JP2006270087A - Method of producing rare-earth sintered magnet - Google Patents

Method of producing rare-earth sintered magnet Download PDF

Info

Publication number
JP2006270087A
JP2006270087A JP2006050085A JP2006050085A JP2006270087A JP 2006270087 A JP2006270087 A JP 2006270087A JP 2006050085 A JP2006050085 A JP 2006050085A JP 2006050085 A JP2006050085 A JP 2006050085A JP 2006270087 A JP2006270087 A JP 2006270087A
Authority
JP
Japan
Prior art keywords
compound
sintered magnet
lubricant
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006050085A
Other languages
Japanese (ja)
Inventor
Tokuji Sakamoto
篤司 坂本
Naoto Oji
直人 王子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006050085A priority Critical patent/JP2006270087A/en
Publication of JP2006270087A publication Critical patent/JP2006270087A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a rare-earth sintered magnet which increases the strength of a molding and enhances magnetic properties of a sintered magnet obtained finally. <P>SOLUTION: A method of producing a rare-earth sintered magnet comprises a step of pulverizing raw material alloy powder to obtain pulverized powder, a step of applying a magnetic field to the pulverized powder and press-molding the pulverized powder to obtain a molding, and a step of sintering the molding. A lubricant including paraffin and a compound represented by one of the group composed of R<SB>1</SB>-OCO-R<SB>2</SB>, R<SB>1</SB>-OCO-R<SB>3</SB>-OH, R<SB>1</SB>-OH, and (R<SB>1</SB>-COO)<SB>m</SB>M is added to the pulverized powder, and then the molding is formed, where R<SB>1</SB>is C<SB>n</SB>H<SB>2n+1</SB>or C<SB>n</SB>H<SB>2n-1</SB>, R<SB>2</SB>is H or C<SB>n</SB>H<SB>2n+1</SB>, R<SB>3</SB>is C<SB>n</SB>H<SB>2n</SB>, M is a metal, and n and m are an integer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Nd−Fe−B系に代表される希土類焼結磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth sintered magnet typified by an Nd—Fe—B system.

希土類焼結磁石(以下、単に焼結磁石と称する)は高性能な磁石として広く使用されており、各種電子デバイスの小型化、また、自動車における電子デバイスの増加に伴いますますその需要が増している。一般に磁石は、その配向度が高いほど高い残留磁束密度を示す。このため成形時には原料粉に磁場を与え、原料粉を配向させたまま圧縮成形を行うことが多い(いわゆる磁場中成形)。
このとき磁場に対する原料粉の配向性を向上させるため、原料粉に潤滑剤が加えられることがある。
また、上記のように磁場中成形を行うに先立ち、原料合金をジェットミル等で粉砕して原料粉を得る工程で、粉砕性を向上させるために潤滑剤を加えることがある(例えば、特許文献1参照)。
Rare earth sintered magnets (hereinafter simply referred to as sintered magnets) are widely used as high-performance magnets, and the demand for them increases with the miniaturization of various electronic devices and the increase in electronic devices in automobiles. Yes. In general, the higher the degree of orientation of the magnet, the higher the residual magnetic flux density. For this reason, a magnetic field is often applied to the raw material powder during molding, and compression molding is often performed while the raw material powder is oriented (so-called magnetic field molding).
At this time, in order to improve the orientation of the raw material powder with respect to the magnetic field, a lubricant may be added to the raw material powder.
Further, prior to forming in a magnetic field as described above, a lubricant may be added in order to improve pulverizability in the step of pulverizing the raw material alloy with a jet mill or the like to obtain the raw material powder (for example, patent document). 1).

特開平8−111308号公報(特許請求の範囲)JP-A-8-111308 (Claims)

ところで、高い磁気特性を得るために潤滑剤の種類や添加量を調整すると、成形体の強度が低下してしまい、成形体の歩留が低くなる。一方、成形体の強度が高くなるように潤滑剤を調整すると、最終的に得られる焼結磁石の磁気特性を高めることは困難である。   By the way, when the kind and addition amount of the lubricant are adjusted in order to obtain high magnetic characteristics, the strength of the molded body is lowered and the yield of the molded body is lowered. On the other hand, if the lubricant is adjusted so as to increase the strength of the compact, it is difficult to improve the magnetic properties of the finally obtained sintered magnet.

本発明は、このような技術的課題に基づいてなされたもので、成形体の強度が高く、高い磁気特性を持つ希土類焼結磁石の製造方法を提供することを目的とする。   The present invention has been made based on such a technical problem, and an object of the present invention is to provide a method for producing a rare earth sintered magnet having a molded body having high strength and high magnetic properties.

本発明の希土類焼結磁石の製造方法は、原料合金粉を粉砕して粉砕粉を得る工程と、粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、成形体を焼結する工程とを備え、一般式C2n+2で示される化合物AとR-OCO−R、R-OCO-R−OH、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(RはC2n+1、又はC2n-1。RはH又はC2n+1。RはC2n。Mは金属。n、mは整数。)を添加した粉砕粉を用い、成形体を得ることを特徴とするものである。このとき、潤滑剤の添加タイミングは、粉砕前の原料合金粉の状態でも良いが、原料粉の粉砕過程又は原料粉の粉砕後とするのが好ましい。特に、原料合金粉の粉砕過程で、粒状とした潤滑剤を原料合金粉とともに粉砕手段に投入することで、潤滑剤を添加するのが好ましい。 The method for producing a rare earth sintered magnet of the present invention includes a step of pulverizing a raw material alloy powder to obtain a pulverized powder, a step of applying a magnetic field to the pulverized powder and press-molding, and a molded body, A compound A represented by the general formula C n H 2n + 2 , R 1 —OCO—R 2 , R 1 —OCO—R 3 —OH, R 1 —OH, (R 1 — COO) Compound B represented by any one of the group consisting of m M (R 1 is C n H 2n + 1 , or C n H 2n-1, R 2 is H or C n H 2n + 1, R 3. Is C n H 2n, where M is a metal, and n and m are integers). At this time, the addition timing of the lubricant may be in the state of the raw material alloy powder before pulverization, but is preferably after the pulverization process of the raw material powder or after the pulverization of the raw material powder. In particular, it is preferable to add the lubricant by introducing the granular lubricant into the pulverizing means together with the raw material alloy powder in the process of pulverizing the raw material alloy powder.

ここで化合物BのRはC2n+1(nが10以上)であることが好ましく、化合物Bとして例えば、ステアリン酸、モノステアリン酸グリセリン、ステアリン酸亜鉛、ステアリルアルコール、ラウリン酸及びベヘン酸からなる群より選ばれる少なくとも一種の化合物が挙げられる。nは12以上かつ21以下、さらには12以上かつ18以下であることが好ましい。 Here, R 1 of Compound B is preferably C n H 2n + 1 (n is 10 or more). Examples of Compound B include stearic acid, glyceryl monostearate, zinc stearate, stearyl alcohol, lauric acid and behen. Examples include at least one compound selected from the group consisting of acids. n is preferably 12 or more and 21 or less, and more preferably 12 or more and 18 or less.

化合物Aと化合物Bの粒子径は、それぞれ800μm以下であることが好ましい。   The particle diameters of Compound A and Compound B are each preferably 800 μm or less.

本発明によれば、一般式C2n+2で示される化合物AとR-OCO−R、R-OCO-R−OH、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(RはC2n+1、又はC2n-1。RはH又はC2n+1。RはC2n。Mは金属。n、mは整数。)を原料合金粉や粉砕粉に添加することで、粉砕工程における原料合金の粉砕性や磁場中成形工程における粉砕粉の配向性を確保しつつ、成形体の強度、及び最終的に得られる焼結磁石の磁気特性を高いものとすることが可能となる。 According to the present invention, from the compound A represented by the general formula C n H 2n + 2 , R 1 —OCO—R 2 , R 1 —OCO—R 3 —OH, R 1 —OH, (R 1 —COO) m M Compound B (R 1 is C n H 2n + 1 , or C n H 2n-1, R 2 is H or C n H 2n + 1, R 3 is C n H 2n. M is a metal, and n and m are integers) added to the raw material alloy powder and pulverized powder, thereby forming the raw material alloy in the pulverization process and the orientation of the pulverized powder in the magnetic field forming process. It is possible to increase the strength of the body and the magnetic characteristics of the finally obtained sintered magnet.

以下、実施の形態に基づいてこの発明を詳細に説明する。
本発明は、例えば、希土類焼結磁石、特にR−T−B系焼結磁石に適用することができる。
このR−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、本発明におけるRはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%、さらに望ましいRの量は29〜33wt%である。
Hereinafter, the present invention will be described in detail based on embodiments.
The present invention can be applied to, for example, a rare earth sintered magnet, particularly an RTB based sintered magnet.
This RTB-based sintered magnet contains 25 to 37 wt% of a rare earth element (R). Here, R in the present invention has a concept including Y, and therefore 1 of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is selected from species or two or more species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the RTB-based sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. Magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%, and a more desirable amount of R is 29 to 33 wt%.

また、このR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
このR−T−B系焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは、0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
The RTB-based sintered magnet contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
This RTB-based sintered magnet contains Co of 2.0 wt% or less (excluding 0), desirably 0.1 to 1.0 wt%, and more desirably 0.3 to 0.7 wt%. can do. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

また、このR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。
さらに、このR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を5000ppm以下、さらには3000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。
The RTB-based sintered magnet can contain one or two of Al and Cu in the range of 0.02 to 0.5 wt%. By containing one or two of Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the obtained R-T-B sintered magnet. In the case of adding Al, the desirable amount of Al is 0.03 to 0.3 wt%, and the more desirable amount of Al is 0.05 to 0.25 wt%. Further, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.12 wt%.
Furthermore, this RTB-based sintered magnet allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 5000 ppm or less, more preferably 3000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

本発明は、上記したようなR−T−B系焼結磁石に限らず、他の希土類焼結磁石に適用することも可能である。例えば、R−Co系焼結磁石に本発明を適用することもできる。
R−Co系焼結磁石は、Rと、Fe、Ni、Mn及びCrから選ばれる1種以上の元素と、Coとを含有する。この場合、望ましくはさらにCu又は、Nb、Zr、Ta、Hf、Ti及びVから選ばれる1種以上の元素を含有し、特に望ましくはCuと、Nb、Zr、Ta、Hf、Ti及びVから選ばれる1種以上の元素とを含有する。これらのうち特に、SmとCoとの金属間化合物、望ましくはSmCo17金属間化合物を主相とし、粒界にはSmCo系を主体とする副相が存在する。具体的組成は、製造方法や要求される磁気特性等に応じて適宜選択すればよいが、例えば、R:20〜30wt%、特に22〜28wt%程度、Fe、Ni、Mn及びCrの1種以上:1〜35wt%程度、Nb、Zr、Ta、Hf、Ti及びVの1種以上:0〜6wt%、特に0.5〜4wt%程度、Cu:0〜10wt%、特に1〜10wt%程度、Co:残部の組成が望ましい。
以上、R−T−B系焼結磁石、R−Co系焼結磁石について言及したが、本発明は他の希土類焼結磁石への適用を妨げるものではない。
The present invention is not limited to the R-T-B based sintered magnet as described above, but can be applied to other rare earth sintered magnets. For example, the present invention can be applied to an R—Co based sintered magnet.
The R—Co based sintered magnet contains R, one or more elements selected from Fe, Ni, Mn, and Cr, and Co. In this case, it preferably further contains at least one element selected from Cu or Nb, Zr, Ta, Hf, Ti and V, and particularly preferably from Cu and Nb, Zr, Ta, Hf, Ti and V. Containing one or more selected elements. Among these, an intermetallic compound of Sm and Co, preferably an Sm 2 Co 17 intermetallic compound, is the main phase, and a subphase mainly composed of SmCo 5 is present at the grain boundary. The specific composition may be appropriately selected according to the production method, required magnetic characteristics, and the like. For example, R: 20 to 30 wt%, particularly about 22 to 28 wt%, Fe, Ni, Mn, and Cr Above: about 1 to 35 wt%, one or more of Nb, Zr, Ta, Hf, Ti and V: 0 to 6 wt%, especially about 0.5 to 4 wt%, Cu: 0 to 10 wt%, especially 1 to 10 wt% To the extent, Co: the balance composition is desirable.
The R-T-B sintered magnet and the R-Co sintered magnet have been described above, but the present invention does not prevent application to other rare earth sintered magnets.

以下、本発明による希土類焼結磁石の製造方法を工程順に説明する。
原料合金は、真空又は不活性ガス、望ましくはアルゴン雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をアルゴンガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板又は薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
R−T−B系焼結磁石を得る場合、R14B結晶粒を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いる所謂混合法を本発明に適用することもできる。
Hereinafter, a method for producing a rare earth sintered magnet according to the present invention will be described in the order of steps.
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably an argon atmosphere. In the strip casting method, a molten metal obtained by melting a raw material metal in a non-oxidizing atmosphere such as an argon gas atmosphere is jetted onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
When obtaining an RTB-based sintered magnet, a so-called alloy using a R 2 T 14 B crystal grain (low R alloy) and an alloy containing more R than a low R alloy (high R alloy) is used. A mixing method can also be applied to the present invention.

原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。
まず、粗粉砕工程では、原料合金を、粒径数百μm程度になるまで粗粉砕し、粗粉砕粉末(原料合金粉)を得る。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。
The raw material alloy is subjected to a grinding process. In the case of the mixing method, the low R alloy and the high R alloy are pulverized separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process.
First, in the coarse pulverization step, the raw material alloy is coarsely pulverized to a particle size of about several hundred μm to obtain a coarsely pulverized powder (raw material alloy powder). The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粗粉砕粉末を微粉砕することで、平均粒径が好ましくは2.5〜6μm、後述する成形体の強度を高め、焼結磁石の磁気特性を高くするためにさらに好ましくは3〜5μmの微粉砕粉末(粉砕粉)を得る。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization. By pulverizing the coarsely pulverized powder, the average particle size is preferably 2.5 to 6 μm. More preferably, a finely pulverized powder (ground powder) of 3 to 5 μm is obtained in order to increase the height. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or container wall. It is a method of generating a collision and crushing.

このとき、微粉砕工程において原料合金粉に潤滑剤を添加する。潤滑剤を添加することで、成形時の潤滑及び配向性を向上させることができる。なお、潤滑剤は微粉砕工程の開始前に原料合金粉へ添加することが好ましいが、微粉砕工程において粉砕中に添加したり、微粉砕工程の終了後であって顆粒作製工程前や磁場中成形工程前に微粉砕粉に添加するものであってもよい。   At this time, a lubricant is added to the raw material alloy powder in the fine grinding step. Lubricating and orientation during molding can be improved by adding a lubricant. The lubricant is preferably added to the raw material alloy powder before the start of the fine pulverization process. However, the lubricant may be added during the fine pulverization process or after the fine pulverization process and before the granule preparation process or in the magnetic field. It may be added to the finely pulverized powder before the molding step.

潤滑剤は、一般式C2n+2で示される化合物AとR-OCO−R、R-OCO-R−OH、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(RはC2n+1、又はC2n-1。RはH又はC2n+1。RはC2n。Mは金属。n、mは整数。)を含む。
化合物Aは、一般に使用されているパラフィンワックスを特に制限なく使用でき、直鎖状炭化水素(ノルマルパラフィン)が好ましいが、分枝鎖状炭化水素(イソパラフィン)や環状炭化水素(シクロパラフィン)であってもよい。またMとして好ましい金属は例えばZn、Al、Cu、Ca、Na、Mgである。
The lubricant is a group consisting of the compound A represented by the general formula C n H 2n + 2 , R 1 —OCO—R 2 , R 1 —OCO—R 3 —OH, R 1 —OH, (R 1 —COO) m M. Compound B (R 1 is C n H 2n + 1 , or C n H 2n-1, R 2 is H or C n H 2n + 1, R 3 is C n H 2n. M Is a metal, and n and m are integers.
As the compound A, a commonly used paraffin wax can be used without particular limitation, and a linear hydrocarbon (normal paraffin) is preferable, but a branched hydrocarbon (isoparaffin) or a cyclic hydrocarbon (cycloparaffin) is preferable. May be. Preferred metals for M are, for example, Zn, Al, Cu, Ca, Na, and Mg.

潤滑剤に含まれる化合物Bとは、例えば脂肪酸化合物やアルコールであり、具体的には炭素数が10以上の高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、高級アルコール等が挙げられる。このなかでも化合物Bは、Rの炭素数が17及び18の炭化水素である化合物が好ましく、具体例としてラウリン酸(C1225−COOH)、ベヘン酸(C2143−COOH)、ステアリン酸(C1735−COOH)、モノステアリン酸グリセリン(C1735−COO−C−OH)、ステアリン酸亜鉛((C1735−COO) Zn2+)及びステアリルアルコール(C1837−O−H)を挙げることができる。このなかでもステアリン酸が好ましい。このR−O−基を有する化合物としては1種類のみの化合物を用いてもよいが、複数の化合物を用いてもよい。 The compound B contained in the lubricant is, for example, a fatty acid compound or an alcohol, and specifically includes higher fatty acids having 10 or more carbon atoms, higher fatty acid esters, higher fatty acid metal salts, higher alcohols, and the like. Among these, the compound B is preferably a compound in which R 1 is a hydrocarbon having 17 and 18 carbon atoms. Specific examples include lauric acid (C 12 H 25 —COOH), behenic acid (C 21 H 43 —COOH), stearate (C 17 H 35 -COOH), glyceryl monostearate (C 17 H 35 -COO-C 3 H 6 -OH), zinc stearate ((C 17 H 35 -COO) - 2 Zn 2+) and stearyl it can be mentioned alcohols (C 18 H 37 -O-H ). Of these, stearic acid is preferred. As the compound having this R 1 —O— group, only one kind of compound may be used, but a plurality of compounds may be used.

潤滑剤は、粒状にして添加するのが好ましい。その場合、原料合金粉を粉砕するジェットミルに、粒状とした潤滑剤を投入することで、潤滑剤を添加する。
潤滑剤の粒径は、好ましくは10〜1000μm、後述する成形体の強度を高め、焼結磁石の磁気特性を高くするためにさらに好ましくは10〜800μm、特に好ましくは20〜500μmである。なお潤滑剤を上記粒径とするには、潤滑剤を粉砕し、篩等で分級するのが好ましい。潤滑剤を粉砕するには、潤滑剤を、例えば液体窒素を用いて冷凍し、その状態のまま、粉砕ミル等で粉砕するのが好ましい。
The lubricant is preferably added in the form of granules. In that case, the lubricant is added by introducing a granular lubricant into a jet mill for pulverizing the raw material alloy powder.
The particle diameter of the lubricant is preferably 10 to 1000 μm, more preferably 10 to 800 μm, and particularly preferably 20 to 500 μm in order to increase the strength of the molded body described later and to increase the magnetic properties of the sintered magnet. In order to make the lubricant have the above particle diameter, it is preferable to grind the lubricant and classify it with a sieve or the like. In order to pulverize the lubricant, it is preferable that the lubricant is frozen using, for example, liquid nitrogen, and pulverized in that state with a pulverization mill or the like.

潤滑剤の添加量は、粉砕性を向上させるという点からすれば、なるべく多くするのが好ましいが、磁気特性及び成形体の強度の観点からすれば、なるべく少なくするのが好ましい。潤滑剤の添加量は、化合物A及び化合物Bの種類、ならびにその混合比率に応じて適宜設定する必要があるが、合計量が0.01〜1.0wt%の範囲となるように設定すればよい。成形体の強度を高め、焼結磁石の磁気特性を高くするためには0.05〜0.15wt%、さらには0.05〜0.1wt%とすることが好ましい。なお、本発明が推奨する範囲内での潤滑剤の添加は、保磁力(HcJ)に悪影響を与えるものではない。   The addition amount of the lubricant is preferably as much as possible from the viewpoint of improving the grindability, but is preferably as small as possible from the viewpoint of the magnetic properties and the strength of the molded body. The addition amount of the lubricant needs to be appropriately set according to the types of the compound A and the compound B and the mixing ratio thereof, but if the total amount is set within a range of 0.01 to 1.0 wt%. Good. In order to increase the strength of the compact and increase the magnetic properties of the sintered magnet, it is preferably 0.05 to 0.15 wt%, more preferably 0.05 to 0.1 wt%. Note that the addition of the lubricant within the range recommended by the present invention does not adversely affect the coercive force (HcJ).

混合法による場合、2種の合金を混合するタイミングは限定されるものではないが、微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末を窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。低R合金及び高R合金を一緒に粉砕する場合の混合比率も同様である。   In the case of the mixing method, the timing of mixing the two kinds of alloys is not limited. However, when the low R alloy and the high R alloy are separately pulverized in the pulverization step, the pulverized low R alloy powder is used. And high R alloy powder in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. The mixing ratio when the low R alloy and the high R alloy are pulverized together is the same.

以上のようにして得られた顆粒状の造粒粉(顆粒作製工程を省略する場合には微粉砕粉末)は、金型キャビティに充填され、磁場中成形に供される。
磁場中成形における成形圧力は0.3〜3ton/cm(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増又は漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
また、印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
The granular granulated powder obtained as described above (or finely pulverized powder when the granule preparation step is omitted) is filled in a mold cavity and subjected to molding in a magnetic field.
The molding pressure in the magnetic field molding may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa). The molding pressure may be constant from the start to the end of molding, may increase or decrease gradually, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%.
The applied magnetic field may be about 12 to 20 kOe (960 to 1600 kA / m). Further, the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

磁場中成形により得られた成形体には、脱バインダ処理が施される。炭素残留による磁気特性低下を防止するためである。脱バインダ処理は、水素雰囲気中で、所定の熱処理条件で行うのが好ましい。   The molded body obtained by molding in a magnetic field is subjected to binder removal processing. This is to prevent a decrease in magnetic properties due to carbon residue. The binder removal treatment is preferably performed under a predetermined heat treatment condition in a hydrogen atmosphere.

脱バインダ処理後、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、真空中で、1000〜1200℃で1〜10時間程度焼結すればよい。   After the binder removal treatment, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours in a vacuum.

さて、焼結後には、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行う場合には、750〜950℃、500〜700℃での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行うと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。   Now, after sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. When the aging treatment is performed in two stages, holding for a predetermined time at 750 to 950 ° C. and 500 to 700 ° C. is effective. When the heat treatment in the vicinity of 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment near 600 ° C., when aging treatment is performed in one stage, it is preferable to perform aging treatment near 600 ° C.

<希土類焼結磁石の製造>
先ず、評価対象となる成形体及びこれを焼結した希土類焼結磁石を作製した。原料合金の組成は、Nd24.5wt%、Pr6.0wt%、Dy1.8wt%、Co0.5wt%、Al0.2wt%、Cu0.07wt%、B1.0wt%、残部Feとした。原料となる金属又は合金を前記組成となるように配合し、ストリップキャスト法により原料合金薄板を溶解、鋳造した。
<Manufacture of rare earth sintered magnets>
First, the molded object used as evaluation object and the rare earth sintered magnet which sintered this were produced. The composition of the raw material alloy was Nd 24.5 wt%, Pr 6.0 wt%, Dy 1.8 wt%, Co 0.5 wt%, Al 0.2 wt%, Cu 0.07 wt%, B 1.0 wt%, and the balance Fe. The raw material metal or alloy was blended so as to have the above composition, and the raw material alloy thin plate was melted and cast by a strip casting method.

得られた原料合金薄板を水素粉砕した後、ブラウンミルにて機械的粗粉砕を行い、原料合金粗粉を得る。原料合金粗粉に潤滑剤(粉砕助剤)として、表1に示す化合物Aと化合物Bをそれぞれ0.05wt%づつ添加した。なお、化合物A、化合物Bの平均粒径はそれぞれ約300μmである。次いで、気流式粉砕機(ジェットミル)を使用して高圧窒素ガス雰囲気中で平均粒径D50=4.1μmとなるように微粉砕を行い、希土類合金粉を得た。   The obtained raw material alloy thin plate is hydrogen pulverized and then mechanically coarsely pulverized by a brown mill to obtain raw material alloy coarse powder. As a lubricant (grinding aid), 0.05% by weight of each of Compound A and Compound B shown in Table 1 was added to the raw material alloy coarse powder. The average particle size of Compound A and Compound B is about 300 μm. Next, the mixture was finely pulverized in a high-pressure nitrogen gas atmosphere using an airflow pulverizer (jet mill) to obtain an average particle diameter D50 = 4.1 μm to obtain a rare earth alloy powder.

Figure 2006270087
Figure 2006270087

得られた粉体を磁場中成形し、所定の形状の成形体を得た。磁場中成形では、前記粉体を、1200kA/mの磁場中において、成形圧147MPaで成形した。磁場方向はプレス方向と垂直な方向である。成形体の寸法は、20mm×18mm×6.5mmと20mm×18mm×13mmとの2種類を得た。そして前者の成形体を用い、成形体の強度として抗折強度を以下の方法で測定した。   The obtained powder was molded in a magnetic field to obtain a molded body having a predetermined shape. In molding in a magnetic field, the powder was molded at a molding pressure of 147 MPa in a magnetic field of 1200 kA / m. The magnetic field direction is a direction perpendicular to the pressing direction. Two types of dimensions, 20 mm × 18 mm × 6.5 mm and 20 mm × 18 mm × 13 mm, were obtained for the molded body. And the bending strength was measured with the following method as the intensity | strength of a molded object using the former molded object.

抗折強度測定は、日本工業規格JIS R 1601に準じて行った。具体的には、図1に示すように、20mm×18mm×6.5mm形状の成形体11を丸棒状の2本の支持具12、13の上に載置し、成形体11上の中央位置に丸棒状の支持具14を配置して荷重を加えた。抗折圧を加える方向はプレス方向とした。丸棒状の支持具12、13、14の半径は3mm、支点間距離は10mm、荷重点移動速度は0.5mm/分とした。成形体11の長手方向と支持具14とを互いに平行となるように配置した。サンプル数は10個とした。   The bending strength measurement was performed according to Japanese Industrial Standard JIS R 1601. Specifically, as shown in FIG. 1, a molded body 11 having a shape of 20 mm × 18 mm × 6.5 mm is placed on two round bar-shaped supports 12 and 13, and a central position on the molded body 11 is placed. A round bar-shaped support 14 was placed on and a load was applied. The direction in which the bending pressure was applied was the pressing direction. The radii of the round bar-shaped supports 12, 13, and 14 were 3 mm, the distance between fulcrums was 10 mm, and the load point moving speed was 0.5 mm / min. The longitudinal direction of the molded body 11 and the support 14 were arranged so as to be parallel to each other. The number of samples was 10.

さらに評価試料として20mm×18mm×13mm形状の成形体を用いて磁気特性を評価した。この成形体を1030℃で4時間焼結した後、900℃で1時間及び530℃で1時間時効処理を行った。得られた焼結体表面を研削し直方体の試料とした。この試料を、BHトレーサを用いて磁気特性を評価した。   Further, magnetic properties were evaluated using a molded body having a shape of 20 mm × 18 mm × 13 mm as an evaluation sample. This molded body was sintered at 1030 ° C. for 4 hours, and then subjected to aging treatment at 900 ° C. for 1 hour and 530 ° C. for 1 hour. The surface of the obtained sintered body was ground to obtain a rectangular parallelepiped sample. This sample was evaluated for magnetic properties using a BH tracer.

さらに比較例として、化合物Aを加えずに表1に示す化合物Bのみを0.1wt%添加した以外は実施例1と同様にして試料を作製し、成形体と焼結磁石を得て、強度及び磁気特性の評価を行った。
実施例及び比較例の結果を表1に示す。
Further, as a comparative example, a sample was prepared in the same manner as in Example 1 except that only 0.1% by weight of compound B shown in Table 1 was added without adding compound A, and a compact and a sintered magnet were obtained. And magnetic properties were evaluated.
The results of Examples and Comparative Examples are shown in Table 1.

表1に示すように、比較例においては、Brは13.2kGを上回ったが成形体強度が0.9MPaを下回った。
これに対し、表1に示す化合物Aと化合物Bを複合添加した場合、Brは13.2kGを上回り、成形体強度も1.05MPaを上回り、高い成形体強度と高い磁気特性を兼ね備えることができることが確認された。しかも、得られる磁気特性は、比較例における磁気特性と同等であることがわかり、化合物Aを添加することで、磁気特性を大幅に低下させることなく、成形体強度を高めることができるのが確認された。特に、化合物Bとしてラウリン酸(n=12)を用いた場合にはBrが13.33kGと高く、また化合物Bとしてベヘン酸(n=21)を用いた場合には成形体強度が1.21MPaに達していることが注目される。
このように、微粉砕工程において原料合金に潤滑剤を添加することで、粉砕工程における原料合金の粉砕性や磁場中成形工程における粉砕粉の配向性を確保しつつ、成形体の強度が高く、さらに最終的に得られる焼結磁石の磁気特性が高いものを得ることができた。
As shown in Table 1, in the comparative example, Br exceeded 13.2 kG, but the strength of the compact was below 0.9 MPa.
On the other hand, when compound A and compound B shown in Table 1 are added in combination, Br exceeds 13.2 kG, and the compact strength exceeds 1.05 MPa, and can have both high compact strength and high magnetic properties. Was confirmed. In addition, it was found that the obtained magnetic properties were equivalent to the magnetic properties in the comparative example, and it was confirmed that the strength of the molded product can be increased without significantly reducing the magnetic properties by adding Compound A. It was done. In particular, when lauric acid (n = 12) is used as compound B, Br is as high as 13.33 kG, and when behenic acid (n = 21) is used as compound B, the compact strength is 1.21 MPa. It is noted that
Thus, by adding a lubricant to the raw material alloy in the fine pulverization step, the strength of the compact is high while ensuring the pulverization property of the raw material alloy in the pulverization step and the orientation of the pulverized powder in the forming step in the magnetic field, Furthermore, the sintered magnet finally obtained has a high magnetic property.

潤滑剤として、化合物Aのパラフィンと化合物Bのステアリン酸の混合比率を表2に示す割合とした以外は実施例1と同様にして試料を作製し、成形体と焼結磁石を得て、強度及び磁気特性の評価を行った。結果を表2に示す。なお、実施例1と同様に、化合物Aのパラフィンと化合物Bのステアリン酸の合計添加量は0.1wt%とした。   As a lubricant, a sample was prepared in the same manner as in Example 1 except that the mixing ratio of paraffin of compound A and stearic acid of compound B was changed to the ratio shown in Table 2, and a molded body and a sintered magnet were obtained. And magnetic properties were evaluated. The results are shown in Table 2. As in Example 1, the total amount of compound A paraffin and compound B stearic acid was 0.1 wt%.

Figure 2006270087
Figure 2006270087

表2に示すように、化合物Bの混合比率が75%を超えると、成形体強度が1.05MPaを下回る。一方、化合物Aの混合比率が100%の場合、Brが13.20kGを下回る。したがって、化合物Aとしてパラフィン、化合物Bとしてステアリン酸を用いる場合には、化合物Aと化合物Bの混合比率は重量ベースで1:3〜9:1となるように設定するのが好ましい。また、13.25kG以上という高いBr及び1.05MPa以上の成形体強度を兼備することができることから、化合物Aと化合物Bの混合比率のさらに好ましい範囲は、1:3〜3:1である。   As shown in Table 2, when the mixing ratio of Compound B exceeds 75%, the compact strength is less than 1.05 MPa. On the other hand, when the mixing ratio of Compound A is 100%, Br is less than 13.20 kG. Therefore, when paraffin is used as compound A and stearic acid is used as compound B, the mixing ratio of compound A and compound B is preferably set to be 1: 3 to 9: 1 on a weight basis. Moreover, since the high Br of 13.25 kG or more and the molded object strength of 1.05 MPa or more can be combined, the more preferable range of the mixing ratio of Compound A and Compound B is 1: 3 to 3: 1.

潤滑剤として、化合物Aのパラフィンと化合物Bのステアリン酸の添加量の合計を表3に示すように設定した以外は実施例1と同様にして試料を作製し、成形体と焼結磁石を得て、強度及び磁気特性の評価を行った。結果を表3に示す。なお、実施例1と同様に、化合物Aのパラフィンと化合物Bのステアリン酸の混合比率は1:1とした。   As a lubricant, a sample was prepared in the same manner as in Example 1 except that the total addition amount of paraffin of compound A and stearic acid of compound B was set as shown in Table 3, and a compact and a sintered magnet were obtained. The strength and magnetic properties were evaluated. The results are shown in Table 3. As in Example 1, the mixing ratio of the paraffin of compound A and the stearic acid of compound B was 1: 1.

Figure 2006270087
Figure 2006270087

表3に示すように、潤滑剤の添加量が増えるにつれてBrが向上するが、成形体強度は徐々に低下する。潤滑剤の添加量が0.05〜0.1wt%の範囲で、Brが13.2kG以上であり、かつ成形体強度が1.17MPa以上となる。よって、化合物Aと化合物Bがほぼ1:1で混合される場合、潤滑剤の添加量は合計で0.05〜0.15wt%、さらには0.05〜0.1wt%とすることが好ましいといえる。
また、潤滑剤添加量が0.025wt%の試料と、潤滑剤添加量が0.10wt%である試料について保磁力(HcJ)を測定した結果、以下に示すように、両者は同等のHcJを示した。後者の潤滑剤添加量が前者の4倍であることを考慮すると、本発明が推奨する潤滑剤を本発明が推奨する範囲内で添加することはHcJに何ら悪影響を及ぼすものではないことが確認できた。
潤滑剤添加量0.025wt%の試料:HcJ 18.5Oe
潤滑剤添加量0.10wt%の試料:HcJ 18.7Oe
As shown in Table 3, Br increases as the additive amount of the lubricant increases, but the strength of the compact gradually decreases. When the addition amount of the lubricant is in the range of 0.05 to 0.1 wt%, Br is 13.2 kG or more and the compact strength is 1.17 MPa or more. Therefore, when compound A and compound B are mixed at approximately 1: 1, the total amount of lubricant added is preferably 0.05 to 0.15 wt%, more preferably 0.05 to 0.1 wt%. It can be said.
In addition, as a result of measuring the coercive force (HcJ) for the sample with the lubricant addition amount of 0.025 wt% and the sample with the lubricant addition amount of 0.10 wt%, as shown below, both showed equivalent HcJ. Indicated. Considering that the amount of addition of the latter lubricant is four times that of the former, it is confirmed that the addition of the lubricant recommended by the present invention within the range recommended by the present invention has no adverse effect on HcJ. did it.
Sample with lubricant addition amount of 0.025 wt%: HcJ 18.5 Oe
Sample with lubricant addition amount of 0.10 wt%: HcJ 18.7 Oe

潤滑剤として、化合物Aのパラフィンと化合物Bのステアリン酸の粒径を表4に示すものとした以外は実施例1と同様にして試料を作製し、成形体と焼結磁石を得て、強度及び磁気特性の評価を行った。結果を表4に示す。なお、実施例1と同様に、化合物Aのパラフィンと化合物Bのステアリン酸の混合比率は1:1、潤滑剤の合計添加量は0.1wt%とした。   As a lubricant, a sample was prepared in the same manner as in Example 1 except that the particle diameters of the paraffin of Compound A and the stearic acid of Compound B are shown in Table 4, and a molded body and a sintered magnet were obtained. And magnetic properties were evaluated. The results are shown in Table 4. As in Example 1, the mixing ratio of paraffin of compound A and stearic acid of compound B was 1: 1, and the total amount of lubricant added was 0.1 wt%.

Figure 2006270087
Figure 2006270087

表4に示すように、潤滑剤の粒径が1000μmを超えるとBrが13.2kGを下回るため、潤滑剤の平均粒径は1000μm以下とすることが好ましい。潤滑剤の粒径(平均粒径)が小さくなるにつれてBrが向上するため、潤滑剤の平均粒径は800μm以下、さらには20〜500μmとすることが好ましい。潤滑剤の平均粒径が20〜500μmの範囲では、13.2kG以上のBr及び1.10MPa以上の成形体強度を兼備することも可能である。   As shown in Table 4, since the Br is less than 13.2 kG when the particle size of the lubricant exceeds 1000 μm, the average particle size of the lubricant is preferably 1000 μm or less. Since Br improves as the particle size (average particle size) of the lubricant decreases, the average particle size of the lubricant is preferably 800 μm or less, and more preferably 20 to 500 μm. When the average particle size of the lubricant is in the range of 20 to 500 μm, it is possible to have both a Br of 13.2 kG or more and a molded body strength of 1.10 MPa or more.

日本工業規格JIS R 1601に準じる抗折強度測定方法を説明する図である。It is a figure explaining the bending strength measuring method according to Japanese Industrial Standards JISR1601.

Claims (4)

原料合金粉を粉砕して粉砕粉を得る工程と、
一般式C2n+2で示される化合物AとR-OCO−R、R-OCO-R−OH、R−OH、(R−COO)Mからなる群のうちいずれか一種で示される化合物B(R1はC2n+1、又はC2n-1。R2はH又はC2n+1。RはC2n。Mは金属。n、mは整数。)を添加した前記粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、
前記成形体を焼結する工程とを備えることを特徴とする希土類焼結磁石の製造方法。
Pulverizing raw material alloy powder to obtain pulverized powder;
Any one of the group consisting of the compound A represented by the general formula C n H 2n + 2 and R 1 —OCO—R 2 , R 1 —OCO—R 3 —OH, R 1 —OH, (R 1 —COO) m M Compound B (R 1 is C n H 2n + 1 , or C n H 2n-1, R 2 is H or C n H 2n + 1, R 3 is C n H 2n, M is a metal, n , M is an integer.) A step of applying a magnetic field to the pulverized powder to which is added, and obtaining a molded body by pressure molding;
And a step of sintering the compact. A method for producing a rare earth sintered magnet.
前記化合物Bの前記RはC2n+1(nが10以上)であることを特徴とする請求項1に記載の希土類焼結磁石の製造方法。 The method for producing a rare earth sintered magnet according to claim 1, wherein the R 1 of the compound B is C n H 2n + 1 (n is 10 or more). 前記化合物Bは、ステアリン酸、モノステアリン酸グリセリン、ステアリン酸亜鉛、ステアリルアルコール、ラウリン酸及びベヘン酸からなる群より選ばれる少なくとも一種の化合物であることを特徴とする請求項2に記載の希土類焼結磁石の製造方法。   3. The rare earth firing according to claim 2, wherein the compound B is at least one compound selected from the group consisting of stearic acid, glyceryl monostearate, zinc stearate, stearyl alcohol, lauric acid and behenic acid. A manufacturing method of a magnet. 前記化合物Aと前記化合物Bの平均粒径が800μm以下であることを特徴とする請求項1から3のいずれかに記載の希土類焼結磁石の製造方法。   4. The method for producing a rare earth sintered magnet according to claim 1, wherein an average particle size of the compound A and the compound B is 800 μm or less. 5.
JP2006050085A 2005-02-28 2006-02-27 Method of producing rare-earth sintered magnet Withdrawn JP2006270087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050085A JP2006270087A (en) 2005-02-28 2006-02-27 Method of producing rare-earth sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005052459 2005-02-28
JP2006050085A JP2006270087A (en) 2005-02-28 2006-02-27 Method of producing rare-earth sintered magnet

Publications (1)

Publication Number Publication Date
JP2006270087A true JP2006270087A (en) 2006-10-05

Family

ID=37205645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050085A Withdrawn JP2006270087A (en) 2005-02-28 2006-02-27 Method of producing rare-earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2006270087A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
CN102220507A (en) * 2011-05-16 2011-10-19 张作州 Preparation method for praseodymium neodymium dysprosium alloy
JP2011228662A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and manufacturing method of the same
JP2011228664A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and method of manufacturing permanent magnet
JP2011228658A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
JP2011228659A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
CN102601367A (en) * 2011-01-24 2012-07-25 北京中科三环高技术股份有限公司 Heat treatment method of radiation or multi-pole orientation magnet ring

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122709A1 (en) * 2008-03-31 2009-10-08 日立金属株式会社 R-t-b-type sintered magnet and method for production thereof
JP5477282B2 (en) * 2008-03-31 2014-04-23 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
US8317941B2 (en) 2008-03-31 2012-11-27 Hitachi Metals, Ltd. R-T-B-type sintered magnet and method for production thereof
CN102576604A (en) * 2010-03-31 2012-07-11 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
EP2503571A1 (en) * 2010-03-31 2012-09-26 Nitto Denko Corporation Permanent magnet and manufacturing method for permanent magnet
JP2011228659A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
CN102511070A (en) * 2010-03-31 2012-06-20 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
JP2012119693A (en) * 2010-03-31 2012-06-21 Nitto Denko Corp Permanent magnet and method of producing the same
JP2011228664A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and method of manufacturing permanent magnet
US9053846B2 (en) 2010-03-31 2015-06-09 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
JP2011228658A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet, and method for manufacturing permanent magnet
EP2503563A1 (en) * 2010-03-31 2012-09-26 Nitto Denko Corporation Permanent magnet and manufacturing method for permanent magnet
EP2503571A4 (en) * 2010-03-31 2012-11-07 Nitto Denko Corp Permanent magnet and manufacturing method for permanent magnet
EP2503563A4 (en) * 2010-03-31 2012-11-07 Nitto Denko Corp Permanent magnet and manufacturing method for permanent magnet
JP2011228662A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and manufacturing method of the same
US8500920B2 (en) 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
CN102601367A (en) * 2011-01-24 2012-07-25 北京中科三环高技术股份有限公司 Heat treatment method of radiation or multi-pole orientation magnet ring
CN102220507A (en) * 2011-05-16 2011-10-19 张作州 Preparation method for praseodymium neodymium dysprosium alloy

Similar Documents

Publication Publication Date Title
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP2008214661A (en) Manufacturing method of sintered rare-earth magnet
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4671024B2 (en) Manufacturing method of rare earth sintered magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP2005294557A (en) Method of manufacturing rare-earth sintered magnet
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4057563B2 (en) Granule, sintered body
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JP2007227466A (en) Method of manufacturing rare-earth sintered magnet, and method of manufacturing granules
JP4057561B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4282017B2 (en) Manufacturing method of rare earth sintered magnet
JP2006237212A (en) Rare earth sintered magnet
JP4282015B2 (en) Rare earth sintered magnet manufacturing method, sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512