JP4671024B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP4671024B2
JP4671024B2 JP2005079257A JP2005079257A JP4671024B2 JP 4671024 B2 JP4671024 B2 JP 4671024B2 JP 2005079257 A JP2005079257 A JP 2005079257A JP 2005079257 A JP2005079257 A JP 2005079257A JP 4671024 B2 JP4671024 B2 JP 4671024B2
Authority
JP
Japan
Prior art keywords
compound
sintered magnet
rare earth
earth sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005079257A
Other languages
Japanese (ja)
Other versions
JP2006261526A (en
Inventor
篤司 坂本
信 岩崎
直人 王子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005079257A priority Critical patent/JP4671024B2/en
Publication of JP2006261526A publication Critical patent/JP2006261526A/en
Application granted granted Critical
Publication of JP4671024B2 publication Critical patent/JP4671024B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Nd−Fe−B系に代表される希土類焼結磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth sintered magnet typified by an Nd—Fe—B system.

希土類焼結磁石(以下、単に焼結磁石と称する)は高性能な磁石として広く使用されており、各種電子デバイスの小型化、また、自動車における電子デバイスの増加に伴いますますその需要が増している。一般に磁石は、その配向度が高いほど高い残留磁束密度を示す。このため成形時には原料粉に磁場を与え、原料粉を配向させたまま圧縮成形を行うことが多い(いわゆる磁場中成形)。
このとき磁場に対する原料粉の配向性を向上させるため、原料粉に潤滑剤が加えられることがある。
また、上記のように磁場中成形を行うに先立ち、原料合金をジェットミル等で粉砕して原料粉を得る工程で、粉砕性を向上させるために潤滑剤を加えることがある(例えば、特許文献1参照)。
Rare earth sintered magnets (hereinafter simply referred to as sintered magnets) are widely used as high-performance magnets, and the demand for them increases with the miniaturization of various electronic devices and the increase in electronic devices in automobiles. Yes. In general, the higher the degree of orientation of the magnet, the higher the residual magnetic flux density. For this reason, a magnetic field is often applied to the raw material powder during molding, and compression molding is often performed while the raw material powder is oriented (so-called magnetic field molding).
At this time, in order to improve the orientation of the raw material powder with respect to the magnetic field, a lubricant may be added to the raw material powder.
In addition, before forming in a magnetic field as described above, a lubricant may be added to improve pulverization in a process of pulverizing a raw material alloy with a jet mill or the like to obtain a raw material powder (for example, Patent Documents). 1).

特開平8−111308号公報(特許請求の範囲)JP-A-8-111308 (Claims)

ところで、高い磁気特性を得るために潤滑剤の種類や添加量を調整すると、成形体の強度が低下してしまい、成形体の歩留が低くなる。一方、成形体の強度が高くなるように潤滑剤を調整すると、最終的に得られる焼結磁石の磁気特性を高めることは困難である。   By the way, when the kind and addition amount of the lubricant are adjusted in order to obtain high magnetic characteristics, the strength of the molded body is lowered and the yield of the molded body is lowered. On the other hand, if the lubricant is adjusted so as to increase the strength of the compact, it is difficult to improve the magnetic properties of the finally obtained sintered magnet.

本発明は、このような技術的課題に基づいてなされたもので、成形体の強度が高く、高い磁気特性を持つ希土類焼結磁石の製造方法を提供することを目的とする。   The present invention has been made based on such a technical problem, and an object of the present invention is to provide a method for producing a rare earth sintered magnet having a molded body having high strength and high magnetic properties.

本発明の希土類焼結磁石の製造方法は、希土類焼結磁石用原料合金粉を粉砕して粉砕粉を得る工程と、粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、成形体を焼結する工程とを備え、テトラフルオロエチレン系の化合物Aと、一般式R1−COO−R2、R1−OHおよび(R1−COO)nMからなる群のいずれかの一種で示される化合物B(但しR1はCn2n+1;R2はH、Cn2n+1またはCn2n-1n-1;Mは金属;nは整数)とを添加した粉砕粉を用い、成形体を得る工程と、成形体を焼結する工程とを備えることを特徴とするものである。このとき、潤滑剤の添加タイミングは、粉砕前の原料合金粉の状態でも良いが、原料粉の粉砕過程または原料粉の粉砕後とするのが好ましい。特に、原料合金粉の粉砕過程で、粒状とした潤滑剤を原料合金粉とともに粉砕手段に投入することで、潤滑剤を添加するのが好ましい。 The method for producing a rare earth sintered magnet of the present invention comprises a step of obtaining a pulverized powder by pulverizing a raw alloy powder for a rare earth sintered magnet , and applying a magnetic field to the pulverized powder, followed by pressure forming to obtain a compact. And a step of sintering the molded body, comprising a tetrafluoroethylene-based compound A, a general formula R 1 —COO—R 2 , R 1 —OH and (R 1 —COO) n M Compound B represented by any one type (where R 1 is C n H 2n + 1 ; R 2 is H, C n H 2n + 1 or C n H 2n-1 O n-1 ; M is a metal; n is And a step of obtaining a molded body and a step of sintering the molded body . At this time, the addition timing of the lubricant may be in the state of the raw material alloy powder before pulverization, but is preferably after the pulverization process of the raw material powder or after the pulverization of the raw material powder. In particular, it is preferable to add the lubricant by introducing the granular lubricant into the pulverizing means together with the raw material alloy powder during the pulverization process of the raw material alloy powder.

ここで、化合物Aは、ポリテトラフルオロエチレンである。
また、化合物BのR1は、Cn2n+1のnが10以上であり、具体的には炭素数17の炭化水素である。このような化合物Bは、ステアリン酸、モノステアリン酸グリセリン、ステアリン酸亜鉛およびステアリルアルコールからなる群より選ばれる少なくとも一種の化合物である。
成形体の強度を高め、焼結磁石の磁気特性を高くするため、化合物Aの添加量と化合物Bの添加量との合計は、0.05〜0.1wt%とする
さらに、化合物Aおよび化合物Bの粒子径は、それぞれ800μm以下であることが好ましい。
Here, the compound A is polytetrafluoroethylene.
In the compound B, R 1 is C n H 2n + 1 , wherein n is 10 or more, specifically a hydrocarbon having 17 carbon atoms. Such compound B is at least one compound selected from the group consisting of stearic acid, glyceryl monostearate, zinc stearate and stearyl alcohol.
In order to increase the strength of the compact and increase the magnetic properties of the sintered magnet, the total amount of compound A added and compound B added is 0.05 to 0.1 wt% .
Further, the particle diameters of Compound A and Compound B are each preferably 800 μm or less.

本発明によれば、テトラフルオロエチレン系の化合物Aと、一般式R1−COO−R2、R1−OHおよび(R1−COO)nMからなる群のいずれかの一種で示される化合物B(但しR1はCn2n+1;R2はH、Cn2n+1またはCn2n-1n-1;Mは金属;nは整数)とを原料合金粉や粉砕粉に添加することで、粉砕工程における原料合金の粉砕性や磁場中成形工程における粉砕粉の配向性を確保しつつ、成形体の強度、および最終的に得られる焼結磁石の磁気特性を高いものとすることが可能となる。 According to the present invention, a compound represented by one of the group consisting of tetrafluoroethylene-based compound A and the general formula R 1 —COO—R 2 , R 1 —OH and (R 1 —COO) n M B (where R 1 is C n H 2n + 1 ; R 2 is H, C n H 2n + 1 or C n H 2n-1 O n-1 ; M is a metal; n is an integer) By adding to the pulverized powder, the strength of the compact and the magnetic properties of the finally obtained sintered magnet are ensured while ensuring the pulverization of the raw material alloy in the pulverization process and the orientation of the pulverized powder in the magnetic field forming process It becomes possible to make it high.

以下、実施の形態に基づいてこの発明を詳細に説明する。
本発明は、例えば、希土類焼結磁石、特にR−T−B系焼結磁石に適用することができる。
このR−T−B系焼結磁石は、希土類元素(R)を25〜37wt%含有する。ここで、本発明におけるRはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系焼結磁石の主相となるR214B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR214B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%、さらに望ましいRの量は29〜33wt%である。
Hereinafter, the present invention will be described in detail based on embodiments.
The present invention can be applied to, for example, a rare earth sintered magnet, particularly an RTB-based sintered magnet.
This RTB-based sintered magnet contains 25 to 37 wt% of a rare earth element (R). Here, R in the present invention has a concept including Y, and therefore 1 of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is selected from species or two or more species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the R-T-B system sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%, and a more desirable amount of R is 29 to 33 wt%.

また、このR−T−B系焼結磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
このR−T−B系焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは、0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
The RTB-based sintered magnet contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
This RTB-based sintered magnet contains Co of 2.0 wt% or less (excluding 0), desirably 0.1 to 1.0 wt%, and more desirably 0.3 to 0.7 wt%. can do. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

また、このR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。
さらに、このR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を5000ppm以下、さらには3000ppmと以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。
The RTB-based sintered magnet can contain one or two of Al and Cu in the range of 0.02 to 0.5 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained RTB-based sintered magnet. In the case of adding Al, the desirable amount of Al is 0.03 to 0.3 wt%, and the more desirable amount of Al is 0.05 to 0.25 wt%. Further, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.12 wt%.
Furthermore, this RTB-based sintered magnet allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 5000 ppm or less, more preferably 3000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

本発明は、上記したようなR−T−B系焼結磁石に限らず、他の希土類焼結磁石に適用することも可能である。例えば、R−Co系焼結磁石に本発明を適用することもできる。
R−Co系焼結磁石は、Rと、Fe、Ni、MnおよびCrから選ばれる1種以上の元素と、Coとを含有する。この場合、望ましくはさらにCuまたは、Nb、Zr、Ta、Hf、TiおよびVから選ばれる1種以上の元素を含有し、特に望ましくはCuと、Nb、Zr、Ta、Hf、TiおよびVから選ばれる1種以上の元素とを含有する。これらのうち特に、SmとCoとの金属間化合物、望ましくはSm2Co17金属間化合物を主相とし、粒界にはSmCo5系を主体とする副相が存在する。具体的組成は、製造方法や要求される磁気特性等に応じて適宜選択すればよいが、例えば、R:20〜30wt%、特に22〜28wt%程度、Fe、Ni、MnおよびCrの1種以上:1〜35wt%程度、Nb、Zr、Ta、Hf、TiおよびVの1種以上:0〜6wt%、特に0.5〜4wt%程度、Cu:0〜10wt%、特に1〜10wt%程度、Co:残部の組成が望ましい。
以上、R−T−B系焼結磁石、R−Co系焼結磁石について言及したが、本発明は他の希土類焼結磁石への適用を妨げるものではない。
The present invention is not limited to the R-T-B based sintered magnet as described above, but can be applied to other rare earth sintered magnets. For example, the present invention can be applied to an R—Co based sintered magnet.
The R—Co based sintered magnet contains R, one or more elements selected from Fe, Ni, Mn, and Cr, and Co. In this case, it preferably further contains Cu or one or more elements selected from Nb, Zr, Ta, Hf, Ti and V, and particularly preferably from Cu and Nb, Zr, Ta, Hf, Ti and V. Containing one or more selected elements. Among these, in particular, an intermetallic compound of Sm and Co, preferably an Sm 2 Co 17 intermetallic compound, is the main phase, and a subphase mainly composed of SmCo 5 exists at the grain boundary. The specific composition may be appropriately selected according to the production method, required magnetic characteristics, and the like. For example, R: 20 to 30 wt%, particularly about 22 to 28 wt%, Fe, Ni, Mn, and Cr Above: about 1 to 35 wt%, one or more of Nb, Zr, Ta, Hf, Ti and V: 0 to 6 wt%, especially about 0.5 to 4 wt%, Cu: 0 to 10 wt%, especially 1 to 10 wt% To the extent, Co: the balance composition is desirable.
The R-T-B sintered magnet and the R-Co sintered magnet have been described above, but the present invention does not prevent application to other rare earth sintered magnets.

以下、本発明による希土類焼結磁石の製造方法を工程順に説明する。
原料合金は、真空又は不活性ガス、望ましくはアルゴン雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をアルゴンガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、結晶粒径が1〜50μmの均質な組織を有している。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の溶解法によって得ることができる。なお、溶解後の偏析を防止するため、例えば水冷銅板に傾注して凝固させることができる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
R−T−B系焼結磁石を得る場合、R214B結晶粒を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いる所謂混合法を本発明に適用することもできる。
Hereinafter, a method for producing a rare earth sintered magnet according to the present invention will be described in the order of steps.
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably an argon atmosphere. In the strip casting method, a molten metal obtained by melting a raw material metal in a non-oxidizing atmosphere such as an argon gas atmosphere is jetted onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). This rapidly solidified alloy has a homogeneous structure with a crystal grain size of 1 to 50 μm. The raw material alloy can be obtained not only by the strip casting method but also by a melting method such as high frequency induction melting. In order to prevent segregation after dissolution, for example, it can be solidified by pouring into a water-cooled copper plate. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
When obtaining an RTB-based sintered magnet, a so-called alloy using a R 2 T 14 B crystal grain (low R alloy) and an alloy containing more R than a low R alloy (high R alloy) is used. A mixing method can also be applied to the present invention.

原料合金は粉砕工程に供される。混合法による場合には、低R合金及び高R合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。
まず、粗粉砕工程では、原料合金を、粒径数百μm程度になるまで粗粉砕し、粗粉砕粉末(原料合金粉)を得る。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。水素放出処理は、希土類焼結磁石として不純物となる水素を減少させることを目的として行われる。
The raw material alloy is subjected to a grinding process. In the case of the mixing method, the low R alloy and the high R alloy are pulverized separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process.
First, in the coarse pulverization step, the raw material alloy is coarsely pulverized to a particle size of about several hundred μm to obtain coarsely pulverized powder (raw material alloy powder). The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth sintered magnet.

粗粉砕工程後、微粉砕工程に移る。微粉砕には主にジェットミルが用いられ、粗粉砕粉末を微粉砕することで、平均粒径が好ましくは2.5〜6μm、後述する成形体の強度を高め、焼結磁石の磁気特性を高くするためにさらに好ましくは3〜5μmの微粉砕粉末(粉砕粉)を得る。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization process, the process proceeds to the fine pulverization process. A jet mill is mainly used for fine pulverization. By pulverizing the coarsely pulverized powder, the average particle size is preferably 2.5 to 6 μm, and the strength of the compact to be described later is increased, and the magnetic properties of the sintered magnet are improved. More preferably, a finely pulverized powder (ground powder) of 3 to 5 μm is obtained in order to increase the height. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing.

このとき、微粉砕工程において原料合金粉に潤滑剤を添加する。潤滑剤を添加することで、成形時の潤滑及び配向性を向上させることができる。なお、潤滑剤は微粉砕工程の開始前に原料合金粉へ添加することが好ましいが、微粉砕工程において粉砕中に添加したり、微粉砕工程の終了後であって顆粒作製工程前や磁場中成形工程前に微粉砕粉に添加するものであってもよい。   At this time, a lubricant is added to the raw material alloy powder in the fine grinding step. Lubricating and orientation during molding can be improved by adding a lubricant. The lubricant is preferably added to the raw material alloy powder before the start of the fine pulverization process. However, the lubricant may be added during the fine pulverization process or after the fine pulverization process and before the granule preparation process or in the magnetic field. It may be added to the finely pulverized powder before the molding step.

潤滑剤は、テトラフルオロエチレン系の化合物Aと、一般式R1−COO−R2、R1−OHおよび(R1−COO)nMからなる群のいずれかの一種で示される化合物B(但しR1はCn2n+1;R2はH、Cn2n+1またはCn2n-1n-1;Mは金属;nは整数)とを含む。
テトラフルオロエチレン系の化合物Aとしては、例えばテトラフルオロエチレンが重合したポリテトラフルオロエチレン((CF2−CF2)n)が好ましいが、ポリテトラフルオロエチレンに他の化合物が共重合しているものであってもよい。
The lubricant is a tetrafluoroethylene-based compound A and a compound B represented by one of the group consisting of the general formulas R 1 —COO—R 2 , R 1 —OH and (R 1 —COO) n M ( Wherein R 1 is C n H 2n + 1 ; R 2 is H, C n H 2n + 1 or C n H 2n-1 O n-1 ; M is a metal; n is an integer.
As the tetrafluoroethylene-based compound A, for example, polytetrafluoroethylene ((CF 2 -CF 2 ) n) in which tetrafluoroethylene is polymerized is preferable, but other compounds are copolymerized with polytetrafluoroethylene. It may be.

潤滑剤に含まれる化合物Bとは、例えば脂肪酸化合物やアルコールであり、具体的には炭素数が10以上の高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、高級アルコール等が挙げられる。この中でも化合物は、R1がCn2n+1(nが10以上)であることが好ましく、例えばR1の炭素数が17および18の炭化水素である化合物が好ましい。具体例としてステアリン酸(C1735O−O−H)、モノステアリン酸グリセリン(C1735−COO−C372)、ステアリン酸亜鉛((C1735−COO)- 2Zn2+)およびステアリルアルコール(C1837−O−H)を挙げることができる。この中でもステアリン酸が好ましい。このR2−O−基を有する化合物としては1種類のみの化合物を用いてもよいが、複数の化合物を用いてもよい。 The compound B contained in the lubricant is, for example, a fatty acid compound or alcohol, and specifically includes higher fatty acids having 10 or more carbon atoms, higher fatty acid esters, higher fatty acid metal salts, higher alcohols, and the like. Among them, the compound is preferably a compound in which R 1 is C n H 2n + 1 (n is 10 or more), for example, a compound in which R 1 is a hydrocarbon having 17 and 18 carbon atoms. Specific examples include stearic acid (C 17 H 35 O—O—H), glyceryl monostearate (C 17 H 35 —COO—C 3 H 7 O 2 ), zinc stearate ((C 17 H 35 —COO) 2 Zn 2+ ) and stearyl alcohol (C 18 H 37 —O—H). Of these, stearic acid is preferred. As the compound having an R 2 —O— group, only one type of compound may be used, but a plurality of compounds may be used.

潤滑剤は、粒状にして添加するのが好ましい。その場合、原料合金粉を粉砕するジェットミルに、粒状とした潤滑剤を投入することで、潤滑剤を添加する。
潤滑剤の粒径は、好ましくは1000μm以下、後述する成形体の強度を高め、焼結磁石の磁気特性を高くするためにさらに好ましくは800μm以下、特に好ましくはほぼ500μm以下である。なお潤滑剤を上記粒径とするには、潤滑剤を粉砕し、篩等で分級するのが好ましい。潤滑剤を粉砕するには、潤滑剤を、例えば液体窒素を用いて冷凍し、その状態のまま、粉砕ミル等で粉砕するのが好ましい。
The lubricant is preferably added in the form of granules. In that case, the lubricant is added by introducing a granular lubricant into a jet mill for pulverizing the raw material alloy powder.
The particle size of the lubricant is preferably 1000 μm or less, more preferably 800 μm or less, particularly preferably about 500 μm or less in order to increase the strength of the molded body described later and to increase the magnetic properties of the sintered magnet. In order to make the lubricant have the above particle diameter, it is preferable to grind the lubricant and classify it with a sieve or the like. In order to pulverize the lubricant, it is preferable that the lubricant is frozen using, for example, liquid nitrogen, and pulverized in that state with a pulverization mill or the like.

潤滑剤の添加量は、粉砕性を向上させるという点からすれば、なるべく多くするのが好ましいが、磁気特性および成形体の強度の観点からすれば、なるべく少なくするのが好ましい。成形体の強度を高め、焼結磁石の磁気特性を高くするために、化合物Aの添加量と化合物Bの添加量との合計は、0.05〜0.1wt%とする。 The addition amount of the lubricant is preferably as much as possible from the viewpoint of improving the grindability, but is preferably as small as possible from the viewpoint of the magnetic properties and the strength of the molded body . Increase the strength of the formed features, in order to increase the magnetic properties of the sintered magnet, the sum of the amount and the addition amount of Compound B Compound A, and 0.05~0.1wt%.

混合法による場合、2種の合金を混合するタイミングは限定されるものではないが、微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末を窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。低R合金及び高R合金を一緒に粉砕する場合の混合比率も同様である。   In the case of the mixing method, the timing of mixing the two kinds of alloys is not limited. However, when the low R alloy and the high R alloy are separately pulverized in the pulverizing step, the pulverized low R alloy powder is used. And high R alloy powder in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. The mixing ratio when the low R alloy and the high R alloy are pulverized together is the same.

以上のようにして得られた顆粒状の造粒粉(顆粒作製工程を省略する場合には微粉砕粉末)は、金型キャビティに充填され、磁場中成形に供される。
磁場中成形における成形圧力は0.3〜3ton/cm2(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
また、印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
The granular granulated powder obtained as described above (or finely pulverized powder when the granule preparation step is omitted) is filled in a mold cavity and subjected to molding in a magnetic field.
The molding pressure in the magnetic field molding may be in the range of 0.3 to 3 ton / cm 2 (30 to 300 MPa). The molding pressure may be constant from the beginning to the end of molding, may be gradually increased or gradually decreased, or may vary irregularly. The lower the molding pressure is, the better the orientation is. However, if the molding pressure is too low, the strength of the molded body is insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%.
The applied magnetic field may be about 12 to 20 kOe (960 to 1600 kA / m). Further, the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

磁場中成形により得られた成形体には、脱バインダ処理が施される。炭素残留による磁気特性低下を防止するためである。脱バインダ処理は、水素雰囲気中で、所定の熱処理条件で行うのが好ましい。   The molded body obtained by molding in a magnetic field is subjected to binder removal processing. This is to prevent a decrease in magnetic properties due to carbon residue. The binder removal treatment is preferably performed under a predetermined heat treatment condition in a hydrogen atmosphere.

脱バインダ処理後、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、真空中で、1000〜1200℃で1〜10時間程度焼結すればよい。   After the binder removal treatment, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference in an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC for about 1 to 10 hours in a vacuum.

さて、焼結後には、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行う場合には、750〜950℃、500〜700℃での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行うと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。   Now, after sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. When the aging treatment is performed in two stages, holding for a predetermined time at 750 to 950 ° C. and 500 to 700 ° C. is effective. When the heat treatment in the vicinity of 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment near 600 ° C., when aging treatment is performed in one stage, it is preferable to perform aging treatment near 600 ° C.

<希土類焼結磁石の製造>
先ず、評価対象となる成形体及びこれを焼結した希土類焼結磁石を作製した。原料合金の組成は、Nd24.5wt%、Pr6.0wt%、Dy1.8wt%、Co0.5wt%、Al0.2wt%、Cu0.07wt%、B1.0wt%、残部Feとした。原料となる金属又は合金を前記組成となるように配合し、ストリップキャスト法により原料合金薄板を溶解、鋳造した。
<Manufacture of rare earth sintered magnets>
First, the molded object used as evaluation object and the rare earth sintered magnet which sintered this were produced. The composition of the raw material alloy was Nd 24.5 wt%, Pr 6.0 wt%, Dy 1.8 wt%, Co 0.5 wt%, Al 0.2 wt%, Cu 0.07 wt%, B 1.0 wt%, and the balance Fe. The raw material metal or alloy was blended so as to have the above composition, and the raw material alloy thin plate was melted and cast by a strip casting method.

得られた原料合金薄板を水素粉砕した後、ブラウンミルにて機械的粗粉砕を行い、原料合金粗粉を得る。原料合金粗粉に潤滑剤(粉砕助剤)として、化合物Aとしてポリテトラフルオロエチレン系と表1に示す化合物Bとをそれぞれ0.05wt%づつ添加した。次いで、気流式粉砕機(ジェットミル)を使用して高圧窒素ガス雰囲気中でD50=4.1μmとなるように微粉砕を行い、希土類合金粉を得た。ここで、D50とは、微粉砕後の粉体の粒度分布を測定して、累積体積比率が50%になる粒径のことである。   The obtained raw material alloy thin plate is hydrogen pulverized and then mechanically coarsely pulverized by a brown mill to obtain raw material alloy coarse powder. As a lubricant (grinding aid), 0.05 wt% each of polytetrafluoroethylene and Compound B shown in Table 1 were added to the raw material alloy coarse powder as a compound A. Next, fine pulverization was performed using an airflow pulverizer (jet mill) in a high-pressure nitrogen gas atmosphere so that D50 = 4.1 μm, thereby obtaining rare earth alloy powder. Here, D50 is a particle size at which the cumulative volume ratio is 50% by measuring the particle size distribution of the finely pulverized powder.

Figure 0004671024
Figure 0004671024

得られた粉体を磁場中成形し、所定の形状の成形体を得た。磁場中成形では、前記粉体を、1200kA/mの磁場中において、成形圧147MPaで成形した。磁場方向はプレス方向と垂直な方向である。成形体の寸法は、20mm×18mm×6.5mmと20mm×18mm×13mmとの2種類を得た。そして前者の成形体を用い、成形体の強度として抗折強度を以下の方法で測定した。   The obtained powder was molded in a magnetic field to obtain a molded body having a predetermined shape. In molding in a magnetic field, the powder was molded at a molding pressure of 147 MPa in a magnetic field of 1200 kA / m. The magnetic field direction is a direction perpendicular to the pressing direction. Two types of dimensions, 20 mm × 18 mm × 6.5 mm and 20 mm × 18 mm × 13 mm, were obtained for the compacts. And the bending strength was measured with the following method as the intensity | strength of a molded object using the former molded object.

抗折強度測定は、日本工業規格JIS R 1601に準じて行った。具体的には、図1に示すように、20mm×18mm×6.5mm形状の成形体11を丸棒状の2本の支持具12,13の上に載置し、成形体11上の中央位置に丸棒状の支持具14を配置して荷重を加えた。抗折圧を加える方向はプレス方向とした。丸棒状の支持具12,13,14の半径は3mm、支点間距離は10mm、荷重点移動速度は0.5mm/分とした。成形体11の長手方向と支持具14とを互いに平行となるように配置した。サンプル数nは10個で測定を行った。   The bending strength measurement was performed according to Japanese Industrial Standard JIS R 1601. Specifically, as shown in FIG. 1, a molded body 11 having a shape of 20 mm × 18 mm × 6.5 mm is placed on two round bar-shaped supports 12 and 13, and a central position on the molded body 11 is placed. A round bar-shaped support 14 was placed on and a load was applied. The direction in which the bending pressure was applied was the pressing direction. The radius of the round bar-shaped supports 12, 13, and 14 was 3 mm, the distance between fulcrums was 10 mm, and the load point moving speed was 0.5 mm / min. The longitudinal direction of the molded body 11 and the support 14 were arranged so as to be parallel to each other. The measurement was carried out with 10 samples.

さらに磁気特性の評価を行なった。評価試料として20mm×18mm×13mm形状の成形体を得た。この成形体を1030℃で4時間、900℃で1時間、530℃で1時間焼結、時効処理を行った。得られた焼結体表面を研削し直方体の試料とした。この試料を、BHトレーサを用いて磁気特性を評価した。   Furthermore, the magnetic characteristics were evaluated. A molded product having a shape of 20 mm × 18 mm × 13 mm was obtained as an evaluation sample. This molded body was sintered and aged at 1030 ° C. for 4 hours, 900 ° C. for 1 hour and 530 ° C. for 1 hour. The surface of the obtained sintered body was ground to obtain a rectangular parallelepiped sample. This sample was evaluated for magnetic properties using a BH tracer.

さらに比較例として、ポリテトラフルオロエチレンを加えずに表1に示す化合物Bのみを0.1wt%添加した以外は実施例1と同様にして試料を作製し、成形体と焼結磁石を得て、強度および磁気特性の評価を行った。
実施例および比較例の結果を表1に示す。
Further, as a comparative example, a sample was prepared in the same manner as in Example 1 except that only 0.1 wt% of compound B shown in Table 1 was added without adding polytetrafluoroethylene, and a compact and a sintered magnet were obtained. The strength and magnetic properties were evaluated.
The results of Examples and Comparative Examples are shown in Table 1.

表1に示すように、比較例においては、Brは13.2kGを上回ったが成形体強度が0.9MPaを下回った。
これに対し、表1に示すポリテトラフルオロエチレンと化合物Bを複合添加した場合、Brは13.2kGを上回り、成形体強度も1.1MPaを上回り、高い成形体強度と高い磁気特性を兼ね備えることができることが確認された。しかも、得られる磁気特性は、比較例における磁気特性と同等であることがわかり、ポリテトラフルオロエチレンを添加することで、磁気特性を大幅に低下させることなく、成形体強度を高めることができるのが確認された。
このように、微粉砕工程において原料合金に潤滑剤を添加することで、粉砕工程における原料合金の粉砕性や磁場中成形工程における粉砕粉の配向性を確保しつつ、成形体の強度が高く、さらに最終的に得られる焼結磁石の磁気特性が高いものを得ることができた。
As shown in Table 1, in the comparative example, Br exceeded 13.2 kG, but the strength of the compact was below 0.9 MPa.
On the other hand, when polytetrafluoroethylene and compound B shown in Table 1 are added in combination, Br exceeds 13.2 kG, and the strength of the molded body also exceeds 1.1 MPa, which combines high molded body strength and high magnetic properties. It was confirmed that Moreover, it can be seen that the obtained magnetic properties are equivalent to the magnetic properties in the comparative example, and by adding polytetrafluoroethylene, the strength of the molded body can be increased without significantly reducing the magnetic properties. Was confirmed.
Thus, by adding a lubricant to the raw material alloy in the fine pulverization step, the strength of the compact is high while ensuring the pulverization property of the raw material alloy in the pulverization step and the orientation of the pulverized powder in the forming step in the magnetic field, Furthermore, the sintered magnet finally obtained has a high magnetic property.

日本工業規格JIS R 1601に準じる抗折強度測定方法を説明する図である。It is a figure explaining the bending strength measuring method according to Japanese Industrial Standards JISR1601.

Claims (3)

希土類焼結磁石用原料合金粉を粉砕して粉砕粉を得る工程と、
テトラフルオロエチレン系の化合物Aと、一般式R1−COO−R2、R1−OHおよび(R1−COO)nMからなる群のいずれかの一種で示される化合物B(但しR1はCn2n+1;R2はH、Cn2n+1またはCn2n-1n-1;Mは金属;nは整数)とを添加した前記粉砕粉に磁場を印加し、かつ加圧成形することにより成形体を得る工程と、
前記成形体を焼結する工程とを備え、
前記化合物Aは、ポリテトラフルオロエチレンであり、
前記化合物Bは、ステアリン酸、モノステアリン酸グリセリン、ステアリン酸亜鉛およびステアリルアルコールからなる群より選ばれる少なくとも一種の化合物であり、
前記化合物Aの添加量と前記化合物Bの添加量との合計を0.05〜0.1wt%とすることを特徴とする希土類焼結磁石の製造方法。
Pulverizing raw alloy powder for rare earth sintered magnet to obtain pulverized powder;
Tetrafluoroethylene-based compound A and compound B represented by any one of the group consisting of general formulas R 1 —COO—R 2 , R 1 —OH and (R 1 —COO) n M (where R 1 is C n H 2n + 1 ; R 2 is H, C n H 2n + 1 or C n H 2n-1 O n-1 ; M is a metal; n is an integer) and a magnetic field is applied to the pulverized powder. And a step of obtaining a molded body by pressure molding;
A step of sintering the molded body,
Compound A is polytetrafluoroethylene,
The compound B, Ri least one compound der selected from stearic acid, glyceryl monostearate, the group consisting of zinc stearate and stearyl alcohol,
The manufacturing method of the rare earth sintered magnet characterized by making the sum total of the addition amount of the said compound A and the addition amount of the said compound B 0.05-0.1 wt% .
前記化合物Aおよび前記化合物Bの粒子径が800μm以下であることを特徴とする請求項1に記載の希土類焼結磁石の製造方法。 2. The method for producing a rare earth sintered magnet according to claim 1, wherein the particle diameters of the compound A and the compound B are 800 μm or less. 前記希土類焼結磁石は、R−T−B系焼結磁石であることを特徴とする請求項1または2に記載の希土類焼結磁石の製造方法。The method for producing a rare earth sintered magnet according to claim 1, wherein the rare earth sintered magnet is an R-T-B based sintered magnet.
JP2005079257A 2005-03-18 2005-03-18 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP4671024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079257A JP4671024B2 (en) 2005-03-18 2005-03-18 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079257A JP4671024B2 (en) 2005-03-18 2005-03-18 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2006261526A JP2006261526A (en) 2006-09-28
JP4671024B2 true JP4671024B2 (en) 2011-04-13

Family

ID=37100399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079257A Expired - Fee Related JP4671024B2 (en) 2005-03-18 2005-03-18 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4671024B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396201A (en) * 1986-10-13 1988-04-27 Kurosaki Refract Co Ltd Production of dustproof active metal powder
JPH05308007A (en) * 1992-04-30 1993-11-19 Asahi Chem Ind Co Ltd Thermosetting magnetic material resin composite material
JPH08100203A (en) * 1994-08-24 1996-04-16 Quebec Metal Powders Ltd Apparatus and method for powder metallurgy using electrostatic die wall lubrication
JP2003188006A (en) * 2001-12-18 2003-07-04 Showa Denko Kk Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
JP2004006761A (en) * 2002-03-27 2004-01-08 Tdk Corp Method for manufacturing rare earth permanent magnet
JP2004111515A (en) * 2002-09-17 2004-04-08 Sumitomo Metal Mining Co Ltd Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
WO2004081954A1 (en) * 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b sintered magnet and process for producing the same
JP2005530036A (en) * 2002-06-14 2005-10-06 ホガナス アクチボラゲット Metal powder composition containing binding lubricant and binding lubricant containing glyceryl stearate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6396201A (en) * 1986-10-13 1988-04-27 Kurosaki Refract Co Ltd Production of dustproof active metal powder
JPH05308007A (en) * 1992-04-30 1993-11-19 Asahi Chem Ind Co Ltd Thermosetting magnetic material resin composite material
JPH08100203A (en) * 1994-08-24 1996-04-16 Quebec Metal Powders Ltd Apparatus and method for powder metallurgy using electrostatic die wall lubrication
JP2003188006A (en) * 2001-12-18 2003-07-04 Showa Denko Kk Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
JP2004006761A (en) * 2002-03-27 2004-01-08 Tdk Corp Method for manufacturing rare earth permanent magnet
JP2005530036A (en) * 2002-06-14 2005-10-06 ホガナス アクチボラゲット Metal powder composition containing binding lubricant and binding lubricant containing glyceryl stearate
JP2004111515A (en) * 2002-09-17 2004-04-08 Sumitomo Metal Mining Co Ltd Highly weather resistant magnet powder, resin composition for bonded magnet and bonded magnet obtained by using the resin composition
WO2004081954A1 (en) * 2003-03-12 2004-09-23 Neomax Co., Ltd. R-t-b sintered magnet and process for producing the same

Also Published As

Publication number Publication date
JP2006261526A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP6380738B2 (en) R-T-B permanent magnet, raw alloy for R-T-B permanent magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JP2008214661A (en) Manufacturing method of sintered rare-earth magnet
JP4415374B2 (en) Manufacturing method of rare earth sintered magnet
JP4305927B2 (en) Lubricant removal method
JP2007266026A (en) Manufacturing method of rare-earth sintered magnet
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP4671024B2 (en) Manufacturing method of rare earth sintered magnet
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4057563B2 (en) Granule, sintered body
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JP4057562B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP4282013B2 (en) Manufacturing method of rare earth sintered magnet
JP4057561B2 (en) Method for producing raw material powder for rare earth sintered magnet and method for producing rare earth sintered magnet
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet
JP2006237212A (en) Rare earth sintered magnet
JP4282015B2 (en) Rare earth sintered magnet manufacturing method, sintered body
JP2005213544A (en) Compacting method in magnetic field and method for producing rare-earth sintered magnet
JP2006016646A (en) Granule and sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4671024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees