JP2003188006A - Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet - Google Patents

Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet

Info

Publication number
JP2003188006A
JP2003188006A JP2001383989A JP2001383989A JP2003188006A JP 2003188006 A JP2003188006 A JP 2003188006A JP 2001383989 A JP2001383989 A JP 2001383989A JP 2001383989 A JP2001383989 A JP 2001383989A JP 2003188006 A JP2003188006 A JP 2003188006A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnet
fine
flakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001383989A
Other languages
Japanese (ja)
Other versions
JP4479944B2 (en
JP2003188006A5 (en
Inventor
Shiro Sasaki
史郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001383989A priority Critical patent/JP4479944B2/en
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to US10/498,932 priority patent/US7442262B2/en
Priority to PCT/JP2002/013231 priority patent/WO2003052778A1/en
Priority to AU2002358316A priority patent/AU2002358316A1/en
Priority to CNB028050975A priority patent/CN1306527C/en
Publication of JP2003188006A publication Critical patent/JP2003188006A/en
Publication of JP2003188006A5 publication Critical patent/JP2003188006A5/ja
Priority to US11/826,114 priority patent/US7571757B2/en
Application granted granted Critical
Publication of JP4479944B2 publication Critical patent/JP4479944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth magnet excellent in magnetic properties by suppressing fine R rich phase regions in a cast R-T-B system alloy ingot to obtain an alloy ingot having a very homogenized system for the purpose of evenly distributing the R rich phase in a magnet. <P>SOLUTION: The surface of a casting roll 3 is roughened finely so that a liquid alloy 1 cannot enter the roughened fine surface of the roll by its viscosity. As a result, the casting die surface side of an alloy 4 is not cooled quickly, and the growth of the fine R rich phase is suppressed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はR−T−B系合金
(但し、RはYを含む希土類元素のうち少なくとも1
種、TはFeを必須とする遷移金属、Bは硼素であ
る。)からなる希土類磁石用合金薄片、その製造方法、
希土類焼結磁石用合金粉末、希土類焼結磁石、ボンド磁
石用合金粉末およびボンド磁石に関する。
TECHNICAL FIELD The present invention relates to an RTB-based alloy (where R is at least one of rare earth elements including Y).
Seed, T is a transition metal that essentially requires Fe, and B is boron. Alloy flakes for rare earth magnets,
The present invention relates to an alloy powder for a rare earth sintered magnet, a rare earth sintered magnet, an alloy powder for a bonded magnet, and a bonded magnet.

【0002】[0002]

【従来の技術】近年、希土類磁石用合金としてNd−F
e−B系合金がその高特性から急激に生産量を伸ばして
おり、HD(ハードディスク)用、MRI(磁気共鳴映
像法)用あるいは、各種モーター用等に使用されてい
る。通常は、Ndの一部をPr、Dy等の他の希土類元
素で置換したものや、Feの一部をCo、Ni等の他の
遷移金属で置換したものが一般的であり、Nd−Fe−
B系合金を含め、R−T−B系合金と総称されている。
ここで、RはYを含む希土類元素のうち少なくとも1種
である。また、TはFeを必須とする遷移金属であり、
Feの一部をCoあるいはNiで置換することができ、
添加元素としてCu、Al、Ti、V、Cr、Mn、N
b、Ta、Mo、W、Ca、Sn、Zr、Hfなどを1
種または複数組み合わせて添加してもよい。Bは硼素で
あり、一部をCまたはNで置換できる。
2. Description of the Related Art Recently, Nd-F has been used as an alloy for rare earth magnets.
The production amount of the e-B alloy is rapidly increasing due to its high characteristics, and it is used for HD (hard disk), MRI (magnetic resonance imaging), various motors, and the like. Usually, Nd is partially replaced with another rare earth element such as Pr or Dy, or Fe is partially replaced with another transition metal such as Co or Ni. −
They are collectively called R-T-B type alloys including B type alloys.
Here, R is at least one of rare earth elements including Y. In addition, T is a transition metal in which Fe is essential,
Part of Fe can be replaced with Co or Ni,
Cu, Al, Ti, V, Cr, Mn, N as additional elements
1 for b, Ta, Mo, W, Ca, Sn, Zr, Hf, etc.
You may add in combination with 1 type or multiple types. B is boron and can be partially substituted with C or N.

【0003】R−T−B系合金は、磁化作用に寄与する
強磁性相であるR214B相からなる結晶を主相とし、
非磁性で希土類元素の濃縮した低融点のR−リッチ相が
共存する合金で、活性な金属であることから一般に真空
又は不活性ガス中で溶解や鋳造が行われる。また、鋳造
されたR−T−B系合金塊から粉末冶金法によって焼結
磁石を作製するには、合金塊を3μm(FSSS:フィ
ッシャーサブシーブサイザーでの測定)程度に粉砕して
合金粉末にした後、磁場中でプレス成形し、焼結炉で約
1000〜1100℃の高温にて焼結し、その後必要に
応じ熱処理、機械加工し、さらに耐食性を向上するため
にメッキを施し、焼結磁石とするのが普通である。
The R-T-B type alloy has a crystal composed of an R 2 T 14 B phase, which is a ferromagnetic phase contributing to the magnetization action, as a main phase,
It is a non-magnetic alloy in which an R-rich phase having a low melting point and enriched with rare earth elements coexists. Since it is an active metal, it is generally melted or cast in a vacuum or an inert gas. Further, in order to produce a sintered magnet from a cast RTB-based alloy ingot by a powder metallurgy method, the alloy ingot is crushed to about 3 μm (FSSS: measurement by a Fisher subsieve sizer) to obtain an alloy powder. After that, press molding in a magnetic field, sintering at a high temperature of about 1000 to 1100 ° C. in a sintering furnace, then heat treating and machining if necessary, further plating to improve corrosion resistance, and sintering. It is usually a magnet.

【0004】R−T−B系合金からなる焼結磁石におい
て、R−リッチ相は、以下のような重要な役割を担って
いる。 1)融点が低く、焼結時に液相となり、磁石の高密度
化、従って磁化の向上に寄与する。 2)粒界の凹凸を無くし、逆磁区のニュークリエーショ
ンサイトを減少させ保磁力を高める。 3)主相を磁気的に絶縁し保磁力を増加する。 従って、成形した磁石中のR−リッチ相の分散状態が悪
いと局部的な焼結不良、磁性の低下をまねくため、成形
した磁石中にR−リッチ相が均一に分散していることが
重要となる。ここでR―リッチ相の分布は、鋳造された
際のR−T−B系合金塊の組織に大きく影響される。
In the sintered magnet made of the R-T-B type alloy, the R-rich phase plays an important role as follows. 1) It has a low melting point and becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization. 2) Eliminates grain boundary irregularities, reduces nucleation sites in the reverse magnetic domain, and increases coercive force. 3) Magnetically insulate the main phase to increase coercive force. Therefore, if the dispersion state of the R-rich phase in the molded magnet is poor, local sintering failure and deterioration of magnetism may occur, so it is important that the R-rich phase is uniformly dispersed in the molded magnet. Becomes Here, the distribution of the R-rich phase is greatly influenced by the structure of the R-T-B based alloy ingot when cast.

【0005】また、R−T−B系合金の鋳造において生
じるもう一つの問題は、鋳造された合金塊中にα―Fe
が生成することである。α―Feは、合金塊を粉砕する
際の粉砕効率の悪化をもたらし、また焼結後も磁石中に
残存すれば、磁石の磁気特性の低下をもたらす。そこで
従来の合金塊では、必要に応じ高温で長時間にわたる均
質化処理を行い、α―Feの消去を行っていた。
Another problem that occurs in casting R-T-B type alloys is that α-Fe is contained in the cast alloy ingot.
Is to be generated. α-Fe deteriorates the crushing efficiency when crushing an alloy lump, and if it remains in the magnet even after sintering, it deteriorates the magnetic properties of the magnet. Therefore, in the conventional alloy ingot, α-Fe was erased by performing homogenization treatment at high temperature for a long time as needed.

【0006】この鋳造されたR−T−B系合金塊中にα
−Feが生成する問題を解決するため、より速い冷却速
度で合金塊を鋳造する方法として、ストリップキャスト
法(SC法と略す。)が開発され実際の工程に使用され
ている。SC法は内部が水冷された銅ロール上に溶湯を
流し、0.1〜1mm程度の薄片を鋳造することによ
り、合金を急冷凝固させるものであり、α‐Feの析出
を抑制することができる。さらに合金塊の結晶組織が微
細化するため、R−リッチ相が微細に分散した組織を有
する合金を生成することが可能となる。このように、S
C法で鋳造された合金は、内部のR−リッチ相が微細に
分散しているため、粉砕、焼結後の磁石中のR−リッチ
相の分散性も良好となり、磁石の磁気特性の向上に成功
している。(特開平5−222488号公報、特開平5
−295490号公報)
In the cast R-T-B type alloy ingot, α
In order to solve the problem of -Fe formation, a strip casting method (abbreviated as SC method) has been developed and used in the actual process as a method of casting an alloy ingot at a higher cooling rate. In the SC method, the molten metal is poured onto a water-cooled copper roll and a thin piece of about 0.1 to 1 mm is cast to rapidly solidify the alloy, which can suppress the precipitation of α-Fe. . Further, since the crystal structure of the alloy lump becomes finer, it becomes possible to produce an alloy having a structure in which the R-rich phase is finely dispersed. Thus, S
In the alloy cast by the C method, since the R-rich phase inside is finely dispersed, the dispersibility of the R-rich phase in the magnet after crushing and sintering is also good, and the magnetic characteristics of the magnet are improved. Has been successful. (JP-A-5-222488, JP-A-5-522
-295490 publication)

【0007】またSC法により鋳造された合金塊は、組
織の均質性も優れている。組織の均質性は、結晶粒径や
Rリッチ相の分散状態で比較することが出来る。SC法
で作製した合金薄片では、合金薄片の鋳造用ロール側
(以降、鋳型面側とする)にチル晶が発生することもあ
るが、全体として急冷凝固でもたらされる適度に微細で
均質な組織を得ることが出来る。
The alloy ingot cast by the SC method is also excellent in the homogeneity of the structure. The homogeneity of the structure can be compared by the crystal grain size and the dispersed state of the R-rich phase. In the alloy flakes produced by the SC method, chill crystals may occur on the casting roll side of the alloy flakes (hereinafter referred to as the mold surface side), but as a whole a moderately fine and homogeneous structure brought about by rapid solidification. Can be obtained.

【0008】以上のように、SC法で鋳造したR−T−
B系合金は、Rリッチ相が微細に分散し、α−Feの生
成も抑制されているため、焼結磁石を作製する場合に
は、最終的な磁石中のRリッチ相の均質性が高まり、ま
たα−Feに起因する粉砕、磁性への弊害を防止するこ
とができる。このように、SC法で鋳造したR−T−B
系合金塊は、焼結磁石を作製するため優れた組織を有し
ている。しかし、磁石の特性が向上するにつれて、ます
ます原料合金塊の組織に均質性の向上が求められるよう
になってきている。
As described above, the R-T-cast by the SC method
In the B-based alloy, the R-rich phase is finely dispersed and the production of α-Fe is also suppressed. Therefore, when producing a sintered magnet, the homogeneity of the R-rich phase in the final magnet is increased. In addition, it is possible to prevent the crushing and the adverse effect on magnetism due to α-Fe. Thus, the RTB cast by the SC method
The system alloy ingot has an excellent structure for producing a sintered magnet. However, as the properties of magnets have improved, it has become increasingly necessary to improve the homogeneity of the structure of the raw alloy ingot.

【0009】そのため、例えば特開平10−31711
0号公報には、鋳造されたR−T−B系合金の鋳型面側
のチル晶の面積比率を5%以下にすることで、磁石特性
の良好な焼結磁石を作製している技術が開示されてい
る。チル晶部は粉砕工程で粒径1μm以下の微細粉末と
なるため、合金粉末の粒度分布を乱し、磁性を悪化させ
ると考えられている。
Therefore, for example, Japanese Patent Laid-Open No. 10-31711
No. 0 discloses a technique for producing a sintered magnet having good magnet characteristics by setting the area ratio of chill crystals on the mold surface side of a cast RTB-based alloy to 5% or less. It is disclosed. Since the chill crystal part becomes a fine powder having a particle size of 1 μm or less in the pulverizing step, it is believed that it disturbs the particle size distribution of the alloy powder and deteriorates magnetism.

【0010】[0010]

【発明が解決しようとする課題】本発明者らは、鋳造さ
れたR−T−B系合金塊の組織と、水素解砕や微粉砕の
際の挙動との関係を研究した結果、焼結磁石用の合金粉
末の粒度を均一に制御するためには、合金塊の結晶粒径
よりもRリッチ相の分散状態を制御することが重要であ
ることを見出した。そして、合金塊中のチル晶の体積率
は現実には数%以下であり、チル晶による弊害よりも、
合金塊中の鋳型面側に生成されるRリッチ相の分散状態
が極端に細かな領域(微細Rリッチ相領域)の方が、磁
石用粉末の粒度を制御するためには影響が大きいことを
見出した。すなわち、合金塊の組成や製造条件によりR
−T−B系合金塊中のチル晶を少なくした場合でも、微
細Rリッチ相領域の体積率が50%を超える場合もある
こと、そしてこの微細Rリッチ相領域が磁石用合金粉末
の粒度分布を乱すことを確認し、微細Rリッチ相領域を
減少させることが磁石特性を向上させるために必要であ
ることを確認した。
The present inventors have studied the relationship between the structure of a cast R-T-B type alloy ingot and the behavior at the time of hydrogen crushing or fine crushing, and as a result, the result of sintering It has been found that it is more important to control the dispersed state of the R-rich phase than the crystal grain size of the alloy lump in order to uniformly control the grain size of the alloy powder for magnets. And the volume ratio of chill crystals in the alloy ingot is actually several percent or less, which is more than the adverse effect of chill crystals.
It should be noted that a region where the dispersion state of the R-rich phase generated on the mold surface side in the alloy lump is extremely fine (fine R-rich phase region) has a greater effect on controlling the particle size of the magnet powder. I found it. That is, depending on the composition of the alloy ingot and the manufacturing conditions, R
Even when the amount of chill crystals in the TB alloy mass is reduced, the volume ratio of the fine R-rich phase region may exceed 50%, and the fine R-rich phase region has a particle size distribution of the magnet alloy powder. It was confirmed that it was necessary to reduce the fine R-rich phase region to improve the magnet characteristics.

【0011】そこで本発明は、鋳造されたR−T−B系
合金塊中での微細Rリッチ相領域の生成を抑制し、均質
性に優れた組織を有する合金塊を製造することにより、
磁石中のRリッチ相の分布を均質とし、磁石特性の優れ
た希土類磁石を提供することを目的とする。
Therefore, the present invention suppresses the formation of a fine R-rich phase region in a cast R-T-B type alloy ingot and produces an alloy ingot having a structure excellent in homogeneity.
It is an object of the present invention to provide a rare earth magnet having excellent magnet characteristics by making the R-rich phase distribution in the magnet uniform.

【0012】[0012]

【課題を解決するための手段】本発明者らは、SC法に
おける鋳造条件、特に鋳造用回転ロールの表面状態を変
更し、R−T−B系合金薄片中の微細Rリッチ相領域が
生成する体積率を比較した。すると合金薄片の鋳型面側
表面の表面粗さと微細Rリッチ相領域が生成する体積率
に関係があることを見出した。本発明は、本発明者らが
上記の知見に基づき為したものである。
The inventors of the present invention changed the casting conditions in the SC method, especially the surface condition of the rotating roll for casting, to form a fine R-rich phase region in the R-T-B type alloy flakes. The volume ratios were compared. Then, it was found that there is a relationship between the surface roughness of the alloy flakes on the mold surface side and the volume ratio of the fine R-rich phase regions. The present invention was made by the present inventors based on the above findings.

【0013】すなわち本発明は、 (1)R−T−B系合金(但し、RはYを含む希土類元
素のうち少なくとも1種、TはFeを必須とする遷移金
属、Bは硼素。)からなる希土類磁石用合金薄片におい
て、厚さが0.1mm以上0.5mm以下であり、該合
金薄片の少なくとも片面の表面粗さが十点平均粗さ(R
z)で5μm以上50μm以下であることを特徴とする
希土類磁石用合金薄片。 (2)該合金薄片の少なくとも片面の表面粗さが十点平
均粗さ(Rz)で7μm以上25μm以下であることを特
徴とする上記(1)に記載の希土類磁石用合金薄片。 (3)合金中の微細Rリッチ相領域の体積率が20%以
下であることを特徴とする上記(1)又は(2)に記載
の希土類磁石用合金薄片。 (4)ストリップキャスト法によるR−T−B系合金か
らなる希土類磁石用合金薄片の製造方法において、鋳造
用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)
で5μm以上100μm以下とすることを特徴とする希
土類磁石用合金薄片の製造方法。 (5)ストリップキャスト法によるR−T−B系合金か
らなる希土類磁石用合金薄片の製造方法において、鋳造
用回転ロールの鋳造面の表面粗さを十点平均粗さ(Rz)
で5μm以上100μm以下とすることを特徴とする上
記(1)ないし(3)に記載の希土類磁石用合金薄片の
製造方法。 (6)鋳造用回転ロールの鋳造面の表面粗さを十点平均
粗さ(Rz)で10μm以上50μm以下とすることを特
徴とする上記(4)または(5)に記載の希土類磁石用
合金薄片の製造方法。 (7)上記(1)ないし(3)に記載の希土類磁石用合
金薄片に水素解砕工程を施した後にジェットミル粉砕す
ることで作製される希土類焼結磁石用合金粉末。 (8)上記(7)に記載の希土類磁石用合金粉末から粉
末冶金法で製造される希土類焼結磁石。 (9)上記(1)ないし(3)に記載の希土類磁石用合
金薄片を用いて、HDDR法で製造したボンド磁石用合
金粉末。 (10)上記(9)に記載のボンド磁石用合金粉末を用
いて作製されるボンド磁石。 である。
That is, the present invention comprises (1) an R-T-B type alloy (provided that R is at least one rare earth element including Y, T is a transition metal containing Fe as an essential component, and B is boron). In the alloy flakes for a rare earth magnet, the thickness is 0.1 mm or more and 0.5 mm or less, and the surface roughness of at least one surface of the alloy flakes is 10-point average roughness (R
z) is 5 μm or more and 50 μm or less, an alloy flakes for rare earth magnets. (2) The alloy flakes for a rare earth magnet according to (1) above, wherein the surface roughness of at least one surface of the alloy flakes is 10 μm or more and 25 μm or less in terms of ten-point average roughness (Rz). (3) The alloy flakes for a rare earth magnet as described in (1) or (2) above, wherein the volume ratio of the fine R-rich phase region in the alloy is 20% or less. (4) In a method for producing an alloy flakes for a rare earth magnet made of an R-T-B type alloy by a strip casting method, the surface roughness of the casting surface of a casting rotary roll is set to a ten-point average roughness (Rz).
And 5 μm or more and 100 μm or less. (5) In a method for producing an alloy flakes for a rare earth magnet made of an R-T-B type alloy by a strip casting method, the surface roughness of a casting surface of a casting rotary roll is set to a ten-point average roughness (Rz).
5 μm or more and 100 μm or less. The method for producing an alloy flakes for a rare earth magnet according to the above (1) to (3). (6) The alloy for rare earth magnets according to (4) or (5) above, wherein the surface roughness of the casting surface of the casting rotary roll is 10 μm or more and 50 μm or less in terms of ten-point average roughness (Rz). Method of manufacturing flakes. (7) An alloy powder for a rare earth sintered magnet, which is produced by subjecting the alloy flakes for a rare earth magnet according to (1) to (3) above to a hydrogen crushing step and then pulverizing with a jet mill. (8) A rare earth sintered magnet produced by powder metallurgy from the alloy powder for rare earth magnets according to (7). (9) An alloy powder for a bonded magnet manufactured by the HDDR method using the alloy flakes for a rare earth magnet described in (1) to (3) above. (10) A bond magnet manufactured using the alloy powder for a bond magnet according to the above (9). Is.

【0014】[0014]

【発明の実施の形態】従来のSC法により鋳造されたN
d−Fe−B系合金(Nd31.5質量%)の薄片の断
面をSEM(走査電子顕微鏡)にて観察した時の反射電
子像を図1に示す。図1で左側が鋳型面側、右側が自由
面側である。なお、この合金薄片の鋳型面側表面の表面
粗さは十点平均粗さ(Rz)で3.4μmである。図1で
白い部分が、Nd−リッチ相(RがNdになっているた
めR−リッチ相をNd−リッチ相と呼ぶ。)で、合金薄
片の中央部から自由面側(鋳造面側と反対側の表面)で
は、厚さ方向にラメラー状に伸びるか、ラメラーが分断
したような方向性を持った形の小さなプールを形成して
いる。しかし、鋳型面側にはNd−リッチ相が他の部位
よりも極端に微細な粒状で、かつランダムに存在する領
域が生成しており、これを本発明者らは微細Rリッチ相
領域(Rの主成分がNdの際は微細Ndリッチ相領域と
も呼ぶ)と名づけ、特に区別することとした。この微細
Rリッチ相領域は通常鋳型面側から始まり、中央方向へ
広がっている。これに対し中央部から自由面側にかけて
の微細Rリッチ相領域が存在しない部分を、ここでは正
常部と呼ぶこととする。
BEST MODE FOR CARRYING OUT THE INVENTION N cast by a conventional SC method
FIG. 1 shows a backscattered electron image of a cross section of a thin piece of a d-Fe-B alloy (Nd 31.5 mass%) observed by an SEM (scanning electron microscope). In FIG. 1, the left side is the mold surface side and the right side is the free surface side. The surface roughness of the surface of the alloy flakes on the side of the mold is 3.4 μm in ten-point average roughness (Rz). The white part in FIG. 1 is the Nd-rich phase (the R-rich phase is called the Nd-rich phase because R is Nd), which is the free surface side (opposite to the casting surface side) from the center part of the alloy flakes. The surface on the side) extends in a lamellar shape in the thickness direction or forms a small pool having a directional shape such that the lamella is divided. However, on the template surface side, a region in which the Nd-rich phase is extremely finer and more randomly present than other regions is generated, and the present inventors have developed a region in which a fine R-rich phase region (R When the main component of Nd is Nd, it is also referred to as a fine Nd-rich phase region. This fine R-rich phase region usually starts from the mold surface side and extends toward the center. On the other hand, a portion where the fine R-rich phase region does not exist from the central portion to the free surface side is referred to as a normal portion here.

【0015】焼結磁石作製時のR−T−B系合金薄片の
水素解砕工程において、水素はRリッチ相から吸収さ
れ、膨張し脆い水素化物となる。したがって、水素解砕
では、合金中にRリッチ相に沿った、或いはRリッチ相
を起点とした微細なクラックが導入される。その後の微
粉砕工程で、水素解砕で生成した多量の微細クラックを
きっかけに合金が壊れるため、合金中のRリッチ相の分
散が細かいほど微粉砕後の粒度は細かくなる傾向があ
る。したがって、微細Rリッチ相領域は、正常部よりも
細かく割れる傾向が強く、例えば正常部から製造された
合金粉末では、平均粒度がFSSS(フィッシャー サ
ブ シーブ サイザー)での測定で3μm程度であるの
に対して、微細Rリッチ相領域から製造された合金粉末
では、1μm以下の微粉を含む割合が高いため、微粉砕
後の粒度分布が広くなることになる。
During the hydrogen disintegration process of the RTB-based alloy flakes during the production of sintered magnets, hydrogen is absorbed from the R-rich phase and expands into brittle hydride. Therefore, in the hydrogen disintegration, fine cracks along the R-rich phase or starting from the R-rich phase are introduced into the alloy. In the subsequent fine pulverization step, the alloy is broken due to a large amount of fine cracks generated by hydrogen crushing, so that the finer the R-rich phase dispersion in the alloy, the finer the grain size after fine pulverization tends to be. Therefore, the fine R-rich phase region has a stronger tendency to be finely divided than the normal portion. For example, in the case of alloy powder produced from the normal portion, the average particle size is about 3 μm as measured by FSSS (Fisher Subsieve Sizer). On the other hand, the alloy powder manufactured from the fine R-rich phase region has a high proportion of fine particles of 1 μm or less, and therefore the particle size distribution after fine pulverization becomes broad.

【0016】R−T−B系合金中のRリッチ相の分散状
態は、鋳造時における溶湯が凝固した後の冷却速度の制
御、或いは熱処理によって制御可能であることは特開平
09−170055号公報、或いは特開平10−369
49号公報に記載されている。しかし、凝固後の冷却速
度、或いは熱処理による微細Rリッチ相領域内部のRリ
ッチ相の変化の挙動は、正常部と異なり制御が困難であ
り、Rリッチ相の分散が粗くなりにくく、微細なままで
ある。
It is known that the dispersion state of the R-rich phase in the R-T-B type alloy can be controlled by controlling the cooling rate after the molten metal is solidified during casting or by heat treatment. Alternatively, JP-A-10-369
No. 49 publication. However, the cooling rate after solidification or the behavior of the change of the R-rich phase inside the fine R-rich phase region due to the heat treatment is difficult to control unlike the normal part, and the dispersion of the R-rich phase is less likely to become coarse and remains fine. Is.

【0017】微細Rリッチ相領域の体積率は次のような
方法で測定可能である。図3は図1と同じ視野の反射電
子線像であるが、微細Rリッチ相領域と正常部の境界に
線を引いたものである。両領域の境界は、Rリッチ相の
分散状態から容易に判断できるため、画像解析装置を用
いてその視野の微細Rリッチ相領域の面積率を計算する
ことが出来る。断面での面積率は、合金中での体積率に
対応する。なお、微細Rリッチ相領域の体積率の測定に
おいて、同時に鋳造された合金薄片であっても、微細R
リッチ相領域の量の変化は、薄片間同士、また同じ薄片
内でも大きい。そのため、50〜100倍程度の低倍率
で観察視野を広げた上で、5〜10枚程度の薄片を測定
しその平均を取ることで、その合金全体の微細Rリッチ
相領域の体積率を計算することが出来る。
The volume ratio of the fine R-rich phase region can be measured by the following method. FIG. 3 is a backscattered electron image of the same field of view as FIG. 1, but a line is drawn at the boundary between the fine R-rich phase region and the normal portion. Since the boundary between both regions can be easily determined from the dispersed state of the R-rich phase, the area ratio of the fine R-rich phase region in the field of view can be calculated using the image analysis device. The area ratio in the cross section corresponds to the volume ratio in the alloy. In the measurement of the volume ratio in the fine R-rich phase region, even if the alloy flakes were cast at the same time, the fine R
The change in the amount of the rich phase region is large between the flakes and within the same flakes. Therefore, the volume ratio of the fine R-rich phase region of the entire alloy is calculated by expanding the observation field of view at a low magnification of about 50 to 100 times, measuring about 5 to 10 thin pieces, and taking the average thereof. You can do it.

【0018】本発明のR−T−B系合金薄片(Nd3
1.5質量%)の断面の反射電子線像を図2に示す。図
2で左側が鋳型面側、右側が自由面側である。本発明の
合金薄片の特徴は、ストリップキャスト法で製造された
薄片において、鋳型面側の表面粗さを制御することによ
って、微細Rリッチ相領域の生成が抑制されていること
である。図2に示すように、本発明の合金薄片では、鋳
型面側に微細Rリッチ相領域は存在せず、鋳型面から自
由面に渡ってRリッチ相の分散状態が極めて均質であ
る。
The RTB-based alloy flakes (Nd3) of the present invention
The backscattered electron beam image of the cross section of (1.5 mass%) is shown in FIG. In FIG. 2, the left side is the mold surface side and the right side is the free surface side. A feature of the alloy flakes of the present invention is that, in the flakes manufactured by the strip casting method, generation of fine R-rich phase regions is suppressed by controlling the surface roughness on the mold surface side. As shown in FIG. 2, in the alloy flakes of the present invention, the fine R-rich phase region does not exist on the mold surface side, and the R-rich phase dispersion state is extremely uniform from the mold surface to the free surface.

【0019】ストリップキャスト法で製造された合金薄
片の鋳型面側表面の表面粗さと微細Rリッチ相領域の関
係は以下のように説明できる。合金薄片の鋳型面側表面
が平滑であるためには、鋳造用回転ロール表面が平滑
で、合金溶湯との濡れ性が良好である必要がある。この
ような状態では、溶湯から鋳型への熱伝達が極めて良好
(熱伝達係数が大きい)であり、合金の鋳型面側が過度
に急冷される。微細Rリッチ相領域は、鋳型と溶湯の熱
伝達係数が大きく合金の鋳型面側が過度に急冷される場
合に生成される傾向が強いと考えられる。
The relationship between the surface roughness of the surface of the alloy flakes produced by the strip casting method and the fine R-rich phase region can be explained as follows. In order for the alloy flakes to have a smooth surface on the mold surface side, the surface of the casting rotary roll must be smooth and have good wettability with the molten alloy. In such a state, the heat transfer from the molten metal to the mold is extremely good (the heat transfer coefficient is large), and the mold surface side of the alloy is excessively rapidly cooled. It is considered that the fine R-rich phase region has a strong tendency to be generated when the heat transfer coefficient of the mold and the molten metal is large and the mold surface side of the alloy is excessively rapidly cooled.

【0020】一方、鋳造用回転ロールの表面に細かな凸
凹を形成すると、合金の溶湯の粘性のため、溶湯は鋳造
用回転ロール表面の細かな凸凹に完全には入り込めず、
未接触の部分を生じ、熱伝達係数が低下する。その結
果、合金の鋳型面側が過度に急冷されることがなくな
り、微細Rリッチ相領域の生成が抑制できると考えられ
る。ここで鋳造用回転ロール表面の表面粗さを大きくす
ると、合金薄片の鋳型面側に多少なりともその凸凹が転
写されるため、合金薄片の鋳型面側表面の表面粗さも当
然大きくなる。鋳型面側表面が適当な表面粗さを有する
合金薄片で、Rリッチ相の生成が抑制される原因は、上
記のように溶湯が凝固する時の過度の熱伝達が抑制され
ているためと推定される。
On the other hand, if fine irregularities are formed on the surface of the casting rotary roll, the molten metal cannot completely enter the fine irregularities on the surface of the casting rotary roll due to the viscosity of the molten alloy.
The non-contact portion is generated, and the heat transfer coefficient is reduced. As a result, it is considered that the mold surface side of the alloy is not excessively rapidly cooled and the generation of the fine R-rich phase region can be suppressed. When the surface roughness of the surface of the casting rotary roll is increased, the unevenness is transferred to the mold surface side of the alloy flakes to some extent, so that the surface roughness of the mold surface side of the alloy flakes naturally increases. It is presumed that the reason why the formation of the R-rich phase is suppressed by the alloy flakes whose surface on the mold surface side has an appropriate surface roughness is that excessive heat transfer when the molten metal is solidified is suppressed as described above. To be done.

【0021】しかし、鋳造用回転ロール表面の表面粗さ
が過度に大きくなると、溶湯が表面の凸凹に入り込める
ようになり、熱伝達係数が再び大きくなると同時に、生
成した合金薄片の鋳型面側の表面粗さがさらに大きくな
る。この場合には、微細Rリッチ相領域の体積率も再び
増加するようになる。
However, if the surface roughness of the surface of the rotating roll for casting becomes excessively large, the molten metal will be able to enter the irregularities of the surface, and the heat transfer coefficient will increase again, and at the same time, the surface of the produced alloy flakes on the mold surface side. The roughness becomes even larger. In this case, the volume ratio of the fine R-rich phase region also increases again.

【0022】従来のSC法でも図2に示すような均質な
組織を有する合金薄片はある程度含まれていたが、図1
に示すような微細Rリッチ相領域を多量に含んだ薄片も
同時に生成されてしまうため、結果として合金全体での
組織の均質性に問題を生じていた。このような従来のS
C法で作製した合金組織のばらつきは、微妙な鋳造用回
転ロールの表面状態、溶湯の供給状態、雰囲気など、ロ
ール表面と溶湯との接触状態の違いに起因するものと考
えられる。これに対して本発明では、鋳造用回転ロール
の表面に適当な大きさの凸凹を形成したため、溶湯が凝
固する時の過度の熱伝達が無くなり、微細Rリッチ相領
域の生成を再現良く抑制することができる。その結果、
図2に示すような均質な組織を有する合金薄片を高い収
率で製造することができるようになった。
Even in the conventional SC method, alloy flakes having a homogeneous structure as shown in FIG. 2 were contained to some extent.
Since flakes containing a large amount of fine R-rich phase regions as shown in (3) are also generated at the same time, as a result, there is a problem in the homogeneity of the structure of the entire alloy. Such a conventional S
It is considered that the variation in the alloy structure produced by the C method is caused by the difference in the contact state between the roll surface and the molten metal, such as the subtle surface state of the rotating roll for casting, the supply state of the molten metal, and the atmosphere. On the other hand, in the present invention, since unevenness of an appropriate size is formed on the surface of the casting rotary roll, excessive heat transfer when the molten metal is solidified is eliminated, and the generation of the fine R-rich phase region is reproducibly suppressed. be able to. as a result,
It has become possible to manufacture alloy flakes having a uniform structure as shown in FIG. 2 in a high yield.

【0023】さらに本発明の詳細を説明する。 (1)ストリップキャスト法 本発明はストリップキャスト法で鋳造された希土類磁石
用のR−T−B系合金薄片に関するものである。ここで
は、R−T−B系合金のストリップキャスト法による鋳
造について説明する。図4にストリップキャスト法によ
る鋳造のための装置の模式図を示す。通常、R−T−B
系合金は、その活性な性質のため真空または不活性ガス
雰囲気中で、耐火物ルツボ1を用いて溶解される。溶解
された合金の溶湯は1350〜1500℃で所定の時間
保持された後、必要に応じて整流機構、スラグ除去機構
を設けたタンディッシュ2を介して、内部を水冷された
鋳造用回転ロール3に供給される。溶湯の供給速度と回
転ロールの回転数は、求める合金の厚さに応じて適当に
制御させる。一般に回転ロールの回転数は、周速度にし
て1〜3m/s程度である。鋳造用回転ロールの材質
は、熱伝導性がよく入手が容易である点から銅、或いは
銅合金が適当である。回転ロールの材質やロールの表面
状態によっては、鋳造用回転ロールの表面にメタルが付
着しやすいため、必要に応じて清掃装置を設置すると、
鋳造されるR−T−B系合金の品質が安定する。回転ロ
ール上で凝固した合金4はタンディッシュの反対側でロ
ールから離脱し、捕集コンテナ5で回収される。この捕
集コンテナに加熱、冷却機構を設けることで正常部のR
リッチ相の組織の状態を制御できる。
Further details of the present invention will be described. (1) Strip casting method The present invention relates to an RTB-based alloy flakes for rare earth magnets cast by the strip casting method. Here, casting of the R-T-B type alloy by the strip casting method will be described. FIG. 4 shows a schematic diagram of an apparatus for casting by the strip casting method. Usually R-T-B
Due to its active nature, the system alloys are melted with the refractory crucible 1 in a vacuum or an inert gas atmosphere. The molten metal of the melted alloy is kept at 1350 to 1500 ° C. for a predetermined time, and then, if necessary, through a tundish 2 provided with a rectifying mechanism and a slag removing mechanism, the inside of which is a water-cooled rotating roll for casting 3 Is supplied to. The supply rate of the molten metal and the rotation speed of the rotating roll are appropriately controlled according to the desired alloy thickness. Generally, the rotation speed of the rotating roll is about 1 to 3 m / s in terms of peripheral speed. Copper or a copper alloy is suitable as the material of the casting rotary roll because it has good thermal conductivity and is easily available. Depending on the material of the rotating roll and the surface condition of the roll, metal easily attaches to the surface of the rotating roll for casting, so if a cleaning device is installed as necessary,
The quality of the cast R-T-B type alloy is stable. The alloy 4 solidified on the rotating roll separates from the roll on the opposite side of the tundish and is collected in the collecting container 5. By installing a heating and cooling mechanism in this collection container, R
The state of rich phase tissue can be controlled.

【0024】本発明の合金薄片の厚さは、0.1mm以
上0.5mm以下とするのが好ましい。合金薄片の厚さ
が0.1mmより薄いと凝固速度が過度に増加し、結晶
粒径が細かくなりすぎ、磁石化工程での微粉砕粒度近く
になるため、磁石の配向率、磁化の低下を招くという問
題がある。また合金薄片の厚さが0.5mmより厚いと
凝固速度低下によるNd−rich相の分散性の低下、
α‐Feの析出などの問題を招く。
The thickness of the alloy flakes of the present invention is preferably 0.1 mm or more and 0.5 mm or less. If the thickness of the alloy flakes is less than 0.1 mm, the solidification rate will increase excessively, the crystal grain size will become too fine, and it will be close to the finely pulverized grain size in the magnetizing step, so the orientation ratio and magnetization of the magnet will decrease. There is a problem of inviting. Further, when the thickness of the alloy flakes is more than 0.5 mm, the dispersibility of the Nd-rich phase decreases due to the decrease in solidification rate.
This causes problems such as precipitation of α-Fe.

【0025】(2)鋳造用回転ロールの鋳造面の表面粗
さ 本発明においては、ストリップキャスト法でR−T−B
系磁石合金を鋳造する場合、鋳造用回転ロールの鋳造面
の表面粗さを、十点平均粗さ(Rz)で5μm以上10
0μm以下とする。ここで表面粗さとは、JIS B
0601「表面粗さの定義と表示」に示される条件で測定
したもので、十点平均粗さ(Rz)もその中に定義され
ている。具体的にはまず、測定面に直角な平面で切断し
たときの切り口(断面曲線)から、所定の波長より長い
表面うねり成分を位相補償型高域フィルタ等で除去した
曲線(粗さ曲線)を求める。その粗さ曲線から、その平
均線の方向に基準長さだけ抜き取り、この抜き取り部分
の平均線から、最も高い山頂から5番目までの山頂の標
高(Yp)の絶対値の平均値と、最も低い谷底から5番
目までの谷底の標高(Yv)の絶対値の平均値との和を
十点平均粗さ(Rz)と呼ぶ。基準長さ等の測定パラメ
ータは、表面粗さに対して標準値が上記JISで指定さ
れている。合金薄片の鋳型面側の表面粗さは、変動が大
きい場合もあり、少なくとも5枚の薄片について測定
し、その平均値を使用すべきである。表面粗さが5μm
以下では鋳造用回転ロール表面の凸凹の効果が得られ
ず、溶湯との接触が良好なため熱伝達係数が大きい。そ
の結果、合金中に微細Rリッチ相領域を生成しやすくな
る。一方、鋳造用回転ロールの表面粗さが5μm以上で
あると、合金溶湯の粘性のため、溶湯は回転ロールの表
面の細かな凸凹に完全には入り込めず、未接触の部分を
生じ、熱伝達係数が低下する。その結果、合金中での微
細Rリッチ相の生成を抑制することができる。表面粗さ
は、十点平均粗さ(Rz)で10μm以上であるとさら
に好ましい。
(2) Surface Roughness of Cast Surface of Rotating Roll for Casting In the present invention, the strip casting method R-T-B is used.
When casting a magnet-based magnet alloy, the surface roughness of the casting surface of the rotating roll for casting is 10 μm or more in terms of ten-point average roughness (Rz) and is 10 μm or more.
It is set to 0 μm or less. Here, the surface roughness means JIS B
Measured under the conditions shown in 0601 "Definition and display of surface roughness", and the ten-point average roughness (Rz) is also defined therein. Specifically, first, a curve (roughness curve) obtained by removing a surface waviness component longer than a predetermined wavelength with a phase compensation type high-pass filter etc. from the cut (cross-sectional curve) when cut on a plane perpendicular to the measurement surface. Ask. From the roughness curve, the reference length is extracted in the direction of the average line, and from the average line of this extracted portion, the average value of the absolute values of the altitudes (Yp) of the 5th peak from the highest peak and the lowest absolute value. The sum of the absolute value of the absolute value (Yv) of the valley bottom to the fifth from the valley bottom is called the ten-point average roughness (Rz). Regarding the measurement parameters such as the reference length, standard values are specified by the above JIS for the surface roughness. The surface roughness of the alloy flakes on the mold surface side may fluctuate greatly, and at least 5 flakes should be measured and the average value should be used. Surface roughness is 5 μm
In the following, the effect of unevenness on the surface of the casting rotating roll cannot be obtained, and the contact with the molten metal is good, so that the heat transfer coefficient is large. As a result, it becomes easy to generate a fine R-rich phase region in the alloy. On the other hand, when the surface roughness of the casting rotary roll is 5 μm or more, the molten alloy cannot be completely entered into the fine irregularities on the surface of the rotary roll due to the viscosity of the molten alloy, resulting in a non-contact portion and heat. The transmission coefficient decreases. As a result, generation of fine R-rich phase in the alloy can be suppressed. The surface roughness is more preferably 10 μm or more in terms of ten-point average roughness (Rz).

【0026】鋳造用回転ロールの表面粗さが100μm
を超えると、回転ロール表面の凸凹の深さが増すと共
に、一般に凸凹間の間隔も大きくなるため、溶湯が回転
ロールの表面に沿って隙間無く入り込めるようになる。
そのため、熱伝達係数が再び過度に大きくなり易く、合
金中に微細Rリッチ相領域を生成し易くなる。そのため
鋳造用回転ロールの表面粗さは、100μm以下、好ま
しくは50μm以下とする。
The surface roughness of the rotating roll for casting is 100 μm.
If it exceeds, the depth of the irregularities on the surface of the rotating roll increases and the interval between the irregularities generally increases, so that the molten metal can enter the surface of the rotating roll without any gap.
Therefore, the heat transfer coefficient is likely to become excessively large again, and the fine R-rich phase region is likely to be generated in the alloy. Therefore, the surface roughness of the casting rotary roll is 100 μm or less, preferably 50 μm or less.

【0027】R−T−B系合金薄片の表面粗さ 本発明においては、希土類磁石用のR−T−B系合金薄
片の少なくとも片面の表面粗さが、十点平均粗さ(R
z)で5μm以上50μm以下であることを特徴とす
る。表面に上記の粗さの凸凹が形成される面は、ストリ
ップキャスト法で鋳造する際に凝固が始まる鋳型面側表
面であり、回転ロールの表面の凸凹が反映された表面と
なる。上記した通り、この表面の表面粗さが5μm以下
或いは50μm以上では、微細Rリッチ相領域が生成す
る体積率が大きくなり、合金中のRリッチ相の分散状態
の不均一をもたらす。その結果、焼結磁石の製造工程で
微粉砕後の合金粉末の粒度分布を広くし、磁石の特性を
悪化するため好ましくない。本発明において合金薄片の
片面の表面粗さは、5μm以上50μm以下、さらに好
ましくは7μm以上25μm以下とする。
Surface Roughness of R-T-B Alloy Flakes In the present invention, at least one surface of the R-T-B alloy flakes for rare earth magnets has a ten-point average roughness (R).
z) is 5 μm or more and 50 μm or less. The surface on which the unevenness having the above-mentioned roughness is formed is the surface of the mold surface on which solidification begins during casting by the strip casting method, and the surface reflects the unevenness of the surface of the rotating roll. As described above, when the surface roughness of this surface is 5 μm or less or 50 μm or more, the volume ratio generated in the fine R-rich phase region is large, and the dispersion state of the R-rich phase in the alloy is nonuniform. As a result, the particle size distribution of the alloy powder after fine pulverization is widened in the manufacturing process of the sintered magnet, and the characteristics of the magnet are deteriorated, which is not preferable. In the present invention, the surface roughness of one surface of the alloy flakes is 5 μm or more and 50 μm or less, more preferably 7 μm or more and 25 μm or less.

【0028】合金中の微細Rリッチ相領域の体積率 本発明では、R−T−B系合金中の微細Rリッチ相領域
の体積率は20%以下となる。その結果、焼結磁石の工
程で微粉砕後の合金粉末の粒度分布が狭く揃ったものに
なるため、特性にバラツキのない均質な焼結磁石を得る
ことができる。
Volume Ratio of Fine R-Rich Phase Region in Alloy In the present invention, the volume ratio of fine R-rich phase region in the R-T-B type alloy is 20% or less. As a result, the particle size distribution of the alloy powder after fine pulverization becomes narrow and uniform in the step of producing a sintered magnet, so that it is possible to obtain a homogeneous sintered magnet with no variation in characteristics.

【0029】希土類焼結磁石用合金粉末、希土類焼結磁
石の製造方法 本発明により鋳造したR−T−B系合金からなる希土類
磁石用合金薄片からは、粉砕、成型、焼結の工程を経
て、高特性の異方性焼結磁石を製造することができる。
Method for Producing Alloy Powder for Rare Earth Sintered Magnet, Rare Earth Sintered Magnet: The alloy flakes for a rare earth magnet made of the R—T—B type alloy cast according to the present invention are crushed, molded and sintered. It is possible to manufacture a high-performance anisotropic sintered magnet.

【0030】合金薄片の粉砕は、通常、水素解砕、微粉
砕の順で行なわれ、3μm(FSSS)程度の合金粉末
が作製される。ここで、水素解砕は、前工程の水素吸蔵
工程と後工程の脱水素工程に分けられる。水素吸蔵工程
では、266hPa〜0.3MPa・Gの圧力の水素ガ
ス雰囲気で、主に合金薄片のR−リッチ相に水素を吸蔵
させ、この時に生成されるR−水素化物によりR−リッ
チ相が体積膨張することを利用して、合金薄片自体を微
細に割るかあるいは無数の微細な割れ目を生じさせる。
この水素吸蔵は常温〜600℃程度の範囲で実施される
が、R−リッチ相の体積膨張を大きくして効率良く割る
ためには、水素ガス雰囲気の圧力を高くすると共に、常
温〜100℃程度の範囲で実施することが好ましい。好
ましい処理時間は1時間以上である。この水素吸蔵工程
により生成したR−水素化物は大気中では不安定であり
酸化され易いため、水素吸蔵処理の後、200〜600
℃程度で1.33hPa以下の真空中に合金薄片を保持
する脱水素処理を行なうことが好ましい。この処理によ
り、大気中で安定なR-水素化物に変化させることがで
きる。脱水素処理の好ましい処理時間は30分以上であ
る。水素吸蔵後から焼結までの各工程で酸化防止のため
の雰囲気管理がなされている場合は、脱水素処理を省く
こともできる。
The crushing of the alloy flakes is usually carried out in the order of hydrogen crushing and fine crushing to produce an alloy powder of about 3 μm (FSSS). Here, the hydrogen disintegration is divided into a hydrogen storage step as a previous step and a dehydrogenation step as a subsequent step. In the hydrogen storage step, hydrogen is stored mainly in the R-rich phase of the alloy flakes in a hydrogen gas atmosphere with a pressure of 266 hPa to 0.3 MPa · G, and the R-rich phase is generated by the R-hydride formed at this time. Utilizing the volume expansion, the alloy flakes themselves are finely cracked or innumerable fine cracks are generated.
This hydrogen storage is carried out in the range of room temperature to 600 ° C., but in order to increase the volume expansion of the R-rich phase and efficiently divide it, the pressure of the hydrogen gas atmosphere is increased and room temperature to 100 ° C. It is preferable to carry out in the range of. The preferred processing time is 1 hour or more. The R-hydride produced in this hydrogen storage step is unstable in the atmosphere and is easily oxidized.
It is preferable to carry out a dehydrogenation treatment in which the alloy flakes are held in a vacuum of 1.33 hPa or less at about ° C. By this treatment, it is possible to change to an R-hydride that is stable in the atmosphere. A preferable treatment time for the dehydrogenation treatment is 30 minutes or longer. The dehydrogenation treatment can be omitted if the atmosphere is controlled to prevent oxidation in each process from hydrogen absorption to sintering.

【0031】本発明のストリップキャスト法により製造
されたR−T−B系合金薄片は、Rリッチ相が均一分散
していることが特徴である。好ましいRリッチ相の間隔
の平均値は、磁石の製造工程での粉砕粒度に依存する
が、一般に3μmから8μmである。水素解砕では、R
リッチ相に沿って、或いはRリッチ相を起点にしてクラ
ックが導入される。したがって、水素解砕してから微粉
砕することで、合金中に均一かつ微細に分散したRリッ
チ相の効果を最大限に引き出すことが可能であり、非常
に粒度分布の狭い合金粉末を効率良く生産することが可
能である。この水素解砕の工程を行わずに焼結磁石を作
製した場合、作製された焼結磁石の特性は劣ったものと
なる。(M.Sagawa et al. Proce
edingof the 5th internati
onal conferenceon Advance
d materials,Beijing China
(1999))
The R-T-B type alloy flakes produced by the strip casting method of the present invention are characterized in that the R-rich phase is uniformly dispersed. The preferable average value of the R-rich phase interval depends on the crushed particle size in the magnet manufacturing process, but is generally 3 μm to 8 μm. In hydrogen disintegration, R
Cracks are introduced along the rich phase or starting from the R rich phase. Therefore, by crushing with hydrogen and then pulverizing, it is possible to maximize the effect of the R-rich phase uniformly and finely dispersed in the alloy, and to efficiently produce alloy powder with a very narrow particle size distribution. It is possible to produce. If a sintered magnet is produced without performing this hydrogen disintegration step, the characteristics of the produced sintered magnet will be inferior. (M. Sagawa et al. Proce
edingof the 5th internet
onal conferenceon Advance
d materials, Beijing China
(1999))

【0032】微粉砕とは、R−T−B系合金薄片を3μ
m(FSSS)程度まで粉砕することである。微粉砕の
ための粉砕装置としては、生産性が良く、狭い粒度分布
を得られることから、ジェットミル装置が最適である。
本発明の微細Rリッチ相領域の少ない合金薄片を利用す
れば、粒度分布が狭い合金粉末を高効率で、安定性良く
作製することができる。微粉砕を行う際の雰囲気は、ア
ルゴンガスや窒素ガスなどの不活性ガス雰囲気とする。
これらの不活性ガス中に2質量%以下、好ましくは1質
量%以下の酸素を混入させてもよい。このことにより粉
砕効率が向上するとともに、粉砕後の合金粉末の酸素濃
度を1000〜10000ppmとすることができ、合
金粉末を適度に安定化させることができる。また同時
に、磁石を燒結する際の結晶粒の異常成長を抑制するこ
ともできる。
Fine pulverization means that the RTB-based alloy flakes are 3 μm.
It is to grind to about m (FSSS). As a pulverizing device for fine pulverization, a jet mill device is most suitable because it has good productivity and a narrow particle size distribution can be obtained.
By using the alloy flakes having a small amount of the fine R-rich phase region of the present invention, an alloy powder having a narrow particle size distribution can be produced with high efficiency and stability. The atmosphere for fine pulverization is an inert gas atmosphere such as argon gas or nitrogen gas.
2% by mass or less, preferably 1% by mass or less of oxygen may be mixed in these inert gases. As a result, the pulverization efficiency is improved, and the oxygen concentration of the alloy powder after pulverization can be set to 1,000 to 10,000 ppm, and the alloy powder can be appropriately stabilized. At the same time, it is possible to suppress abnormal growth of crystal grains when the magnet is sintered.

【0033】上記の合金粉末を磁場中で成型する場合、
合金粉末と金型内壁との摩擦を低減し、また粉末どうし
の摩擦も低減させて配向性を向上させるため、粉末には
ステアリン酸亜鉛等の潤滑剤を添加することが好まし
い。好ましい添加量は0.01〜1質量%である。潤滑
材の添加は微粉砕前でも後でもよいが、磁場中成形前
に、アルゴンガスや窒素ガスなどの不活性ガス雰囲気中
でV型ブレンダー等を用いて十分に混合することが好ま
しい。
When the above alloy powder is molded in a magnetic field,
A lubricant such as zinc stearate is preferably added to the powder in order to reduce the friction between the alloy powder and the inner wall of the mold and also reduce the friction between the powders to improve the orientation. The preferable addition amount is 0.01 to 1% by mass. The lubricant may be added before or after fine pulverization, but it is preferable to sufficiently mix it with a V-type blender or the like in an inert gas atmosphere such as argon gas or nitrogen gas before molding in a magnetic field.

【0034】3μm(FSSS)程度まで粉砕された合
金粉末は、磁場中成型機でプレス成型される。金型は、
キャビティ内の磁界方向を考慮して、磁性材と非磁性材
を組み合わせて作製される。成型圧力は0.5〜2t/
cm2が好ましい。成型時のキャビティ内の磁界は5〜
20kOeが好ましい。また、成型時の雰囲気はアルゴ
ンガスや窒素ガスなどの不活性ガス雰囲気が好ましい
が、上述の耐酸化処理した粉体の場合、大気中でも可能
である。また成形は、冷間静水圧成形(CIP:Col
d Isostatic Press)或いはゴム型を
利用した擬似静水圧プレス(RIP:Rubber I
sostatic Press)でも可能である。CI
PやRIPでは、静水圧的に圧縮されるため、成形時の
配向の乱れが少なく、金型成形よりも配向率の増加が可
能であり、最大磁気エネルギー積を増加することができ
る。
The alloy powder pulverized to about 3 μm (FSSS) is pressed by a magnetic field molding machine. The mold is
It is manufactured by combining a magnetic material and a non-magnetic material in consideration of the magnetic field direction in the cavity. Molding pressure is 0.5-2t /
cm 2 is preferred. The magnetic field in the cavity during molding is 5
20 kOe is preferred. The atmosphere at the time of molding is preferably an inert gas atmosphere such as argon gas or nitrogen gas, but in the case of the above-mentioned powder subjected to the oxidation resistance treatment, it is also possible in the air. Also, the molding is cold isostatic pressing (CIP: Col
d Isostatic Press) or a rubber mold for quasi-hydrostatic press (RIP: Rubber I)
Sostatic Press) is also possible. CI
Since P and RIP are hydrostatically compressed, the disorder of the orientation during molding is small, the orientation ratio can be increased more than that by die molding, and the maximum magnetic energy product can be increased.

【0035】成型体の焼結は、1000〜1100℃で
行なわれる。焼結の雰囲気としては、アルゴンガス雰囲
気または1.33×10-2hPa以下の真空雰囲気が好
ましい。焼結温度での保持時間は1時間以上が好まし
い。また焼結の際には、焼結温度に到達する前に、成型
体中の潤滑剤と合金粉末に含まれる水素はできるだけ除
去しておく必要がある。潤滑剤の好ましい除去条件は、
1.33×10-2hPa以下の真空中または減圧したA
rフロー雰囲気中で、300〜500℃で30分以上保
持することである。また、水素の好ましい除去条件は、
1.33×10-2hPa以下の真空中で、700〜90
0℃で30分以上保持することである。
Sintering of the molded body is performed at 1000 to 1100 ° C. The sintering atmosphere is preferably an argon gas atmosphere or a vacuum atmosphere of 1.33 × 10 -2 hPa or less. The holding time at the sintering temperature is preferably 1 hour or more. Further, upon sintering, it is necessary to remove as much hydrogen as possible from the lubricant and alloy powder in the molded body before reaching the sintering temperature. The preferable conditions for removing the lubricant are
A under vacuum of 1.33 × 10 -2 hPa or reduced pressure A
It is to hold at 300 to 500 ° C. for 30 minutes or more in an r-flow atmosphere. Further, the preferable conditions for removing hydrogen are:
700 to 90 in a vacuum of 1.33 × 10 -2 hPa or less
It is to hold at 0 ° C for 30 minutes or more.

【0036】焼結が終了した後、焼結磁石の保磁力向上
のため、必要に応じて500〜650℃で熱処理するこ
とができる。この場合の好ましい雰囲気は、アルゴンガ
ス雰囲気または真空雰囲気であり、好ましい保持時間は
30分以上である。
After the completion of sintering, heat treatment can be performed at 500 to 650 ° C., if necessary, in order to improve the coercive force of the sintered magnet. A preferable atmosphere in this case is an argon gas atmosphere or a vacuum atmosphere, and a preferable holding time is 30 minutes or more.

【0037】また、本発明で作製した微細Rリッチ領域
の生成を抑制した希土類磁石用R−T−B系合金薄片
は、焼結磁石以外に、ボンド磁石の作製のためにも好適
に用いることができる。以下に、本発明の希土類磁石用
合金薄片からボンド磁石を作製する場合について説明す
る。
The RTB-based alloy flakes for rare earth magnets produced in the present invention in which the generation of fine R-rich regions is suppressed can be suitably used for producing bonded magnets as well as sintered magnets. You can The case of producing a bonded magnet from the alloy flakes for rare earth magnets of the present invention will be described below.

【0038】本発明のR−T−B系合金薄片は、まず必
要に応じて熱処理される。熱処理の目的は、合金中のα
‐Feの除去と結晶粒の粗大化である。ボンド磁石作製
のための合金粉末の作製には、HDDR(Hydrog
enation Disproportionatio
n Desorption Recombinatio
n)処理を行うが、合金中に存在するα‐FeはHDD
R処理工程では消去させることができず、磁性を低下さ
せる原因となる。そのため、α−FeはHDDR処理を
行う前に消去しておく必要がある。
The RTB-based alloy flakes of the present invention are first heat-treated if necessary. The purpose of heat treatment is α in the alloy
-Removal of Fe and coarsening of crystal grains. HDDR (Hydrogen) is used for producing alloy powder for producing bonded magnets.
ation Disproportionatio
n Desorption Recombinatio
n) is processed, but α-Fe existing in the alloy is HDD
It cannot be erased in the R treatment step, which causes a decrease in magnetism. Therefore, it is necessary to erase α-Fe before performing the HDDR process.

【0039】また、ボンド磁石用の合金粉末の平均粒径
は50〜300μmと焼結磁石用の合金粉末と比較する
と非常に大きい。HDDR法では、元の合金の結晶方位
と、再結合したサブミクロンの結晶粒の方位がある一定
の分布を持って一致する。そのため、原料の合金薄片中
にある二つ以上の結晶方位の異なる結晶粒が、一つのボ
ンド磁石用合金粉末に含まれてしまうと、合金粉末中に
結晶方位が大きく異なる領域を含むこととなり、磁石の
配向率が低下し、最大磁気エネルギー積が低下する。こ
れを避けるためには、合金薄片中の結晶粒径は、大きい
方が都合が良い。ストリップキャスト法のような急冷凝
固法で鋳造した合金では、結晶粒径が比較的小さくなる
傾向があるため、熱処理による結晶粒の粗大化は磁石特
性の向上に有効である。
The average particle size of the alloy powder for bonded magnets is 50 to 300 μm, which is very large as compared with the alloy powder for sintered magnets. In the HDDR method, the crystal orientation of the original alloy coincides with the orientation of the recombined submicron crystal grains with a certain distribution. Therefore, two or more crystal grains having different crystallographic orientations in the alloy flakes of the raw material are contained in one bond magnet alloy powder, which means that the alloy powders include regions having greatly different crystallographic orientations, The orientation ratio of the magnet decreases, and the maximum magnetic energy product decreases. In order to avoid this, it is convenient that the crystal grain size in the alloy flakes is large. In an alloy cast by a rapid solidification method such as a strip casting method, the crystal grain size tends to be relatively small, so coarsening of the crystal grain by heat treatment is effective for improving the magnet characteristics.

【0040】HDDR法によるボンド磁石用合金粉末の
製造方法については、多くの報告がある(例えば、T.
Takeshita et al,Proc.10th
Int. Workshop on RE magn
ets and theirapplication,
Kyoto, Vol.1 p551(198
9))。HDDR法による合金粉末の作製は、以下のよ
うに行われる。
Many reports have been made on the method for producing alloy powder for bonded magnets by the HDDR method (see, for example, T.W.
Takeshita et al, Proc. 10th
Int. Workshop on RE Magn
ets and theraplication,
Kyoto, Vol. 1 p551 (198
9)). The alloy powder is produced by the HDDR method as follows.

【0041】原料のR−T−B系合金薄片を水素雰囲気
中で加熱すると、700℃から850℃程度で磁性相の
214B相がα‐Fe、RH2、Fe2Bの3相に分解
する。次いで同程度の温度で、不活性ガス雰囲気、或い
は真空雰囲気に切り替えて水素を除去すると、分解して
いた相がサブミクロン程度の結晶粒径を有するR214
B相に再結合する。この際、合金の組成や処理条件を適
当に制御すると、再結合した各R214B相の磁化容易
軸(R214B相C軸)は、分解前の原料合金中のR2
14B相のC軸とほぼ平行となり、各微細結晶粒の磁化容
易軸方向が揃った異方性磁石粉とすることができる。
When the raw R-T-B type alloy flakes are heated in a hydrogen atmosphere, the R 2 T 14 B phase of the magnetic phase is mixed with α-Fe, RH 2 and Fe 2 B at about 700 to 850 ° C. Decompose into phases. Then, at a similar temperature, the atmosphere is switched to an inert gas atmosphere or a vacuum atmosphere to remove hydrogen, and the decomposed phase has an R 2 T 14 grain size of about submicron.
Rejoin phase B. At this time, if the composition of the alloy and the treatment conditions are appropriately controlled, the easy axis of magnetization of each recombined R 2 T 14 B phase (R 2 T 14 B phase C axis) becomes R 2 in the raw material alloy before decomposition. T
14 Anisotropy magnet powder can be obtained which is substantially parallel to the C axis of the B phase and in which the directions of easy axes of magnetization of each fine crystal grain are aligned.

【0042】HDDR処理を施した合金は、50〜30
0μm程度に粉砕し合金粉末とした後、樹脂と混合して
圧縮成形、射出成形などを施しボンド磁石とすることで
きる。
The alloy subjected to HDDR treatment is 50 to 30
The alloy powder may be pulverized to about 0 μm and then mixed with a resin to be compression-molded, injection-molded, etc., to obtain a bonded magnet.

【0043】微細Rリッチ相領域は上記した水素解砕処
理同様に、HDDR処理の際にも微粉化する傾向が強
い。HDDR法による磁粉の特性は、粒度が小さくなる
とともに低下する。そのため、本発明の微細Rリッチ相
の生成を抑制したR−T−B系合金は、HDDR処理で
のボンド磁石用磁粉の作製に好適に用いることができ
る。
The fine R-rich phase region has a strong tendency to be finely pulverized during the HDDR treatment as in the above-mentioned hydrogen disintegration treatment. The characteristics of the magnetic powder by the HDDR method decrease as the particle size decreases. Therefore, the RTB-based alloy of the present invention that suppresses the generation of the fine R-rich phase can be suitably used for producing magnetic powder for bonded magnets in HDDR treatment.

【0044】[0044]

【実施例】(実施例1)合金組成が、Nd:31.5質
量%、B:1.00質量%、Co:1.0質量%、A
l:0.30質量%、Cu:0.10質量%、残部鉄に
なるように、金属ネオジウム、フェロボロン、コバル
ト、アルミニウム、銅、鉄を配合した原料を、アルミナ
坩堝を使用して、アルゴンガスで1気圧の雰囲気中で、
高周波溶解炉で溶解し、溶湯をストリップキャスト法に
て鋳造して、合金薄片を作製した。鋳造用回転ロールの
直径は300mm、材質は純銅で、内部は水冷されてお
り、鋳造面の表面粗さは十点平均粗さ(Rz)で20μ
mに調整した。鋳造時のロールの周速度は0.9m/s
で、平均厚さ0.30mmの合金薄片を生成した。
EXAMPLES (Example 1) The alloy composition is Nd: 31.5% by mass, B: 1.00% by mass, Co: 1.0% by mass, A
l: 0.30% by mass, Cu: 0.10% by mass, and a raw material in which metal neodymium, ferroboron, cobalt, aluminum, copper, and iron are mixed so that the balance becomes iron, using an alumina crucible and argon gas. In an atmosphere of 1 atmosphere,
It was melted in a high frequency melting furnace, and the molten metal was cast by a strip casting method to prepare an alloy thin piece. The diameter of the rotating roller for casting is 300 mm, the material is pure copper, the inside is water-cooled, and the surface roughness of the casting surface is 20 μ in ten-point average roughness (Rz).
Adjusted to m. The peripheral speed of the roll during casting is 0.9 m / s
Then, alloy flakes having an average thickness of 0.30 mm were produced.

【0045】得られた合金薄片の鋳型面側表面の表面粗
さは、十点平均粗さ(Rz)で10μmであった。合金
薄片を10枚埋め込み、研摩した後、走査型電子顕微鏡
(SEM)で各合金薄片について反射電子線像(BE
I)を倍率100倍で撮影した。撮影した写真を画像解
析装置に取り込み測定したところ、微細Rリッチ相領域
の体積率は、3%以下であった。
The surface roughness of the surface of the obtained alloy flakes on the mold surface was 10 μm in terms of ten-point average roughness (Rz). After embedding 10 alloy flakes and polishing, a backscattered electron image (BE) was taken for each alloy flakes with a scanning electron microscope (SEM).
I) was photographed at 100 times magnification. When the photographed photograph was taken into an image analyzer and measured, the volume ratio of the fine R-rich phase region was 3% or less.

【0046】(実施例2)合金組成が、Nd28.5
%、B:1.00質量%、Co:1.0質量%、Al:
0.30質量%、Cu:0.10質量%、残部鉄になる
ように配合した原料を使用して、実施例1と同様の条件
でSC法で鋳造を行い、合金薄片を作製した。
(Example 2) The alloy composition was Nd 28.5.
%, B: 1.00% by mass, Co: 1.0% by mass, Al:
Using raw materials mixed so that 0.30% by mass, Cu: 0.10% by mass, and the balance being iron, casting was performed by the SC method under the same conditions as in Example 1 to produce an alloy flakes.

【0047】得られた合金薄片を実施例1と同様に評価
した結果、鋳型面側表面の表面粗さは十点平均粗さ(R
z)で9μmであり、微細Rリッチ相領域の体積率は、
3%以下であった。
The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 10-point average roughness (R
z) is 9 μm, and the volume ratio of the fine R-rich phase region is
It was 3% or less.

【0048】(比較例1)実施例1と同様の組成に原料
を配合し、実施例1と同様にして溶解およびSC法によ
る鋳造を実施した。但し、鋳造用回転ロール表面の表面
粗さは十点平均粗さ(Rz)で3.0μmであった。得
られた合金薄片を実施例1と同様に評価した結果、鋳型
面側表面の表面粗さは十点平均粗さ(Rz)で3.3μ
mであり、微細Rリッチ相領域の体積率は、41%であ
った。
(Comparative Example 1) Raw materials were blended in the same composition as in Example 1, and melting and casting by the SC method were carried out in the same manner as in Example 1. However, the surface roughness of the surface of the casting rotary roll was a ten-point average roughness (Rz) of 3.0 μm. The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 3.3 μ in ten-point average roughness (Rz).
m, and the volume ratio of the fine R-rich phase region was 41%.

【0049】(比較例2)実施例1と同様の組成に原料
を配合し、実施例1と同様にして溶解およびSC法によ
る鋳造を実施した。但し、鋳造用回転ロール表面の表面
粗さは十点平均粗さ(Rz)で120μmであった。得
られた合金薄片を実施例1と同様に評価した結果、鋳型
面側表面の表面粗さは十点平均粗さ(Rz)で86μm
であり、微細Rリッチ相領域の体積率は、29%であっ
た。
(Comparative Example 2) Raw materials were mixed in the same composition as in Example 1, and melting and casting by the SC method were carried out in the same manner as in Example 1. However, the surface roughness of the surface of the rotating roll for casting was 120 μm in terms of ten-point average roughness (Rz). The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 86 μm in terms of ten-point average roughness (Rz).
The volume ratio of the fine R-rich phase region was 29%.

【0050】次に焼結磁石を作製した実施例を説明す
る。 (実施例3)実施例1で得られた合金薄片を水素解砕
し、ジェットミルで微粉砕した。水素解砕工程の前工程
である水素吸蔵工程の条件は、100%水素雰囲気、2
気圧で1時間保持とした。水素吸蔵反応開始時の金属片
の温度は25℃であった。また後工程である脱水素工程
の条件は、0.133hPaの真空中で、500℃で1
時間保持とした。この粉末に、ステアリン酸亜鉛粉末を
0.07質量%添加し、100%窒素雰囲気中でV型ブ
レンダーで十分混合した後、ジェットミル装置で微粉砕
した。粉砕時の雰囲気は、4000ppmの酸素を混合
した窒素雰囲気中とした。その後、再度、100%窒素
雰囲気中でV型ブレンダーで十分混合した。得られた粉
体の酸素濃度は2500ppmで、粉体の炭素濃度の分
析から、粉体に混合されているステアリン酸亜鉛粉末は
0.05質量%であると計算された。また、レーザー回
折式粒度分布測定機で測定した結果、平均粒度D50は
5.10μm、D10は2.10μm、D90は8.6
2μmであった。
Next, an example of producing a sintered magnet will be described. (Example 3) The alloy flakes obtained in Example 1 were hydrolyzed and finely pulverized with a jet mill. The conditions for the hydrogen storage process, which is a process prior to the hydrogen disintegration process, are 100% hydrogen atmosphere, 2
It was kept at atmospheric pressure for 1 hour. The temperature of the metal piece at the start of the hydrogen storage reaction was 25 ° C. The condition of the dehydrogenation process, which is a post process, is 1 at 500 ° C. in a vacuum of 0.133 hPa.
It was supposed to hold time. To this powder, 0.07 mass% of zinc stearate powder was added, thoroughly mixed in a 100% nitrogen atmosphere with a V-type blender, and then finely pulverized with a jet mill device. The atmosphere at the time of pulverization was a nitrogen atmosphere mixed with 4000 ppm of oxygen. Then, it was thoroughly mixed again with a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 2500 ppm, and from the analysis of the carbon concentration of the powder, it was calculated that the zinc stearate powder mixed in the powder was 0.05% by mass. As a result of measurement with a laser diffraction particle size distribution analyzer, the average particle size D50 is 5.10 μm, D10 is 2.10 μm, and D90 is 8.6.
It was 2 μm.

【0051】次に、得られた粉体を100%窒素雰囲気
中で横磁場中成型機でプレス成型した。成型圧は1.2
t/cm2であり、金型のキャビティ内の磁界は15kO
eとした。得られた成型体を、1.33×10-5hPa
の真空中、500℃で1時間保持し、次いで1.33×
10-5hPaの真空中、800℃で2時間保持した後、
さらに1.33×10-5hPaの真空中、1050℃で
2時間保持して焼結させた。焼結密度は7.5g/cm
3以上であり十分な大きさの密度となった。さらに、こ
の焼結体をアルゴン雰囲気中、560℃で1時間熱処理
し、焼結磁石を作製した。
Next, the obtained powder was press-molded by a molding machine in a transverse magnetic field in a 100% nitrogen atmosphere. Molding pressure is 1.2
t / cm 2 and the magnetic field in the mold cavity is 15 kO
e. The obtained molded body is 1.33 × 10 −5 hPa
In vacuum at 500 ° C. for 1 hour, then 1.33 ×
After holding at 800 ° C. for 2 hours in a vacuum of 10 −5 hPa,
Further, it was held in a vacuum of 1.33 × 10 −5 hPa at 1050 ° C. for 2 hours for sintering. Sintered density is 7.5 g / cm
The density was 3 or more, which was a sufficiently large density. Further, this sintered body was heat-treated in an argon atmosphere at 560 ° C. for 1 hour to produce a sintered magnet.

【0052】直流BHカーブトレーサーでこの焼結磁石
の磁気特性を測定した結果を表1に示す。また、焼結磁
石の原料の微粉の酸素濃度と粒度も表1に示す。
The results of measuring the magnetic properties of this sintered magnet with a DC BH curve tracer are shown in Table 1. Table 1 also shows the oxygen concentration and particle size of the fine powder of the raw material for the sintered magnet.

【0053】(比較例3、4)比較例1および2で得ら
れた合金薄片を、実施例3と同様の方法で粉砕して微粉
を得た。さらに実施例3と同様の成型、焼結の工程を経
て、焼結磁石を作製した。ただし、比較例1および2の
合金薄片から得られた微粉は焼結しにくくなったため、
焼結温度を20℃上昇させた。比較例1および2の合金
薄片をそれぞれ用いた焼結磁石の結果を比較例3、4と
する。
(Comparative Examples 3 and 4) The alloy flakes obtained in Comparative Examples 1 and 2 were pulverized in the same manner as in Example 3 to obtain fine powder. Further, a sintered magnet was produced through the same molding and sintering steps as in Example 3. However, since the fine powder obtained from the alloy flakes of Comparative Examples 1 and 2 became difficult to sinter,
The sintering temperature was increased by 20 ° C. The results of the sintered magnets using the alloy flakes of Comparative Examples 1 and 2 are Comparative Examples 3 and 4.

【0054】直流BHカーブトレーサーでこれらの焼結
磁石の磁気特性を測定した結果を表1に示す。また、そ
れぞれの焼結磁石の原料の微粉の酸素濃度と粒度も表1
に示す。
Table 1 shows the results of measuring the magnetic properties of these sintered magnets with a DC BH curve tracer. Table 1 also shows the oxygen concentration and particle size of the fine powder of the raw material of each sintered magnet.
Shown in.

【0055】[0055]

【表1】 [Table 1]

【0056】表1に示すように、比較例3、4では実施
例3と比較してD10が小さいことから、1μm程度よ
り小さい非常に細かい粉末の割合が大きい事がわかる。
このような非常に細かい粒は酸化しやすく、比較例3、
4では実施例3よりも微粉の酸素濃度が若干高くなって
いる。比較例3、4の磁石の磁気特性が実施例3と比較
して低い原因は、酸素濃度増加によって焼結しにくくな
り、焼結温度を20℃上昇させたことによる結晶粒の粗
大化が主因と考えられる。
As shown in Table 1, in Comparative Examples 3 and 4, D10 is smaller than that in Example 3, so that it is understood that the ratio of extremely fine powder smaller than about 1 μm is large.
Such very fine particles are easily oxidized, and Comparative Example 3,
In Example 4, the oxygen concentration of the fine powder is slightly higher than that in Example 3. The magnetic properties of the magnets of Comparative Examples 3 and 4 are lower than those of Example 3 mainly because sintering becomes difficult due to an increase in oxygen concentration and crystal grains become coarse due to an increase in sintering temperature of 20 ° C. it is conceivable that.

【0057】次にボンド磁石を作製した実施例を説明す
る。 (実施例4)合金組成が、Nd28.5%、B:1.0
0質量%、Co:10.0質量%、Ga:0.5質量
%、残部鉄になるように原料を配合し、実施例1と同様
の条件でSC法により合金薄片を鋳造した。得られた合
金薄片を実施例1と同様に評価した結果、鋳型面側表面
の表面粗さは十点平均粗さ(Rz)で9μm、微細Rリ
ッチ相領域の体積率は3%以下であり、α‐Feは含ん
でいなかった。
Next, an example of producing a bonded magnet will be described. (Example 4) Alloy composition is Nd 28.5%, B: 1.0
Raw materials were blended so that 0 mass%, Co: 10.0 mass%, Ga: 0.5 mass% and the balance iron, and alloy flakes were cast by the SC method under the same conditions as in Example 1. The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 9 μm in ten-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 3% or less. , Α-Fe was not included.

【0058】上記の合金薄片を1気圧の水素中、820
℃で1時間保持した後、同温度で真空で1時間保持する
HDDR処理を実施した。得られた合金粉を150μm
以下にブラウンミルで粉砕し、2.5質量%のエポキシ
樹脂を加えて1.5Tの磁場を加えて圧縮成形してボン
ド磁石を得た。得られたボンド磁石の磁気特性を表1に
示す。
The above alloy flakes were placed in hydrogen at 1 atm for 820
After holding at 0 ° C. for 1 hour, an HDDR treatment of holding at the same temperature in vacuum for 1 hour was performed. The resulting alloy powder is 150 μm
It was crushed by a brown mill below, 2.5 mass% of epoxy resin was added, and a magnetic field of 1.5 T was applied to perform compression molding to obtain a bonded magnet. Table 1 shows the magnetic characteristics of the obtained bonded magnet.

【0059】(比較例5)実施例4と同様の組成に原料
を配合し、比較例1と同様にして溶解およびSC法によ
る鋳造を実施した。得られた合金薄片を実施例1と同様
に評価した結果、鋳型面側表面の表面粗さは十点平均粗
さ(Rz)で3.1μm、微細Rリッチ相領域の体積率
は、40%であった。
(Comparative Example 5) Raw materials were mixed in the same composition as in Example 4, and melting and casting by the SC method were carried out in the same manner as in Comparative Example 1. The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 3.1 μm in ten-point average roughness (Rz), and the volume ratio of the fine R-rich phase region was 40%. Met.

【0060】次いで、実施例4と同様の方法でボンド磁
石を作製した。得られたボンド磁石の磁気特性を表1に
示す。
Then, a bonded magnet was produced in the same manner as in Example 4. Table 1 shows the magnetic characteristics of the obtained bonded magnet.

【0061】表1から本実施例4と比較例5のボンド磁
石では、本実施例4の磁気特性が優れていることがわか
る。比較例5では、微細Rリッチ領域の体積率が高く、
HDDR処理、または粉砕後に50μm以下の比較的細
かい粒の量が多いために、磁性が低いものと推定でき
る。
It can be seen from Table 1 that the bonded magnets of Example 4 and Comparative Example 5 have excellent magnetic properties in Example 4. In Comparative Example 5, the volume ratio of the fine R-rich region is high,
It can be estimated that the magnetism is low because the amount of relatively fine particles of 50 μm or less after HDDR treatment or pulverization is large.

【0062】[0062]

【発明の効果】本発明の合金薄片は、微細Rリッチ領域
の体積率が少なく、合金中のRリッチ相の分散状態の均
質性が、従来のSC材よりもさらに良好である。そのた
め、本合金薄片から製造した焼結磁石やHDDR法によ
るボンド磁石は、従来のものよりも優れた磁石特性を発
現する。
The alloy flakes of the present invention have a small volume ratio in the fine R-rich region, and the homogeneity of the dispersed state of the R-rich phase in the alloy is better than that of the conventional SC material. Therefore, the sintered magnet manufactured from the alloy flakes and the bonded magnet manufactured by the HDDR method exhibit superior magnetic properties to the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のSC法で製造した微細Rリッチ相を含む
希土類磁石用合金薄片の断面組織を示す図である。
FIG. 1 is a view showing a cross-sectional structure of an alloy flakes for a rare earth magnet containing a fine R-rich phase produced by a conventional SC method.

【図2】本発明に係る希土類磁石用合金薄片の断面組織
を示す図である。
FIG. 2 is a view showing a cross-sectional structure of an alloy thin piece for a rare earth magnet according to the present invention.

【図3】図1の断面組織における微細Rリッチ領域と正
常部との境界に線を引いた図である。
3 is a diagram in which a line is drawn on a boundary between a fine R-rich region and a normal portion in the cross-sectional structure of FIG.

【図4】ストリップキャスト法の鋳造装置の模式図であ
る。
FIG. 4 is a schematic diagram of a casting device of a strip casting method.

【符号の説明】[Explanation of symbols]

1 耐火物ルツボ 2 タンディッシュ 3 鋳造用回転ロール 4 合金 5 捕集コンテナ 1 refractory crucible 2 tundish 3 Casting rotating rolls 4 alloy 5 Collection container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 9/08 B22F 9/08 M H01F 1/053 H01F 1/04 H Fターム(参考) 4E004 DB02 DB14 LC01 TA03 4K017 AA04 BA06 BB01 BB05 BB06 BB12 CA03 CA07 DA04 EA03 EA08 EC02 4K018 BA18 BB01 BB04 BB06 BD01 KA45 5E040 AA04 BB03 BD01 CA01 NN06─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22F 9/08 B22F 9/08 MH01F 1/053 H01F 1/04 HF term (reference) 4E004 DB02 DB14 LC01 TA03 4K017 AA04 BA06 BB01 BB05 BB06 BB12 CA03 CA07 DA04 EA03 EA08 EC02 4K018 BA18 BB01 BB04 BB06 BD01 KA45 5E040 AA04 BB03 BD01 CA01 NN06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】R−T−B系合金(但し、RはYを含む希
土類元素のうち少なくとも1種、TはFeを必須とする
遷移金属、Bは硼素である。)からなる希土類磁石用合
金薄片において、厚さが0.1mm以上0.5mm以下
であり、該合金薄片の少なくとも片面の表面粗さが十点
平均粗さ(Rz)で5μm以上50μm以下であることを
特徴とする希土類磁石用合金薄片。
1. A rare earth magnet made of an RTB-based alloy (wherein R is at least one of rare earth elements including Y, T is a transition metal essentially containing Fe, and B is boron). A rare earth characterized in that the thickness of the alloy flakes is 0.1 mm or more and 0.5 mm or less, and the surface roughness of at least one surface of the alloy flakes is 5 μm or more and 50 μm or less in terms of ten-point average roughness (Rz). Alloy flakes for magnets.
【請求項2】該合金薄片の少なくとも片面の表面粗さが
十点平均粗さ(Rz)で7μm以上25μm以下であるこ
とを特徴とする請求項1に記載の希土類磁石用合金薄
片。
2. The alloy flakes for rare earth magnets according to claim 1, wherein at least one surface of said alloy flakes has a ten-point average roughness (Rz) of 7 μm or more and 25 μm or less.
【請求項3】合金中の微細Rリッチ相領域の体積率が2
0%以下であることを特徴とする請求項1又は2に記載
の希土類磁石用合金薄片。
3. The volume ratio of the fine R-rich phase region in the alloy is 2
It is 0% or less, The alloy flakes for rare earth magnets of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】ストリップキャスト法によるR−T−B系
合金からなる希土類磁石用合金薄片の製造方法におい
て、鋳造用回転ロールの鋳造面の表面粗さを十点平均粗
さ(Rz)で5μm以上100μm以下とすることを特徴
とする希土類磁石用合金薄片の製造方法。
4. A method for producing an alloy flakes for a rare earth magnet made of an R-T-B type alloy by a strip casting method, wherein the casting surface of a casting roll has a surface roughness of 10 μm in average roughness (Rz) of 5 μm. A method for producing an alloy flakes for a rare earth magnet, which is 100 μm or less.
【請求項5】ストリップキャスト法によるR−T−B系
合金からなる希土類磁石用合金薄片の製造方法におい
て、鋳造用回転ロールの鋳造面の表面粗さを十点平均粗
さ(Rz)で5μm以上100μm以下とすることを特徴
とする請求項1ないし3に記載の希土類磁石用合金薄片
の製造方法。
5. A method for producing an alloy flakes for a rare earth magnet made of an RTB-based alloy by a strip casting method, wherein the surface roughness of the casting surface of a casting rotary roll is 10 μm in terms of ten-point average roughness (Rz). The method for producing the alloy flakes for rare earth magnets according to claim 1, wherein the thickness is 100 μm or less.
【請求項6】鋳造用回転ロールの鋳造面の表面粗さを十
点平均粗さ(Rz)で10μm以上50μm以下とするこ
とを特徴とする請求項4または5に記載の希土類磁石用
合金薄片の製造方法。
6. The alloy flakes for rare earth magnets according to claim 4, wherein the surface roughness of the casting surface of the casting rotary roll is 10 μm or more and 50 μm or less in terms of ten-point average roughness (Rz). Manufacturing method.
【請求項7】請求項1ないし3に記載の希土類磁石用合
金薄片に水素解砕工程を施した後にジェットミル粉砕す
ることで作製される希土類焼結磁石用合金粉末。
7. An alloy powder for a rare earth sintered magnet, which is produced by subjecting the alloy flakes for a rare earth magnet according to claim 1 to a hydrogen crushing step and then pulverizing with a jet mill.
【請求項8】請求項7に記載の希土類磁石用合金粉末か
ら粉末冶金法で製造される希土類焼結磁石。
8. A rare earth sintered magnet produced from the alloy powder for a rare earth magnet according to claim 7 by a powder metallurgy method.
【請求項9】請求項1ないし3に記載の希土類磁石用合
金薄片を用いて、HDDR法で製造したボンド磁石用合
金粉末。
9. An alloy powder for a bonded magnet, which is produced by the HDDR method, using the alloy flakes for a rare earth magnet according to claim 1.
【請求項10】請求項9に記載のボンド磁石用合金粉末
を用いて作製されるボンド磁石。
10. A bond magnet produced by using the alloy powder for a bond magnet according to claim 9.
JP2001383989A 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same Expired - Lifetime JP4479944B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001383989A JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same
PCT/JP2002/013231 WO2003052778A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
AU2002358316A AU2002358316A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
CNB028050975A CN1306527C (en) 2001-12-18 2002-12-18 Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
US10/498,932 US7442262B2 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US11/826,114 US7571757B2 (en) 2001-12-18 2007-07-12 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001383989A JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same

Publications (3)

Publication Number Publication Date
JP2003188006A true JP2003188006A (en) 2003-07-04
JP2003188006A5 JP2003188006A5 (en) 2005-03-17
JP4479944B2 JP4479944B2 (en) 2010-06-09

Family

ID=27593834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001383989A Expired - Lifetime JP4479944B2 (en) 2001-12-18 2001-12-18 Alloy flake for rare earth magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4479944B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105343A1 (en) * 2004-04-30 2005-11-10 Neomax Co., Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
WO2006054617A1 (en) * 2004-11-17 2006-05-26 Tdk Corporation Rare earth sintered magnet
JP2006261526A (en) * 2005-03-18 2006-09-28 Tdk Corp Method of manufacturing rare-earth sintered magnet
JP2007119882A (en) * 2005-10-31 2007-05-17 Showa Denko Kk R-t-b based alloy, method for producing r-t-b based alloy sheet, fine powder for r-t-b based rare earth permanent magnet and r-t-b based rare earth permanent magnet
WO2007117037A1 (en) * 2006-04-07 2007-10-18 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
JP2009079241A (en) * 2007-09-25 2009-04-16 Showa Denko Kk Alloy production device
WO2009075351A1 (en) 2007-12-13 2009-06-18 Showa Denko K.K. R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnets
US7846273B2 (en) 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
EP2273513A4 (en) * 2008-03-31 2016-06-08 Hitachi Metals Ltd R-t-b-type sintered magnet and method for production thereof
US9649691B2 (en) 2012-01-24 2017-05-16 Santoku Corporation Method of producing rare earth alloy flakes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7571757B2 (en) 2001-12-18 2009-08-11 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
JP4692485B2 (en) * 2004-04-30 2011-06-01 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
WO2005105343A1 (en) * 2004-04-30 2005-11-10 Neomax Co., Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
US7585378B2 (en) 2004-04-30 2009-09-08 Hitachi Metals, Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
CN100366363C (en) * 2004-04-30 2008-02-06 株式会社新王磁材 Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
JPWO2005105343A1 (en) * 2004-04-30 2008-03-13 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
WO2006054617A1 (en) * 2004-11-17 2006-05-26 Tdk Corporation Rare earth sintered magnet
JP4671024B2 (en) * 2005-03-18 2011-04-13 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP2006261526A (en) * 2005-03-18 2006-09-28 Tdk Corp Method of manufacturing rare-earth sintered magnet
US7846273B2 (en) 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP2007119882A (en) * 2005-10-31 2007-05-17 Showa Denko Kk R-t-b based alloy, method for producing r-t-b based alloy sheet, fine powder for r-t-b based rare earth permanent magnet and r-t-b based rare earth permanent magnet
WO2007117037A1 (en) * 2006-04-07 2007-10-18 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
KR101004166B1 (en) * 2006-04-07 2010-12-24 쇼와 덴코 가부시키가이샤 Apparatus for producing alloy and rare earth element alloy
US7958929B2 (en) 2006-04-07 2011-06-14 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2009079241A (en) * 2007-09-25 2009-04-16 Showa Denko Kk Alloy production device
US8042600B2 (en) 2007-09-25 2011-10-25 Showa Denko K.K. Apparatus for producing alloy
WO2009075351A1 (en) 2007-12-13 2009-06-18 Showa Denko K.K. R-t-b alloy, process for production of r-t-b alloy, fine powder for r-t-b rare earth permanent magnets, and r-t-b rare earth permanent magnets
EP2273513A4 (en) * 2008-03-31 2016-06-08 Hitachi Metals Ltd R-t-b-type sintered magnet and method for production thereof
US9649691B2 (en) 2012-01-24 2017-05-16 Santoku Corporation Method of producing rare earth alloy flakes

Also Published As

Publication number Publication date
JP4479944B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
EP1780736B1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
WO2013054854A1 (en) R-t-b alloy flakes, r-t-b sintered magnet, and production method therefor
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP2008231535A (en) R-t-b based alloy, method for producing r-t-b based alloy, fine powder for r-t-b based rare earth metal permanent magnet, and r-t-b based rare earth metal permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
JP4689652B2 (en) Method for evaluating metal structure of RTB-based magnet alloy
JP6691666B2 (en) Method for manufacturing RTB magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
EP1632299A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
JP2002266006A (en) Method for controlling structure of rare-earth- containing alloy, and powder of the alloy and magnet using the same
WO2005031023A1 (en) Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet
JP4040571B2 (en) Method for producing rare earth-containing alloy flakes
WO2019220950A1 (en) Cast alloy flakes for r-t-b rare earth sintered magnet
JP4438371B2 (en) NdFeB-based anisotropic exchange spring magnet and manufacturing method thereof
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JP2004043921A (en) Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP4680357B2 (en) Rare earth permanent magnet manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070605

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160326

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term