JP2003183787A - Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet - Google Patents

Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet

Info

Publication number
JP2003183787A
JP2003183787A JP2001385544A JP2001385544A JP2003183787A JP 2003183787 A JP2003183787 A JP 2003183787A JP 2001385544 A JP2001385544 A JP 2001385544A JP 2001385544 A JP2001385544 A JP 2001385544A JP 2003183787 A JP2003183787 A JP 2003183787A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
main phase
phase alloy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001385544A
Other languages
Japanese (ja)
Inventor
Shiro Sasaki
史郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001385544A priority Critical patent/JP2003183787A/en
Priority to CNB028050975A priority patent/CN1306527C/en
Priority to US10/498,932 priority patent/US7442262B2/en
Priority to AU2002358316A priority patent/AU2002358316A1/en
Priority to PCT/JP2002/013231 priority patent/WO2003052778A1/en
Publication of JP2003183787A publication Critical patent/JP2003183787A/en
Priority to US11/826,114 priority patent/US7571757B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a principal phase-based alloy containing a small quantity of formed α-Fe, by substituting Pr for Nd, which is advantageous for the cost, and improves an anisotropic magnetic field, in a principal phase-based alloy for a rare earth magnet consisting of an R-T-B alloy, which is used in a two- alloys method. <P>SOLUTION: This method for manufacturing the principal phase-based alloy is characterized by greatly restraining precipitation of α-Fe, through improving heat transfer between the molten alloy and the roller, by changing casting conditions, particularly the surface conditions of the rotation roller, when casting the principal phase-based alloy for the rare earth magnet by an SC (strip casting) method. Thereby, the method can substitute a large quantity of Pr for Nd, in the principal phase-based alloy containing little TRE (Total Rare Earth content) used for the two-alloys method. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Prを含む2合金法
に使用するための希土類磁石用主相系合金、その製造方
法、Prを含む希土類磁石用主相系合金と粒界相系合金と
を混合して作製した希土類焼結磁石用混合粉末および希
土類磁石に関する。
TECHNICAL FIELD The present invention relates to a main phase alloy for rare earth magnets for use in a two-alloy method containing Pr, a method for producing the same, a main phase alloy for rare earth magnets containing Pr, and a grain boundary phase alloy. The present invention relates to a mixed powder for a rare earth sintered magnet and a rare earth magnet produced by mixing and.

【0002】[0002]

【従来の技術】近年、希土類磁石用合金としてNd−F
e−B系合金がその高特性から急激に生産量を伸ばして
おり、HD(ハードディスク)用、MRI(磁気共鳴映
像法)用あるいは、各種モーター用等に使用されてい
る。通常は、Ndの一部をPr、Dy等他の希土類元素
で置換したものや、Feの一部をCo、Ni等他の遷移
元素で置換したものが一般的であり、Nd−Fe−B系
合金を含め、R−T−B系合金と総称されている。ここ
で、RはYを含む希土類元素のうち少なくとも1種であ
る。また、TはFeを必須とする遷移金属であり、Fe
の一部をCoあるいはNiで置換することができ、添加
元素としてCu、Al、Ti、V、Cr、Mn、Nb、
Ta、Mo、W、Ca、Sn、Zr、Hfなどを1種ま
たは複数組み合わせて添加してもよい。Bは硼素であ
り、一部をCまたはNで置換できる。
2. Description of the Related Art Recently, Nd-F has been used as an alloy for rare earth magnets.
The production amount of the e-B alloy is rapidly increasing due to its high characteristics, and it is used for HD (hard disk), MRI (magnetic resonance imaging), various motors, and the like. Usually, a part of Nd is replaced with another rare earth element such as Pr or Dy, or a part of Fe is replaced with another transition element such as Co or Ni. Nd-Fe-B The alloys are collectively called R-T-B type alloys including type alloys. Here, R is at least one of rare earth elements including Y. In addition, T is a transition metal that requires Fe,
Can be partially replaced with Co or Ni, and as additive elements Cu, Al, Ti, V, Cr, Mn, Nb,
You may add Ta, Mo, W, Ca, Sn, Zr, Hf etc. individually or in combination of 2 or more types. B is boron and can be partially substituted with C or N.

【0003】R−T−B系合金は、磁化作用に寄与する
強磁性相R214B相と、非磁性で希土類元素の濃縮し
た低融点のR−リッチ相からなり、活性な金属であるこ
とから一般に真空又は不活性ガス中にて溶解、鋳造され
る。鋳造は、従来は金型鋳造で行なわれていたが、最近
ではストリップキャスト法、遠心鋳造法のような急冷凝
固法も普及している。この鋳造により製造された合金塊
から粉末冶金法によって焼結磁石を作製するには、3μ
m(FSSS:フィッシャーサブシーブサイザーでの測
定)程度に合金を粉砕した後、磁場中でプレス成形さ
れ、焼結炉で約1000〜1100℃の高温にて焼結さ
れ、その後必要に応じ熱処理、機械加工され、耐食のた
めのメッキをされ磁石化されるのが普通である。
The R-T-B type alloy is composed of a ferromagnetic phase R 2 T 14 B phase which contributes to the magnetization action and a non-magnetic R-rich phase having a low melting point and enriched with rare earth elements. Therefore, they are generally melted and cast in a vacuum or an inert gas. Conventionally, casting has been performed by die casting, but recently, rapid solidification methods such as strip casting method and centrifugal casting method have become popular. To make a sintered magnet by powder metallurgy from the alloy mass produced by this casting, 3μ
After crushing the alloy to about m (FSSS: measured by Fisher subsieve sizer), the alloy is press-molded in a magnetic field, sintered in a sintering furnace at a high temperature of about 1000 to 1100 ° C., and then heat-treated as necessary. It is usually machined, plated for corrosion resistance and magnetized.

【0004】焼結磁石において、R−リッチ相は、以下
のような重要な役割を担っている。 1)融点が低く、焼結時に液相となり、磁石の高密度
化、従って磁化の向上に寄与する。 2)粒界の凹凸を無くし、逆磁区のニュークリエーショ
ンサイトを減少させ保磁力を高める。 3)主相を磁気的に絶縁し保磁力を増加する。 従ってR−リッチ相の分散状態が悪いと局部的な焼結不
良、磁性の低下をまねくため、R−リッチ相は均一であ
ることが重要となる。
In the sintered magnet, the R-rich phase plays an important role as follows. 1) It has a low melting point and becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization. 2) Eliminates grain boundary irregularities, reduces nucleation sites in the reverse magnetic domain, and increases coercive force. 3) Magnetically insulate the main phase to increase coercive force. Therefore, if the dispersion state of the R-rich phase is poor, local sintering failure and deterioration of magnetism will occur, so it is important that the R-rich phase is uniform.

【0005】最終的な磁石としてのR―リッチ相の分布
は、鋳造後の合金塊の組織に大きく影響される。すなわ
ち、例えば金型にて鋳造された合金塊の場合、鋳造後の
冷却速度が遅いため、往々にしてR214B相の結晶粒
が大きくなると同時に、R−リッチ相も凝集し大きなプ
ールを形成し偏在するようになる。この結果、合金塊を
粉砕した時の粒径は、R214B相の結晶粒径あるいは
R−リッチ相の分散状態よりはるかに細かくなり、R−
リッチ相を含まない主相(R214B相)のみの粒とR
−リッチ相のみの粒とが別々に存在するようになる。こ
の結果、主相とR−リッチ相とが均一に混合しにくくな
る。
The distribution of the R-rich phase as the final magnet is greatly influenced by the structure of the alloy ingot after casting. That is, for example, in the case of an alloy ingot cast in a mold, since the cooling rate after casting is slow, the crystal grains of the R 2 T 14 B phase often become large, and at the same time, the R-rich phase also agglomerates to form a large pool. Form and become unevenly distributed. As a result, the grain size of the crushed alloy lump becomes much finer than the crystal grain size of the R 2 T 14 B phase or the dispersed state of the R-rich phase.
Granules containing only the main phase (R 2 T 14 B phase) without rich phase and R
-The rich phase only grains will be present separately. As a result, it becomes difficult to uniformly mix the main phase and the R-rich phase.

【0006】金型鋳造でのもう一つの問題は、冷却速度
が遅いため初晶としてγ―Feが生成しやすくなること
である。γ―Feは約910℃以下では、α―Feに変
態する。この変態したα―Feは、焼結磁石製造時の粉
砕効率の悪化をもたらし、焼結後も残存すれば磁気特性
の低下をもたらす。そこで金型にて鋳造したインゴット
の場合は、高温で長時間にわたる均質化処理によるα―
Feの消去が必要となってくる。
Another problem in die casting is that γ-Fe is likely to be produced as a primary crystal because of a slow cooling rate. γ-Fe transforms into α-Fe at about 910 ° C or lower. This transformed α-Fe deteriorates the pulverization efficiency during the production of sintered magnets, and if it remains after sintering, it deteriorates the magnetic properties. Therefore, in the case of an ingot cast with a mold, α-
It becomes necessary to erase Fe.

【0007】以上のRリッチ相の偏在やα‐Feの析出
を解決するため、金型鋳造法より速い冷却速度でR−T
−B系合金を鋳造する方法として、ストリップキャスト
法(SC法と略す)や遠心鋳造法(CC法と略す)が開
発され、実際の工程にて使用されている。SC法は内部
が水冷された銅の鋳造用回転ロール上に溶湯を流し、
0.1〜1mm程度の薄帯を鋳造することにより、合金
を急冷凝固させるものである。この鋳造方法は、金型鋳
造方法で見られたα‐Feの析出を抑え、結晶組織を微
細化させ、R−リッチ相が微細に分散した組織を有する
合金を生成することが可能である。このように、この方
法で鋳造された合金塊中のR−リッチ相は微細に分散し
ているため、粉砕、焼結後のR−リッチ相の分散性も良
好となり、製造された磁石の磁気特性は優れたものとな
る(特開平5−222488号公報、特開平5−295
490号公報)。
In order to solve the above-mentioned uneven distribution of the R-rich phase and the precipitation of α-Fe, the RT cooling rate is higher than that of the die casting method.
A strip casting method (abbreviated as SC method) or a centrifugal casting method (abbreviated as CC method) has been developed as a method for casting a B-based alloy, and is used in an actual process. In the SC method, the molten metal is poured on a rotating roll for casting of copper whose inside is water cooled,
The alloy is rapidly solidified by casting a thin strip of about 0.1 to 1 mm. This casting method can suppress the precipitation of α-Fe found in the die casting method, refine the crystal structure, and produce an alloy having a structure in which the R-rich phase is finely dispersed. As described above, since the R-rich phase in the alloy ingot cast by this method is finely dispersed, the dispersibility of the R-rich phase after crushing and sintering is also good, and the magnetism of the manufactured magnet is high. The characteristics are excellent (JP-A-5-222488 and JP-A-5-295).
490 publication).

【0008】一方、CC法は円筒状の回転する鋳型の内
部に溶湯を供給し、溶湯を堆積させながら凝固させるも
ので、金型鋳造とSC法の中間的な凝固速度を得る事が
できる(特許第2817624号公報)。この特異な凝
固条件は、2合金法用の粒界相合金の製造に有効である
ことが確認されている(特許第3234741号公
報)。
On the other hand, the CC method is one in which a molten metal is supplied into a cylindrical rotating mold and solidified while depositing the molten metal, and an intermediate solidification rate between die casting and SC method can be obtained ( Japanese Patent No. 2817624). It has been confirmed that this unique solidification condition is effective for producing a grain boundary phase alloy for the two-alloy method (Japanese Patent No. 3234741).

【0009】またSC法、CC法は、金型鋳造法と比較
すると、組織の均質性も優れている。組織の均質性と
は、α-Feの析出の有無以外にも、結晶粒径、Rリッ
チ相の分散状態で比較することが出来る。金型鋳造法で
鋳造された合金塊では、急冷される鋳型近傍部の組織は
チル晶と呼ばれる微細な等軸結晶粒からなるものであ
り、Rリッチ相の分散も比較的微細である。しかし、最
後に凝固する合金塊の中央部では、凝固速度が非常に遅
いため、結晶粒径は非常に大きく、Rリッチ相も部分的
に凝集したプール状となる。
Further, the SC method and the CC method are superior in the homogeneity of the structure as compared with the die casting method. The homogeneity of the structure can be compared not only with the presence or absence of α-Fe precipitation but also with the crystal grain size and the dispersed state of the R-rich phase. In the alloy ingot cast by the die casting method, the structure in the vicinity of the rapidly cooled mold is composed of fine equiaxed crystal grains called chill crystals, and the R-rich phase dispersion is also relatively fine. However, in the central portion of the alloy mass that finally solidifies, the solidification rate is very slow, so the crystal grain size is very large, and the R-rich phase also becomes a pooled state in which it is partially agglomerated.

【0010】一方SC法で鋳造された合金薄片は、鋳造
用回転ロール側(以降、鋳型面側とする)にチル晶が発
生することもあるが、全体として急冷凝固でもたらされ
る適度に微細で均質な組織を得ることが出来る。α-F
eの生成も抑制されているため、焼結磁石では最終的な
磁石のRリッチ相の均質性が高まり、α-Feによる粉
砕、磁性への弊害を防止することができる。
On the other hand, in the alloy flakes cast by the SC method, chill crystals may be generated on the casting rotary roll side (hereinafter referred to as the mold surface side), but as a whole, they are appropriately fine and are brought by rapid solidification. A homogeneous structure can be obtained. α-F
Since the generation of e is also suppressed, in the sintered magnet, the homogeneity of the R-rich phase of the final magnet is enhanced, and it is possible to prevent the crushing by α-Fe and the adverse effect on magnetism.

【0011】CC法で鋳造された合金でも、溶湯が徐々
に堆積し、薄い凝固層を積み上げていくため、鋳型面近
傍でチル晶を生成する以外は、その厚さにもかかわら
ず、自由面までほぼ均一な組織を生成することができ
る。しかし、従来のCC法(例えば特許2817624
号公報)では、溶湯供給速度が比較的大きいため、実質
的な凝固速度がSC法よりも遅くなり、α‐Fe析出抑
制効果も、金型鋳造とSC法の中間的なものであった。
Even in the alloy cast by the CC method, the molten metal gradually accumulates and accumulates a thin solidified layer, so that a chill crystal is generated in the vicinity of the mold surface, but the free surface is formed despite its thickness. Up to nearly uniform texture can be produced. However, the conventional CC method (for example, Japanese Patent No. 2817624) is used.
In Japanese Patent Laid-Open Publication No. 2003-264, since the molten metal supply rate is relatively high, the substantial solidification rate becomes slower than that of the SC method, and the α-Fe precipitation suppression effect was intermediate between the die casting and the SC method.

【0012】近年、希土類磁石用のR−T−B系合金に
おいて、PrによるNdの置換が広く普及してきてい
る。NdをPrで置換しても特性変化が少なく、Prが
Ndよりも安価であり、コストダウンが可能なためであ
る。R2Fe14B化合物でRがNdである場合とRがP
rである場合を比較すると、室温での飽和磁化はNdの
方が4%程度高いが、逆に異方性磁界はPrの方が5%
程度高いことが知られている。また、R2Fe14B化合
物でRがNdである場合とRがPrである場合とでは、
2Fe14B化合物近傍の相関係は殆ど同一であり、R2
Fe14BのNdをPrで置換しても、構成相には大きな
変化が無く、組織面からも磁性を低下させる要因が少な
い。
In recent years, replacement of Nd with Pr has become widespread in R-T-B type alloys for rare earth magnets. This is because even if Nd is replaced with Pr, there is little change in characteristics, Pr is cheaper than Nd, and cost can be reduced. R 2 Fe 14 B compound in which R is Nd and R is P
Comparing the case of r, the saturation magnetization at room temperature is higher in Nd by about 4%, but conversely, the anisotropic magnetic field is 5% in Pr.
It is known to be high. Further, in the case of R 2 Fe 14 B compound, R is Nd and R is Pr,
Correlation of neighboring R 2 Fe 14 B compound are almost identical, R 2
Even if Nd of Fe 14 B is replaced with Pr, there is no great change in the constituent phase, and there are few factors that reduce the magnetism in terms of texture.

【0013】[0013]

【発明が解決しようとする課題】コストダウン、資源の
有効利用の面から、希土類磁石用のR−T−B系合金に
おいて、R成分のNdからPrへの置換は広く普及して
いるが、R中のPrの比率は10質量%程度までに留ま
っている。その原因は、PrがNdと比較して化学的に
活性であるため、磁石の製造工程中、或いは磁石化後の
酸化が問題となるためである。
From the viewpoints of cost reduction and effective use of resources, replacement of R component from Nd to Pr is widely used in R-T-B type alloys for rare earth magnets. The ratio of Pr in R remains around 10% by mass. The reason is that Pr is chemically active as compared with Nd, so that oxidation during the manufacturing process of the magnet or after magnetization becomes a problem.

【0014】また、高特性磁石の製法として普及してい
る2合金法では、Prの添加量の制限が1合金法よりも
さらに大きい。2合金法では、主に主相であるR2Fe
14B相を供給し、組成もR2Fe14Bに近い主相系合金
と、粒界相であるRリッチ相を主に供給し、主相系合金
よりもTRE(Total Rare Earth c
ontent)が多い粒界相系合金の2種類の原料合金
を使用する。
Further, in the two-alloy method, which is widely used as a method for producing high-performance magnets, the limitation on the amount of Pr added is even greater than in the one-alloy method. In the two-alloy method, R 2 Fe which is the main phase is mainly used.
The main phase-based alloy that supplies the 14 B phase and has a composition close to that of R 2 Fe 14 B and the R-rich phase that is a grain boundary phase are mainly supplied, and TRE (Total Rare Earth c
Two types of raw material alloys, which are grain boundary phase-based alloys with a lot of ontents, are used.

【0015】2合金法では、主相系合金にPrを添加し
た方が都合が良い。元々酸化しやすいRリッチ相を多く
含んでいる粒界相合金にPrを添加すると、ますます活
性となる。そのため、磁石化工程での粉砕中および粉砕
後の微粉の酸化が顕著となり、磁石の酸素濃度増加によ
る特性低下、或いは酸化防止の対策を強化する必要が生
じる。その結果、工程、設備が複雑となり、コストアッ
プの原因となる。しかし、主相系合金にPrを添加する
と、主に元々耐食性の問題がないR2Fe14B相にPr
が入り込むため、酸化の問題を軽減することが出来る。
また、PrでNdを置換するとR2Fe14B相の異方性
磁界が若干増加するため、磁場配向時に微粉が配向しや
すくなり、磁石の配向率増加、磁化の上昇をもたらすこ
とも可能である。
In the two-alloy method, it is more convenient to add Pr to the main phase alloy. When Pr is added to the grain boundary phase alloy which originally contains a large amount of R-rich phase which is easily oxidized, it becomes more and more active. Therefore, oxidation of fine powder during and after crushing in the magnetizing step becomes remarkable, and it becomes necessary to strengthen measures to prevent deterioration of characteristics due to an increase in oxygen concentration of the magnet or to prevent oxidation. As a result, the process and equipment become complicated, which causes a cost increase. However, when Pr is added to the main phase alloy, Pr is mainly added to the R 2 Fe 14 B phase, which originally has no problem of corrosion resistance.
As a result, the problem of oxidation can be reduced.
Further, when Nd is replaced by Pr, the anisotropic magnetic field of the R 2 Fe 14 B phase is slightly increased, so that the fine powder is likely to be oriented during the magnetic field orientation, and it is possible to increase the orientation ratio of the magnet and increase the magnetization. is there.

【0016】以上のように、Prは主相系合金に添加し
た方が、都合が良い。しかし、TREが低い主相系合金
のNdをPrで置換していくと、α‐Feが析出しやす
くなる。この原因は、高温相であるγ‐Feの生成が始
まる液相線とR2Fe14B相の生成が始まる包晶温度の
差が、Pr置換によって拡大するためと考えられる。α
‐Feは粉砕されにくいため、磁石化工程での粉砕効率
低下による生産性の低下や粉砕機中に粉砕されずに残存
することによる微粉の組成変動をもたらすと共に、磁石
に残存すれば特性の著しい低下を招くこととなる。
As described above, it is more convenient to add Pr to the main phase alloy. However, when Nd of the main phase alloy having a low TRE is replaced with Pr, α-Fe tends to precipitate. It is considered that this is because the difference between the liquidus line where the formation of γ-Fe which is a high temperature phase starts and the peritectic temperature where the formation of the R 2 Fe 14 B phase starts is enlarged by Pr substitution. α
-Fe is difficult to be pulverized, so that productivity is reduced due to reduction in pulverization efficiency in the magnetizing process and composition change of fine powder is caused by remaining in the pulverizer without being pulverized. This will lead to a decrease.

【0017】SC法では高冷却速度によって、溶湯をR
2Fe14B相が生成する包晶温度以下まで過冷却するこ
とが可能なため、α‐Feの析出を抑制できる。しか
し、Nd−Fe−Bの3元系からなる主相系合金で、N
dが28.5質量%程度以下になると、十分な過冷度を
得ることが困難になるため、α‐Feが析出するように
なる。さらにPrでNdを置換すると、α‐Feがます
ます析出しやすくなるため、α‐Feの析出を防止する
には、主相系合金のTREを増加する必要があった。一
方2合金法では、粒界相系合金の混合比率を高めるため
に、主相系合金のTREは出来るだけ低くした方が都合
が良い。
In the SC method, the molten metal is made R by a high cooling rate.
Since it can be supercooled to a temperature lower than the peritectic temperature at which the 2 Fe 14 B phase is formed, the precipitation of α-Fe can be suppressed. However, Nd-Fe-B is a main phase alloy composed of a ternary system.
When d is about 28.5 mass% or less, it becomes difficult to obtain a sufficient degree of supercooling, and α-Fe comes to be precipitated. Furthermore, if Nd is replaced with Pr, α-Fe will be more likely to precipitate, so it was necessary to increase the TRE of the main phase alloy in order to prevent the precipitation of α-Fe. On the other hand, in the two-alloy method, it is convenient to lower the TRE of the main phase alloy as much as possible in order to increase the mixing ratio of the grain boundary phase alloy.

【0018】また、B濃度の増加は、α‐Feの析出を
抑制するのに大変有効であることが知られている。しか
し、主相系合金のB濃度を増加させた場合、最終的な磁
石のB濃度を一定にするために、粒界相系合金のB濃度
を下げなければならない。また、Coや重希土類元素の
主相系合金への添加も、α‐Feの析出の抑制には有効
であるが、これらの組成調整による方法では、磁石用合
金の組成設計の自由度が減少し、2合金法によっても最
適な組成の組合せが達成できなくなる可能性が大きい。
It is known that increasing the B concentration is very effective in suppressing the precipitation of α-Fe. However, when the B concentration of the main phase alloy is increased, the B concentration of the grain boundary phase alloy must be lowered in order to keep the B concentration of the final magnet constant. In addition, addition of Co and heavy rare earth elements to the main phase alloy is also effective in suppressing the precipitation of α-Fe, but the method by adjusting these compositions reduces the degree of freedom in the composition design of the alloy for magnets. However, there is a great possibility that the optimal composition combination cannot be achieved even by the two-alloy method.

【0019】また、Coは耐食性改善効果に優れるた
め、粒界相系合金に添加された方が都合が良い(Kus
unoki et al.T.IEEE Japan,
Vol.113−A,No.12,1993,849−
853)。また、重希土類元素も粒界相系合金に添加し
た方が、保磁力増加の効果に優れることが確認されてい
る(伊藤他、日本金属学会誌、第59巻 第1号(19
95)103−107)。
Further, since Co has an excellent effect of improving the corrosion resistance, it is more convenient to add it to the grain boundary phase system alloy (Kus.
unoki et al. T. IEEE Japan,
Vol. 113-A, No. 12,1993,849-
853). It has also been confirmed that the addition of heavy rare earth elements to grain boundary phase alloys is more effective in increasing the coercive force (Ito et al., Journal of the Japan Institute of Metals, Vol. 59, No. 1 (19).
95) 103-107).

【0020】そこで本発明の課題は、R−T−B系合金
からなる2合金法に使用するための希土類磁石用主相系
合金において、α‐Feの析出を防止するために主相系
合金のTREを増加することなく、またBやCo等の添
加による組成調整を行うことなく、コスト的に有利で異
方性磁界を向上させるPrによりNdを置換した、α−
Feの生成量の少ない主相系合金を提供することにあ
る。
Therefore, an object of the present invention is to provide a main phase alloy for rare earth magnets for use in a two-alloy method comprising an RTB type alloy in order to prevent precipitation of α-Fe. Nd was replaced by Pr, which is advantageous in terms of cost and improves the anisotropic magnetic field, without increasing the TRE and without adjusting the composition by adding B, Co or the like.
It is to provide a main phase alloy that produces a small amount of Fe.

【0021】[0021]

【課題を解決するための手段】すなわち本発明は、 (1)R(RはYを含む希土類元素のうちの少なくとも
1種)を26〜30質量%含み、Bを0.9〜1.1質
量%含み、残部がT(TはFeを必須とする遷移金属)
からなる2合金法に使用するための希土類磁石用主相系
合金において、R中にはPrをR中の比率にして5質量
%以上を含み、該主相系合金の組織のうちα−Feを含
む領域の体積率が5%以下であることを特徴とする希土
類磁石用主相系合金。 (2)R中のPrの比率が15質量%以上であることを
特徴とする上記(1)に記載の希土類磁石用主相系合
金。 (3)R中のPrの比率が30質量%以上であることを
特徴とする上記(2)に記載の希土類磁石用主相系合
金。 (4)前記主相系合金の少なくとも片側の表面の表面粗
さが、十点平均粗さ(Rz)で5μm以上50μm以下と
することを特徴とする上記(1)乃至(3)に記載の希
土類磁石用主相系合金。 (5)前記主相系合金の少なくとも片側の表面の表面粗
さが、十点平均粗さ(Rz)で7μm以上25μm以下と
することを特徴とする上記(4)に記載の希土類磁石用
主相系合金。 (6)ストリップキャスト法により製造することを特徴
とする上記(1)乃至(5)に記載の希土類磁石用主相
系合金の製造方法。 (7)鋳造用回転ロールの鋳造面の表面粗さを十点平均
粗さ(Rz)で5μm以上100μm以下とすることを特
徴とする上記(6)に記載の希土類磁石用主相系合金の
製造方法。 (8)鋳造用回転ロールの鋳造面の表面粗さを十点平均
粗さ(Rz)で10μm以上50μm以下とすることを特
徴とする上記(6)に記載の希土類磁石用主相系合金の
製造方法。 (9)溶湯を回転する円筒状鋳型の内面に堆積凝固させ
る遠心鋳造法により製造することを特徴とする上記
(1)乃至(3)に記載の希土類磁石用主相系合金の製
造方法。 (10)上記(1)乃至(3)に記載の希土類磁石用主
相系合金と、Rの比率が前記主相系合金よりも高く、R
中のPrの比率が前記主相系合金よりも低い粒界相系合
金とを混合して作製した希土類焼結磁石用混合粉末。 (11)粒界相系合金には、実質的にPrが含まれてい
ないことを特徴とする上記(10)に記載の希土類焼結
磁石用混合粉末。 (12)上記(10)または(11)に記載の希土類焼
結磁石用混合粉末から粉末冶金法で製造された希土類磁
石。である。
That is, the present invention includes (1) 26 to 30% by mass of R (R is at least one kind of rare earth element containing Y) and 0.9 to 1.1 of B. Contains by mass% and the balance is T (T is a transition metal in which Fe is essential)
In the main phase alloy for rare earth magnets for use in the two-alloy method, the R contains Pr in an amount of 5 mass% or more in the ratio of R, and α-Fe is contained in the structure of the main phase alloy. The main phase alloy for rare earth magnets, wherein the volume ratio of the region containing is 5% or less. (2) The main phase alloy for a rare earth magnet as described in (1) above, wherein the ratio of Pr in R is 15% by mass or more. (3) The main phase alloy for a rare earth magnet as described in (2) above, wherein the ratio of Pr in R is 30% by mass or more. (4) The surface roughness of at least one surface of the main phase alloy is 10 μm or more and 50 μm or less in terms of ten-point average roughness (Rz), described in (1) to (3) above. Main phase alloy for rare earth magnets. (5) The main component for a rare earth magnet as described in (4) above, wherein the surface roughness of at least one surface of the main phase alloy is 10 μm or more and 25 μm or less in terms of ten-point average roughness (Rz). Phase-based alloy. (6) The method for producing a main phase alloy for a rare earth magnet according to any one of (1) to (5), which is produced by a strip casting method. (7) The main phase alloy for rare earth magnets according to (6) above, wherein the surface roughness of the casting surface of the rotating roll for casting is 10 μm or more and 10 μm or less in terms of ten-point average roughness (Rz). Production method. (8) The main phase alloy for rare earth magnets according to the above (6), wherein the surface roughness of the casting surface of the rotating roll for casting is 10 μm or more and 50 μm or less in terms of ten-point average roughness (Rz). Production method. (9) The method for producing a main phase alloy for a rare earth magnet according to any one of (1) to (3) above, which is produced by a centrifugal casting method in which the molten metal is deposited and solidified on the inner surface of a rotating cylindrical mold. (10) The ratio of R to the main phase alloy for rare earth magnets according to the above (1) to (3) is higher than that of the main phase alloy, and R
A mixed powder for a rare earth sintered magnet, which is produced by mixing a grain boundary phase alloy having a lower Pr ratio therein than the main phase alloy. (11) The mixed powder for a rare earth sintered magnet according to the above (10), wherein the grain boundary phase-based alloy contains substantially no Pr. (12) A rare earth magnet produced by powder metallurgy from the mixed powder for rare earth sintered magnet according to the above (10) or (11). Is.

【0022】[0022]

【発明の実施の形態】前記のように、2合金法によりR
−T−B系合金からなる希土類磁石を作製する場合、R
にPrを添加するには、主相系合金にPrを添加するの
が好ましい。しかし、NdをPrで置換するとα‐Fe
が生成し易くなるため、従来は主相系合金に別の元素を
添加したり、あるいは主相系合金の組成を修正すること
を余儀なくされてきた。これは、2合金法の長所である
合金設計の自由度を大きく制限するもので、2合金法に
よる希土類磁石の作製におけるPrの有効利用の障害と
なっていた。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, R is obtained by the two-alloy method.
In the case of producing a rare earth magnet made of a -T-B type alloy, R
To add Pr to the alloy, it is preferable to add Pr to the main phase alloy. However, if Nd is replaced by Pr, α-Fe
Therefore, it has been conventionally required to add another element to the main phase alloy or to modify the composition of the main phase alloy. This greatly limits the degree of freedom in alloy design, which is an advantage of the two-alloy method, and has been an obstacle to the effective use of Pr in the production of rare earth magnets by the two-alloy method.

【0023】本発明者らは、SC法により希土類磁石用
主相系合金を鋳造する際の鋳造条件、特に鋳造用回転ロ
ールの表面状態を変更することで、合金溶湯とロールと
の熱伝達を改善し、α‐Feの析出を大きく抑制できる
ことを見出し、TREの少ない2合金法用の主相系合金
でNdを大幅にPrに置換することに成功した。
The inventors of the present invention changed the casting conditions when casting the main phase alloy for rare earth magnets by the SC method, particularly by changing the surface condition of the casting rotary roll, so that the heat transfer between the molten alloy and the roll was achieved. It was found that the precipitation of α-Fe could be greatly suppressed by improving it, and succeeded in substituting Pr substantially for Nd in the main phase alloy for the two-alloy method with less TRE.

【0024】また本発明者らは、溶湯を回転する円筒状
鋳型の内面で堆積凝固させる遠心鋳造法で製造した希土
類磁石用主相系合金において、堆積速度を低下させる
と、従来のSC法よりもα‐Feが析出しにくいことを
確認した。そして、その遠心鋳造法を用いて、α‐Fe
の生成を大幅に抑制した、TREが少なくPrの比率の
高い2合金法用主相系合金の作製に成功した。ここで、
遠心鋳造法は、溶湯を回転体に注ぎ、該回転体の回転に
よって溶湯を飛散させ、その飛散した溶湯を回転する円
筒状鋳型の内面で堆積凝固させる方法(以降、遠心力溶
湯飛散型遠心鋳造法と呼ぶ)が特に好ましいことを、本
発明者らは見出した。
The inventors of the present invention have found that when the deposition rate is lowered in the main phase alloy for rare earth magnets produced by the centrifugal casting method in which the molten metal is deposited and solidified on the inner surface of the rotating cylindrical mold, the deposition rate is lower than that of the conventional SC method. It was also confirmed that α-Fe was hard to precipitate. Then, using the centrifugal casting method, α-Fe
We have succeeded in producing a main phase alloy for the two-alloy method, which has a small amount of TRE and a high ratio of Pr, in which the formation of Al is greatly suppressed. here,
The centrifugal casting method is a method in which molten metal is poured into a rotating body, the molten metal is scattered by the rotation of the rotating body, and the scattered molten metal is deposited and solidified on the inner surface of a rotating cylindrical mold (hereinafter, centrifugal force-spraying centrifugal casting method). The present inventors have found that (referred to as “method”) is particularly preferable.

【0025】また本発明者らは、最終製品である希土類
磁石におけるPrの添加量が等しい場合、本発明による
Prを主に主相系合金に添加した2合金法により製造し
た希土類磁石の方が、一般的な1合金法により製造した
希土類磁石よりも磁石化工程での酸化が抑制され、プロ
セスのコストダウンおよび希土類磁石の酸素濃度低下や
特性向上が可能であることも確認した。
In addition, the present inventors prefer the rare earth magnet manufactured by the two-alloy method in which Pr is mainly added to the main phase alloy when the added amount of Pr in the final product rare earth magnet is equal. It was also confirmed that the oxidation in the magnetizing process is suppressed more than the rare earth magnet manufactured by the general one-alloy method, the process cost can be reduced, the oxygen concentration of the rare earth magnet can be lowered, and the characteristics can be improved.

【0026】従来のSC法で作製したTREが28.5
質量%(但し、R中のNdとPrの割合が半分ずつ)、
Bが1質量%、残部Feの希土類磁石用主相系合金薄片
の断面をSEM(走査電子顕微鏡)にて観察した時の反
射電子像の一例を図1に示す。図1で左が鋳型面側、右
が自由面側である。なお、この合金薄片の鋳型面側表面
の表面粗さは十点平均粗さ(Rz)で3.4μmであっ
た。図1で、白い部分がR−リッチ相で、厚さ方向にラ
メラー状に伸びるか、ラメラーが分断したような方向性
を持った形の小さなプールを形成している。
TRE manufactured by the conventional SC method is 28.5.
Mass% (however, the ratio of Nd and Pr in R is half each),
FIG. 1 shows an example of a backscattered electron image obtained by observing a cross section of a main phase alloy thin piece for a rare earth magnet containing 1% by mass of B and the balance of Fe with a SEM (scanning electron microscope). In FIG. 1, the left is the mold surface side and the right is the free surface side. The surface roughness of the surface of the alloy flakes on the mold surface was a ten-point average roughness (Rz) of 3.4 μm. In FIG. 1, the white portion is the R-rich phase, which extends lamellarly in the thickness direction or forms a small pool having a directional shape such that the lamella is divided.

【0027】SC法による主相系合金の鋳造では、雰囲
気の酸素濃度が高くなると、溶湯中の希土類成分と反応
して酸化物を生成する。この酸化物がα‐Feの核生成
サイトとなって、α‐Feの析出を助長する。また、溶
湯温度が降下して、液相線近くまで冷えると、溶湯中に
α‐Feが発生する。また、鋳片が厚くなると特に自由
面側の凝固速度が低下するため、α‐Feが生成しやす
くなる。このため、上記のSC法による鋳造では、鋳造
時の酸素濃度、溶湯の温度管理を徹底し、さらに合金薄
片をやや薄めの0.2mm程度に鋳造する事によって、
α‐Feの生成防止を試みた。しかしそれにもかかわら
ず、従来のSC法で鋳造した希土類磁石用主相系合金で
は、図1に示すように自由面側に部分的にα‐Feが析
出している。α‐Feは図1に示す反射電子線像では、
主相のR2Fe14B相よりも色が濃く写り、図1では黒
い点状に観察されている。
In the casting of a main phase alloy by the SC method, when the oxygen concentration in the atmosphere becomes high, it reacts with the rare earth element in the molten metal to form an oxide. This oxide serves as a nucleation site for α-Fe and promotes the precipitation of α-Fe. Further, when the temperature of the molten metal drops and cools near the liquidus line, α-Fe is generated in the molten metal. Further, as the cast piece becomes thicker, the solidification rate on the free surface side decreases in particular, so that α-Fe is easily generated. Therefore, in the casting by the SC method, by thoroughly controlling the oxygen concentration and the temperature of the molten metal at the time of casting, and casting the alloy flakes to a slightly thinner thickness of about 0.2 mm,
Attempts were made to prevent the formation of α-Fe. However, nevertheless, in the main phase alloy for rare earth magnets cast by the conventional SC method, α-Fe is partially precipitated on the free surface side as shown in FIG. α-Fe is a backscattered electron image shown in FIG.
The color appears darker than that of the R 2 Fe 14 B phase, which is the main phase, and is observed as black dots in FIG. 1.

【0028】次に本発明による改良したSC法で作製し
た、図1と同じ組成の合金薄片の反射電子線像を図2に
示す。図2で左が鋳型面側、右が自由面側である。本発
明のSC法による特徴は、合金薄片の鋳型面側の表面粗
さを制御することによって、合金中のα‐Feの生成を
抑制することである。本発明による改良したSC法で作
製した合金薄片内には、図2に示すようにα‐Feは存
在せず、鋳型面から自由面に渡ってRリッチ相の分散状
態の均質性も良好である。
Next, FIG. 2 shows a backscattered electron beam image of the alloy flakes having the same composition as in FIG. In FIG. 2, the left is the mold surface side and the right is the free surface side. The characteristic of the SC method of the present invention is that the production of α-Fe in the alloy is suppressed by controlling the surface roughness of the alloy flakes on the mold surface side. As shown in FIG. 2, α-Fe does not exist in the alloy flakes produced by the improved SC method according to the present invention, and the homogeneity of the dispersed state of the R-rich phase is good from the mold surface to the free surface. is there.

【0029】なお従来のSC法でも、図2に示すような
α‐Feの存在しない均質な組織を有する薄片は、ある
程度含まれていたが、図1に示すようなα‐Feを含ん
だ薄片も同時に生成されてしまった。そのため、主相系
合金の組織のうちα−Feを含む領域の体積率を5%以
下とすることが出来なかった。従来のSC法で生成する
部分的な組織の相違は、微妙なロール表面状態、溶湯の
供給状態、雰囲気など、ロール表面と溶湯、合金薄片と
の接触状態の変化に起因するものと考えられる。
Even in the conventional SC method, a thin piece having a uniform structure without α-Fe as shown in FIG. 2 was included to some extent, but a thin piece containing α-Fe as shown in FIG. 1 was included. Was also generated at the same time. Therefore, the volume ratio of the region containing α-Fe in the structure of the main phase alloy could not be set to 5% or less. It is considered that the partial difference in the microstructure generated by the conventional SC method is caused by a change in the contact state between the roll surface and the molten metal or the alloy flakes, such as a subtle roll surface state, the molten metal supply state, and the atmosphere.

【0030】主相系合金の組織のうちα‐Feを含む領
域の体積率は、次のような方法で測定可能である。図3
は、図1と同じ視野の反射電子線像であるが、α‐Fe
を含む領域を線で囲んだものである。α‐Feは粒状或
いはデンドライト状に析出するが、どちらの場合も数十
μm程度以上の比較的広い範囲で存在し、その部分の境
界は容易に判断できるため、画像解析装置を用いてその
視野のα‐Feを含む領域の面積率を計算することが出
来る。断面での面積率は、合金中での体積率に対応す
る。上記したように、α‐Feを含む領域の体積率は、
合金組成の他、鋳造用回転ロールと溶湯、合金薄片との
接触程度に影響される。しかし、鋳造用回転ロールの表
面状態は完全に均一ではなく、注湯量の微妙な変化も鋳
造用回転ロールと溶湯との接触程度に影響する。そのた
め、同じ条件で作製された合金薄片であっても、α‐F
eを含む領域の体積率の変化は、薄片間同士や同じ薄片
内でも大きい。そのため、100−200倍程度の低倍
率で観察視野を広げた上で、ランダムに5−10枚程度
の合金薄片を観察することで、その合金全体のα‐Fe
を含む領域の体積率を計算することが出来る。
The volume fraction of the region containing α-Fe in the structure of the main phase alloy can be measured by the following method. Figure 3
Is a backscattered electron image of the same field of view as in FIG.
The area including is surrounded by a line. α-Fe precipitates in the form of particles or dendrites, but in both cases, it exists in a relatively wide range of several tens of μm or more, and the boundary of that part can be easily determined. The area ratio of the region containing α-Fe can be calculated. The area ratio in the cross section corresponds to the volume ratio in the alloy. As described above, the volume ratio of the region containing α-Fe is
In addition to the alloy composition, it is affected by the degree of contact between the rotating roll for casting and the molten metal or alloy flakes. However, the surface condition of the casting rotary roll is not completely uniform, and a subtle change in the pouring amount also affects the degree of contact between the casting rotary roll and the molten metal. Therefore, even if alloy flakes manufactured under the same conditions, α-F
The change in the volume ratio of the region including e is large even between the thin pieces and within the same thin piece. Therefore, by widening the observation field of view at a low magnification of about 100-200 times and randomly observing about 5-10 alloy flakes, the α-Fe of the entire alloy can be obtained.
It is possible to calculate the volume ratio of the region including.

【0031】SC法で製造された合金薄片の鋳型面側表
面の表面粗さとα‐Feの析出抑制効果の関係は以下の
ように説明できる。合金薄片の鋳型面側表面が平滑であ
るためは、鋳造用回転ロールの表面が平滑で、合金溶湯
との濡れ性が良好である必要がある。このような状態で
は、溶湯から鋳型への熱伝達が極めて良好(熱伝達係数
が大きい)であり、合金の鋳型面側が急冷される。この
ため急速な凝固収縮が生じて、合金が鋳造用回転ロール
表面から剥がれて部分的に浮き上がる。その浮き上がっ
た部分は、ロールへの熱伝達率が極端に低下し、その後
の冷却は逆に非常に緩慢となる。このような凝固速度の
大きな低下によって、自由面側でα‐Feが析出するも
のと推定できる。このような現象は、鋳造用回転ロール
の表面粗さが5μmより小さいと生じ易い。
The relationship between the surface roughness of the surface of the alloy flakes manufactured by the SC method on the mold surface side and the effect of suppressing the precipitation of α-Fe can be explained as follows. In order for the alloy flakes to have a smooth surface on the mold surface side, the surface of the casting rotating roll must be smooth and have good wettability with the molten alloy. In such a state, heat transfer from the molten metal to the mold is extremely good (the heat transfer coefficient is large), and the mold surface side of the alloy is rapidly cooled. As a result, rapid solidification shrinkage occurs, and the alloy peels off from the surface of the casting rotary roll and partially floats. In the raised portion, the heat transfer coefficient to the roll is extremely reduced, and the cooling thereafter becomes very slow on the contrary. It can be estimated that α-Fe precipitates on the free surface side due to such a large decrease in the solidification rate. Such a phenomenon is likely to occur when the surface roughness of the casting rotary roll is less than 5 μm.

【0032】本発明のSC法による希土類磁石用主相系
合金の製造方法では、鋳造用回転ロール表面の表面粗さ
を十点平均粗さ(Rz)で5μm以上100μm以下、
好ましくは10μm以上50μm以下とする。鋳造用回
転ロール表面の表面粗さを上記の大きさにすると、合金
の溶湯は粘性のため鋳造用回転ロール表面の細かな凸凹
に完全には入り込めず、未接触の部分を生じ、熱伝達係
数が低下する。熱伝達が過度に低下するとα‐Fe析出
の原因となるが、表面粗さを上記の大きさにすることに
より、α‐Feが析出することはなく熱伝達係数の大き
さを適度に制御することができる。
In the method for producing a main phase alloy for rare earth magnets according to the SC method of the present invention, the surface roughness of the surface of the casting rotary roll is 10 μm or more and 100 μm or less in terms of ten-point average roughness (Rz),
The thickness is preferably 10 μm or more and 50 μm or less. When the surface roughness of the surface of the casting rotary roll is set to the above value, the molten metal of the alloy cannot enter the fine irregularities of the surface of the casting rotary roll completely because of its viscosity, resulting in a non-contact portion and heat transfer. The coefficient decreases. An excessive decrease in heat transfer causes α-Fe precipitation, but by controlling the surface roughness to the above value, α-Fe does not precipitate and the size of the heat transfer coefficient is controlled appropriately. be able to.

【0033】鋳造用回転ロール表面に上記の大きさの表
面粗さを設けたことにより、溶湯の凝固の初期における
過度の熱伝達が抑制でき、その結果合金薄片の急激な凝
固による収縮を防ぐことができる。また、鋳造用回転ロ
ールの表面と合金薄片の凸凹が噛み合って、これも凝固
収縮に伴うロールからの合金の部分的な剥離を防ぐのに
有効に働く。その結果、溶湯の凝固が始まる鋳型面側か
ら、凝固が終了する自由面側まで、凝固速度の変化が少
なくなり、合金内でのα‐Feの生成を抑制できたもの
と考えられる。
By providing the surface roughness of the above-mentioned size on the rotary roll for casting, excessive heat transfer at the initial stage of solidification of the molten metal can be suppressed, and as a result, shrinkage of the alloy flakes due to rapid solidification is prevented. You can Further, the surface of the casting rotary roll meshes with the irregularities of the alloy flakes, which also works effectively to prevent partial peeling of the alloy from the roll due to solidification shrinkage. As a result, it is considered that the change in the solidification rate decreased from the mold surface side where the solidification of the molten metal started to the free surface side where the solidification ended, and the generation of α-Fe in the alloy could be suppressed.

【0034】また、鋳造用回転ロール表面の表面粗さを
大きくすると、合金薄片の鋳型面側に多少なりともその
凸凹が転写されるため、合金薄片の鋳型面側表面の表面
粗さも当然大きくなる。本発明では、鋳造用回転ロール
表面の表面粗さを十点平均粗さ(Rz)で5μm以上1
00μm以下、好ましくは10μm以上50μm以下と
する。その結果、鋳造された合金の少なくとも片側の表
面の表面粗さは、5μm以上50μm以下、好ましくは
7μm以上25μm以下となる。
Further, if the surface roughness of the surface of the casting rotary roll is increased, the unevenness is transferred to the mold surface side of the alloy flakes to some extent, so that the surface roughness of the mold flank surface of the alloy flakes naturally increases. . In the present invention, the surface roughness of the surface of the rotary roll for casting is 10 μm or more in terms of ten-point average roughness (Rz), and
The thickness is 00 μm or less, preferably 10 μm or more and 50 μm or less. As a result, the surface roughness of at least one surface of the cast alloy is 5 μm or more and 50 μm or less, preferably 7 μm or more and 25 μm or less.

【0035】鋳造用回転ロールの表面の表面粗さが10
0μmより大きくなると、溶湯が逆にその凸凹に入り込
めるようになり、熱伝達係数が再び大きくなると同時
に、生成した合金薄片の鋳型面側の表面粗さがさらに大
きくなる。このような場合、大きな凸凹によって、合金
薄片の浮き上がりは抑制出来ても、Rリッチ相の分散が
不均一になってしまうため、好ましくない。
The surface roughness of the surface of the rotating roll for casting is 10
When it is larger than 0 μm, the molten metal can enter the irregularities on the contrary, the heat transfer coefficient increases again, and at the same time, the surface roughness of the produced alloy flakes on the mold surface side further increases. In such a case, although the lift of the alloy flakes can be suppressed by the large unevenness, the dispersion of the R-rich phase becomes uneven, which is not preferable.

【0036】本発明の別の希土類磁石用主相系合金の製
造方法として、遠心鋳造法を用い、例えば回転タンディ
ッシュ等を利用して溶湯を飛散させ、溶湯供給速度を極
端に小さくすれば、低TREの合金でも主相をエピタキ
シャル成長させることによって、α-Feの生成を抑制
できる。上記の遠心鋳造法で作製した図1、2と同じ組
成の合金の断面の反射電子線像を図4に示す。図4で上
の写真は鋳型面から0.5μmの位置、中央の写真は中
央部の位置、下の写真は自由面から0.5μmの位置の
組織を示している。図4より上記の遠心鋳造法で作製し
た図1、2と同じ組成の主相系合金が、鋳型面側から自
由面側まで、α‐Feが全く存在しない、Rリッチ相の
分散も非常に均一な組織であることがわかる。
As another method for producing a main phase alloy for rare earth magnets according to the present invention, a centrifugal casting method is used, and for example, a rotating tundish is used to scatter the molten metal to extremely reduce the molten metal supply rate. Even with an alloy having a low TRE, the production of α-Fe can be suppressed by epitaxially growing the main phase. FIG. 4 shows a backscattered electron beam image of a cross section of an alloy having the same composition as in FIGS. 1 and 2 produced by the above centrifugal casting method. In FIG. 4, the upper photograph shows the structure at 0.5 μm from the mold surface, the central photograph shows the central portion, and the lower photograph shows the structure at 0.5 μm from the free surface. From FIG. 4, the main phase alloy having the same composition as in FIGS. 1 and 2 produced by the above centrifugal casting method has no α-Fe at all from the mold surface side to the free surface side, and the R-rich phase dispersion is also very high. It can be seen that the structure is uniform.

【0037】次に本発明の構成を以下に詳細に記す。 希土類磁石用主相系合金中のTRE 本発明においては、希土類磁石用主相系合金中のTRE
を26−30質量%とすることを特徴とする。2合金法
による焼結磁石の作製の際に、粒界相系合金の混合比を
高め、主相系合金と粒界相合金の混合を容易にするため
に、2合金法用の主相系合金のTREは、なるべく低い
方が都合が良い。一般的にR−T−B系合金を用いた高
性能磁石のTREが約32質量%以下であることを考慮
すれば、主相系合金のTREは30質量%以下とすべき
であり、好ましくは29質量%以下である。一方、下限
は、Nd2Fe14Bの化学量論組成では、Ndは26.
7質量%であり、これ以下では必然的にα‐Feの析出
が発生するため、これよりも大幅にTREを下げること
は不可能であり、下限は26質量%、好ましくは27質
量%以上である。
Next, the constitution of the present invention will be described in detail below. TRE in Main Phase Alloy for Rare Earth Magnet In the present invention, TRE in main phase alloy for rare earth magnet is used.
Is 26-30% by mass. In order to increase the mixing ratio of the grain boundary phase alloy and facilitate mixing of the main phase alloy and the grain boundary phase alloy during the production of the sintered magnet by the two alloy method, the main phase system for the two alloy method is used. It is convenient that the TRE of the alloy is as low as possible. Considering that the TRE of the high-performance magnet using the R-T-B type alloy is generally about 32% by mass or less, the TRE of the main phase type alloy should be 30% by mass or less, preferably Is 29 mass% or less. On the other hand, in the stoichiometric composition of Nd 2 Fe 14 B, the lower limit is 26.
It is 7% by mass, and if it is less than this, precipitation of α-Fe will inevitably occur, so it is impossible to significantly lower TRE, and the lower limit is 26% by mass, preferably 27% by mass or more. is there.

【0038】R中のPr比率 本発明では、希土類磁石用主相系合金のR中のPrの比
率を、少なくとも5%以上とすることを特徴とする。従
来、TREが低い2合金法用主相系合金におけるRのN
dからPrへの置換は、α-Fe析出の弊害を招いてい
た。或いは、B濃度増加やCo添加などにより他の成分
の濃度を調整し、α-Feの生成傾向を低下させた上
で、主相系合金にPrを添加していた。しかし、本発明
の改良されたSC法、或いは遠心力にて溶湯を飛散させ
るような低速での溶湯供給が可能な遠心鋳造法では、α
-Feの析出抑制効果に優れ、Prを添加してもα-Fe
が析出しにくいため、そのような成分調整を行わなくて
もR中のPrの比率を少なくとも5%以上とすることが
できる。さらに本発明の希土類磁石用主相系合金は、B
濃度やCo添加などの他の成分の濃度の調整を行ってい
ないため、合金組成設計の自由度が大きい。本発明の特
徴を活かし、Prの添加効果を高めるには、R中のPr
の比率はより好ましくは15質量%以上、さらに好まし
くは30質量%以上とする。
Pr Ratio in R The present invention is characterized in that the ratio of Pr in R of the main phase alloy for rare earth magnets is at least 5% or more. Conventionally, N of R in the main phase alloy for the two-alloy method with low TRE
The substitution of d for Pr caused a problem of α-Fe precipitation. Alternatively, Pr is added to the main phase alloy after adjusting the concentrations of other components by increasing the B concentration or adding Co to reduce the tendency of α-Fe formation. However, in the improved SC method of the present invention or the centrifugal casting method capable of supplying molten metal at a low speed such that the molten metal is scattered by centrifugal force,
-Excellent effect of suppressing Fe precipitation, α-Fe even if Pr is added
Since it is hard to precipitate, the ratio of Pr in R can be set to at least 5% or more without such component adjustment. Further, the main phase alloy for rare earth magnets of the present invention is B
Since the concentration and the concentration of other components such as Co addition are not adjusted, the degree of freedom in alloy composition design is high. In order to enhance the effect of adding Pr by utilizing the characteristics of the present invention, Pr in R is added.
Is more preferably 15% by mass or more, and further preferably 30% by mass or more.

【0039】α-Feを含む領域の体積率 本発明においては、主相系合金の組織のうち、α−Fe
を含む領域の体積率が5%以下であることを特徴とす
る。α-Feは、主相系合金の粉砕性の低下や組成変動
の原因となり、磁石中に残存すると磁性が低下する。α
-Feを含む領域の体積率が5%より多くなると、これ
らの弊害が無視できなくなる。本発明の希土類磁石用主
相系合金は、上記の本発明のSC法や遠心鋳造法で製造
することにより、R中のPrの比率を5質量%以上、よ
り好ましくは15質量%以上、さらに好ましくは30質
量%以上としても、該主相系合金の組織のうちα−Fe
を含む領域の体積率を5%以下とすることができる。
Volume Ratio of Region Containing α-Fe In the present invention, α-Fe in the structure of the main phase alloy is used.
It is characterized in that the volume ratio of the region including is 5% or less. α-Fe causes a decrease in the pulverizability of the main phase alloy and a change in the composition. If it remains in the magnet, the magnetism decreases. α
When the volume ratio of the region containing -Fe exceeds 5%, these adverse effects cannot be ignored. The main phase alloy for rare earth magnets of the present invention is produced by the above-mentioned SC method or centrifugal casting method of the present invention so that the proportion of Pr in R is 5% by mass or more, more preferably 15% by mass or more, Even if it is preferably 30% by mass or more, α-Fe in the structure of the main phase alloy
The volume ratio of the region including can be 5% or less.

【0040】SC法で作製した合金薄片の鋳型面側の表
面粗さ 本発明では、ストリップキャスト法より製造された主相
系合金薄片の表面粗さを、十点平均粗さ(Rz)で5μ
m以上50μm以下とする。上記した通り表面粗さが5
μm以下では、鋳造ロールと合金薄片の間の熱伝達の変
化が凝固の過程で大きくなり、溶湯の凝固速度が不均一
となって、部分的なα-Feの析出が発生する。一方、
表面粗さが50μm以上では、α-Feは析出しなくて
もRリッチ相の分散が不均一となるため好ましくない。
合金薄片の鋳型面側表面の表面粗さは、7μm以上25
μm以下とするのがより好ましい。
Surface roughness of the alloy flakes produced by the SC method on the mold surface side In the present invention, the surface roughness of the main phase alloy flakes produced by the strip casting method is 5 μ in terms of ten-point average roughness (Rz).
m or more and 50 μm or less. As mentioned above, the surface roughness is 5
If the thickness is less than μm, the change in heat transfer between the casting roll and the alloy flakes becomes large in the course of solidification, the solidification rate of the molten metal becomes uneven, and partial α-Fe precipitation occurs. on the other hand,
When the surface roughness is 50 μm or more, the R-rich phase is not uniformly dispersed even if α-Fe does not precipitate, which is not preferable.
The surface roughness of the alloy flakes on the mold side is 7 μm or more 25
It is more preferable that the thickness is less than or equal to μm.

【0041】ここで表面粗さとは、JIS B 060
1「表面粗さの定義と表示」に示される条件で測定したも
ので、十点平均粗さ(Rz)もその中に定義されてい
る。具体的にはまず、測定面に直角な平面で切断したと
きの切り口(断面曲線)から、所定の波長より長い表面
うねり成分を位相補償型高域フィルタ等で除去した曲線
(粗さ曲線)を求める。その粗さ曲線から、その平均線
の方向に基準長さだけ抜き取り、この抜き取り部分の平
均線から、最も高い山頂から5番目までの山頂の標高
(Yp)の絶対値の平均値と、最も低い谷底から5番目
までの谷底の標高(Yv)の絶対値の平均値との和を十
点平均粗さ(Rz)と呼ぶ。基準長さ等の測定パラメー
タは、表面粗さに対して標準値が上記JISで指定され
ている。合金薄片の鋳型面側の表面粗さは、変動が大き
い場合もあり、少なくとも5枚の薄片について測定し、
その平均値を使用すべきである。
Here, the surface roughness means JIS B 060.
It was measured under the conditions shown in 1 "Definition and Display of Surface Roughness", and the ten-point average roughness (Rz) is also defined therein. Specifically, first, a curve (roughness curve) obtained by removing a surface waviness component longer than a predetermined wavelength with a phase compensation type high-pass filter etc. from the cut (cross-sectional curve) when cut on a plane perpendicular to the measurement surface. Ask. From the roughness curve, the reference length is extracted in the direction of the average line, and from the average line of this extracted portion, the average value of the absolute values of the altitudes (Yp) of the 5th peak from the highest peak and the lowest absolute value. The sum of the absolute value of the absolute value (Yv) of the valley bottom to the fifth from the valley bottom is called the ten-point average roughness (Rz). Regarding the measurement parameters such as the reference length, standard values are specified by the above JIS for the surface roughness. The surface roughness of the alloy flakes on the mold surface side may fluctuate greatly, and at least five flakes are measured,
The average value should be used.

【0042】(5)ストリップキャスト(SC)法 ここで希土類磁石用のR−T−B系合金のストリップキ
ャスト法による製造方法について図5に示す装置図を用
いて説明する。通常、希土類合金は、その活性な性質な
ため真空または不活性ガス雰囲気中で、耐火物ルツボ1
を用いて溶解される。合金溶湯は1350-1500℃
で所定の時間保持された後、必要に応じて整流機構、ス
ラグ除去機構を設けたタンディッシュ2を介して、内部
を水冷された鋳造用回転ロール3に供給される。溶湯の
供給速度とロールの回転数は、求める合金の厚さに応じ
て適当に変化させる。一般にロールの回転数は、周速度
にして1〜3m/s程度である。鋳造用回転ロールは、
高い熱伝導性と入手のしやすさから銅、或いは銅合金が
適当である。合金種、ロールの表面状態によっては、鋳
造ロール表面にメタルが付着しやすいため、必要に応じ
て清掃装置を設置すると、合金の品質が安定する。ロー
ル上で凝固した合金4はタンディッシュの反対側でロー
ルから離脱し、捕集コンテナ5で回収される。この捕集
コンテナに加熱、冷却機構を設けることでRリッチ相の
状態を制御することができる(特開平09−17005
5、特開平10−36949)。
(5) Strip Casting (SC) Method Here, a method for manufacturing the R-T-B type alloy for rare earth magnets by the strip casting method will be described with reference to the apparatus diagram shown in FIG. Because of their active nature, rare earth alloys are normally used in refractory crucibles 1 in a vacuum or in an inert gas atmosphere.
Is dissolved with. Molten alloy is 1350-1500 ℃
After being held for a predetermined time, it is supplied to the water-cooled casting rotary roll 3 through the tundish 2 provided with a rectifying mechanism and a slag removing mechanism as needed. The supply rate of the molten metal and the rotation speed of the roll are appropriately changed according to the desired alloy thickness. Generally, the rotation speed of the roll is about 1 to 3 m / s in terms of peripheral speed. The rotating roll for casting is
Copper or a copper alloy is suitable because of its high thermal conductivity and easy availability. Depending on the type of alloy and the surface condition of the roll, metal is likely to adhere to the surface of the casting roll. Therefore, if a cleaning device is installed as necessary, the quality of the alloy will be stable. The alloy 4 solidified on the roll separates from the roll on the opposite side of the tundish and is collected in the collection container 5. By providing a heating / cooling mechanism to this collection container, the state of the R-rich phase can be controlled (Japanese Patent Laid-Open No. 09-17005).
5, JP-A-10-36949).

【0043】(6)遠心鋳造法 本発明の遠心鋳造法は、従来の遠心鋳造法と同様に、円
筒状の回転する鋳型の内部に溶湯を供給し、溶湯を堆積
させながら凝固させるものである。しかし、従来のタン
ディッシュの穴から単純に重力で落下させる方法では、
溶湯の堆積速度を小さくすることが困難であり、合金中
にα‐Feが析出する可能性が大きい。したがって、本
発明に適する方法は、回転体に溶湯を供給し、そこから
遠心力で溶湯を小滴にして飛散して、鋳型内壁に合金を
堆積させるもので、堆積速度の大幅な低下、凝固速度の
増加が可能となり、従来のSC法よりも、α-Feの析
出を抑制する効果が大きい(特願2000−26260
5)。
(6) Centrifugal Casting Method The centrifugal casting method of the present invention, like the conventional centrifugal casting method, supplies molten metal to the inside of a cylindrical rotating mold and solidifies it while depositing the molten metal. . However, with the method of simply dropping by gravity from the hole of the conventional tundish,
It is difficult to reduce the deposition rate of the molten metal, and α-Fe is likely to precipitate in the alloy. Therefore, the method suitable for the present invention is to supply the molten metal to the rotating body, and then to spatter the molten metal into small droplets by centrifugal force to deposit the alloy on the inner wall of the mold. The speed can be increased, and the effect of suppressing the precipitation of α-Fe is greater than that of the conventional SC method (Japanese Patent Application No. 2000-26260).
5).

【0044】図6に遠心力で溶湯を飛散し、鋳型内壁に
堆積させる遠心鋳造法の装置図を示す。通常、希土類合
金は、その活性な性質なため真空または不活性ガス雰囲
気中で、耐火物ルツボ6を用いて溶解される。合金溶湯
は1350〜1500℃で所定の時間保持された後、湯
道7を介して回転体8に供給される。該回転体8の回転
によって溶湯を円筒状の鋳型9の内壁に飛散させ、注湯
速度を制御することによって、所望の堆積速度で合金1
0を作製することができる。なお回転体8の軸と鋳型9
の軸の間にある角度をもたせることにより合金の堆積面
を鋳型の長手方向全体に広げることができ、それによっ
ても溶湯の堆積速度を制御することができる。
FIG. 6 shows an apparatus diagram of the centrifugal casting method in which the molten metal is scattered by centrifugal force and deposited on the inner wall of the mold. Because of their active nature, rare earth alloys are typically melted using a refractory crucible 6 in a vacuum or inert gas atmosphere. The molten alloy is held at 1350 to 1500 ° C. for a predetermined time and then supplied to the rotating body 8 via the runner 7. By rotating the rotating body 8, the molten metal is scattered on the inner wall of the cylindrical mold 9 and the pouring speed is controlled, so that the alloy 1 can be deposited at a desired deposition rate.
0 can be created. The shaft of the rotor 8 and the mold 9
By having an angle between the axes of the alloys, the alloy deposition surface can be spread over the entire length of the mold, which also controls the melt deposition rate.

【0045】(7)粒界相系合金のTREとPr濃度 本発明にて製造した2合金法に使用する希土類磁石用主
相系合金は、別途作製した2合金法に使用する希土類磁
石用の粒界相系合金と混合し、その後、粉砕、成型、焼
結することにより、高特性の異方性磁石を製造すること
ができる。粒界相系合金は、主相R214B相よりも、
主にRリッチな粒界相を供給するため、そのTREは主
相系合金よりも高い。また本発明では、粒界相系合金の
R中のPrの比率は、主相系合金よりも低いことを特徴
とする。先に説明したように、耐食性、磁場配向性か
ら、Prは主相系合金により多く添加し、粒界相系合金
への添加量は極力低くする方が好ましい。より好ましく
は、粒界相系合金には、原料に不純物として含まれるも
のを除き、実質的にPrが含まれていないのが好まし
い。
(7) TRE and Pr Concentration of Grain Boundary Phase Alloy The main phase alloy for rare earth magnets used in the two-alloy method manufactured in the present invention is used for the rare earth magnet used in the two-alloy method prepared separately. An anisotropic magnet with high characteristics can be manufactured by mixing with a grain boundary phase-based alloy and then crushing, molding and sintering. The grain boundary phase-based alloy is more preferable than the main phase R 2 T 14 B phase.
Its TRE is higher than that of the main phase alloy because it mainly supplies the R-rich grain boundary phase. Further, the present invention is characterized in that the ratio of Pr in R of the grain boundary phase system alloy is lower than that of the main phase system alloy. As described above, in view of corrosion resistance and magnetic field orientation, it is preferable that Pr is added to the main phase alloy in a large amount and the addition amount to the grain boundary phase alloy is as low as possible. More preferably, the grain boundary phase-based alloy preferably contains substantially no Pr except for those contained as impurities in the raw material.

【0046】(8)希土類焼結磁石用混合粉末および希
土類磁石の製造方法 本発明に係る希土類磁石用の主相系合金および粒界相系
合金の粉砕は、通常、水素解砕、微粉砕の順で行なわ
れ、3μm(FSSS)程度の粉体にされる。ここで、
水素解砕は、前工程の水素吸蔵工程と後工程の脱水素工
程に分けられる。水素吸蔵工程では、266hPa〜
0.3MPa・Gの圧力の水素ガス雰囲気で、主に合金
塊のR−リッチ相に水素を吸蔵させ、この時に生成され
るR−水素化物によりR−リッチ相が体積膨張すること
を利用して、合金塊自体を微細に割るかまたは無数の微
細な割れ目を生じさせる。この水素吸蔵は常温〜600
℃程度の範囲で実施されるが、R−リッチ相の体積膨張
を大きくして効率良く割るためには、圧力を高くすると
共に、常温〜100℃程度の範囲で実施することが好ま
しい。好ましい処理時間は1時間以上である。この水素
吸蔵工程により生成したR−水素化物は、大気中では不
安定であり酸化され易いため、水素吸蔵工程の後、20
0〜600℃程度で1.33hPa以下真空中に保持す
る脱水素処理を行なうことが好ましい。この処理によ
り、大気中で安定なR-水素化物に変化させることがで
きる。好ましい処理時間は30分以上である。水素吸蔵
後から焼結までの各工程で酸化防止のための雰囲気管理
がなされている場合は、脱水素処理を省くこともでき
る。
(8) Method for Producing Mixed Powder for Rare Earth Sintered Magnet and Rare Earth Magnet The main phase alloy and grain boundary phase alloy for the rare earth magnet according to the present invention are usually pulverized by hydrogen pulverization or fine pulverization. The steps are carried out in order, and a powder of about 3 μm (FSSS) is formed. here,
The hydrogen disintegration is divided into a hydrogen storage step as a pre-process and a dehydrogenation process as a post-process. In the hydrogen storage process, 266 hPa ~
In a hydrogen gas atmosphere with a pressure of 0.3 MPa · G, hydrogen is occluded mainly in the R-rich phase of the alloy lump, and the R-rich phase produced by this time expands the volume of the R-rich phase. , The alloy ingot itself is finely divided, or innumerable fine cracks are formed. This hydrogen storage is from room temperature to 600
It is carried out in the range of about 0 ° C, but in order to increase the volume expansion of the R-rich phase and efficiently divide it, it is preferable to increase the pressure and carry out in the range of room temperature to 100 ° C. The preferred processing time is 1 hour or more. The R-hydride produced in this hydrogen storage step is unstable in the atmosphere and is easily oxidized, so that the R-hydride is not stored in the hydrogen storage step after the hydrogen storage step.
It is preferable to perform a dehydrogenation treatment in which the temperature is maintained at about 0 to 600 ° C. and 1.33 hPa or less in vacuum. By this treatment, it is possible to change to an R-hydride that is stable in the atmosphere. The preferable processing time is 30 minutes or more. The dehydrogenation treatment can be omitted if the atmosphere is controlled to prevent oxidation in each process from hydrogen absorption to sintering.

【0047】微粉砕とは、3μm(FSSS)程度まで
粉砕することである。このための粉砕機としては、生産
性が良く、狭い粒度分布を得られることから、ジェット
ミル装置が最適である。この場合、粉砕時の雰囲気はア
ルゴンガスや窒素ガスなどの不活性ガス雰囲気とする。
これらの不活性ガス中に2質量%以下、好ましくは1質
量%以下の酸素を混入させてもよい。このことにより粉
砕効率が向上するとともに、粉砕後の粉体の酸素濃度が
1000〜10000ppmとなり耐酸化性が向上す
る。また、焼結時の異常粒成長を抑制することもでき
る。
Fine pulverization means pulverization to about 3 μm (FSSS). As a crusher for this purpose, a jet mill device is most suitable because it has good productivity and a narrow particle size distribution can be obtained. In this case, the atmosphere during pulverization is an inert gas atmosphere such as argon gas or nitrogen gas.
2% by mass or less, preferably 1% by mass or less of oxygen may be mixed in these inert gases. As a result, the pulverization efficiency is improved, and the oxygen concentration of the pulverized powder is 1000 to 10,000 ppm, and the oxidation resistance is improved. It is also possible to suppress abnormal grain growth during sintering.

【0048】主相系合金と粒界相系合金は所望の比率で
配合、混合するが、その混合は水素解砕前、微粉砕前、
微粉砕後のどの工程でも可能である。二つの合金の粉砕
性が極端に異なる場合は、微粉砕後に混合した方が良
い。しかし,粉砕性の差が少なければ、水素解砕前に混
合しても構わない。
The main phase alloy and the grain boundary phase alloy are blended and mixed in a desired ratio. The mixing is performed before hydrogen crushing, before fine pulverization,
Any step after pulverization is possible. If the two alloys have extremely different pulverizability, it is better to mix them after fine pulverization. However, if the difference in grindability is small, they may be mixed before hydrocracking.

【0049】希土類磁石の磁場成型時には、粉体と金型
内壁との摩擦を低減し、また粉体どうしの摩擦も低減さ
せて配向性を向上させるため、粉体にはステアリン酸亜
鉛等の潤滑剤を添加することが好ましい。好ましい添加
量は0.01〜1質量%である。添加は微粉砕前でも後
でもよいが、磁場中成形前に、アルゴンガスや窒素ガス
などの不活性ガス雰囲気中でV型ブレンダー等を用いて
十分に混合することが好ましい。
During magnetic field molding of the rare earth magnet, the powder is lubricated with zinc stearate or the like to reduce the friction between the powder and the inner wall of the mold and also reduce the friction between the powders to improve the orientation. It is preferable to add an agent. The preferable addition amount is 0.01 to 1% by mass. The addition may be carried out before or after fine pulverization, but it is preferable to sufficiently mix it by using a V-type blender or the like in an inert gas atmosphere such as argon gas or nitrogen gas before molding in a magnetic field.

【0050】3μm(FSSS)程度まで粉砕された粉
体は、磁場中成型機でプレス成型される。金型は、キャ
ビティ内の磁界方向を考慮して、磁性材と非磁性材を組
み合わせて作製される。成型圧力は0.5〜2t/cm
2が好ましい。成型時のキャビティ内の磁界は5〜20
kOeが好ましい。また、成型時の雰囲気はアルゴンガ
スや窒素ガスなどの不活性ガス雰囲気が好ましいが、上
述の耐酸化処理した粉体の場合、大気中でも可能であ
る。成形は冷間静水圧プレス(CIP:ColdIso
static Press)或いはゴム型を利用した擬
似静水圧プレス(RIP:Rubber Isosta
tic Press)でも可能である。CIP或いはR
IPでは、静水圧的に圧縮されるため、成形時の配向の
乱れが少なく、金型成形よりも配向率の増加が可能であ
り、最大磁気エネルギー積を増加することができる。
The powder pulverized to about 3 μm (FSSS) is press-molded in a magnetic field molding machine. The mold is manufactured by combining a magnetic material and a non-magnetic material in consideration of the magnetic field direction in the cavity. Molding pressure is 0.5-2t / cm
2 is preferred. The magnetic field in the cavity during molding is 5 to 20
kOe is preferred. The atmosphere at the time of molding is preferably an inert gas atmosphere such as argon gas or nitrogen gas, but in the case of the above-mentioned powder subjected to the oxidation resistance treatment, it is also possible in the air. Molded by cold isostatic pressing (CIP: ColdIso)
Pseudo-hydrostatic press (RIP: Rubber Isosta) using static press) or rubber mold
tic Press) is also possible. CIP or R
Since the IP is hydrostatically compressed, the disorder of the orientation during molding is small, the orientation rate can be increased as compared with the die molding, and the maximum magnetic energy product can be increased.

【0051】成型された希土類磁石の焼結は、1000
〜1100℃で行なわれる。焼結温度に到達する前に潤
滑剤と、微粉中の水素はできるだけ除去しておく必要が
ある。潤滑剤の好ましい除去条件は、1.33×10-2
hPaの真空中またはAr減圧フロー雰囲気中、300
〜500℃で30分以上保持することである。また、水
素の好ましい除去条件は、1.33×10-2hPa以下
の真空中、700〜900℃で30分以上保持すること
である。焼結時の雰囲気はアルゴンガス雰囲気または
1.33×10-2hPa以下の真空雰囲気が好ましい。
保持時間は1時間以上が好ましい。
The sintering of the molded rare earth magnet is 1000
Performed at ~ 1100 ° C. Before reaching the sintering temperature, the lubricant and hydrogen in the fine powder should be removed as much as possible. The preferable condition for removing the lubricant is 1.33 × 10 -2
300 in hPa vacuum or Ar reduced pressure flow atmosphere
Hold at ~ 500 ° C for 30 minutes or more. Further, a preferable condition for removing hydrogen is to hold at 700 to 900 ° C. for 30 minutes or more in a vacuum of 1.33 × 10 −2 hPa or less. The atmosphere during sintering is preferably an argon gas atmosphere or a vacuum atmosphere of 1.33 × 10 -2 hPa or less.
The holding time is preferably 1 hour or more.

【0052】焼結後、保磁力向上のため、必要に応じて
500〜650℃で熱処理することができる。好ましい
雰囲気はアルゴンガス雰囲気または真空雰囲気である。
好ましい保持時間は30分以上である。
After sintering, a heat treatment may be performed at 500 to 650 ° C., if necessary, in order to improve the coercive force. A preferred atmosphere is an argon gas atmosphere or a vacuum atmosphere.
The preferable holding time is 30 minutes or more.

【0053】本発明のPrを含有した主相系合金を用い
て、2合金法により製造した希土類磁石が、同程度のP
rを添加した原料合金から1合金法により製造した希土
類磁石に対して優れている点は、以下の点であると考え
られる。
A rare earth magnet manufactured by the two-alloy method using the Pr-containing main phase alloy of the present invention has the same P content.
The following points are considered to be superior to the rare earth magnet produced by the one-alloy method from the raw material alloy to which r is added.

【0054】1合金法を使用する場合、希土類磁石の原
料合金の組成は、最終の希土類磁石の組成とほぼ同じ
で、工程中の微妙な組成変動分だけ異なっており、TR
Eは31−33質量%程度である。原料合金の粉末中に
は、5〜10%程度のRリッチ相が存在する。RがNd
ベースの場合、PrはR214B相よりもRリッチ相を
形成する傾向が強く、全体での添加比率よりもRリッチ
相内でのPr濃度は高くなる。そのため、活性なRリッ
チ相がさらに活性になり、粉砕工程中あるいは粉砕後に
酸化しやすくなる。ここで生じる過度の酸素濃度増加
は、磁石特性を低下させる。そのため、Pr濃度の増加
に際しては、工程中の酸化防止策をさらに徹底する必要
があり、コストアップ、生産効率の低下を招く。また、
焼結磁石を形成した後も、Rリッチ相中のPr濃度が高
いと合金や微粉と同様にRリッチ相が活性なため、磁石
の耐食性が低下する。
When the one-alloy method is used, the composition of the raw material alloy of the rare earth magnet is almost the same as the composition of the final rare earth magnet, and is different by a slight composition variation during the process.
E is about 31-33 mass%. About 5 to 10% of R-rich phase exists in the powder of the raw material alloy. R is Nd
In the case of the base, Pr has a stronger tendency to form the R-rich phase than the R 2 T 14 B phase, and the Pr concentration in the R-rich phase becomes higher than the total addition ratio. Therefore, the active R-rich phase becomes more active and is more likely to be oxidized during or after the grinding process. The excessive increase in oxygen concentration that occurs here deteriorates the magnet characteristics. Therefore, when increasing the Pr concentration, it is necessary to further thoroughly take measures to prevent oxidation during the process, resulting in an increase in cost and a decrease in production efficiency. Also,
Even after forming the sintered magnet, if the Pr concentration in the R-rich phase is high, the R-rich phase is active like the alloy and the fine powder, so that the corrosion resistance of the magnet is reduced.

【0055】しかし、本発明の2合金法により製造した
希土類磁石は、Prが主相系合金から供給され、元々R
214B相中に高濃度に含まれ、Rリッチ相内での濃度
は低い。焼結中の拡散で、PrがR214B相からRリ
ッチ相に拡散し、Rリッチ相のPr濃度は多少増加する
場合もある。それでも、元の合金のRリッチ相のPr濃
度が高い1合金法の磁石よりも、Rリッチ相のPr濃度
の増加を抑制でき、耐蝕性の改善が可能である。また、
原料合金中でPrが主相系合金に高濃度で含まれること
で、そのR214B相の異方性磁界が増加し、磁場配向
性も改善され、磁石の配向率、磁化の増加をもたらすこ
とも可能である。
However, in the rare earth magnet manufactured by the two-alloy method of the present invention, Pr is supplied from the main phase alloy, and R is originally
It is contained in a high concentration in the 2 T 14 B phase, and the concentration in the R rich phase is low. Due to diffusion during sintering, Pr may diffuse from the R 2 T 14 B phase to the R rich phase, and the Pr concentration in the R rich phase may increase to some extent. Even so, the increase in the Pr concentration in the R-rich phase can be suppressed and the corrosion resistance can be improved as compared with the magnet of the 1-alloy method in which the Pr concentration in the R-rich phase of the original alloy is high. Also,
Since the main phase alloy contains a high concentration of Pr in the raw material alloy, the anisotropic magnetic field of the R 2 T 14 B phase is increased, the magnetic field orientation is also improved, and the orientation ratio and magnetization of the magnet are increased. It is also possible to bring

【0056】[0056]

【実施例】(実施例1)合金組成が、TRE:28.5
質量%(但し、R中のNdとPrの割合が半分ずつ)、
B:1.00質量%、Al:0.30質量%、残部鉄に
なるように、金属ネオジウム、金属プラセオジウム、フ
ェロボロン、アルミニウム、鉄を配合し、アルミナ坩堝
を使用して、アルゴンガス1気圧雰囲気中で、高周波溶
解炉で溶解し、溶湯をストリップキャスト法にて合金薄
片を作製した。鋳造ロールの直径は300mm、材質は
純銅で、内部は水冷されており、鋳造面の表面粗さは十
点平均粗さ(Rz)で20μmに調整した。鋳造時のロ
ールの周速度は0.9m/sで、平均厚さ0.26mm
の合金薄片を生成した。
Example (Example 1) The alloy composition was TRE: 28.5.
Mass% (however, the ratio of Nd and Pr in R is half each),
B: 1.00% by mass, Al: 0.30% by mass, metal neodymium, metal praseodymium, ferroboron, aluminum, and iron are blended so that the balance becomes iron, and an argon gas at 1 atmospheric pressure is used using an alumina crucible. Inside, it was melted in a high-frequency melting furnace, and the molten metal was produced into strip pieces by strip casting. The diameter of the casting roll was 300 mm, the material was pure copper, the inside was water-cooled, and the surface roughness of the casting surface was adjusted to 20 μm in terms of ten-point average roughness (Rz). The peripheral speed of the roll during casting is 0.9 m / s and the average thickness is 0.26 mm.
Alloy flakes were produced.

【0057】得られた合金薄片の鋳型面側表面の表面粗
さは、十点平均粗さ(Rz)で9μmであった。合金薄
片を10枚埋め込み、研摩した後、走査型電子顕微鏡
(SEM)で反射電子線像(BEI)を各合金薄片につ
いて倍率200倍で撮影した。撮影した写真を画像解析
装置に取り込んで測定したところ、α-Feを含む領域
の体積率は1%以下であった。
The surface roughness of the surface of the obtained alloy flakes on the template surface was 9 μm in terms of ten-point average roughness (Rz). After embedding 10 alloy flakes and polishing, a backscattered electron beam image (BEI) was taken with a scanning electron microscope (SEM) at a magnification of 200 for each alloy flakes. When the photographed photograph was taken into an image analyzer and measured, the volume ratio of the region containing α-Fe was 1% or less.

【0058】(実施例2)実施例1と同様の組成の合金
を配合し、アルゴンガス雰囲気中でアルミナるつぼを使
用して高周波誘導溶解し、回転タンディッシュを利用し
た遠心鋳造装置で鋳造を行った。鋳型内壁への平均堆積
速度は0.01cm/秒とした。この時の鋳型回転数
は、遠心力が3Gとなるように設定し、回転タンディッ
シュ内の溶湯に約20Gの遠心力を加えて、溶湯を飛散
させた。
(Example 2) An alloy having the same composition as in Example 1 was blended, high-frequency induction melting was performed using an alumina crucible in an argon gas atmosphere, and casting was performed by a centrifugal casting apparatus using a rotary tundish. It was The average deposition rate on the inner wall of the mold was 0.01 cm / sec. The mold rotation speed at this time was set so that the centrifugal force was 3 G, and about 20 G of centrifugal force was applied to the molten metal in the rotary tundish to scatter the molten metal.

【0059】得られた合金片の厚さは7〜10mmであ
った。厚さが7mm、8.5mm、10mmの各部分の
合金を採取して埋め込み、研摩した後、走査型電子顕微
鏡(SEM)で反射電子線像(BEI)を倍率200倍
で撮影した。その際、各合金片について、鋳型面側から
自由面側にかけて均等に4箇所ずつ撮影した写真を画像
解析装置に取り込んで測定したところ、α-Feを含む
領域の体積率は1%以下であった。
The thickness of the obtained alloy flakes was 7 to 10 mm. The alloys of 7 mm, 8.5 mm, and 10 mm in thickness were sampled, embedded, and polished, and then a backscattered electron beam image (BEI) was photographed with a scanning electron microscope (SEM) at a magnification of 200 times. At that time, for each of the alloy pieces, four evenly photographed from the mold surface side to the free surface side were taken into an image analyzer and measured. The volume ratio of the region containing α-Fe was 1% or less. It was

【0060】(比較例1)実施例1と同様の組成の合金
を配合し、実施例1と同様に溶解鋳造を実施した。但
し、鋳造ロール表面の表面粗さは十点平均粗さ(Rz)
で3.0μmであった。得られた合金薄片を実施例1と
同様に評価した結果、鋳型面側表面の表面粗さは十点平
均粗さ(Rz)で3.4μmであり、α-Feを含む領
域の体積率は、8%であった。
(Comparative Example 1) An alloy having the same composition as in Example 1 was mixed, and melt casting was carried out in the same manner as in Example 1. However, the surface roughness of the surface of the casting roll is the ten-point average roughness (Rz).
Was 3.0 μm. The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the surface roughness of the mold surface was 10 μm average roughness (Rz) of 3.4 μm, and the volume ratio of the region containing α-Fe was , 8%.

【0061】次に希土類磁石を作製した例について説明
する。(実施例3)実施例1で得られた主相系合金薄片
をまず水素解砕した。水素解砕工程の前工程である水素
吸蔵工程の条件は、100%水素雰囲気、2気圧で1時
間保持とした。水素吸蔵反応開始時の金属片の温度は2
5℃であった。また後工程である脱水素工程の条件は、
0.133hPaの真空中で500℃で1時間保持とし
た。水素開催で作製した粉体に、ステアリン酸亜鉛粉末
を0.07質量%添加し、100%窒素雰囲気中でV型
ブレンダーで十分混合した後、ジェットミル装置で微粉
砕した。粉砕時の雰囲気は、4000ppmの酸素を混
合した窒素雰囲気中とした。その後、再度100%窒素
雰囲気中でV型ブレンダーで十分混合した。得られた粉
体の酸素濃度は1800ppmで、粉体の炭素濃度の分
析から、粉体に混合されているステアリン酸亜鉛粉末は
0.05質量%であると計算された。
Next, an example of producing a rare earth magnet will be described. (Example 3) The main phase alloy flakes obtained in Example 1 were first hydrocracked. The conditions of the hydrogen storage step, which is a step prior to the hydrogen disintegration step, were a 100% hydrogen atmosphere and 2 atmospheric pressure for 1 hour. The temperature of the metal piece at the start of the hydrogen storage reaction is 2
It was 5 ° C. The conditions of the dehydrogenation process, which is a post process, are
It was kept at 500 ° C. for 1 hour in a vacuum of 0.133 hPa. Zinc stearate powder was added in an amount of 0.07% by mass to the powder prepared by hydrogenation, thoroughly mixed with a V-type blender in a 100% nitrogen atmosphere, and then finely pulverized with a jet mill device. The atmosphere at the time of pulverization was a nitrogen atmosphere mixed with 4000 ppm of oxygen. Then, it was thoroughly mixed again with a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 1800 ppm, and from the analysis of the carbon concentration of the powder, it was calculated that the zinc stearate powder mixed in the powder was 0.05% by mass.

【0062】粒界相系合金は、Nd:35.0質量%、
Dy:20質量%、B:0.70質量%、Al:0.3
0質量%、Co:25.0質量%、Cu:1.00質量
%、残部鉄になるように、金属ネオジウム、金属ジスプ
ロシウム、フェロボロン、アルミニウム、コバルト、
銅、鉄を配合し、アルミナ坩堝を使用して、アルゴンガ
ス1気圧の雰囲気中で、高周波溶解炉で溶解し、遠心鋳
造法にて合金を作製した。鋳型内壁への平均堆積速度は
0.03cm/秒とした。この時の鋳型回転数は、遠心
力が20Gとなるように設定した。得られた合金片の厚
さは8〜11mmであった。
The grain boundary phase system alloy is Nd: 35.0 mass%,
Dy: 20 mass%, B: 0.70 mass%, Al: 0.3
0% by mass, Co: 25.0% by mass, Cu: 1.00% by mass, with the balance being iron, metal neodymium, metal dysprosium, ferroboron, aluminum, cobalt,
Copper and iron were blended, and an alumina crucible was used to melt in an high-frequency melting furnace in an atmosphere of 1 atm of argon gas, and an alloy was produced by a centrifugal casting method. The average deposition rate on the inner wall of the mold was 0.03 cm / sec. The mold rotation speed at this time was set so that the centrifugal force was 20G. The thickness of the obtained alloy flakes was 8 to 11 mm.

【0063】該粒界相系合金を主相系合金同様の方法
で、水素解砕、微粉砕、混合した。得られた粉体の酸素
濃度は3000ppmで、粉体の炭素濃度の分析から、
粉体に混合されているステアリン酸亜鉛粉末は0.05
質量%であると計算された。
The grain boundary phase-based alloy was hydrolyzed, finely pulverized and mixed in the same manner as the main phase-based alloy. The oxygen concentration of the obtained powder was 3000 ppm, and from the analysis of the carbon concentration of the powder,
The zinc stearate powder mixed with the powder is 0.05
Calculated to be% by weight.

【0064】上記主相系合金と粒界相系合金を重量比で
9:1に計り取って、V型ブレンダーで十分に混合し
た。次に、得られた混合粉体を100%窒素雰囲気中で
横磁場中成型機でプレス成型した。成型圧は1.2t/
cm2であり、金型のキャビティ内の磁界は15kOe
とした。得られた成型体を、1.33×10-5hPaの
真空中、500℃で1時間保持し、次いで1.33×1
-5hPaの真空中、800℃で2時間保持した後、
1.33×10-5hPaの真空中、1080℃で2時間
保持して焼結させた。焼結密度は7.5g/cm3以上
であり十分な大きさの密度となった。さらに、この焼結
体をアルゴン雰囲気中、530℃で1時間熱処理した。
The main phase alloy and the grain boundary phase alloy were weighed out in a weight ratio of 9: 1 and sufficiently mixed with a V-type blender. Next, the obtained mixed powder was press-molded in a transverse magnetic field molding machine in a 100% nitrogen atmosphere. Molding pressure is 1.2t /
cm 2 and the magnetic field in the mold cavity is 15 kOe
And The obtained molded body was held at 500 ° C. for 1 hour in a vacuum of 1.33 × 10 −5 hPa, and then 1.33 × 1
After holding at 800 ° C for 2 hours in a vacuum of 0 -5 hPa,
It was held at 1080 ° C. for 2 hours in a vacuum of 1.33 × 10 −5 hPa for sintering. The sintered density was 7.5 g / cm 3 or more, which was a sufficiently large density. Further, this sintered body was heat-treated at 530 ° C. for 1 hour in an argon atmosphere.

【0065】以上のようにして作製した希土類磁石につ
いて、直流BHカーブトレーサーで磁石特性を測定した
結果を表1に示す。また、主相系微粉と磁石の酸素濃度
も表1に合わせて示す。
Table 1 shows the results of measuring the magnet characteristics of the rare earth magnet manufactured as described above with a DC BH curve tracer. The oxygen concentrations of the main phase fine powder and the magnet are also shown in Table 1.

【0066】(実施例4)実施例2で得られた主相系合
金鋳片を、実施例3と同様の方法で粉砕して粉体を得
た。この粉体と実施例3で作製したのと同じ粒界相系合
金の微粉とを実施例3と同様の方法で混合し、希土類磁
石を作製した。本実施例4で作製した希土類磁石の磁石
特性と主相系微粉と磁石の酸素濃度を表1に合わせて示
す。
Example 4 The main phase alloy cast slab obtained in Example 2 was pulverized in the same manner as in Example 3 to obtain a powder. This powder was mixed with fine powder of the same grain boundary phase alloy as that produced in Example 3 in the same manner as in Example 3 to produce a rare earth magnet. Table 1 also shows the magnet characteristics of the rare earth magnet manufactured in Example 4 and the oxygen concentrations of the main phase fine powder and the magnet.

【0067】(比較例2)比較例1で作製した主相系合
金薄片を、実施例3と同様の方法で粉砕して微粉を得
た。この際、ジェットミルでの粉砕速度が、実施例1で
作製した主相系合金薄片と比較して、平均で10%低下
した。この粉体と実施例3で作製した粒界相系合金微粉
を実施例3と同様の方法で混合し、希土類磁石を作製し
た。本比較例2で作製した希土類磁石の磁石特性と主相
系微粉と磁石の酸素濃度を表1に合わせて示す。
Comparative Example 2 The main phase alloy flakes produced in Comparative Example 1 were pulverized in the same manner as in Example 3 to obtain fine powder. At this time, the crushing speed in the jet mill was reduced by 10% on average as compared with the main phase alloy flakes produced in Example 1. This powder and the grain boundary phase alloy fine powder produced in Example 3 were mixed in the same manner as in Example 3 to produce a rare earth magnet. Table 1 also shows the magnet characteristics of the rare earth magnet produced in Comparative Example 2, and the oxygen concentrations of the main phase fine powder and the magnet.

【0068】[0068]

【表1】 [Table 1]

【0069】表1に示されるように、比較例2の希土類
磁石は、実施例3、4と比較して残留磁化が小さいこと
が判る。この原因は、ジェットミルの際、α-Feが粉
砕されずにジェットミル装置内に残存したため、微粉の
TREが若干増加したことによると推定できる。
As shown in Table 1, it is understood that the rare earth magnet of Comparative Example 2 has a smaller residual magnetization than those of Examples 3 and 4. It can be presumed that the cause of this is that the α-Fe was not pulverized during the jet mill and remained in the jet mill apparatus, so that the TRE of the fine powder was slightly increased.

【0070】(比較例3)実施例3で作製した磁石と同
じ組成の希土類磁石を1合金法で作製した。原料合金
は、組成がTRE:31.15質量%(この原料合金の
Rのうち、Ndが52.4質量%、Pr41.2質量
%、Dy6.4質量%である)、B:0.97質量%、
Al:0.30質量%、Co:2.50質量%、Cu:
0.10質量%、残部鉄になるように、実施例1と同様
のSC法で合金薄片を作製した。
Comparative Example 3 A rare earth magnet having the same composition as the magnet produced in Example 3 was produced by the one alloy method. The raw material alloy has a composition of TRE: 31.15 mass% (N in the R of the raw material alloy is 52.4 mass%, Pr41.2 mass% and Dy6.4 mass%), B: 0.97. mass%,
Al: 0.30% by mass, Co: 2.50% by mass, Cu:
Alloy flakes were produced by the same SC method as in Example 1 so that 0.10% by mass and the balance iron.

【0071】該薄片を実施例3と同様の方法で粉砕して
微粉を得、この微粉単体で実施例3と同様の方法で磁石
を作製した。作製した磁石の酸素濃度と磁石特性を表1
に合わせて示す。なお、本比較例3で作製した磁石を分
析した結果、実施例3で作製した磁石との組成の相違
は、分析誤差の範囲内であった。
The flakes were pulverized in the same manner as in Example 3 to obtain fine powder, and a magnet was produced by using the fine powder alone in the same manner as in Example 3. Table 1 shows the oxygen concentration and magnet characteristics of the manufactured magnet.
Are shown together with. As a result of analyzing the magnet manufactured in Comparative Example 3, the difference in composition from the magnet manufactured in Example 3 was within the range of analysis error.

【0072】表1に示されるように、比較例3の希土類
磁石は、実施例3、4と比較して酸素濃度が高く、残留
磁化が小さいことが判る。この原因は、磁石製造工程中
での微粉の酸化、磁場配向時の配向性の相違に起因する
ものと推定できる。
As shown in Table 1, the rare earth magnet of Comparative Example 3 has a higher oxygen concentration and a smaller residual magnetization than those of Examples 3 and 4. It can be presumed that this is due to the oxidation of fine powder in the magnet manufacturing process and the difference in orientation during magnetic field orientation.

【0073】[0073]

【発明の効果】本発明は、コスト、特性の両面で有利で
あるPrによりNdを置換しても、α−Feの発生しな
い希土類磁石用合金を提供するもので、低TREの2合
金法主相系合金として用いると、磁石特性の優れた希土
類磁石の原料として極めて有効である。
INDUSTRIAL APPLICABILITY The present invention provides an alloy for rare earth magnets in which α-Fe is not generated even if Nd is replaced by Pr, which is advantageous in terms of both cost and characteristics. When used as a phase-based alloy, it is extremely effective as a raw material for rare earth magnets having excellent magnet characteristics.

【0074】また、本発明のPrを含む希土類磁石用主
相系合金とPrの含有量の少ない粒界相系合金とから希
土類磁石を作製すると、Prを主相系合金から供給する
ことによって、高Pr添加希土類磁石の欠点であった工
程中の酸化、磁石の耐食性を改善し、磁場配向性も改善
した磁石が作製できる。
When a rare earth magnet is produced from the main phase alloy for rare earth magnets containing Pr of the present invention and the grain boundary phase alloy containing a small amount of Pr, Pr is supplied from the main phase alloy. It is possible to manufacture a magnet that has improved oxidation resistance during the process and corrosion resistance of the magnet, which were defects of the high Pr-added rare earth magnet, and improved magnetic field orientation.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のSC法で作製した希土類磁石用主相系合
金薄片の断面の電子顕微鏡写真である。
FIG. 1 is an electron micrograph of a cross section of a main phase alloy thin piece for a rare earth magnet produced by a conventional SC method.

【図2】本発明のSC法で作製した希土類磁石用主相系
合金薄片の断面の電子顕微鏡写真である。
FIG. 2 is an electron micrograph of a cross section of a main phase alloy flakes for rare earth magnets produced by the SC method of the present invention.

【図3】図1の断面写真でα−Feを含む領域を点線で
囲んだものである。
FIG. 3 is a cross-sectional photograph of FIG. 1 in which a region containing α-Fe is surrounded by a dotted line.

【図4】本発明の遠心鋳造法で作製した希土類磁石用主
相系合金薄片の断面の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of a cross section of a main phase alloy flakes for rare earth magnets produced by the centrifugal casting method of the present invention.

【図5】ストリップキャスト法(SC)法の鋳造装置を
示す図である。
FIG. 5 is a diagram showing a casting device of a strip casting method (SC).

【図6】遠心力で溶湯を飛散し、鋳型内壁に堆積させる
遠心鋳造法の装置を示す図である。
FIG. 6 is a view showing an apparatus for centrifugal casting in which molten metal is scattered by centrifugal force and deposited on the inner wall of the mold.

【符号の説明】[Explanation of symbols]

1 耐火物ルツボ 2 タンディッシュ 3 鋳造用回転ロール 4 合金 5 捕集コンテナ 6 耐火物ルツボ 7 湯道 8 回転体 9 鋳型 10 合金 1 refractory crucible 2 tundish 3 Casting rotating rolls 4 alloy 5 Collection container 6 Refractory crucible 7 runway 8 rotating bodies 9 molds 10 alloy

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 1/08 B 1/06 1/04 H 1/08 1/06 A ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01F 1/053 H01F 1/08 B 1/06 1/04 H 1/08 1/06 A

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】R(RはYを含む希土類元素のうちの少な
くとも1種)を26〜30質量%含み、Bを0.9〜
1.1質量%含み、残部がT(TはFeを必須とする遷
移金属)からなる2合金法に使用するための希土類磁石
用主相系合金において、R中にはPrをR中の比率にし
て5質量%以上を含み、該主相系合金の組織のうちα−
Feを含む領域の体積率が5%以下であることを特徴と
する希土類磁石用主相系合金。
1. R (R is at least one of rare earth elements including Y) is contained in an amount of 26 to 30% by mass, and B is included in an amount of 0.9 to 0.9.
A main phase alloy for rare earth magnets for use in a two-alloy method containing 1.1% by mass and the balance of T (T is a transition metal in which Fe is an essential element). Of 5% by mass or more and α- of the structure of the main phase alloy
A main phase alloy for rare earth magnets, characterized in that the volume ratio of the region containing Fe is 5% or less.
【請求項2】R中のPrの比率が15質量%以上である
ことを特徴とする請求項1に記載の希土類磁石用主相系
合金。
2. The main phase alloy for a rare earth magnet according to claim 1, wherein the ratio of Pr in R is 15% by mass or more.
【請求項3】R中のPrの比率が30質量%以上である
ことを特徴とする請求項2に記載の希土類磁石用主相系
合金。
3. The main phase alloy for a rare earth magnet according to claim 2, wherein the ratio of Pr in R is 30% by mass or more.
【請求項4】前記主相系合金の少なくとも片側の表面の
表面粗さが、十点平均粗さ(Rz)で5μm以上50μm
以下とすることを特徴とする請求項1乃至3に記載の希
土類磁石用主相系合金。
4. The surface roughness of at least one surface of the main phase alloy in terms of ten-point average roughness (Rz) is 5 μm or more and 50 μm or more.
The main phase alloy for rare earth magnets according to any one of claims 1 to 3, wherein:
【請求項5】前記主相系合金の少なくとも片側の表面の
表面粗さが、十点平均粗さ(Rz)で7μm以上25μm
以下とすることを特徴とする請求項4に記載の希土類磁
石用主相系合金。
5. The surface roughness of at least one surface of the main phase alloy is 10 μm or more and 25 μm in terms of ten-point average roughness (Rz).
The main phase alloy for rare earth magnets according to claim 4, wherein:
【請求項6】ストリップキャスト法により製造すること
を特徴とする請求項1乃至5に記載の希土類磁石用主相
系合金の製造方法。
6. The method for producing a main phase alloy for a rare earth magnet according to claim 1, wherein the method is a strip casting method.
【請求項7】鋳造用回転ロールの鋳造面の表面粗さを十
点平均粗さ(Rz)で5μm以上100μm以下とするこ
とを特徴とする請求項6に記載の希土類磁石用主相系合
金の製造方法。
7. The main phase alloy for a rare earth magnet according to claim 6, wherein the surface roughness of the casting surface of the casting rotating roll is 10 μm or more and 100 μm or less in terms of ten-point average roughness (Rz). Manufacturing method.
【請求項8】鋳造用回転ロールの鋳造面の表面粗さを十
点平均粗さ(Rz)で10μm以上50μm以下とするこ
とを特徴とする請求項6に記載の希土類磁石用主相系合
金の製造方法。
8. The main phase alloy for a rare earth magnet according to claim 6, wherein the surface roughness of the casting surface of the casting rotary roll is 10 μm or more and 50 μm or less in terms of ten-point average roughness (Rz). Manufacturing method.
【請求項9】溶湯を回転する円筒状鋳型の内面に堆積凝
固させる遠心鋳造法により製造することを特徴とする請
求項1乃至3に記載の希土類磁石用主相系合金の製造方
法。
9. The method for producing a main phase alloy for rare earth magnets according to claim 1, wherein the molten metal is produced by a centrifugal casting method in which the molten metal is deposited and solidified on the inner surface of a rotating cylindrical mold.
【請求項10】請求項1乃至3に記載の希土類磁石用主
相系合金と、Rの比率が前記主相系合金よりも高く、R
中のPrの比率が前記主相系合金よりも低い粒界相系合
金とを混合して作製した希土類焼結磁石用混合粉末。
10. A rare earth magnet main phase alloy according to claim 1, wherein the ratio of R is higher than that of the main phase alloy, and R
A mixed powder for a rare earth sintered magnet, which is produced by mixing a grain boundary phase alloy having a lower Pr ratio therein than the main phase alloy.
【請求項11】粒界相系合金には、実質的にPrが含ま
れていないことを特徴とする請求項10に記載の希土類
焼結磁石用混合粉末。
11. The mixed powder for a rare earth sintered magnet according to claim 10, wherein the grain boundary phase alloy contains substantially no Pr.
【請求項12】請求項10または11に記載の希土類焼
結磁石用混合粉末から粉末冶金法で製造された希土類磁
石。
12. A rare earth magnet produced by powder metallurgy from the mixed powder for rare earth sintered magnet according to claim 10 or 11.
JP2001385544A 2001-12-18 2001-12-19 Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet Pending JP2003183787A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001385544A JP2003183787A (en) 2001-12-19 2001-12-19 Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
CNB028050975A CN1306527C (en) 2001-12-18 2002-12-18 Rare earth magnetic alloy sheet, its manufacturing method, sintered rare earth magnetic alloy powder, sintered rare earth magnet, metal powder for bonded magnet, and bonded magnet
US10/498,932 US7442262B2 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
AU2002358316A AU2002358316A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
PCT/JP2002/013231 WO2003052778A1 (en) 2001-12-18 2002-12-18 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US11/826,114 US7571757B2 (en) 2001-12-18 2007-07-12 Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385544A JP2003183787A (en) 2001-12-19 2001-12-19 Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet

Publications (1)

Publication Number Publication Date
JP2003183787A true JP2003183787A (en) 2003-07-03

Family

ID=27594932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385544A Pending JP2003183787A (en) 2001-12-18 2001-12-19 Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet

Country Status (1)

Country Link
JP (1) JP2003183787A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320565C (en) * 2003-11-18 2007-06-06 Tdk株式会社 Method for making sintered magnet and alloy for sintering magnet
CN100372031C (en) * 2005-12-31 2008-02-27 有研稀土新材料股份有限公司 Assistant alloy for Nd-Fe-B permanent magnetic material and its preparation method
WO2008114571A1 (en) * 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2011211068A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor and automobile
JP2013111599A (en) * 2011-11-28 2013-06-10 Chuden Rare Earth Co Ltd Rare earth based alloy and method for manufacturing the same
JP2013135142A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Method of manufacturing quenched ribbon for rare-earth magnet
JP2014500611A (en) * 2010-10-15 2014-01-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High corrosion resistance sintered NdFeB magnet and method for preparing the same
JP2014099594A (en) * 2012-10-17 2014-05-29 Shin Etsu Chem Co Ltd Method for producing rare earth sintered magnet and rare earth sintered magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320565C (en) * 2003-11-18 2007-06-06 Tdk株式会社 Method for making sintered magnet and alloy for sintering magnet
CN100372031C (en) * 2005-12-31 2008-02-27 有研稀土新材料股份有限公司 Assistant alloy for Nd-Fe-B permanent magnetic material and its preparation method
WO2008114571A1 (en) * 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2011211068A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor and automobile
JP2014500611A (en) * 2010-10-15 2014-01-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング High corrosion resistance sintered NdFeB magnet and method for preparing the same
JP2013111599A (en) * 2011-11-28 2013-06-10 Chuden Rare Earth Co Ltd Rare earth based alloy and method for manufacturing the same
JP2013135142A (en) * 2011-12-27 2013-07-08 Toyota Motor Corp Method of manufacturing quenched ribbon for rare-earth magnet
JP2014099594A (en) * 2012-10-17 2014-05-29 Shin Etsu Chem Co Ltd Method for producing rare earth sintered magnet and rare earth sintered magnet
JP2017063206A (en) * 2012-10-17 2017-03-30 信越化学工業株式会社 Method for manufacturing microcrystal alloy intermediate product, and microcrystal alloy intermediate product

Similar Documents

Publication Publication Date Title
US7442262B2 (en) Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7431070B2 (en) Rare earth magnet alloy ingot, manufacturing method for the same, R-T-B type magnet alloy ingot, R-T-B type magnet, R-T-B type bonded magnet, R-T-B type exchange spring magnet alloy ingot, R-T-B type exchange spring magnet, and R-T-B type exchange spring bonded magnet
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US20090072938A1 (en) R-t-b system alloy and method of preparing r-t-b system alloy, fine powder for r-t-b system rare earth permanent magnet, and r-t-b system rare earth permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US7594972B2 (en) Alloy lump for R-T-B type sintered magnet, producing method thereof, and magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP3234741B2 (en) Alloy for rare earth magnet and method for producing the same
JPH0931609A (en) Rare earth magnet alloy and its production
JP4689652B2 (en) Method for evaluating metal structure of RTB-based magnet alloy
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
JP4366360B2 (en) Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
WO2002072900A2 (en) Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same
JP4040571B2 (en) Method for producing rare earth-containing alloy flakes
JP4754739B2 (en) Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2002208509A (en) Rare earth magnet and its manufacturing method
JP2004043921A (en) Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this
JP2004214390A (en) Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet