zn, Si can be substituted with at least one element selected from the range of 0 to 15%) as a main component, A rare earth-iron-boron-based permanent magnet having a degree of 99.5% or more and 150 or less cavities of 5 μm or more in 1 mm 2 of a mirror-polished surface of the permanent magnet.
【請求項2】 C含有量が 0.1wt.%以下である
請求項1に記載の希土類−鉄−ボロン系永久磁石。
2. The rare earth-iron-boron-based permanent magnet according to claim 1, wherein the C content is 0.1 wt.% Or less.
【請求項3】 原子百分比で希土類元素R(Yを含む希
土類元素のうち1種または2種以上の組み合わせ)が1
0〜25%、ボロンBが1〜12%含み残部が鉄Fe
(Feの一部を必要に応じてCo,Ni,Al,Nb,
Ti,W,Mo,V,Ga,Zn,Siから選択される
少なくとも1種以上の元素で0〜15%の範囲で置換す
ることもできる)を主成分とする希土類−鉄−ボロン系
永久磁石合金粗粉にステアリン酸金属塩を0.001〜
0.2wt.%添加混合した後、乾式で微粉砕すること
を特徴とする希土類−鉄−ボロン系永久磁石の製造方
法。
3. A rare earth element R (one or a combination of two or more rare earth elements including Y) is 1 in atomic percentage.
0 to 25%, boron B 1 to 12% and the balance iron Fe
(A part of Fe may be Co, Ni, Al, Nb,
Rare earth-iron-boron-based permanent magnet containing as a main component at least one element selected from Ti, W, Mo, V, Ga, Zn, and Si). 0.001 to 0.001 of metal stearate to alloy powder
0.2 wt. %, And mixed and then finely pulverized by a dry method. A method for producing a rare earth-iron-boron based permanent magnet.
【請求項4】 ステアリン酸金属塩の添加量が、0.0
2〜0.08wt.%である請求項3に記載の希土類−
鉄−ボロン系永久磁石の製造方法。
4. The amount of the metal stearate added is 0.0
2 to 0.08 wt. % Rare earth according to claim 3
Iron-boron permanent magnet manufacturing method.
【請求項5】 金属塩として、Zn,K,Ca,Al,
Fe,Cu,Ni,Coから選択される少なくとも1種
以上の元素を用いた請求項3または4に記載の希土類−
鉄−ボロン系永久磁石の製造方法。
5. A metal salt of Zn, K, Ca, Al,
The rare earth element according to claim 3 or 4, wherein at least one element selected from Fe, Cu, Ni, and Co is used.
Iron-boron permanent magnet manufacturing method.
JP5073541A 1993-03-31 1993-03-31 Rare earth-iron-boron permanent magnet and manufacture thereof Pending JPH06290919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5073541A JPH06290919A (en) 1993-03-31 1993-03-31 Rare earth-iron-boron permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5073541A JPH06290919A (en) 1993-03-31 1993-03-31 Rare earth-iron-boron permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06290919A true JPH06290919A (en) 1994-10-18

Family

ID=13521206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5073541A Pending JPH06290919A (en) 1993-03-31 1993-03-31 Rare earth-iron-boron permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06290919A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024372A1 (en) 2002-09-10 2004-03-25 Nikko Materials Co., Ltd. Metal powder for powder metallurgy and iron-based sintered compact
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
US7347969B2 (en) 2002-09-10 2008-03-25 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024372A1 (en) 2002-09-10 2004-03-25 Nikko Materials Co., Ltd. Metal powder for powder metallurgy and iron-based sintered compact
US7217310B2 (en) 2002-09-10 2007-05-15 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy and iron-based sintered compact
US7347969B2 (en) 2002-09-10 2008-03-25 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
US7727639B2 (en) 2002-09-10 2010-06-01 Nippon Mining & Metals Co., Ltd Iron-based sintered compact and method for production thereof
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
JPWO2006025187A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
US7666245B2 (en) 2004-08-30 2010-02-23 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
US7691172B2 (en) 2004-08-30 2010-04-06 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
JP4745240B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body
JP4745239B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body

Similar Documents

Publication Publication Date Title
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
WO2019151244A1 (en) Permanent magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP4662009B2 (en) Rare earth permanent magnet manufacturing method
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP2021150621A (en) R-t-b series rare earth sintered magnet and manufacturing method thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP4282002B2 (en) Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JPS61119006A (en) Manufacture of sintered magnet
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP2007266037A (en) Manufacturing method of rare-earth permanent magnet
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet