WO2005031023A1 - Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet - Google Patents

Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet Download PDF

Info

Publication number
WO2005031023A1
WO2005031023A1 PCT/JP2004/014580 JP2004014580W WO2005031023A1 WO 2005031023 A1 WO2005031023 A1 WO 2005031023A1 JP 2004014580 W JP2004014580 W JP 2004014580W WO 2005031023 A1 WO2005031023 A1 WO 2005031023A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
rich phase
raw material
rich
thin plate
Prior art date
Application number
PCT/JP2004/014580
Other languages
French (fr)
Japanese (ja)
Inventor
Futoshi Kuniyoshi
Yuji Kaneko
Hiroshi Hasegawa
Shiro Sasaki
Original Assignee
Neomax Co., Ltd.
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co., Ltd., Showa Denko K.K. filed Critical Neomax Co., Ltd.
Priority to JP2005514309A priority Critical patent/JP4366360B2/en
Publication of WO2005031023A1 publication Critical patent/WO2005031023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a raw material alloy for an RTB-based permanent magnet, and more particularly to a raw alloy flake for an RTB-based permanent magnet manufactured by a strip casting method. Still, the present invention relates to an R—T—B-based permanent magnet produced from the above-mentioned raw material alloy for an R-T-B-based permanent magnet.
  • R-T-B permanent magnets which have the largest magnetic energy product among permanent magnets, are used for HD (hard disk), MRI (magnetic resonance imaging), and various motors due to their high characteristics. ing.
  • HD hard disk
  • MRI magnetic resonance imaging
  • various motors due to their high characteristics. ing.
  • the demand for energy-saving lugi in the market has increased, and the ratio of motors, including automobiles, has increased.
  • R in “RT—B-based permanent magnet” is mainly the one in which a part of Nd is replaced by other rare earth elements such as Pr and Dy, and Y is a rare earth element. It is at least one of the elements. “Ding” is a substitution of a part of Fe with another transition metal such as Co or Ni. "B” is boron, part of which is C Or those substituted with N.
  • the "RT-B-based permanent magnet” is composed of "Nd_Fe-B-based magnet” or "R-Fe-B-based magnet” because its main components are Nd, Fe, and B.
  • RT—B permanent magnet refers to Cu
  • One or more of elements such as Al, Ti, V, Cr, Ga, Mn, Nb, Ta, Mo, W, Ca, Sn, Z It is known that magnets added in combination can be used to improve various properties such as magnetic properties.
  • R-T-B alloys have a main phase of R 2 T i 4 B phase, which is a ferromagnetic phase that contributes to the magnetizing action, and coexist with a nonmagnetic, rare earth-enriched, low melting point R-rich phase. Alloy. Since R-T-B alloys are active metals, they are generally melted in a vacuum or inert gas. In addition, in order to manufacture a sintered magnet from the manufactured R—T—B series alloy ingot by powder metallurgy, the alloy ingot is crushed to about 3 m (FSSS: measurement with a fisher subsizer). After the alloy powder is formed, it is pressed in a magnetic field.
  • FSSS measurement with a fisher subsizer
  • the powder compact obtained by press molding is sintered at a high temperature of about 100 ° C to 110 ° C in a sintering furnace. It is general that the sintered body produced in this way is subjected to hemp heat treatment, machining, and plating to improve corrosion resistance as necessary.
  • the R-rich phase in R—T—B sintered magnets plays an important role as follows.
  • the melting point of the R-rich phase is low and becomes a liquid phase during sintering, contributing to the higher density of magnets and the improvement of magnetization.
  • the dispersion state of the R-rich phase in the formed magnet is poor, local sintering failure and magnetism will be reduced, so that the R-rich phase is uniformly dispersed in the formed magnet. Is important.
  • the distribution of the R-rich phase in the RTB-based sintered magnet is greatly affected by the microstructure of the RTB-based alloy as the raw material.
  • a strip cast method (hereinafter abbreviated as “SC method”) has been developed as a method for producing R—T-B alloys, and is used in actual processes.
  • SC method a thin section of about 0.1 to 1 mm in thickness is produced by flowing molten metal of an alloy on a copper roll and rapidly cooling and solidifying the molten alloy.
  • the SC method since the crystal structure of the alloy is refined, it is possible to produce an RTB alloy having a structure in which the R-rich phase is finely dispersed.
  • the alloy manufactured by the SC method since the internal R-rich phase is finely dispersed, the dispersibility of the R-rich phase in the magnet after pulverization and sintering is good. Thus, the magnetic properties of the magnet can be improved.
  • the alloy flakes produced by the SC method have excellent structural homogeneity.
  • the homogeneity of the structure can be compared by the dispersion state of the crystal grain size and the R-rich phase.
  • chill crystals equiaxed crystals
  • the ⁇ -shaped surface side the production roll side of the alloy flakes, but the whole is quenched.
  • a moderately fine and homogeneous structure obtained by solidification can be obtained.
  • the R-T-B alloy produced by the SC method has a finely dispersed R-rich phase and excellent structure homogeneity. As a result, the homogeneity of the R-rich phase in the final magnet is improved, and the magnetic properties can be improved.
  • the R—T—B-based alloy ingot produced by the SC method has an excellent structure for producing a sintered magnet. However, as the properties of the magnet improve, the raw material mixture becomes more and more. There is a growing demand for advanced control of the gold structure, especially the state of the R-rich phase.
  • the present inventors studied the relationship between the structure of the manufactured R—T—B system alloy and the behavior during hydrogen cracking and fine grinding. It is important to control the dispersion state of the R-rich phase in order to control the grain size of the alloy powder uniformly.
  • Japanese Patent Application Laid-Open No. 2003-188806 Japanese Patent Application Laid-Open No. 2003-188806.
  • the region in which the dispersion state of the R-rich phase formed on the side of the mold in the alloy is extremely fine (fine R-rich phase region) is finely pulverized and the pulverization stability of the alloy is reduced.
  • fine R-rich phase region is finely pulverized and the pulverization stability of the alloy is reduced.
  • the present invention provides an R—T—B-based permanent magnet raw material alloy capable of improving magnetic properties by controlling the R-rich phase present in the alloy on a more microscopic scale.
  • the purpose is to: Disclosure of the invention
  • the present inventors observed the R-rich phase present in the RTB-based alloy on a more microscopic scale, and found that there was a great relationship between the shape of the R-rich phase and the magnetic properties.
  • the present invention is as follows. (1) R-T-B-based permanent magnet material alloy containing R 2 T 4 B columnar crystal and R-rich phase (R is at least one rare earth element containing ⁇ , T is F e or at least one of the transition metal elements other than Fe and Fe, and B is boron or boron and carbon), and in the alloy structure observed in any cross section including the normal direction of the thin plate, The aspect ratio of the R-rich phase whose aspect ratio is 10 or more and its major axis direction is 90 ⁇ 30 ° to the surface of the thin plate is 3096 or more of all the R-rich phases present in the alloy.
  • a raw material alloy for R-T-B series permanent magnets characterized by the following characteristics.
  • the area ratio of the R-rich phase whose aspect ratio is 90 or more and its major axis direction is 90 ⁇ 30 ° to the surface of the thin plate, is the ratio of all R-rich phases present in the alloy.
  • the area ratio of the R-rich phase whose aspect ratio is 10 or more and its major axis direction is 90 ⁇ 3 ⁇ ° to the surface of the thin plate is equal to the ratio of all the R-rich phases present in the alloy.
  • R-T-B-based permanent magnets containing R 2 T 4 B columnar crystals and an R-rich phase (R is at least one rare earth element containing Y, T is Fe or at least one of the transition metal elements other than Fe and Fe, B is boron or boron and carbon) and was observed in any cross section including the normal direction of the thin plate
  • R-rich phase whose aspect ratio is 1% or more and whose major axis direction is 3% or less or 15% or more with respect to the surface of the thin plate is determined by A raw material alloy for R-T-B-based permanent magnets, characterized in that it accounts for 50% or less of all R-rich phases present in the steel.
  • the area ratio of the R-rich phase having an aspect ratio of 1% or more and its major axis direction being 30 ° or less or 150 ° or more with respect to the sheet surface exists in the alloy.
  • R-T-B-based permanent magnet raw alloy containing R 2 T 4 B columnar crystals and R-rich phase (R is at least one rare earth element containing ⁇ , T is F e or at least one of the transition metal elements other than Fe and Fe, and B is boron or boron and carbon), and the alloy structure observed in any cross section including the normal direction of the thin plate
  • the area ratio of the R-rich phase with an aspect ratio of 1% or more and its major axis direction being 90 ⁇ 30 ° with respect to the surface of the thin plate is found in the alloy. 3% or more of all R rich phases present, and the aspect ratio is 1% or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the sheet surface R-T-B material alloy for permanent magnets, characterized in that the area ratio of the R-rich phase is 50% or less of all the R-rich phases present in the alloy.
  • the area ratio of the R-rich phase having an aspect ratio of 1 mm or more and its major axis direction being 9 ° ⁇ 30 ° with respect to the surface of the thin plate is equal to the ratio of all R-rich phases present in the alloy.
  • the area ratio of the R-rich phase whose aspect ratio is 10 ° or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the surface of the thin plate.
  • FIG. 1 is a diagram showing a cross-sectional structure of a rare-earth magnet alloy flake containing an agglomerated R-rich phase manufactured by a conventional SC method.
  • FIG. 2 is a view showing a cross-sectional structure of a rare-earth magnet alloy flake containing an R-rich phase having a higher-order dendrite manufactured by a conventional SC method.
  • FIG. 3 is a view showing a cross-sectional structure of a rare-earth magnet alloy flake according to the present invention.
  • FIG. 4 is a schematic view of a manufacturing apparatus of the strip cast method. BEST MODE FOR CARRYING OUT THE INVENTION
  • an embodiment of a raw material alloy for an RTB-based permanent magnet according to the present invention will be described with reference to the drawings.
  • FIG. 1 and FIG. show the cross section of a thin section of a Nd-Fe-B alloy (Nd31.5 mass%) recorded by the conventional SC method and observed by SEM (scanning electron microscope). It is an electronic image.
  • the left side of the drawing is the mold side of the alloy, and the right side is the free side of the alloy.
  • the white part in Fig. 1 indicates the Nd rich phase (when R is Nd, the R rich phase is called the “Nd rich phase”). There is. ).
  • the Nd rich phase is aggregated in a pool.
  • Fig. 2 shows that in order to produce a sintered magnet from an R-TB-based alloy in which a very fine Nd-rich phase exists in a dendritic form, the R-T-B-based alloy was ground. Then, it is necessary to produce a compact by pressing.
  • As a method of pulverizing the RTB alloy it is preferable to first embrittle the RTB alloy by hydrogen absorption and then pulverize it finely.
  • R-T-B alloys are coarsely crushed (crushed) by embrittlement due to hydrogen storage.
  • hydrogen is absorbed from the R-rich phase, expands, becomes brittle, and becomes hydride. Therefore, in hydrogen crushing, fine cracks are introduced into the alloy along the R-rich phase or starting from the R-rich phase.
  • fine cracks generated by hydrogen disintegration caused the alloy to break, so that the dispersion state of the R-rich phase tended to affect the pulverization efficiency and fine powder shape. . Therefore, the present inventors observed the R-rich phase on a more microscopic scale, and found that the shape of each R-rich phase and the fine cracks formed by hydrogen disintegration are related to the magnetic properties. I found that.
  • the very fine R-rich phase existing in the form of dendrites has a small distance between adjacent fine-branched R-rich phases for general sintered magnets. It is smaller than the ground particle size. For this reason, the proportion of fine branch-shaped R-rich phases incorporated into the fine powder after jet milling increases. As described above, the R-rich phase becomes a liquid phase during sintering and contributes to sintering. For this purpose, the R-rich phase exists on the surface of each fine powder, and it is necessary to wet the fine powder during sintering. However, such an effect cannot be expected for the R-rich phase that has entered the powder, and it cannot provide a sufficient effect even if it oozes out on the surface. Causes decline.
  • FIG. 3 shows a reflected electron image when a cross section of a piece of the Nd—Fe—B alloy according to the present invention was observed by SEM (scanning electron microscope).
  • the Nd-rich phase in the cross-sectional photograph shows a layered (lamella-like) Nd-rich phase extending within a limited angle range centered on the thickness direction.
  • the dominant proportion is dominant.
  • the pool-shaped R-rich phase shown in Fig. 1 and the twig-shaped R-rich phase shown in Fig. 2 are slightly present, but their abundance is low. If an alloy having such a structure is pulverized by jet milling after hydrogen disintegration, the problems with alloys having the structures shown in FIGS. 1 and 2 may be caused by changes in composition and increases in oxygen and nitrogen concentrations. It is possible to solve problems such as lower magnetic properties, lower sintering density and lower degree of orientation. As a result, it is possible to obtain an optimal raw material alloy for R—T-B permanent magnets that can sufficiently fulfill the essential role of the R-rich phase, and use such a raw material alloy. This makes it possible to obtain an RTB permanent magnet having high magnetic properties.
  • Fig. 4 shows a schematic view of an apparatus for forming by the strip cast method.
  • RT-B alloys are melted in a vacuum or an inert gas atmosphere using a refractory material 1 due to their active properties. After the molten alloy is held at 130 ° C to 150 ° C for a predetermined time, the inside is water-cooled via a tundish 2 equipped with a rectification mechanism and a slag removal mechanism as necessary. It is supplied to the produced rotating roll 3 for production.
  • the supply speed of the molten metal and the number of rotations of the rotating rolls should be controlled appropriately according to the required thickness of the alloy.
  • the rotating peripheral speed of the rotating roll is preferably set to about 0.5 to 3 m / s. Yes. Copper or copper alloy is suitable for the material of the manufacturing rotary roll because it has good thermal conductivity and is easily available. Depending on the material of the rotating roll and the surface condition of the roll, the metal may adhere to the surface of the rotating roll for manufacturing, causing the metal to adhere to the surface of the rotating roll. The quality of the base alloy is stable.
  • the alloy 4 solidified on the rotating roll separates from the roll on the opposite side of the tandem tissue and is recovered in the recovery container 5. By providing a heating and cooling mechanism in this collection container, the state of the R-rich phase structure can be controlled.
  • the next cooling is, specifically, to set the temperature of the alloy at 60 ° to 85 ° C. when leaving the production roll. ⁇ It is necessary that the temperature of the alloy when leaving the casting hole be higher than the melting point of the R-rich phase.
  • the melting point of the R-rich phase is slightly higher or lower depending on the composition, but is more than 600 ° C. ⁇ If the temperature of the alloy when it is separated from the forming roll is lower than the melting point of the R-rich phase, the solidification of the R-rich phase has been completed and the structure will be as shown in Fig. 2. On the other hand, when the temperature is higher than 850 ° C, the R-rich phase aggregates into a pool after the roll detaches, and the structure becomes as shown in Fig.
  • the dispersion state and shape of the R-rich phase greatly depend on TRE (total rare earth content).
  • TRE total rare earth content
  • the amount of heat cut off on the forming roll is small
  • the alloy temperature tends to increase when the forming roll is removed
  • the R rich phase aggregates and pools. The tendency to form.
  • alloys with a high TRE and a high R-rich phase have a high tendency to generate a structure having higher-order dendritic arms due to a large amount of heat cut on the ⁇ roll.
  • the alloy thickness must be reduced when the TRE is small, and thickened when the TRE is large.
  • the average thickness of the alloy is preferably set to 0.10 to 0.30 mm in order to increase the degree of primary cooling. More preferably, it is 0.15 to 0.27 mm. More preferably, the standard of the TRE, which is 0.20 to 0.25 mm, is 30 to 33 wt%, and the preferable average thickness of the alloy is 0.25 to 0.35 mm. More preferably, it is 0.26 to 0.32 mm.
  • the target of TRE is 33 wt% or more, the preferable average thickness of the alloy is from 0.2 to 0.5 mm. More preferably 0.28 ⁇ . ⁇ It is 35 mm.
  • the degree of primary cooling can also be controlled by appropriately selecting the surface roughness of the mirror forming roll and controlling the heat loss from the alloy on the forming roll. This method is especially effective when the TRE is less than 33 wt% or more than 33 wt%. ⁇ Unnecessary heat cutting can be suppressed by increasing the surface roughness of the forming roll. When the TRE is 33 wt% or more, high heat transfer to the forming roll caused by a large amount of the R-rich phase can be appropriately suppressed by roughening the surface roughness of the forming roll. it can. Surface roughness of the guide in this case is 2 0 microns or more in ten-point mean roughness R Z.
  • the surface roughness should be about 2 ⁇ m or less to prevent primary cooling on the roll, and excessive aggregation of the R-rich phase should be prevented. Is preferred. However, the surface roughness is affected by other factors such as the roll surface material, and is not limited to the above values.
  • the surface temperature of the forming roll affects the wettability of the molten alloy and the roll. If the temperature is too low, the wettability of the molten alloy and the roll tends to be poor, and there is a tendency for macroscopic nonuniformity in contact between the alloy and the alloy. When the temperature is too high, the wettability between the molten alloy and the roll is good if the temperature is too high. Tona May cause partial burn-in. The seizure of the alloy on the roll surface causes a change in heat transfer and wettability in that area, and causes a change in the alloy structure. It is difficult to generate. In addition, if the amount of seized alloy is further increased, stable operation becomes difficult, and the production efficiency is reduced.
  • the production roll surface temperature is suitably from 50 to 400 ° C, preferably from 100 to 300 ° C. More preferably, it is 150 to 200 ° C.
  • the temperature of the roll surface shown here is the temperature at which the molten metal comes into contact with the roll, and it is difficult to measure it directly. It is possible to calculate from the thermocouple measurement value by touching the roll surface of the part.
  • a partition plate is installed in the collection container, the interval between the partition plates is set appropriately, and the inside of the partition plate is cooled with an inert gas water such as A Therefore, it is effective to control the cooling rate of the recovered alloy.
  • the temperature of the alloy when recovered in the recovery container is 65 ° C to 700 ° C, it is preferable that the temperature be up to 600.
  • the cooling rate is 3 to 30 ° CZ min, more preferably 3 to 20 ° CZ min. If the temperature of the alloy when collected in the collection container is 00 to 8 ° C 0 ° C, 6 ° 0 ° C C is preferred, cooling rate is 10 ⁇ 4 ⁇ CZ min, more preferably 1 ⁇ 3 o ° c min. When the temperature of the alloy when collected in the collection container is 80 ⁇ to 85 ⁇ C, the preferred cooling rate up to 60 ⁇ is 20 to 5 ⁇ CZ minutes, more preferably 3 to 5 ⁇ CZ. Minutes. In these temperature ranges, if the temperature exceeds the upper limit, the structure shown in Fig. 2 becomes more likely. Below the lower limit, the structure shown in Fig. 1 becomes more likely.
  • the alloy of the present invention defines the structure, and the production method is not limited to the above method.
  • the thickness of the alloy flake of the present invention is preferably 0.1 mm or more and 0.5 mm or less.
  • the thickness of the alloy flakes is less than 0.1 mm, the solidification rate increases excessively, and the dispersion of the R-rich phase becomes too fine. If the thickness of the alloy flakes is more than 0.5 mm, problems such as a decrease in the dispersibility of the R-rich phase due to a decrease in the solidification rate are caused.
  • the present invention relates to a raw material alloy for a R-T-B-based permanent magnet in the form of a thin plate containing R 2 ⁇ 4 B columnar crystals and an R- rich phase
  • R is at least one kind of rare earth element containing ⁇
  • T is Fe or at least one of the transition metal elements other than Fe and Fe
  • B is boron or boron and carbon.
  • the R-rich phase which has an aspect ratio of 1% or more and whose major axis direction is 90 ⁇ 30 ° with respect to the surface of the sheet, is observed in any cross section including the normal direction of the sheet. Area ratio is determined by all R It is 30% or more of the horn phase.
  • the aspect ratio of the R-rich phase in the alloy is less than 1%
  • the R-rich phase is agglomerated and in the form of a pool, and when the proportion of the R-rich phase increases, it is pulverized.
  • the composition change due to dropout of the R-rich phase and over-milling increases.
  • the R-rich phase is more than necessary, Is likely to be
  • the five R-rich phases can be described as higher-order dendrites in metallography, but in actual alloy structures, primary dendrites and higher-order dendrites higher than the second order are considered. Since there is a high possibility that individual differences will occur in the identification of birds, it is determined geometrically and this range is defined.
  • the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ⁇ 3 ° with respect to the surface of the thin plate is reduced by all R 30% or less of the rich phase As a result, the magnetic properties are significantly reduced.
  • the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ⁇ 3 ° relative to the surface of the thin plate is equal to all R-rich phases present in the alloy. More than 50% of the phase. More preferably, the area ratio of the R-rich phase having an aspect ratio of 10 or more and its major axis direction being 9 ⁇ 30 ° with respect to the surface of the thin plate is equal to all R-rich phases present in the alloy. It must be at least 0% of the Tsuchi phase.
  • the aspect ratio is 2% or more. More preferably, the above alloy has an aspect ratio of 30 or more.
  • the area ratio of the R-rich phase whose aspect ratio is 1 mm or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the surface of the thin plate is reduced to all R-rich phases present in the alloy. It should be less than 50% of the phase. Even when the aspect ratio is 10 or more, the R-rich phase whose major axis direction is 30 ° or less or 15 °° or more with respect to the thin plate surface is a twig-shaped high-order dendritic arm with a small interval. It is particularly likely.
  • the area ratio of the R-rich phase having an aspect ratio of not less than 10 and the major axis direction thereof being not more than 30 ° or not less than 150 ° with respect to the surface of the thin plate is all present in the alloy. This is less than 30% of the R-rich phase of the above.
  • the aspect ratio is 1 mm or more and its major axis
  • the area ratio of the R-rich phase which is 90 ° 30 ° with respect to the surface of the thin plate, is 30% or more of all the R-rich phases present in the alloy, and
  • the ratio of the area of the R rich phase whose ratio is 10 or more and its major axis direction is 30 ° or less or 150 ° or more with respect to the sheet surface is equal to all the R rich phases present in the alloy. Less than 50% of the total.
  • the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ⁇ 30 ° with respect to the surface of the thin plate is the same as that of all the R-rich phases present in the alloy.
  • the R-rich phase with an aspect ratio of at least 10 and a major axis direction of 30 ° or less or “150 ° or more” with respect to the metal surface is less than 30% of all R-rich phases present in the alloy.
  • the above-mentioned R-rich phase with an aspect ratio of 10 or more, an aspect ratio of 2 or more, or an aspect ratio of 30 or more has a major axis dimension of 5% or more, preferably 10% or more of the thin plate thickness dimension. It preferably has a length.
  • the aspect ratio of the R-rich phase in the alloy, the angle in the major axis direction to the sheet surface, and the area ratio of such an R-rich phase are different from those of the main phase. Since the brightness is high in BEI, it is possible to analyze after distinguishing the main phase and the R-rich phase with the image analyzer. For example, randomly selected and photographed the BEI of the cross section of 10 alloy flakes at an appropriate magnification, In each of the photographs, the total area of the R-rich phase in the photograph and the total area of the R-rich phase whose major axis is within a predetermined angle range at a predetermined aspect ratio are image-analyzed.
  • the total of the total areas of the R-rich phases whose major axis directions are within a predetermined angle range at a predetermined aspect ratio determined in each photograph was calculated for each of the 10 images.
  • the area ratio of the predetermined R-rich phase can be considered.
  • the thin plate-shaped raw material alloy for RTB-based permanent magnet according to the present invention has a main phase of R 2 Ti 4 B phase which is a ferromagnetic phase.
  • the R 2 T 4 B phase is columnar, and the R 2 T 4 B columnar crystal preferably has a major axis within an angle of 90 ⁇ 30 ° with respect to the thin plate surface.
  • the length of the long axis is preferably 30% or more, and more preferably 5% or more of the thickness of the thin plate.
  • the above-mentioned preferable R 2 Tt 4 B columnar crystal is contained in 30% or more, preferably 50% or more of R 2 T 14 B columnar crystal in the whole thin plate.
  • the R 2 T i 4 B columnar crystal refers to a column 1 in which the crystal orientations observed by a polarizing microscope using the magnetic K err effect are uniform.
  • Example 1 Nd: 31.5% by mass>, B: 1.0% by mass, Co: 1.0% by mass, AI: 0.30% by mass, Cu: 0.1 Metal neodymium, ferropolon, cobalt, aluminum, copper, and iron are combined so that 0% by mass and the balance is iron, the raw materials are melted in a high-frequency melting furnace, and the molten metal is subjected to a strip casting method. To produce alloy flakes.
  • the diameter of the rotating roll for production is 300 mm
  • the material is pure copper with a thickness of 50 mm
  • the inside is water-cooled
  • the peripheral speed of the roll during production is 1. 1 mZ s
  • the average thickness is 0.2.
  • Mm alloy flakes were produced. At that time, the average roughness of the surface of the roll was 12 microns in Rz. By visual observation, the alloy was evenly placed on the ⁇ ⁇ ⁇ roll, and no seizure on the ⁇ ⁇ ⁇ roll was observed.
  • thermocouple was brought into contact with the bottom of the production roll surface, and the surface temperature of the production roll during the production was measured.
  • amount of cooling water for the production hole and the temperature difference between the entrance and exit, and the temperature of the water discharged from the production roll were measured.From these measured values, the molten tundish was in contact with the production roll.
  • the surface temperature of the structure roll at the location was calculated to be 1 ° C.
  • the area ratio of the R-rich phase with an aspect ratio of 10 or more and its major axis direction being 90 ⁇ 30 ° with respect to the metal surface was found in the alloy. 80% of all R-rich phases present in In addition, the area ratio of the R-rich phase having an aspect ratio of at least 20 and its major axis direction being 90 ⁇ 3 ° with respect to the metal surface is determined by the ratio of all R-rich phases present in the alloy. 65% of the touch phase. On the other hand, the area ratio of the R-rich phase whose aspect ratio is 10 or more and whose major axis direction is 30 ° or less or 150 ° or more with respect to the metal surface exists in the alloy. 6% of all R-rich phases.
  • the raw materials were blended in the same composition as in Example 1, and dissolution and production by the SC method were performed in the same manner as in Example 1.
  • the thickness of the ⁇ roll is 90 mm, and the average roughness of the ⁇ ⁇ ⁇ roll surface is 7 ⁇ m in Rz.
  • the average thickness of the alloy flakes was ⁇ . 35 mm.
  • the surface temperature of the production roll at a position where the molten metal of the tundish was in contact with the production roll was 400 C, which was obtained in the same manner as in Example 1.
  • the temperature of the alloy flakes without seizure was measured by removing the roll with an infrared thermometer and found to be 820 ° C. No special cooling mechanism has been installed in the collection container that stores the alloy flakes that have been separated from the rolls. When the temperature change of the alloy was measured with a thermocouple inserted from the side of the recovery container into the inside, the maximum temperature was 810 ° C, and the average cooling rate up to 600 ° C was 6 ° CZ minutes. Ah .
  • the obtained alloy flakes without seizure were evaluated in the same manner as in Example 1. As a result, many of the R-rich phases aggregated to form a pool. The area fraction of one R-rich phase is 26% of all R-rich phases present in the alloy.
  • the raw materials were blended in the same composition as in Example 1, and dissolution and production by the SC method were performed in the same manner as in Example 1.
  • the thickness of the ⁇ ⁇ ⁇ roll is 25 mm, and the average roughness of the ⁇ ⁇ ⁇ roll surface is 10 microns in Rz.
  • the average thickness of the alloy flakes was 0.22 mm. According to the visual observation, a part of the alloy on the ⁇ roll had a slightly higher temperature.
  • the molten tundish obtained in the same manner as in Example 1 The surface temperature of the forming roll at a position in contact with the forming roll was 80 ° C.
  • the average temperature of the alloy flakes measured by removing the roll with an infrared thermometer was 67 ° C.
  • a partition plate through which water is circulated is installed in the collection container that stores the alloy flakes that have separated from the roll.
  • the obtained alloy flakes were evaluated in the same manner as in Example 1.
  • the R-rich phase contained a large amount of twig-like high-order dendrites, and the aspect ratio was 10 or more and its major axis direction
  • the area ratio of the R-rich phase which is 90 ⁇ 30 ° with respect to the metal surface was 23% of all the R-rich phases present in the alloy.
  • the area ratio of the R-rich phase having an aspect ratio of 10 or more and its major axis direction being 30 ° or less or 15 °° or more with respect to the metal surface is determined by all the alloys present in the alloy. It was 54% of the R-rich phase.
  • the alloy flakes obtained in Example 1 were coarsely pulverized by a known hydrogen pulverization treatment, and 0.01% of zinc stearate powder was added to the obtained coarsely pulverized powder, and the mixture was added to a rocking mixer. More After mixing in an elementary atmosphere, the mixture was finely pulverized by a jet mill apparatus. The atmosphere during the jet mill pulverization was a nitrogen atmosphere mixed with 100 ppm of oxygen. The oxygen concentration of the body was 50 ⁇ 0 ppm.
  • the obtained powder was mixed with a cold leap embedding resin, cured, polished, and the cross section of the powder was observed by SEM-BEI to investigate the dispersion state of the R-rich phase in the powder. As a result, the R-rich phase was attached to the surface of the grains mainly composed of the main phase.
  • the obtained powder was press-molded under a magnetic field of 1.5 T of orientation magnetic field at a pressure of 1.0 Ot / cm 2 , and the compact was held at 160 ° C. for 4 hours for sintering. did.
  • the resulting sintered body has a sintering density of at least S g Z cm 3, which is a sufficient density. Further, this sintered body was heat-treated at 560 ° C. for 1 hour in an argon atmosphere to produce a sintered magnet.
  • Table 1 shows the results of measuring the magnetic properties of this sintered magnet with a BH curve tracer.
  • Example 2 The alloy flake obtained in Comparative Example 1 was ground in the same manner as in Example 2 to obtain a fine powder. At this time, the cross section of the powder was observed in the same manner as in Example 2, and most of the R-rich phase was separated from the main phase and existed as relatively small grains composed of only the R-rich phase. I confirmed that. Further, through the same molding and sintering steps as in Example 2, a sintered magnet was produced. The magnetic properties of the sintered magnet produced in Comparative Example 3 were measured with a BH cap tracer, and the results are shown in Table 1.
  • Example 2 The alloy flake obtained in Comparative Example 2 was ground in the same manner as in Example 2 to obtain fine powder. At this time, the cross section of the powder was observed in the same manner as in Example 2, and it was confirmed that the ratio of grains in which the R-rich phase was present was about 7 times that of Example 2. Further, through the same molding and sintering steps as in Example 2, a sintered magnet was produced.
  • Table 1 shows the results of measuring the magnetic properties of the sintered magnet produced in Comparative Example 4 using a BH force implanter.
  • Comparative Example 3 As shown in Table 1, the density of Comparative Example 3 is lower than that of Example 2, and the magnetization and coercive force are also low in characteristics. This is due to the poor dispersion of the R-rich phase in the alloy stage, so that the R-rich phase is separated as an active fine powder in the grinding process in the cyclone of the pulverizer and the TRE tends to decrease. And the R-rich phase It is presumed that the bias did not function effectively during sintering due to the decrease in sinterability. On the other hand, Comparative Example 4 showed the same behavior, though not as much as Comparative Example 3, indicating that the contribution of the R-rich phase to sintering was insufficient. Industrial applicability
  • the R-rich phase in the alloy can be utilized to the utmost extent. Also exhibit excellent magnet properties.
  • the R-Rich cannot fully fulfill its original role, there is little variation in composition during fine grinding in the sintered magnet manufacturing process, there is no decrease in magnetic properties due to an increase in oxygen concentration, and there is a reduction in sintering density. It has excellent effects that cannot be obtained with conventional alloys, such as a decrease in the degree of orientation and the like. Further, by using the above-mentioned alloy, an RTB-based permanent magnet having high magnetic properties can be obtained.
  • the present invention can be suitably used for various kinds of electronic equipment and electric machines that require a high-performance sintered magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Abstract

A raw material alloy for R-T-B permanent magnet of thin-sheet form comprising an R2T14B columnar crystal and an R enriched phase (R: at least one rare earth element including Y, T: Fe or Fe and at least one transition metal element other than Fe, and B: boron or boron and carbon), wherein in the alloy structure observed on any arbitrary section including the normal direction of the thin sheet, the aspect ratio is 10 or higher and the area ratio of R enriched phase whose longitudinal direction is 90±30° against the surface of the thin sheet is 30% or higher based on all the R enriched phases existing in the alloy.

Description

明 細 書  Specification
R— T一 B系永久磁石用原料合金および R— T一 B系永 久磁石 技術分野  Raw material alloy for R-T-B series permanent magnets and R-T-B series permanent magnets
本発明は、 R— T一 B系永^磁石用原料合金に係り、 特 にス 卜リ ップキャス 卜法により製造される R— T一 B系永 久磁石用原料合金薄片に関する。 まだ、 本発明は上記の R 一 T一 B系永久磁石用原料合金から作製し R — T一 B系 永久磁石に関する。 背景技術  The present invention relates to a raw material alloy for an RTB-based permanent magnet, and more particularly to a raw alloy flake for an RTB-based permanent magnet manufactured by a strip casting method. Still, the present invention relates to an R—T—B-based permanent magnet produced from the above-mentioned raw material alloy for an R-T-B-based permanent magnet. Background art
永久磁石の中で最大の磁気エネルギー積を有する R— T 一 B系永久磁石は、 その高特性から H D (ハ ー ドデイ ス ク) 、 M R I (磁気共鳴映像法) 、 各種モータ ー等に使用 されている。 近年、 その耐熱性向上に加え、 市場の省エネ ルギ一への要望が高まり、 自動車を含めたモータ一用途の 比率が上昇している。  R-T-B permanent magnets, which have the largest magnetic energy product among permanent magnets, are used for HD (hard disk), MRI (magnetic resonance imaging), and various motors due to their high characteristics. ing. In recent years, in addition to the improvement of heat resistance, the demand for energy-saving lugi in the market has increased, and the ratio of motors, including automobiles, has increased.
ここで、 「 R— T一 B系永久磁石」 における 「 R」 は、 N dの一部を P r 、 D y等の他の希土類元素で置換したも のが主であり、 Yを含 希土類元素のうち少なく とも 1 種 である。 「丁」 は F eの一部を C o、 N i 等の他の遷移金 属で置換したちのである。 「 B」 は硼素であり、 一部を C または Nで置換したものを含 ものとする。 「 R— T一 B 系永^磁石」 は、 その主成分が N d、 F e、 Bであるため 「N d _ F e— B系磁石」 または 「 R— F e— B系磁石」 と総称されている。 Here, “R” in “RT—B-based permanent magnet” is mainly the one in which a part of Nd is replaced by other rare earth elements such as Pr and Dy, and Y is a rare earth element. It is at least one of the elements. “Ding” is a substitution of a part of Fe with another transition metal such as Co or Ni. "B" is boron, part of which is C Or those substituted with N. The "RT-B-based permanent magnet" is composed of "Nd_Fe-B-based magnet" or "R-Fe-B-based magnet" because its main components are Nd, Fe, and B. Collectively.
本明細書における 「 R— T— B系永久磁石」 は、 C u、 In the present specification, “RT—B permanent magnet” refers to Cu,
A l 、 T i 、 V、 C r、 G a , M n、 N b、 T a、 M o、 W、 C a、 S n、 Z 「 、 および/または H f などの元素を 1 種または複数組み合わせて添加した磁石を含 ちのとす る。 このような元素の添加により、 磁気特性などの諸特性 向上が図れることが知られている。 One or more of elements such as Al, Ti, V, Cr, Ga, Mn, Nb, Ta, Mo, W, Ca, Sn, Z It is known that magnets added in combination can be used to improve various properties such as magnetic properties.
R— T一 B系合金は、 磁化作用に寄与する強磁性相であ る R 2 T i 4 B相を主相とし、 非磁性で希土類元素の濃縮し 低融点の Rリ ッチ相が共存する合金である。 R— T— B 系合金は、 活性な金属であるため、 一般に真空又は不活性 ガス中で溶解ゅ鐯造が行われる。 また、 鎵造された R— T 一 B系合金塊から粉末冶金法によって焼結磁石を作製する には、 合金塊を 3 m ( F S S S : フィ ッシャーサブシ一 ブサイザ一での測定) 程度に粉砕して合金粉末にし 後、 磁場中でプレス成形される。 プレス成形によって得られた 粉末成形体は、 焼結炉によって約 1 00〇〜 1 1 0〇 °Cの 高温で焼結される。 このようにして作製され 焼結体に対 しては、 必要に麻じ熱処理、 機械加工、 さらに耐食性を向 上するためにメツキを施すのが一般的である。 R— T— B系焼結磁石における R リ ッチ相は、 以下のよ うな重要な役割を担って る。 R-T-B alloys have a main phase of R 2 T i 4 B phase, which is a ferromagnetic phase that contributes to the magnetizing action, and coexist with a nonmagnetic, rare earth-enriched, low melting point R-rich phase. Alloy. Since R-T-B alloys are active metals, they are generally melted in a vacuum or inert gas. In addition, in order to manufacture a sintered magnet from the manufactured R—T—B series alloy ingot by powder metallurgy, the alloy ingot is crushed to about 3 m (FSSS: measurement with a fisher subsizer). After the alloy powder is formed, it is pressed in a magnetic field. The powder compact obtained by press molding is sintered at a high temperature of about 100 ° C to 110 ° C in a sintering furnace. It is general that the sintered body produced in this way is subjected to hemp heat treatment, machining, and plating to improve corrosion resistance as necessary. The R-rich phase in R—T—B sintered magnets plays an important role as follows.
1 ) R リ ッチ相の融点は低く、 焼結時に液相となり、 磁石の高密度化ひいては磁化の向上に寄与する。  1) The melting point of the R-rich phase is low and becomes a liquid phase during sintering, contributing to the higher density of magnets and the improvement of magnetization.
2 ) 粒界の凹凸を無く し、 逆磁区のニュークリエ一シ ヨンサイ 卜を減少させ保磁力を高める。  2) Eliminate irregularities at grain boundaries, reduce nucleation sites in reverse magnetic domains, and increase coercive force.
3 ) 主相を磁気的に絶縁し保磁力を増加する。  3) Increase the coercive force by magnetically insulating the main phase.
従って、 成形し 磁石中の R リ ッチ相の分散状態が悪い と局部的な焼結不良、 磁性の低下をまねくため、 成形し 磁石中に R リ ッチ相が均一に分散していることが重要とな る。 この R— T— B系焼結磁石中における R リ ッチ相の分 布は、 原料である R— T一 B系合金の組織に大きく影響さ れる。  Therefore, if the dispersion state of the R-rich phase in the formed magnet is poor, local sintering failure and magnetism will be reduced, so that the R-rich phase is uniformly dispersed in the formed magnet. Is important. The distribution of the R-rich phase in the RTB-based sintered magnet is greatly affected by the microstructure of the RTB-based alloy as the raw material.
R— T一 B系合金を鐯造する方法と して、 ス 卜リ ップキ ヤ ス 卜法 (以下、 「 S C法」 と略記する。 ) が開発され、 実際の工程に使用されている。 S C法では、 内部が水)令さ れ 銅ロール上に合金の溶湯を流し、 合金溶湯を急冷凝固 させることにより、 厚さ 0 . 1 〜 1 m m程度の薄片を鎵造 する。 S C法によれば、 合金の結晶組織が微細化するため R リ ッチ相が微細に分散した組織を有する R— T一 B系合 金を生成することが可能となる。 このように、 S C法で鎵 造された合金は、 内部の R リ ッチ相が微細に分散している ため、 粉砕、 焼結後の磁石中の R リ ッチ相の分散性も良好 となり、 磁石の磁気特性の向上を達成することができる。A strip cast method (hereinafter abbreviated as “SC method”) has been developed as a method for producing R—T-B alloys, and is used in actual processes. In the SC method, a thin section of about 0.1 to 1 mm in thickness is produced by flowing molten metal of an alloy on a copper roll and rapidly cooling and solidifying the molten alloy. According to the SC method, since the crystal structure of the alloy is refined, it is possible to produce an RTB alloy having a structure in which the R-rich phase is finely dispersed. As described above, in the alloy manufactured by the SC method, since the internal R-rich phase is finely dispersed, the dispersibility of the R-rich phase in the magnet after pulverization and sintering is good. Thus, the magnetic properties of the magnet can be improved.
(特開平 5— 2 2 2 4 8 8号公報および特開平 5— 2 9 5 4 9 0号公報) 。 (Japanese Unexamined Patent Application Publication Nos. H5-222488 and H5-295490).
S C法により鏵造された合金薄片は、 組織の均質性も優 れている。 組織の均質性は、 結晶粒径ゆ R リ ツチ相の分散 状態で比較することができる。 S C法で作製しだ合金薄片 では、 合金薄片の鎵造用ロール側 (以降、 錄型面側とす る) にチル晶 (等軸晶) が発生することもあるが、 全体と して急冷凝固でも らされる適度に微細で均質な組織を得 ることができる。  The alloy flakes produced by the SC method have excellent structural homogeneity. The homogeneity of the structure can be compared by the dispersion state of the crystal grain size and the R-rich phase. In alloy flakes produced by the SC method, chill crystals (equiaxed crystals) may be generated on the production roll side (hereinafter referred to as the 錄 -shaped surface side) of the alloy flakes, but the whole is quenched. A moderately fine and homogeneous structure obtained by solidification can be obtained.
以上のよ に、 S C法で錶造し R— T一 B系合金は、 R リ ッチ相が微細に分散し、 組織の均質性にも優れている ため、 焼結磁石を作製する場合には、 最終的な磁石中の R リ ッチ相の均質性が高まり、 磁気特性を向上させることが できる。 このように、 S C法で錡造した R— T— B系合金 塊は、 焼結磁石を作製するための優れた組織を有している しかし、 磁石の特性が向上するにつれて、 ますます原料合 金の組織、 特に R リ ッチ相の存在状態の高度な制御が求め られるよ になってきている。  As described above, the R-T-B alloy produced by the SC method has a finely dispersed R-rich phase and excellent structure homogeneity. As a result, the homogeneity of the R-rich phase in the final magnet is improved, and the magnetic properties can be improved. As described above, the R—T—B-based alloy ingot produced by the SC method has an excellent structure for producing a sintered magnet. However, as the properties of the magnet improve, the raw material mixture becomes more and more. There is a growing demand for advanced control of the gold structure, especially the state of the R-rich phase.
先に、 本発明者らは、 鐯造された R— T一 B系合金の組 織と、 水素解砕ゆ微粉碎の際の挙動との関係を研究しだ翁 果、 焼結磁石用の合金粉末の粒度を均一に制御するために は、 R リ ッチ相の分散状態を制御することが重要であるこ とを見出した (特開 2 0 0 3— 1 8 8 0 0 6号公報) 。 そ して、 合金中の鏵型面側に生成される Rリ ッチ相の分散状 態が極端に細かな領域 (微細 R リ ッチ相領域) は微粉化し ゆすく、 合金の粉砕安定性を低下させると共に、 粉末の粒 度分巿をプロー ドにすることを見出し、 微細 R リ ッチ相領 域を減少させることが磁石特性を向上させるだめに必要で あることを知見した。 First, the present inventors studied the relationship between the structure of the manufactured R—T—B system alloy and the behavior during hydrogen cracking and fine grinding. It is important to control the dispersion state of the R-rich phase in order to control the grain size of the alloy powder uniformly. (Japanese Patent Application Laid-Open No. 2003-188806). The region in which the dispersion state of the R-rich phase formed on the side of the mold in the alloy is extremely fine (fine R-rich phase region) is finely pulverized and the pulverization stability of the alloy is reduced. In addition to reducing the particle size distribution of the powder, and found that it is necessary to reduce the fine R-rich phase area to improve the magnet properties.
特閧 2 0 0 3— 1 8 8 0 〇 6号公報に開示されている微 細 Rリ ッチ相領域の少ない合金によれば、 粉砕安定性、 磁 気特性の向上が可能である。 しかし、 微細 R リ ッチ相領域 を減少させるだけでは、 上述し R リ ッチ相の本来の役割 を十分に発揮させることができず、 さらなる合金組織の制 御による永久磁石の高磁気特性化が望まれている。  According to the alloy disclosed in Japanese Patent Publication No. 2003-188680, which has a small fine R-rich phase region, it is possible to improve the pulverization stability and magnetic properties. However, reducing the fine R-rich phase region alone does not allow the full role of the R-rich phase as described above to be fully exerted, and further improving the magnetic properties of the permanent magnet by controlling the alloy structure. Is desired.
本発明は、 合金中に存在する R リ ッチ相をよりミクロな スケールで制御することで、 磁気特性向上をち らすこと が可能な R— T一 B系永久磁石用原料合金を提供すること を目的とする。 発明の開示  The present invention provides an R—T—B-based permanent magnet raw material alloy capable of improving magnetic properties by controlling the R-rich phase present in the alloy on a more microscopic scale. The purpose is to: Disclosure of the invention
本発明者らは、 R— T一 B系合金中に存在する R リ ッチ 相をよりミクロなスケールで観察した結果、 R リ ッチ相の 形状と磁気特性に大きな関係があることを見出 し 。 すな わち本発明は、 以下のとおりである。 ( 1 ) R 2 T 4 B柱状結晶と Rリ ッチ相を含 薄板状の R— T一 B系永^磁石用原料合金 ( Rは丫を含 希土類元 素の少なくとも 1 種、 Tは F eまたは F eと F e以外の遷 移金属元素の少なくとも 1 種、 Bはポロンまたはボロンと 炭素) であって、 該薄板の法線方向を含 任意の断面で観 察された合金組織において、 アスペク ト比が 1 0以上かつ その長軸方向が薄板表面に対して 90 ±30° である Rリ ツチ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 3096以上であることを特徴とする R— T一 B系永^磁石 用原料合金。 The present inventors observed the R-rich phase present in the RTB-based alloy on a more microscopic scale, and found that there was a great relationship between the shape of the R-rich phase and the magnetic properties. Out. That is, the present invention is as follows. (1) R-T-B-based permanent magnet material alloy containing R 2 T 4 B columnar crystal and R-rich phase (R is at least one rare earth element containing 丫, T is F e or at least one of the transition metal elements other than Fe and Fe, and B is boron or boron and carbon), and in the alloy structure observed in any cross section including the normal direction of the thin plate, The aspect ratio of the R-rich phase whose aspect ratio is 10 or more and its major axis direction is 90 ± 30 ° to the surface of the thin plate is 3096 or more of all the R-rich phases present in the alloy. A raw material alloy for R-T-B series permanent magnets characterized by the following characteristics.
( 2 ) アスペク ト比が 1 0以上かつその長軸方向が薄板 表面に対して 90 ± 30 ° である Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 50%以上であるこ とを特徴とする上記 ( 1 ) 記載の R— T一 B系永^磁石用 原料合金。  (2) The area ratio of the R-rich phase, whose aspect ratio is 90 or more and its major axis direction is 90 ± 30 ° to the surface of the thin plate, is the ratio of all R-rich phases present in the alloy. The raw material alloy for R—T—B series permanent magnets according to the above (1), wherein the content is 50% or more.
( 3 ) アスペク ト比が 1 0以上かつその長軸方向が薄板 表面に対して 90 ±3〇 ° である Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 70%以上であるこ とを特徴とする上記 ( 1 ) 記載の R— T一 B系永^磁石用 原料合金。  (3) The area ratio of the R-rich phase whose aspect ratio is 10 or more and its major axis direction is 90 ± 3〇 ° to the surface of the thin plate is equal to the ratio of all the R-rich phases present in the alloy. The raw material alloy for an RT-B-based permanent magnet according to the above (1), wherein the alloy is 70% or more of the total.
(4) アスペク ト比が 20以上であることを特徴とする 上記 ( 1 ) ないし ( 3 ) 記載の R— T— B系永^磁石用原 料合金。 ( 5 ) R 2 T 4 B柱状結晶と Rリ ッチ相を含 薄板状の R— T一 B系永^磁石用原料合金 ( Rは Yを含 希土類元 素の少なく とも 1 種、 Tは F eまたは F eと F e以外の遷 移金属元素の少なくとち 1 種、 Bはボロンま はポロンと 炭素) であって、 該薄板の法線方向を含む任意の断面で観 察された合金組織において、 ァスぺク 卜比が 1 〇以上かつ その長軸方向が薄板表面に対 して 3〇 ° 以下または 1 5 〇 ° 以上である Rリ ッチ相の面積率が、 合金中に存在する 全ての Rリ ッチ相の 50%以下であることを特徴とする R 一 T一 B系永久磁石用原料合金。 (4) The raw material alloy for R—T—B permanent magnet according to (1) to (3), wherein the aspect ratio is 20 or more. (5) R-T-B-based permanent magnets containing R 2 T 4 B columnar crystals and an R-rich phase (R is at least one rare earth element containing Y, T is Fe or at least one of the transition metal elements other than Fe and Fe, B is boron or boron and carbon) and was observed in any cross section including the normal direction of the thin plate In the alloy structure, the area ratio of the R-rich phase whose aspect ratio is 1% or more and whose major axis direction is 3% or less or 15% or more with respect to the surface of the thin plate is determined by A raw material alloy for R-T-B-based permanent magnets, characterized in that it accounts for 50% or less of all R-rich phases present in the steel.
( 6 ) ァスぺク 卜比が 1 〇以上かつその長軸方向が薄板 表面に対して 30 ° 以下ま は 1 50 ° 以上である Rリ ツ チ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 3 〇%以下であることを特徴とする上記 ( 5) 記載の R— T 一 B系永久磁石用原料合金。  (6) The area ratio of the R-rich phase having an aspect ratio of 1% or more and its major axis direction being 30 ° or less or 150 ° or more with respect to the sheet surface exists in the alloy. The raw material alloy for an RT—B-based permanent magnet according to the above (5), wherein the content is 3% or less of all R-rich phases.
( 7 ) R 2 T 4 B柱状結晶と Rリ ッチ相を含 薄板伏の R— T一 B系永^磁石用原料合金 ( Rは丫を含 希土類元 素の少なくとも 1 種、 Tは F eま は F eと F e以外の遷 移金属元素の少なくとも 1 種、 Bはボロンまだはボロンと 炭素) であって、 該薄板の法線方向を含む任意の断面で観 察された合金組織において、 (7) R-T-B-based permanent magnet raw alloy containing R 2 T 4 B columnar crystals and R-rich phase (R is at least one rare earth element containing 丫, T is F e or at least one of the transition metal elements other than Fe and Fe, and B is boron or boron and carbon), and the alloy structure observed in any cross section including the normal direction of the thin plate At
ァスぺク 卜比が 1 〇以上かつその長軸方向が薄板表面に対 して 90 ±30° である Rリ ッチ相の面積率が、 合金中に 存在する全ての Rリ ッチ相の 3〇%以上であり、 且つ、 ァ スぺク 卜比が 1 〇以上かつその長軸方向が薄板表面に対し て 30° 以下または 1 50° 以上である Rリ ッチ相の面積 率が、 合金中に存在する全ての Rリ ッチ相の 50%以下で あることを特徴とする R— T一 B系永久磁石用原料合金。 The area ratio of the R-rich phase with an aspect ratio of 1% or more and its major axis direction being 90 ± 30 ° with respect to the surface of the thin plate is found in the alloy. 3% or more of all R rich phases present, and the aspect ratio is 1% or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the sheet surface R-T-B material alloy for permanent magnets, characterized in that the area ratio of the R-rich phase is 50% or less of all the R-rich phases present in the alloy.
( 8 ) ァスぺク 卜比が 1 〇以上かつその長軸方向が薄板 表面に対して 9〇 ± 30 ° である Rリ ツチ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 50%以上であり、 且つ、 アスペク ト比が 1 0以上かつその長軸方向が薄板表 面に対して 30 ° 以下または 1 50° 以上である Rリ ッチ 相の面積率が、 合金中に存在する全ての R リ ツチ相の 3 〇%»以下であることを特徴とする上記 (了) 記載の R— T 一 B系永久磁石用原料合金。  (8) The area ratio of the R-rich phase having an aspect ratio of 1 mm or more and its major axis direction being 9 ° ± 30 ° with respect to the surface of the thin plate is equal to the ratio of all R-rich phases present in the alloy. And the area ratio of the R-rich phase whose aspect ratio is 10 ° or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the surface of the thin plate, The raw material alloy for an R—T—B-based permanent magnet according to the above (1), wherein the content of the R-rich phase present in the alloy is 3% by weight or less.
( 9 ) ス トリ ップキャス 卜法で製造されることを特徴と する上記 ( 1 ) ないし (8 ) 記載の R— T一 B系永久磁石 用原料合金。  (9) The raw material alloy for an RTB-based permanent magnet according to the above (1) to (8), which is produced by a strip casting method.
( 1 0) 平均厚さが〇 . 1 〇 171以上0. 50 mmであ ることを特徴とする ( 9) 記載の R— T— B系永^磁石用 原料合金。  (10) The raw material alloy for an R—T—B system permanent magnet according to (9), wherein the average thickness is at least 0.11 171 and 0.50 mm.
( 1 1 ) 上記 ( 1 ) ないし ( 1 0) 記載の R— T— B系 合金から作製しだ R— T一 B系永久磁石。 図面の簡単な説明 (11) An R—T—B-based permanent magnet produced from the R—T—B-based alloy according to (1) to (10). Brief Description of Drawings
図 1 は、 従来の S C法で製造した凝集した R リ ッチ相を 含 希土類磁石用合金薄片の断面組織を示す図である。  FIG. 1 is a diagram showing a cross-sectional structure of a rare-earth magnet alloy flake containing an agglomerated R-rich phase manufactured by a conventional SC method.
図 2は、 従来の S C法で製造した高次のデン ドライ 卜ァ ームを有する R リ ッチ相を含 希土類磁石用合金薄片の断 面組織を示す図である。  FIG. 2 is a view showing a cross-sectional structure of a rare-earth magnet alloy flake containing an R-rich phase having a higher-order dendrite manufactured by a conventional SC method.
図 3は、 本発明に係る希土類磁石用合金薄片の断面組織 を示す図である。  FIG. 3 is a view showing a cross-sectional structure of a rare-earth magnet alloy flake according to the present invention.
図 4は、 ス トリ ップキャス 卜法の錶造装置の模式囡であ る。 発明を実施するだめの最良の形態 以下、 図面を参照しながら、 本発明による R— T— B系 永久磁石用原料合金の実施形態を説明する。  FIG. 4 is a schematic view of a manufacturing apparatus of the strip cast method. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a raw material alloy for an RTB-based permanent magnet according to the present invention will be described with reference to the drawings.
まず、 図 1 および図 2を参照する。 これらの図は、 従来 の S C法により録造され N d— F e— B系合金 ( N d 3 1 . 5質量%) の薄片の断面を S E M (走査電子顕微鏡) にて観察し 時の反射電子像である。 共に図面の左側が合 金の鏵型面側、 右側が合金の自由面側である。 S C法によ る合金溶湯の急)令凝固を行な 場合、 合金溶湯は錶型面側 から急冷され、 結晶化してゆく。  First, refer to FIG. 1 and FIG. These figures show the cross section of a thin section of a Nd-Fe-B alloy (Nd31.5 mass%) recorded by the conventional SC method and observed by SEM (scanning electron microscope). It is an electronic image. In both figures, the left side of the drawing is the mold side of the alloy, and the right side is the free side of the alloy. When rapid solidification of the molten alloy by the SC method is performed, the molten alloy is rapidly quenched from the side of the mold and crystallized.
図 1 における白い部分は、 N d リ ッチ相 ( Rが N d にな つている め、 R リ ッチ相を 「 N d リ ッチ相」 と呼 '場合 がある。 ) を示している。 図 1 からわかるように、 N d リ ツチ相はプール状に凝集している。 一方、 図 2では非常に 微細な N d— r i c h相がデン ドライ 卜状に存在している R— T— B系合金から焼結磁石を作製するには、 R— T — B系合金を粉砕し、 プレスして成形体を作製する必要が ある。 R— T一 B系合金を粉砕する方法と しては、 まず、 水素吸蔵によって R— T一 B系合金を脆化した後、 微細に 粉砕することが好ま しい。 水素吸蔵による脆化によって R 一 T一 B系合金は粗く粉砕 (解砕) される。 この R— T一 B系合金の水素解砕工程において、 水素は R リ ッチ相から 吸収され、 膨張し脆し、水素化物となる。 したがって、 水素 解砕では、 合金中に R リ ッチ相に沿つた、 或いは R リ ッチ 相を起点とした微細なクラックが導入される。 その後の微 粉砕工程で、 水素解砕で生成した多量の微細クラックをき つかけに合金が壊れる め、 R リ ッチ相の分散状態が微粉 砕能率、 微粉形状に影響を及ぼす傾向があった。 そこで、 本発明者らは、 R リ ッチ相をよりミクロなスケールで観察 し、 個々の R リ ッチ相の形状と水素解砕で形成し 微細ク ラック、 さらには磁気特性に関係があることを見出した。 The white part in Fig. 1 indicates the Nd rich phase (when R is Nd, the R rich phase is called the “Nd rich phase”). There is. ). As can be seen from Fig. 1, the Nd rich phase is aggregated in a pool. On the other hand, Fig. 2 shows that in order to produce a sintered magnet from an R-TB-based alloy in which a very fine Nd-rich phase exists in a dendritic form, the R-T-B-based alloy was ground. Then, it is necessary to produce a compact by pressing. As a method of pulverizing the RTB alloy, it is preferable to first embrittle the RTB alloy by hydrogen absorption and then pulverize it finely. R-T-B alloys are coarsely crushed (crushed) by embrittlement due to hydrogen storage. In the hydrogen crushing process of this RTB-based alloy, hydrogen is absorbed from the R-rich phase, expands, becomes brittle, and becomes hydride. Therefore, in hydrogen crushing, fine cracks are introduced into the alloy along the R-rich phase or starting from the R-rich phase. In the subsequent pulverization process, a large amount of fine cracks generated by hydrogen disintegration caused the alloy to break, so that the dispersion state of the R-rich phase tended to affect the pulverization efficiency and fine powder shape. . Therefore, the present inventors observed the R-rich phase on a more microscopic scale, and found that the shape of each R-rich phase and the fine cracks formed by hydrogen disintegration are related to the magnetic properties. I found that.
図 1 に示すょラなプール状の R リ ッチ相からは、 水素解 砕時に放射状に微細クラックが形成されると同時に、 自身 も脆化する。 そのため、 続くジエ ツ 卜ミル粉砕時に、 脆化 し プール状の R リ ッチ相は、 多くの部分が主相から分離 され非常に微細に粉砕される。 このよラな R リ ッチ相から なる極めて細かい微粉は、 サイクロンで分離され回収でき ない割合が高いため、 粉砕中の組成変動の原因となる。 ま た、 R リ ッチ相からなる微粉は非常に活性であるため、 酸 素濃度の増加による磁気特性低下の原因となり、 工程の安 全対策強化ち必要となり、 製造効率の低下、 コス 卜の上昇 をまねく。 From the rough pooled R-rich phase shown in Fig. 1, fine cracks are formed radially during hydrogen cracking, and at the same time, they themselves become embrittled. Therefore, during the subsequent jet milling, the R embrittled and pool-shaped R-rich phase was largely separated from the main phase. It is very finely ground. Extremely fine powder consisting of such an R-rich phase is separated by a cyclone and cannot be recovered at a high rate, which causes a fluctuation in the composition during grinding. In addition, since the fine powder composed of the R-rich phase is very active, it causes a decrease in the magnetic properties due to an increase in the oxygen concentration, necessitating the strengthening of safety measures in the process, reducing the production efficiency, and reducing the cost. Leading to a rise.
—方、 図 2に示すような、 デン ドライ 卜状に存在する非 常に細かい R リ ッチ相は、 その隣接する細かい枝状の R リ ツチ相同士の間隔が、 一般の焼結磁石用での粉砕粒度より も小さい。 そのため、 ジェ ッ トミル後の微粉内部に細かい 枝状の R リ ッチ相が取り込まれる割合が高くなる。 R リ ツ チ相は前記したように、 焼結時に液相となり、 焼結に寄与 する。 そのためには、 R リ ッチ相は各微粉の表面に存在し て、 焼結時は微粉同士を濡らす必要がある。 しかし、 粉の 中に入り込んだ R リ ッチ相にはそのような効果は期待でき ず、 また、 表面に染み出すと しても十分な効果をもたらす 事は出来ず、 磁石の焼結密度の低下を引き起こす。  On the other hand, as shown in Fig. 2, the very fine R-rich phase existing in the form of dendrites has a small distance between adjacent fine-branched R-rich phases for general sintered magnets. It is smaller than the ground particle size. For this reason, the proportion of fine branch-shaped R-rich phases incorporated into the fine powder after jet milling increases. As described above, the R-rich phase becomes a liquid phase during sintering and contributes to sintering. For this purpose, the R-rich phase exists on the surface of each fine powder, and it is necessary to wet the fine powder during sintering. However, such an effect cannot be expected for the R-rich phase that has entered the powder, and it cannot provide a sufficient effect even if it oozes out on the surface. Causes decline.
また、 デン ドライ 卜状に存在する非常に細かい R リ ッチ 相が多く存在すると、 デン ドライ 卜の分岐部分が粉末内部 に多く存在することとなり、 異方性の向きが異なる R 2 T i 4 B相が粉末内部に共存する割合が高くなるため、 得ら れる永久磁石の配向度が低下するとし、ラ問題を生じる。 次に、 図 3を参照して、 S C法により鐯造された本発明 による N d— F e— B系合金 ( N d 3 1 . 5質衋%) を説 明する。 図 3は、 本発明による N d— F e— B系合金の鐯 片の断面を S E M (走査電子顕微鏡) ,にて観察した時の反 射電子像を示す。 Moreover, when very fine R Li pitch phase present dendrite Bok shape there are many, Den branching portion of the dry Bok becomes possible abundant in the interior powder, R 2 T i 4 the orientation of the anisotropy different Since the proportion of the phase B coexisting inside the powder is increased, the degree of orientation of the obtained permanent magnet is reduced, which causes a problem. Next, the Nd-Fe-B alloy (Nd31.5% by mass) according to the present invention manufactured by the SC method will be described with reference to Fig. 3. FIG. 3 shows a reflected electron image when a cross section of a piece of the Nd—Fe—B alloy according to the present invention was observed by SEM (scanning electron microscope).
図 3からわかるように、 断面写真に現れている N d リ ツ チ相のろち、 厚さ方向を中心にある限定された角度範囲内 に伸長する層状 (ラメラ一状) の N d リ ッチ相の割合が支 配的である。 図 1 に示されているプール形状ゆ図 2に示さ れている小枝状の R リ ッチ相は、 わずかに存在しているが その存在比率は少ない。 このよろな組織を有する合金を、 水素解砕後にジエ ツ 卜ミル粉砕によって粉末化すれば、 図 1 および図 2の組織を有する合金における問題点である、 組成変動、 酸素、 窒素濃度の増加による磁気特性の低下、 焼結密度の低下、 配向度の低下などの問題を解決すること が可能である。 その結果、 R リ ッチ相本来の役割を十分に 発揮することができる R— T一 B系永久磁石用として最適 な原料合金を得ることができ、 このような原料合金を用し、 ることにより、 高磁気特性を有する R— T一 B系永久磁石 を得ることが可能となる。  As can be seen from Fig. 3, the Nd-rich phase in the cross-sectional photograph shows a layered (lamella-like) Nd-rich phase extending within a limited angle range centered on the thickness direction. The dominant proportion is dominant. The pool-shaped R-rich phase shown in Fig. 1 and the twig-shaped R-rich phase shown in Fig. 2 are slightly present, but their abundance is low. If an alloy having such a structure is pulverized by jet milling after hydrogen disintegration, the problems with alloys having the structures shown in FIGS. 1 and 2 may be caused by changes in composition and increases in oxygen and nitrogen concentrations. It is possible to solve problems such as lower magnetic properties, lower sintering density and lower degree of orientation. As a result, it is possible to obtain an optimal raw material alloy for R—T-B permanent magnets that can sufficiently fulfill the essential role of the R-rich phase, and use such a raw material alloy. This makes it possible to obtain an RTB permanent magnet having high magnetic properties.
既存の R— T— B系合金でち、 図 3に示すような組織は 部分的には存在する。 ま 、 R— T一 B系合金中の R リ ツ チ相の分散状態は、 鏵造時における溶湯が凝固した後の冷 却速度の制御、 或いは熱処理によって制御可能であること は特開平 0 9— 1 7 0 0 5 5号公報ゃ特開平 1 0— 3 6 9 4 9号公報に記載されている。 しかし、 既存の R— T— B 系合金に図 3に示すょラな組織が部分的に存在しても、 図 1 および図 2に示すような組織が大半を占めるため、 上述 したような R リ ッチ相本来の役割を+分に発揮することが でぎない。 It is an existing R—T—B alloy, and the structure shown in Fig. 3 partially exists. In addition, the dispersion state of the R-rich phase in the RT-B-based alloy depends on the cooling after the molten metal solidifies during the manufacturing. It is described in Japanese Patent Application Laid-Open No. H09-170555 and Japanese Patent Application Laid-Open No. H10-36949 that the cooling speed can be controlled or the heat treatment can be controlled. However, even if the existing R—T—B alloy has a partial structure as shown in Fig. 3, most of the structure as shown in Figs. The essential role of the rich phase cannot be fully demonstrated.
以下、 本発明による R— T— B系永久磁石用原料合金を 詳細に説明する。  Hereinafter, the raw material alloy for the R—T—B permanent magnet according to the present invention will be described in detail.
( 1 ) ス トリ ップキャス 卜法  (1) Strip cast method
まず、 図 4を参照して、 R— T一 B系永久磁石用原料合 金のス トリ ップキャス ト法による鎵造について説明する。 図 4は、 ス 卜リ ップキャス 卜法による歸造のための装置の 模式図を示している。  First, with reference to FIG. 4, a description will be given of a structure of a raw material alloy for an RT—B-based permanent magnet by a strip casting method. Fig. 4 shows a schematic view of an apparatus for forming by the strip cast method.
一般に、 R— T一 B系合金は、 その活性な性質のため、 真空ま は不活性ガス雰囲気中で、 耐火物ルツポ 1 を用しヽ て溶解される。 溶解され 合金の溶湯は、 1 3 0 〇〜 1 5 0 〇 °Cで所定の時間保持された後、 必要に じて整流機構 スラグ除去機構を設けたタンディ ッ シュ 2を介して、 内部 を水冷された鏟造用回転ロール 3に供給される。  Generally, RT-B alloys are melted in a vacuum or an inert gas atmosphere using a refractory material 1 due to their active properties. After the molten alloy is held at 130 ° C to 150 ° C for a predetermined time, the inside is water-cooled via a tundish 2 equipped with a rectification mechanism and a slag removal mechanism as necessary. It is supplied to the produced rotating roll 3 for production.
溶湯の供給速度および回転ロールの回転数は、 求める合 金の厚さに麻じて適切に制御させる。 回転ロールの回転周 速度は、 0 . 5〜 3 m / s程度に設定されることが好まし い。 錶造用回転ロールの材質は、 熱伝導性がよく入手が容 易であるとい 理由から銅または銅合金が適当である。 回 転ロールの材質やロールの表面状態によっては、 鎵造用回 転ロールの表面にメタルが付着しゆすし、ため、 必要に応じ て清掃装置を設置すると、 鏵造される R— T一 B系合金の 品質が安定する。 回転ロール上で凝固した合金 4はタンデ イ ツシュの反対側でロールから離脱し、 回収コンテナ 5で 回収される。 この回収コンテナに加熱、 冷却機構を設ける ことで Rリ ッチ相の組織の状態を制御できる。 The supply speed of the molten metal and the number of rotations of the rotating rolls should be controlled appropriately according to the required thickness of the alloy. The rotating peripheral speed of the rotating roll is preferably set to about 0.5 to 3 m / s. Yes. Copper or copper alloy is suitable for the material of the manufacturing rotary roll because it has good thermal conductivity and is easily available. Depending on the material of the rotating roll and the surface condition of the roll, the metal may adhere to the surface of the rotating roll for manufacturing, causing the metal to adhere to the surface of the rotating roll. The quality of the base alloy is stable. The alloy 4 solidified on the rotating roll separates from the roll on the opposite side of the tandem tissue and is recovered in the recovery container 5. By providing a heating and cooling mechanism in this collection container, the state of the R-rich phase structure can be controlled.
本発明の合金を製造する場合、 鎵造ロール上での冷却 When manufacturing the alloy of the present invention, cooling on a forming roll
(これを 「一次冷却」 と称する。 ) と回収コンテナ内での 冷却 (これを 「二次冷却」 と称する) とを適切に設定する 必要がある。 (This is called “primary cooling”) and cooling in the collection container (this is called “secondary cooling”) needs to be set appropriately.
-次冷却は、 具体的には、 鐯造ロールから離れる時の合 金の温度を 6 0〇〜 8 5〇 °Cにすることである。 錡造口一 ルから離れる時の合金の温度を R リ ッチ相の融点よりち高 くする必要がある。 R リ ッチ相の融点は組成により多少上 下はするが、 6 〇 0 °C以上である。 鐯造ロールから離れる 時の合金の温度が Rリ ッチ相の融点よりも低い場合は、 R リ ッチ相の凝固が完了 しているため、 図 2に示すような組 織になる。 一方、 8 5 0 °Cより高い場合は、 ロール離脱後 に Rリ ッチ相がプール状に凝集し図 1 に示すような組織に なる。 錡造ロールから離れる時の合金のより好ましい温度 範囲は 600~8〇 0°Cである。 さらに好ましい温度範囲 は 64〇〜了 5〇°Cである。 ただし、 好ましい温度範囲は 合金組成によって多少上下する。 -The next cooling is, specifically, to set the temperature of the alloy at 60 ° to 85 ° C. when leaving the production roll.合金 It is necessary that the temperature of the alloy when leaving the casting hole be higher than the melting point of the R-rich phase. The melting point of the R-rich phase is slightly higher or lower depending on the composition, but is more than 600 ° C.場合 If the temperature of the alloy when it is separated from the forming roll is lower than the melting point of the R-rich phase, the solidification of the R-rich phase has been completed and the structure will be as shown in Fig. 2. On the other hand, when the temperature is higher than 850 ° C, the R-rich phase aggregates into a pool after the roll detaches, and the structure becomes as shown in Fig. 1.好 ま し い More favorable temperature of the alloy when leaving the forming roll The range is 600 ~ 8〇0 ° C. A more preferred temperature range is 64 ° C to 5 ° C. However, the preferred temperature range slightly fluctuates depending on the alloy composition.
Rリ ッチ相の分散状態および形状は、 T R E (全希土類 含有量) に大きく依存する。 例えば、 T R Eが低く Rリ ツ チ相が少ない合金では、 錄造ロール上での伐熱量が少ない め、 錡造ロール離脱時の合金温度が高くなる傾向があり Rリ ッチ相が凝集しプール状化する傾向が強まる。 一方、 T R Eが高く Rリ ッチ相が多い合金では、 鎵造ロール上で の伐熱量が多いため、 高次のデン ドライ 卜アームを有する 組織を生成する傾向が強まる。 し がって、 録造ロールか ら離れる時の合金温度を上述の適切な温度範囲にする め 合金の厚みを、 T R Eが少ない場合は薄めに、 T R Eが多 い場合は厚めにする必要がある。 具体的には T R Eの目安 が 30 w t %以下の場合は、 一次冷却の程度を大きくする ため、 合金の平均の厚みを 0. 1 0〜0. 30 mmにする ことが好ましい。 より好ましくは 0. 1 5〜 0. 27 mm である。 さらに好ましくは 0. 20〜 0. 25 mmである T R Eの目安が 30 w t %から 33 w t %の揚合、 合金の 好ましい平均の厚みは〇 . 25〜 0. 35 mmである。 よ り好ましくは 0. 26〜0. 32 mmである。 T R Eの目 安が 33 w t %以上の場合、 合金の好ましい平均の厚みは 〇. 28〜0. 5〇 mmである。 より好ましくは 0. 28 〜。 · 3 5 m mである。 The dispersion state and shape of the R-rich phase greatly depend on TRE (total rare earth content). For example, in an alloy with a low TRE and a small R rich phase, 錄 the amount of heat cut off on the forming roll is small, 、 the alloy temperature tends to increase when the forming roll is removed, and the R rich phase aggregates and pools. The tendency to form. On the other hand, alloys with a high TRE and a high R-rich phase have a high tendency to generate a structure having higher-order dendritic arms due to a large amount of heat cut on the 鎵 roll. Therefore, in order to keep the alloy temperature when leaving the recording roll within the above-mentioned appropriate temperature range, the alloy thickness must be reduced when the TRE is small, and thickened when the TRE is large. . Specifically, when the guideline of TRE is 30 wt% or less, the average thickness of the alloy is preferably set to 0.10 to 0.30 mm in order to increase the degree of primary cooling. More preferably, it is 0.15 to 0.27 mm. More preferably, the standard of the TRE, which is 0.20 to 0.25 mm, is 30 to 33 wt%, and the preferable average thickness of the alloy is 0.25 to 0.35 mm. More preferably, it is 0.26 to 0.32 mm. When the target of TRE is 33 wt% or more, the preferable average thickness of the alloy is from 0.2 to 0.5 mm. More preferably 0.28 ~. · It is 35 mm.
また、 一次冷却の程度は、 鏡造ロールの表面粗さを適切 に選んで、 合金からの鐯造ロール上での伐熱量を制御する ことでも可能である。 この方法は特に T R Eの目安として 3 〇 w t %以下か 3 3 w t %以上の場合に有効である。 鐽 造ロールの表面粗さを粗くすることにより、 必要以上の伐 熱を抑制することができる。 T R Eが 3 3 w t %>以上では 多量の R リ ッチ相によってちたらされる鐯造ロールへの高 い熱伝達を錡造ロールの表面粗さを粗くすることにより、 適当に抑制することができる。 この場合の目安の表面粗さ は十点平均粗さ R Zで 2 0ミクロ ン以上である。 T R E 3 〇 w t %以下の場合については、 逆にロール上での一次冷 却を阻害しないように表面粗さは 2〇ミクロン程度以下と し、 R リ ッチ相の過度の凝集を防止する事が好ましい。 し かし、 表面粗さはロール表面材質など他の要因の影響ち受 けるため、 上記した数値に限定されるものではない。 The degree of primary cooling can also be controlled by appropriately selecting the surface roughness of the mirror forming roll and controlling the heat loss from the alloy on the forming roll. This method is especially effective when the TRE is less than 33 wt% or more than 33 wt%.以上 Unnecessary heat cutting can be suppressed by increasing the surface roughness of the forming roll. When the TRE is 33 wt% or more, high heat transfer to the forming roll caused by a large amount of the R-rich phase can be appropriately suppressed by roughening the surface roughness of the forming roll. it can. Surface roughness of the guide in this case is 2 0 microns or more in ten-point mean roughness R Z. In the case of TRE 3 〇 wt% or less, the surface roughness should be about 2 μm or less to prevent primary cooling on the roll, and excessive aggregation of the R-rich phase should be prevented. Is preferred. However, the surface roughness is affected by other factors such as the roll surface material, and is not limited to the above values.
鐽造ロール表面温度は、 合金溶湯とロールの濡れ性に影 響する。 温度が低すぎると合金溶湯とロールの濡れが悪く なり、 両者の接触の巨視的な不均一をも らす傾向がある その結果、 合金に温度分布が生じ、 前記の好まし ( 鎵造ロ ール離脱時の合金温度からの変動要因となり、 本発明の特 定の形状を有する R リ ッチ相の生成が困難となる。 一方、 温度が高すぎると、 合金溶湯とロールの濡れ性が良好とな り、 部分的な焼きつきを生じる事がある。 ロール表面への 合金の焼きつきは、 その部分での熱伝達、 濡れ性の変動を もたら し、 合金組織変動の要因となるため、 やはり本発明 の特定の形状を有する Rリ ッチ相の生成が困難となる。 ま た、 焼き付いた合金量がさらに多くなると、 安定し 操業 が困難となり、 生産効率の低下を招く。 したがって、 鐯造 ロール表面温度は 50〜 400 °Cが適当であり、 1 00〜 300 °Cが好ま しい。 さらに好ましくは 1 50〜 200 °C である。 ここで示すロール表面の温度は、 溶湯がロールに 接触する部分のものであり、 直接の測定は困難であるが、 鎵造面直下に埋め込んだ熱電対、 あるいはタンディ ッシュ 下部など合金ゆ溶湯に接触しなし、部分のロール表面に接触 し 熱電対の測定値から計算で求める事が可能である。 一方、 二次冷却は、 例えば、 回収コンテナ内に仕切り板 を設置し、 この仕切り板の間隔を適切に設定し、 また仕切 り板の内部を A 「 などの不活性ガスゆ水等で冷却すること で、 回収した合金の冷却速度を制御することが有効である 本発明の合金を製造する場合、 回収コンテナに回収した時 の合金の温度が 65〇〜 700 °Cの場合、 600 までの 好ましい冷却速度は 3〜 30 °C Z分、 より好ましくは 3〜 20°CZ分である。 回収コンテナに回収した時の合金の温 度が了 00〜8〇 0°Cの場合は、 6〇 0°Cまでの好ましし、 冷却速度は 1 0〜 4〇 °C Z分、 さらに好ましくは 1 〇〜 3 o°cノ分である。 回収コンテナに回収した時の合金の温度 が 80〇〜 85〇 °Cの揚合は、 60〇 までの好ましい冷 却速度は 20〜 5〇 °CZ分、 より好ましくは 3〇〜 5〇°C Z分である。 これらの温度範囲において、 上限を超えると 図 2に示すような組織になりゆすくなる。 ま 下限以下に なると、 図 1 に示すような組織になりゆすくなる。 鐽 The surface temperature of the forming roll affects the wettability of the molten alloy and the roll. If the temperature is too low, the wettability of the molten alloy and the roll tends to be poor, and there is a tendency for macroscopic nonuniformity in contact between the alloy and the alloy. When the temperature is too high, the wettability between the molten alloy and the roll is good if the temperature is too high. Tona May cause partial burn-in. The seizure of the alloy on the roll surface causes a change in heat transfer and wettability in that area, and causes a change in the alloy structure. It is difficult to generate. In addition, if the amount of seized alloy is further increased, stable operation becomes difficult, and the production efficiency is reduced. Therefore, the production roll surface temperature is suitably from 50 to 400 ° C, preferably from 100 to 300 ° C. More preferably, it is 150 to 200 ° C. The temperature of the roll surface shown here is the temperature at which the molten metal comes into contact with the roll, and it is difficult to measure it directly. It is possible to calculate from the thermocouple measurement value by touching the roll surface of the part. On the other hand, in secondary cooling, for example, a partition plate is installed in the collection container, the interval between the partition plates is set appropriately, and the inside of the partition plate is cooled with an inert gas water such as A Therefore, it is effective to control the cooling rate of the recovered alloy.In the case of manufacturing the alloy of the present invention, when the temperature of the alloy when recovered in the recovery container is 65 ° C to 700 ° C, it is preferable that the temperature be up to 600. The cooling rate is 3 to 30 ° CZ min, more preferably 3 to 20 ° CZ min.If the temperature of the alloy when collected in the collection container is 00 to 8 ° C 0 ° C, 6 ° 0 ° C C is preferred, cooling rate is 10 ~ 4〇CZ min, more preferably 1 ~ 3 o ° c min. When the temperature of the alloy when collected in the collection container is 80〇 to 85〇 C, the preferred cooling rate up to 60〇 is 20 to 5〇 CZ minutes, more preferably 3 to 5〇 CZ. Minutes. In these temperature ranges, if the temperature exceeds the upper limit, the structure shown in Fig. 2 becomes more likely. Below the lower limit, the structure shown in Fig. 1 becomes more likely.
なお、 本発明の合金は組織を規定するものであり、 製造 方法は上記の方法に限られるちのではない。  The alloy of the present invention defines the structure, and the production method is not limited to the above method.
本発明の合金薄片の厚さは、 0. 1 mm以上 0. 5 mm 以下とするのが好ま しし、。 合金薄片の厚さが 0. 1 mmよ り薄いと凝固速度が過度に増加し、 Rリ ッチ相の分散が細 かくなりすぎる。 また合金薄片の厚さが 0. 5 mmより厚 いと凝固速度低下による Rリ ツチ相の分散性の低下などの 問題を招く。  The thickness of the alloy flake of the present invention is preferably 0.1 mm or more and 0.5 mm or less. When the thickness of the alloy flakes is less than 0.1 mm, the solidification rate increases excessively, and the dispersion of the R-rich phase becomes too fine. If the thickness of the alloy flakes is more than 0.5 mm, problems such as a decrease in the dispersibility of the R-rich phase due to a decrease in the solidification rate are caused.
( 2) 合金中の Rリ ッチ相  (2) R-rich phase in alloy
本発明は、 R 2 Τ ή 4 B柱状結晶と Rリ ッチ相を含 薄板 状の R— T一 B系永久磁石用原料合金 ( Rは丫を含 希土 類元素の少なく とも 1 種、 Tは F eまだは F eと F e以外 の遷移金属元素の少なくとも 1 種、 Bはボロンま はボ口 ンと炭素) である。 そして、 薄板の法線方向を含 ¾任意の 断面で観察され 合金組織において、 アスペク ト比が 1 〇 以上かつその長軸方向が薄板表面に対して 90 ± 30 ° で ある Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ツチ相の 3 0 %以上である。 その結果、 焼結磁石製造工程 における微粉砕時に組成変動が少なく、 酸素および窒素濃 度の増加による磁気特性の低下がなく、 焼結密度及び配向 度の低下がない、 R リ ッチ相本来の役割を+分に発揮する ことができる R— T— B系永久磁石用として最適な原料合 金を得ることができる。 また、 この原料合金を用し、ること により、 高磁気特性を有する R— T一 B系永久磁石を得る ことが可能となる。 The present invention relates to a raw material alloy for a R-T-B-based permanent magnet in the form of a thin plate containing R 2 Τ 4 B columnar crystals and an R- rich phase (R is at least one kind of rare earth element containing 丫, T is Fe or at least one of the transition metal elements other than Fe and Fe, and B is boron or boron and carbon. The R-rich phase, which has an aspect ratio of 1% or more and whose major axis direction is 90 ± 30 ° with respect to the surface of the sheet, is observed in any cross section including the normal direction of the sheet. Area ratio is determined by all R It is 30% or more of the horn phase. As a result, there is little variation in the composition during the pulverization in the sintered magnet manufacturing process, no decrease in the magnetic properties due to the increase in the oxygen and nitrogen concentrations, no decrease in the sintered density and orientation, The most suitable alloy can be obtained for R—T—B permanent magnets that can fulfill their role. Further, by using this raw material alloy, it becomes possible to obtain an RTB-based permanent magnet having high magnetic properties.
合金中の R リ ッチ相のァスぺク 卜比が 1 〇未満の場合は R リ ッチ相は凝集し プール状であり、 そのよ oな R リ ツ チ相の割合が増加すると粉砕時の R リ ッチ相の脱落、 過粉 砕による組成変動が増加する。  When the aspect ratio of the R-rich phase in the alloy is less than 1%, the R-rich phase is agglomerated and in the form of a pool, and when the proportion of the R-rich phase increases, it is pulverized. At the time, the composition change due to dropout of the R-rich phase and over-milling increases.
さらに、 ァスぺク 卜比が 1 0以上でも、 長軸方向が薄板 表面に対して 9 0 ± 3 0 ° の範囲外では、 R リ ッチ相が必 要以上にその間隔の細かい小枝伏である可能性が高い。 そ のよ 5な R リ ッチ相は、 金属組織学的には高次のデン ドラ ィ 卜と説明できるが、 実際の合金組織で 1 次デン ドライ 卜 と 2次以上の高次のデン ドライ 卜の識別には個人差が生ず る可能性が高く、 幾何学的に定義することとし、 本範囲を 定め 。  Furthermore, even if the aspect ratio is 10 or more, if the major axis direction is out of the range of 90 ± 30 ° with respect to the surface of the thin plate, the R-rich phase is more than necessary, Is likely to be The five R-rich phases can be described as higher-order dendrites in metallography, but in actual alloy structures, primary dendrites and higher-order dendrites higher than the second order are considered. Since there is a high possibility that individual differences will occur in the identification of birds, it is determined geometrically and this range is defined.
その結果、 ァスぺク 卜比が 1 0以上かつその長軸方向が 薄板表面に対して 9 0 ± 3〇 ° である R リ ッチ相の面積率 が、 合金中に存在する全ての R リ ッチ相の 3 0 %以下とな ると、 磁気特性の低下が顕著となっ 。 As a result, the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ± 3 ° with respect to the surface of the thin plate is reduced by all R 30% or less of the rich phase As a result, the magnetic properties are significantly reduced.
好ま しくは、 アスペク ト比が 1 0以上かつその長軸方向 が薄板表面に対して 90 ± 3〇 ° である Rリ ッチ相の面積 率が、 合金中に存在する全ての Rリ ッチ相の 50 %以上で あることである。 より好ましくは、 アスペク ト比が 1 0以 上かつその長軸方向が薄板表面に対して 9〇 ±30° であ る Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ツ チ相の了 0%以上であることである。  Preferably, the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ± 3 ° relative to the surface of the thin plate is equal to all R-rich phases present in the alloy. More than 50% of the phase. More preferably, the area ratio of the R-rich phase having an aspect ratio of 10 or more and its major axis direction being 9 ± 30 ° with respect to the surface of the thin plate is equal to all R-rich phases present in the alloy. It must be at least 0% of the Tsuchi phase.
さらに好ましくは、 上記合金において、 アスペク ト比が 2〇以上であることである。 より好ま しくは、 上記合金に おいて、 アスペク ト比が 30以上であることである。  More preferably, in the above alloy, the aspect ratio is 2% or more. More preferably, the above alloy has an aspect ratio of 30 or more.
あるいは、 アスペク ト比が 1 〇以上かつその長軸方向が 薄板表面に対して 30° 以下または 1 50° 以上である R リ ッチ相の面積率が、 合金中に存在する全ての Rリ ッチ相 の 50 %以下であることである。 アスペク ト比が 1 0以上 でも、 長軸方向が薄板表面に対して 30 ° 以下または 1 5 〇 ° 以上である Rリ ッチ相は、 その間隔が細かい小枝状の 高次のデン ドライ トアームである可能性が特に高い。  Alternatively, the area ratio of the R-rich phase whose aspect ratio is 1 mm or more and the major axis direction is 30 ° or less or 150 ° or more with respect to the surface of the thin plate is reduced to all R-rich phases present in the alloy. It should be less than 50% of the phase. Even when the aspect ratio is 10 or more, the R-rich phase whose major axis direction is 30 ° or less or 15 °° or more with respect to the thin plate surface is a twig-shaped high-order dendritic arm with a small interval. It is particularly likely.
好ましくは、 ァスぺク 卜比が 1 0以上かつその長軸方向 が薄板表面に対して 30 ° 以下または 1 50° 以上である Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ッチ 相の 30%以下であることである。  Preferably, the area ratio of the R-rich phase having an aspect ratio of not less than 10 and the major axis direction thereof being not more than 30 ° or not less than 150 ° with respect to the surface of the thin plate is all present in the alloy. This is less than 30% of the R-rich phase of the above.
あるいは、 アスペク ト比が 1 〇以上かつその長軸方向が 薄板表面に対して 9 0土 30 ° である R リ ッチ相の面積率 が、 合金中に存在する全ての Rリ ッチ相の 3 0 %以上であ り、 且つ、 ァスぺク 卜比が 1 0以上かつその長軸方向が薄 板表面に対して 3 0 ° 以下または 1 5 0 ° 以上である R リ ツチ相の面積率が、 合金中に存在する全ての R リ ッチ相の 50 %以下であることである。 Alternatively, if the aspect ratio is 1 mm or more and its major axis The area ratio of the R-rich phase, which is 90 ° 30 ° with respect to the surface of the thin plate, is 30% or more of all the R-rich phases present in the alloy, and The ratio of the area of the R rich phase whose ratio is 10 or more and its major axis direction is 30 ° or less or 150 ° or more with respect to the sheet surface is equal to all the R rich phases present in the alloy. Less than 50% of the total.
好ましくは、 ァスぺク 卜比が 1 0以上かつその長軸方向 が薄板表面に対して 9 0 ± 30 ° である R リ ッチ相の面積 率が、 合金中に存在する全ての R リ ッチ相の 50 %以上で あり、 且つ、 アスペク ト比が 1 0以上かつその長軸方向が メタル表面に対して 3 0 ° 以下ま は "1 5 0 ° 以上である Rリ ッチ相の面積率が、 合金中に存在する全ての R リ ッチ 相の 30 %以下であることである。  Preferably, the area ratio of the R-rich phase having an aspect ratio of at least 10 and its major axis direction being 90 ± 30 ° with respect to the surface of the thin plate is the same as that of all the R-rich phases present in the alloy. Of the R-rich phase with an aspect ratio of at least 10 and a major axis direction of 30 ° or less or “150 ° or more” with respect to the metal surface. The area ratio is less than 30% of all R-rich phases present in the alloy.
上述したアスペク ト比 1 0以上あるいはアスペク ト比 2 ひ以上あるいはアスペク ト比 30以上の R リ ッチ相は、 そ の長軸寸法が薄板厚み寸法の 5 %以上、 好ましくは 1 0 % 以上の長さを有することが好ましい。  The above-mentioned R-rich phase with an aspect ratio of 10 or more, an aspect ratio of 2 or more, or an aspect ratio of 30 or more has a major axis dimension of 5% or more, preferably 10% or more of the thin plate thickness dimension. It preferably has a length.
合金中の R リ ッチ相のァスぺク 卜比、 薄板表面に対する 長軸方向の角度、 および、 そのような R リ ッチ相の面積率 は、 R リ ッチ相が主相よりち B E I で輝度が高いことから 画像解析装置で主相と R リ ッチ相を識別した上で解析する 事ができる。 例えば、 ランダムに選択し 1 0枚の合金薄 片断面の B E I を適当な倍率で撮影し、 それぞれの 1 0枚 の写真においてその写真中の Rリ ッチ相の総面積と、 所定 のァスぺク 卜比でその長軸方向が所定の角度範囲にある R リ ッチ相の合計面積をそれぞれ画像解析処理して測定す.る そして、 それぞれの写真で求めた所定のアスペク ト比でそ の長軸方向が所定の角度範囲にある Rリ ッチ相の合計面積 の合計を、 撮影した 1 0枚の写真の Rリ ッチ相の総面積の 合計で除した値を求めれば、 所定の Rリ ッチ相の面積率と みなすことができる。 The aspect ratio of the R-rich phase in the alloy, the angle in the major axis direction to the sheet surface, and the area ratio of such an R-rich phase are different from those of the main phase. Since the brightness is high in BEI, it is possible to analyze after distinguishing the main phase and the R-rich phase with the image analyzer. For example, randomly selected and photographed the BEI of the cross section of 10 alloy flakes at an appropriate magnification, In each of the photographs, the total area of the R-rich phase in the photograph and the total area of the R-rich phase whose major axis is within a predetermined angle range at a predetermined aspect ratio are image-analyzed. Then, the total of the total areas of the R-rich phases whose major axis directions are within a predetermined angle range at a predetermined aspect ratio determined in each photograph was calculated for each of the 10 images. By calculating the value obtained by dividing the total area of the R-rich phase in the photograph, the area ratio of the predetermined R-rich phase can be considered.
( 3) 合金中の R 2T 1 4 B相 (3) R 2 T 1 4 B phase in alloy
本発明による薄板状の R— T— B系永久磁石用原料合金は 強磁性相である R 2 T i 4 B相を主相とする。 R 2 T i 4 B相 は柱伏をなしており、 該 R 2 T 4 B柱状結晶は、 薄板表面 に対して 90 ±30° の角度内に長軸を有していることが 好ましい。 また、 長軸の長さが薄板厚み寸法の 30%以上 好ましくは 5〇%以上であることが好ましし、。 さらには、 上記の好ましい R 2 T t 4 B柱状結晶が、 薄板全体における R 2 T 1 4 B柱状結晶の 30%)以上、 好ましくは 50%以上 含有されていることが好ましい。 The thin plate-shaped raw material alloy for RTB-based permanent magnet according to the present invention has a main phase of R 2 Ti 4 B phase which is a ferromagnetic phase. The R 2 T 4 B phase is columnar, and the R 2 T 4 B columnar crystal preferably has a major axis within an angle of 90 ± 30 ° with respect to the thin plate surface. The length of the long axis is preferably 30% or more, and more preferably 5% or more of the thickness of the thin plate. Further, it is preferable that the above-mentioned preferable R 2 Tt 4 B columnar crystal is contained in 30% or more, preferably 50% or more of R 2 T 14 B columnar crystal in the whole thin plate.
なお、 この場合の R 2 T i 4 B柱状結晶とは、 磁気 K e r r効果を利用した偏光顕微鏡で観察される結晶方位が揃つ かたま 1 を指す。 In this case, the R 2 T i 4 B columnar crystal refers to a column 1 in which the crystal orientations observed by a polarizing microscope using the magnetic K err effect are uniform.
以下、 本発明の実施例および比較例を説明する。  Hereinafter, Examples and Comparative Examples of the present invention will be described.
(実施例 1 ) 合金組成が、 . N d : 3 1 . 5質量%>、 B : 1 . 0〇質 量%、 C o : 1 . 〇質量%、 A I : 0. 3 0質量%、 C u : 0. 1 0質量%、 残部鉄になるように、 金属ネオジゥ 厶、 フエロポロン、 コバル ト、 アルミニウム、 銅、 鉄を配 合し 原料を高周波溶解炉で溶解し、 溶湯をス 卜リ ップキ ヤス 卜法にて鎵造して、 合金薄片を作製し 。 (Example 1) Nd: 31.5% by mass>, B: 1.0% by mass, Co: 1.0% by mass, AI: 0.30% by mass, Cu: 0.1 Metal neodymium, ferropolon, cobalt, aluminum, copper, and iron are combined so that 0% by mass and the balance is iron, the raw materials are melted in a high-frequency melting furnace, and the molten metal is subjected to a strip casting method. To produce alloy flakes.
鎵造用回転ロールの直径は 300 mm、 材質は肉厚 50 m mの純銅で、 内部は水冷されており、 錄造時のロールの 周速度は 1 . 〇 mZ sで、 平均厚さ 0. 2了 mmの合金薄 片を生成した。 その際、 鏵造ロール表面の平均粗さは R z で 1 2ミクロンであった。 目視観察では、 合金は鐯造ロー ルに均一に乗っており、 錶造ロールへの焼きつきは認めら れなかっ 。  The diameter of the rotating roll for production is 300 mm, the material is pure copper with a thickness of 50 mm, the inside is water-cooled, the peripheral speed of the roll during production is 1. 1 mZ s, and the average thickness is 0.2. Mm alloy flakes were produced. At that time, the average roughness of the surface of the roll was 12 microns in Rz. By visual observation, the alloy was evenly placed on the ロ ー ル roll, and no seizure on the ロ ー ル roll was observed.
また、 鎵造ロール表面の底部に熱電対を接触させ、 鎵造 中の錶造ロールの表面温度を測定した。 さらに、 鏵造口一 ル用冷却水の水量と出入り口での温度差、 錶造ロールから 排出される水温ち測定し、 これらの測定値からタンディ ッ シュの溶湯が鏵造ロールに接触している位置での錡造ロー ルの表面温度は 1 了〇 °Cと計算された。  In addition, a thermocouple was brought into contact with the bottom of the production roll surface, and the surface temperature of the production roll during the production was measured. In addition, the amount of cooling water for the production hole and the temperature difference between the entrance and exit, and the temperature of the water discharged from the production roll were measured.From these measured values, the molten tundish was in contact with the production roll. The surface temperature of the structure roll at the location was calculated to be 1 ° C.
また、 赤外線温度計でロールを離脱した合金薄片の温度 を測定し ところ、 了 3〇°Cであった。 収容する回収コン テナ内には、 冷却用 A 「 ガスを流通させた仕切り板を設置 した。 回収コンテナ側面から内部に熱電対を差込み、 合金 の温度変化を測定し ところ、 最高温度は了 20 °Cであり 60〇°Cまでの平均の冷却速度は 22 °〇ノ分であった。 得られた合金薄片を 1 0枚埋め込み、 研摩し 後、 走査 型電子顕微鏡 ( S E M) で各合金薄片について反射電子線 像 ( B E I ) を倍率 1 0〇倍で撮影した。 撮影した写真を 画像解析装置に取り込み測定したところ、 アスペク ト比が 1 0以上かつその長軸方向がメタル表面に対して 90 ± 3 0° である Rリ ッチ相の面積率は、 合金中に存在する全て の Rリ ッチ相の 80%であつ 。 また、 ァスぺク 卜比が 2 0以上かつその長軸方向がメタル表面に対 して 90 ± 3 〇 ° である Rリ ッチ相の面積率は、 合金中に存在する全て の Rリ ッチ相の 65%であっ 。 一方で、 ァスぺク 卜比が 1 0以上かつその長軸方向がメタル表面に対して 30 ° 以 下または 1 50° 以上である Rリ ッチ相の面積率が、 合金 中に存在する全ての Rリ ッチ相の 6%であった。 When the temperature of the alloy flakes from which the roll had been separated was measured by an infrared thermometer, the temperature was 3〇 ° C. In the collection container to be housed, a partition plate for cooling A “gas” was installed. A thermocouple was inserted from the side of the collection container into the alloy. When the temperature change was measured, the maximum temperature was 20 ° C, and the average cooling rate up to 60 ° C was 22 ° C. After embedding and polishing 10 pieces of the obtained alloy flakes, a reflected electron beam image (BEI) of each alloy flake was taken at a magnification of 10 × with a scanning electron microscope (SEM). When the taken pictures were taken into an image analyzer and measured, the area ratio of the R-rich phase with an aspect ratio of 10 or more and its major axis direction being 90 ± 30 ° with respect to the metal surface was found in the alloy. 80% of all R-rich phases present in In addition, the area ratio of the R-rich phase having an aspect ratio of at least 20 and its major axis direction being 90 ± 3 ° with respect to the metal surface is determined by the ratio of all R-rich phases present in the alloy. 65% of the touch phase. On the other hand, the area ratio of the R-rich phase whose aspect ratio is 10 or more and whose major axis direction is 30 ° or less or 150 ° or more with respect to the metal surface exists in the alloy. 6% of all R-rich phases.
(比較例 1 )  (Comparative Example 1)
実施例 1 と同様の組成に原料を配合し、 実施例 1 と同様 にして溶解および S C法による鎵造を実施した。 但し、 鎵 造ロールの肉厚は 90 mmとし、 鎵造ロール表面の平均粗 さは R zで 7ミクロンとし 。 まだ合金薄片の平均厚さは 〇. 35 mmとした。 目視観察では、 鐯造ロール上の合金 温度が異常に高い部分が少量発生し、 一部で焼きつき現象 が認められた。 実施例 1 と同様の方法で求め タンディ ッシュの溶湯が 鎵造ロールに接触している位置での錄造ロールの表面温度 は 400 Cであった。 The raw materials were blended in the same composition as in Example 1, and dissolution and production by the SC method were performed in the same manner as in Example 1. However, the thickness of the 鎵 roll is 90 mm, and the average roughness of the ロ ー ル roll surface is 7 μm in Rz. The average thickness of the alloy flakes was 〇. 35 mm. Visual observation revealed that a small amount of abnormally high alloy temperature occurred on the 鐯 roll and a seizure phenomenon was observed in some parts. The surface temperature of the production roll at a position where the molten metal of the tundish was in contact with the production roll was 400 C, which was obtained in the same manner as in Example 1.
ま 、 赤外線温度計でロールを離脱し 焼きつきの無い 合金薄片の温度を測定したところ、 820 °Cであった。 ま だ、 ロールを離脱した合金薄片を収容する回収コンテナ内 は、 特別な冷却機構を設けなかつだ。 回収コンテナ側面か ら内部に差込んだ熱電対で合金の温度変化を測定したとこ ろ、 最高温度は 8 1 0 °Cであり、 600 °Cまでの平均の冷 却速度は 6 °C Z分であっ 。  The temperature of the alloy flakes without seizure was measured by removing the roll with an infrared thermometer and found to be 820 ° C. No special cooling mechanism has been installed in the collection container that stores the alloy flakes that have been separated from the rolls. When the temperature change of the alloy was measured with a thermocouple inserted from the side of the recovery container into the inside, the maximum temperature was 810 ° C, and the average cooling rate up to 600 ° C was 6 ° CZ minutes. Ah .
得られだ焼きつきの無い合金薄片を実施例 1 と同様に評 価した結果、 Rリ ッチ相の多くが凝集してプールを形成し ていた め、 ァスぺク 卜比が 1 0以上である Rリ ッチ相の 面積率は、 合金中に存在する全ての Rリ ッチ相の 26 %で あっ 。  The obtained alloy flakes without seizure were evaluated in the same manner as in Example 1. As a result, many of the R-rich phases aggregated to form a pool. The area fraction of one R-rich phase is 26% of all R-rich phases present in the alloy.
(比較例 2 )  (Comparative Example 2)
実施例 1 と同様の組成に原料を配合し、 実施例 1 と同様 にして溶解およ.び S C法による鐯造を実施した。 但し、 錶 造ロールの肉厚は 25 mmとし、 鐽造ロール表面の平均粗 さは R zで 1 0ミクロンと し 。 ま 合金薄片の平均厚さ は 0. 22 mmとし 。 目視観察では、 鐯造ロール上の合 金の一部に温度が若干高い部分が発生し 。  The raw materials were blended in the same composition as in Example 1, and dissolution and production by the SC method were performed in the same manner as in Example 1. However, the thickness of the ロ ー ル roll is 25 mm, and the average roughness of the ロ ー ル roll surface is 10 microns in Rz. The average thickness of the alloy flakes was 0.22 mm. According to the visual observation, a part of the alloy on the 鐯 roll had a slightly higher temperature.
実施例 1 と同様の方法で求めたタンディ ッシュの溶湯が 鏵造ロールに接触している位置での鎵造ロールの表面温度 は 80 °Cであった。 The molten tundish obtained in the same manner as in Example 1 The surface temperature of the forming roll at a position in contact with the forming roll was 80 ° C.
ま 、 赤外線温度計でロールを離脱し 合金薄片の 平均 の温度を測定したところ、 67〇°Cであった。 また、 ロー ルを離脱しだ合金薄片を収容する回収コンテナ内には 、 )令 却水を流通させた仕切り板を設置しだ。 回収コンテナ 側面 から内部に差込んだ熱電対で合金の温度変化を測定し たと ころ、 最高温度は 660 °Cであり、 6〇 0°Cまでの平 均の 冷却速度は 35 °C /分であった。  The average temperature of the alloy flakes measured by removing the roll with an infrared thermometer was 67 ° C. In addition, in the collection container that stores the alloy flakes that have separated from the roll, a partition plate through which water is circulated is installed. When the temperature change of the alloy was measured with a thermocouple inserted from the side of the recovery container into the inside, the maximum temperature was 660 ° C, and the average cooling rate up to 60 ° C was 35 ° C / min. there were.
得られ 合金薄片を実施例 1 と同様に評価し 結果 、 R リ ッチ相は小枝状の高次のデン ドライ 卜を多量に含ん でお り、 アスペク ト比が 1 0以上かつその長軸方向がメタ ル表 面に対して 90 ±30° である Rリ ッチ相の面積率は 、 合 金中に存在する全ての Rリ ッチ相の 23%であった。 一方 で、 アスペク ト比が 1 0以上かつその長軸方向がメタ ル表 面に対して 30 ° 以下または 1 5〇 ° 以上である Rリ ツチ 相の面積率が、 合金中に存在する全ての R リ ッチ相 の 5 4 %であった。  The obtained alloy flakes were evaluated in the same manner as in Example 1. As a result, the R-rich phase contained a large amount of twig-like high-order dendrites, and the aspect ratio was 10 or more and its major axis direction The area ratio of the R-rich phase which is 90 ± 30 ° with respect to the metal surface was 23% of all the R-rich phases present in the alloy. On the other hand, the area ratio of the R-rich phase having an aspect ratio of 10 or more and its major axis direction being 30 ° or less or 15 °° or more with respect to the metal surface is determined by all the alloys present in the alloy. It was 54% of the R-rich phase.
次に焼結磁石の実施例を説明する。  Next, examples of the sintered magnet will be described.
(実施例 2 )  (Example 2)
実施例 1 で得られた合金薄片を公知の水素粉砕処理 によ り粗粉砕し、 得られ 粗粉砕粉末に、 ステアリ ン酸亜 鉛粉 末を 0. 0了質衋%添加し、 ロッキングミキサーによ り窒 素雰囲気中で混合した後、 ジェ ッ トミル装置で微粉砕した, ジェ ッ トミル粉砕時の雰囲気は、 1 〇 0 0 〇 p p mの酸素 を混合した窒素雰囲気中とした。 得られだ! |¾体の酸素濃度 は 5 0〇 0 p p mであっ 。 得られ 粉体を冷閏埋め込み 樹脂と混合、 硬化、 研磨して、 粉体の断面を S E M— B E I 観察し、 粉体中での Rリ ッチ相の分散状態を調査した。 その結果、 R リ ッチ相は主に主相から成る粒の表面に付着 していた The alloy flakes obtained in Example 1 were coarsely pulverized by a known hydrogen pulverization treatment, and 0.01% of zinc stearate powder was added to the obtained coarsely pulverized powder, and the mixture was added to a rocking mixer. More After mixing in an elementary atmosphere, the mixture was finely pulverized by a jet mill apparatus. The atmosphere during the jet mill pulverization was a nitrogen atmosphere mixed with 100 ppm of oxygen. The oxygen concentration of the body was 50 の 0 ppm. The obtained powder was mixed with a cold leap embedding resin, cured, polished, and the cross section of the powder was observed by SEM-BEI to investigate the dispersion state of the R-rich phase in the powder. As a result, the R-rich phase was attached to the surface of the grains mainly composed of the main phase.
次に、 得られ 粉体を配向磁界 1 . 5 Tの磁場中におい て圧力 1 . O t / c m 2でプレス成形し、 該成形体を 1 0 6 0 °Cで 4時間保持して焼結した。 得られ 焼結体の焼結密 度は了 . S g Z c m 3以上であり十分な大きさの密度とな つ 。 さらに、 この焼結体をアルゴン雰囲気中、 5 6 0 °C で 1 時間熱処理し、 焼結磁石を作製した。 Next, the obtained powder was press-molded under a magnetic field of 1.5 T of orientation magnetic field at a pressure of 1.0 Ot / cm 2 , and the compact was held at 160 ° C. for 4 hours for sintering. did. The resulting sintered body has a sintering density of at least S g Z cm 3, which is a sufficient density. Further, this sintered body was heat-treated at 560 ° C. for 1 hour in an argon atmosphere to produce a sintered magnet.
B Hカーブ 卜レーサーでこの焼結磁石の磁気特性を測定 した結果を表 1 に示す。  Table 1 shows the results of measuring the magnetic properties of this sintered magnet with a BH curve tracer.
(比較例 3 )  (Comparative Example 3)
比較例 1 で得られ 合金薄片を、 実施例 2と同様の方法 で粉砕して微粉を得た。 この際、 実施例 2と同様の方法で 粉体断面を観察し、 R リ ッチ相の多くが主相から分離して R リ ッチ相だけから構成された比較的小さな粒と して存在 していることを確認した。 さらに実施例 2と同様の成形、 焼結の工程を経て、 焼結磁石を作製しだ。 本比較例 3で作製し 焼結磁石の磁気特性を、 B Hカー プ卜レーサーで測定し 結果を表 1 に示す。 The alloy flake obtained in Comparative Example 1 was ground in the same manner as in Example 2 to obtain a fine powder. At this time, the cross section of the powder was observed in the same manner as in Example 2, and most of the R-rich phase was separated from the main phase and existed as relatively small grains composed of only the R-rich phase. I confirmed that. Further, through the same molding and sintering steps as in Example 2, a sintered magnet was produced. The magnetic properties of the sintered magnet produced in Comparative Example 3 were measured with a BH cap tracer, and the results are shown in Table 1.
(比較例 4 )  (Comparative Example 4)
比較例 2で得られた合金薄片を、 実施例 2と同様の方法 で粉砕して微粉を得た。 この際、 実施例 2と同様の方法で 粉体断面を観察し、 内部に R リ ッチ相が存在している粒の 割合が、 実施例 2と比較して 7倍程度も ある事を確認した さらに実施例 2と同様の成形、 焼結の工程を経て、 焼結磁 石を作製し 。  The alloy flake obtained in Comparative Example 2 was ground in the same manner as in Example 2 to obtain fine powder. At this time, the cross section of the powder was observed in the same manner as in Example 2, and it was confirmed that the ratio of grains in which the R-rich phase was present was about 7 times that of Example 2. Further, through the same molding and sintering steps as in Example 2, a sintered magnet was produced.
本比較例 4で作製しだ焼結磁石の磁気 特性を、 B H力一 プ卜レーサーで測定した結果を表 1 に示す。  Table 1 shows the results of measuring the magnetic properties of the sintered magnet produced in Comparative Example 4 using a BH force implanter.
(表 1 )  (table 1 )
Figure imgf000030_0001
表 1 に示すように、 比較例 3では実施例 2と比較して密 度が低く、 特性面でも磁化、 保磁力が低い。 この原因は、 合金段階での R リ ツチ相の分散が悪いため、 粉砕ェ程にお いて R リ ッチ相が活性な小微粉体として粉砕機のサイクロ ンで分離されて T R Eが減少し易いことや、 R リ ッチ相の 偏祈が焼結性を低下させることから、 焼結時に十分有効に 機能しなかったためと推定できる。 一方、 比較例 4でも比 較例 3ほどではないにしろ、 同様の挙動を示しており、 R リ ツチ相の焼結への寄与が不十分であったものと推定でき る。 産業上の利用可能性
Figure imgf000030_0001
As shown in Table 1, the density of Comparative Example 3 is lower than that of Example 2, and the magnetization and coercive force are also low in characteristics. This is due to the poor dispersion of the R-rich phase in the alloy stage, so that the R-rich phase is separated as an active fine powder in the grinding process in the cyclone of the pulverizer and the TRE tends to decrease. And the R-rich phase It is presumed that the bias did not function effectively during sintering due to the decrease in sinterability. On the other hand, Comparative Example 4 showed the same behavior, though not as much as Comparative Example 3, indicating that the contribution of the R-rich phase to sintering was insufficient. Industrial applicability
本発明の R— T— B系永久磁石用原料合金によれば、 合 金中の R リ ッチ相を最大限有効活用できるため、 本合金か ら製造し 焼結磁石は、 従来のものよりも優れた磁石特性 を発現する。 すなわち、 R リ ッチ柜が本来の役割を十分に 発揮するだめ、 焼結磁石製造工程で微粉砕時の組成変動が 少ない、 酸素濃度の増加による磁気特性の低下がない、 焼 結密度の低下及び配向度の低下が いなど、 従来の合金で は得られなかった優れた効果を有する。 また、 上記原料合 金を用いることにより、 高磁気特性を有する R— T— B系 永久磁石を得ることができる。  According to the raw material alloy for R—T—B permanent magnets of the present invention, the R-rich phase in the alloy can be utilized to the utmost extent. Also exhibit excellent magnet properties. In other words, the R-Rich cannot fully fulfill its original role, there is little variation in composition during fine grinding in the sintered magnet manufacturing process, there is no decrease in magnetic properties due to an increase in oxygen concentration, and there is a reduction in sintering density. It has excellent effects that cannot be obtained with conventional alloys, such as a decrease in the degree of orientation and the like. Further, by using the above-mentioned alloy, an RTB-based permanent magnet having high magnetic properties can be obtained.
本発明は、 高性能の焼結磁石を 要とする種 の電子機 器ゆ電気機械などに好適に麻用され得る。  INDUSTRIAL APPLICABILITY The present invention can be suitably used for various kinds of electronic equipment and electric machines that require a high-performance sintered magnet.

Claims

請 求 の 範 囲 The scope of the claims
1 . R 2 T i 4 B柱 U犬結晶および R リ ッチ相を含 薄板 状の R— T一 B系永久磁石用原料合金 ( Rは丫を含 ¾希土 類元素の少なく とも 1 種、 Τは F e または F e と F e以外 の遷移金属元素の少な < とち 1 種、 Bはポロンまたはポロ ンと炭素) であって、 1. R 2 T i 4 B column Raw material alloy for R-T-B-based permanent magnet containing R-rich phase and U-dog crystal (R is at least one rare earth element containing 丫) , Τ is Fe or at least one of the transition metal elements other than Fe and Fe, and B is porone or porone and carbon),
前記薄板の法線方向を含む任意の断面で観察され 合金 組織において、 アスペク ト比が 1 0以上かつその長軸方向 が前記薄板の表面に対 して 9 〇 ± 3 0 ° である R リ ッチ相 の面積率が、 合金中に存在する全ての R リ ッチ相の 3 0 % 以上である、 R— T一 B系永久磁石用原料合金。  In the alloy structure observed in an arbitrary cross section including the normal direction of the thin plate, the aspect ratio is 10 or more and the major axis direction is 9 ° ± 30 ° with respect to the surface of the thin plate. A raw material alloy for R—T—B-based permanent magnets, wherein the area ratio of the h phase is 30% or more of all R rich phases present in the alloy.
2 . アスペク ト比が 1 0以上かつその長軸方向が薄板 表面に対して 9 0 ± 3 〇 ° である R リ ッチ相の面積率が、 合金中に存在する全ての R リ ツチ相の 5 0 %以上である請 求項 1 に記載の R— T 一 B系永久磁石用原料合金。 2. The area ratio of the R-rich phase whose aspect ratio is more than 10 and its major axis direction is 90 ± 3〇 ° with respect to the surface of the thin plate is the same as that of all the R-rich phases present in the alloy. The raw material alloy for RT—B-based permanent magnets according to claim 1, which is 50% or more.
3 . アスペク ト比力 1 0以上かつその長軸方向が薄板 表面に対して 9 0 ± 3 〇 ° である R リ ッチ相の面積率が、 合金中に存在する全ての R リ ツチ相の 7 〇%>以上である請 求項 1 に記載の R— T— B系永久磁石用原料合金。 3. The area ratio of the R-rich phase, whose aspect specific force is 10 or more and its major axis direction is 90 ± 3 〇 ° to the surface of the thin plate, is the ratio of all R-rich phases present in the alloy. The raw material alloy for R—T—B permanent magnets according to claim 1, wherein the content is 7% or more.
4 . ァスぺク 卜比が 2 0以上であることを特徴とする 請求項 1 から 3の いずかに記載の R— T一 B系永久磁石用 原料合金。 4. The raw material alloy for an RT—B-based permanent magnet according to any one of claims 1 to 3, wherein an aspect ratio is 20 or more.
5 . R 2 T i 4 B柱状結晶と R リ ッチ相を含 薄板状の5. R 2 Ti 4 B columnar crystal and R-rich phase
R— T一 B系永久 磁石用原料合金 ( Rは Yを含 希土類元 素の少なくとも 1 種、 Tは F e または F e と F e以外の遷 移金属元素の少な く とち 1 種、 Bはポロンまたはボロンと 炭素) であって、 R—T-B material alloy for permanent magnets (R is at least one rare earth element containing Y, T is Fe or at least one of Fe and transition metal elements other than Fe, B Is boron or boron and carbon)
前記薄板の法線 方向を含 ¾任意の断面で観察された合金 組織において、 ァ スぺク 卜比が 1 0以上かつその長軸方向 が薄板表面に対して 3 0 ° 以下または 1 5 0 ° 以上である R リ ッチ相の面積 率が、 合金中に存在する全ての R リ ッチ 相の 5 0 %以下で ある、 R— Τ一 Β系永久磁石用原料合金  In the alloy structure observed at an arbitrary cross section including the normal direction of the thin plate, the aspect ratio is 10 or more and the major axis direction is 30 ° or less or 150 ° with respect to the thin plate surface. The raw material alloy for R-II type permanent magnets, wherein the area ratio of the R-rich phase is 50% or less of all the R-rich phases present in the alloy.
6 . ァスぺク 卜比が 1 0以上かつその長軸方向が薄板 表面に対して 3 0 ° 以下ま は 1 5 〇 ° 以上である R リ ツ チ相の面積率が、 合金中に存在する全ての R リ ッチ相の 3 〇%以下である請 求項 5に記載の R—丁一 Β系永久磁石用 原料合金。 了 . R 2 Τ 1 4 Β柱状結晶および R リ ッチ相を含 薄板 状の R— Τ一 Β系 永久磁石用原料合金 ( Rは Υを含 ¾希土 類元素の少なく とも 1 種、 Tは F eまたは F eと F e以外 の遷移金属元素の少なくとも 1 種、 Bはボロンまたはポロ ンと炭素) であって、 6. The area ratio of the R-rich phase, whose aspect ratio is 10 or more and its major axis direction is 30 ° or less or 15 ° or more with respect to the thin plate surface, exists in the alloy. The raw material alloy for an R—Choichii type permanent magnet according to claim 5, wherein the alloy content is 3% or less of all the R rich phases to be formed. R 2 Τ1 4 R Raw material alloy for columnar crystals and R-rich phase for R -—- based permanent magnets (R is rare earth containing Υ) At least one kind of element, T is Fe or at least one kind of transition metal element other than Fe and Fe, and B is boron or boron and carbon),
前記薄板の法線方向を含¾任意の断面で観察された合金 組織において、 アスペク ト比が 1 〇以上かつその長軸方向 が薄板表面に対して 90 ± 3〇 ° である Rリ ッチ相の面積 率が、 合金中に存在する全ての Rリ ッチ相の 30%以上で あり、 しかも、 アスペク ト比が 1 0以上かつその長軸方向 が薄板表面に対して 30 ° 以下または 1 50° 以上である Rリ ッ チ相の面積率が、 合金中に存在する全ての Rリ ッチ 相の 5 0 %以下である、 R— T一 B系永久磁石用原料合金  In the alloy structure observed in an arbitrary cross section including the normal direction of the thin plate, the R-rich phase having an aspect ratio of 1% or more and the major axis direction of which is 90 ± 3 ° with respect to the surface of the thin plate. Area ratio of all R-rich phases present in the alloy is 30% or more, and the aspect ratio is 10 or more and its major axis direction is 30 ° or less or 150 ° to the thin plate surface. The raw material alloy for R-T-B system permanent magnets, in which the area ratio of the R-rich phase is not less than 50% of all the R-rich phases present in the alloy is 50% or less.
8. ァスぺク 卜比が 1 0以上かつその長軸方向が薄板 表面に ¾ίして 9〇 ± 30 ° である Rリ ッチ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 50%以上であり、 しかも、 アスペク ト比が 1 〇以上かつその長軸方向が薄板 表面に対して 3〇 ° 以下または 1 50° 以上である Rリ ツ チ相の面積率が、 合金中に存在する全ての Rリ ッチ相の 3 0 %以下である請求項 7に記載の R— Τ— Β系永久磁石用 原料合金。 8. The area ratio of the R-rich phase having an aspect ratio of 10 or more and its major axis direction being 9 ± 30 ° to the surface of the thin plate is equal to the total area of the R-rich phase present in the alloy. Of the R-rich phase whose aspect ratio is 1% or more and whose major axis direction is 3 ° or less or 150 ° or more with respect to the surface of the thin plate. The raw material alloy for an R-II-III-based permanent magnet according to claim 7, wherein the raw material alloy accounts for 30% or less of all R-rich phases present in the alloy.
9. ス トリ ップキャス ト法で製造されることを特徴と する請求項 1 から 8のいずれかに記載の R— Τ一 Β系永^ 磁石用原料合金。 9. R—— 一 Τ 系 永 永 according to any one of claims 1 to 8, characterized by being manufactured by a strip casting method. Raw material alloy for magnets.
1 0. 平均厚さが〇 . 1 0 mm以上〇 . 50 mm以下 である請求項 9に記載の R— T一 B系永久磁石用原料合金 10. The raw material alloy for an RT—B-based permanent magnet according to claim 9, wherein the average thickness is 〇.10 mm or more and 〇.50 mm or less.
1 1 . 請求項 1 から 1 0のいずれかに記載の R— T一 B系永久磁石用原料合金から作製した R— T一 B系永久磁 石。 11. An RT—B-based permanent magnet produced from the raw material alloy for an RT—B-based permanent magnet according to any one of claims 1 to 10.
PCT/JP2004/014580 2003-09-30 2004-09-28 Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet WO2005031023A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514309A JP4366360B2 (en) 2003-09-30 2004-09-28 Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003339374 2003-09-30
JP2003-339374 2003-09-30

Publications (1)

Publication Number Publication Date
WO2005031023A1 true WO2005031023A1 (en) 2005-04-07

Family

ID=34386181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014580 WO2005031023A1 (en) 2003-09-30 2004-09-28 Raw material alloy for r-t-b permanent magnet and r-t-b permanent magnet

Country Status (3)

Country Link
JP (1) JP4366360B2 (en)
CN (1) CN1860248A (en)
WO (1) WO2005031023A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2015073991A (en) * 2013-10-04 2015-04-20 大同特殊鋼株式会社 Production method of rare earth magnet alloy ribbon
JP2015193925A (en) * 2014-03-27 2015-11-05 日立金属株式会社 R-t-b alloy powder and r-t-b sintered magnet
JP2018170483A (en) * 2017-03-30 2018-11-01 Tdk株式会社 R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264932B (en) * 2008-12-26 2013-12-04 昭和电工株式会社 Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
JP5982680B2 (en) * 2011-10-28 2016-08-31 Tdk株式会社 R-T-B alloy powder, compound for anisotropic bonded magnet, and anisotropic bonded magnet
CN104576022B (en) * 2014-12-03 2017-06-27 中国科学院宁波材料技术与工程研究所 The preparation method of rare-earth permanent magnet
CN108257752B (en) * 2016-12-29 2021-07-23 北京中科三环高技术股份有限公司 Alloy casting sheet for preparing fine-grain rare earth sintered magnet
DE102019107726B4 (en) 2018-04-04 2024-09-26 Asahi Kasei Kabushiki Kaisha Additive for bituminous sealing membrane, process for producing a bituminous sealing membrane, bitumen composition and use of the bitumen composition
CN115555525A (en) * 2022-10-14 2023-01-03 四川大学 Device and method for measuring solidification speed of rapidly solidified thin strip in real time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272929A (en) * 1994-03-29 1995-10-20 Kobe Steel Ltd Rare earth element-fe-b-thin film permanent magnet
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JP2003213383A (en) * 2002-01-22 2003-07-30 Sumitomo Metal Ind Ltd Rare earth alloy, production method therefor and permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272929A (en) * 1994-03-29 1995-10-20 Kobe Steel Ltd Rare earth element-fe-b-thin film permanent magnet
JP2003077717A (en) * 2001-09-03 2003-03-14 Showa Denko Kk Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JP2003213383A (en) * 2002-01-22 2003-07-30 Sumitomo Metal Ind Ltd Rare earth alloy, production method therefor and permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114571A1 (en) 2007-03-22 2008-09-25 Showa Denko K.K. R-t-b base alloy, process for production thereof, fine powder for r-t-b base rare earth permanent magnet, and r-t-b base rare earth permanent magnet
JP2015073991A (en) * 2013-10-04 2015-04-20 大同特殊鋼株式会社 Production method of rare earth magnet alloy ribbon
JP2015193925A (en) * 2014-03-27 2015-11-05 日立金属株式会社 R-t-b alloy powder and r-t-b sintered magnet
JP2018170483A (en) * 2017-03-30 2018-11-01 Tdk株式会社 R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet
US10964463B2 (en) 2017-03-30 2021-03-30 Tdk Corporation Alloy for R—T—B based rare earth sintered magnet and method for producing the R—T—B based rare earth sintered magnet

Also Published As

Publication number Publication date
JP4366360B2 (en) 2009-11-18
JPWO2005031023A1 (en) 2006-12-07
CN1860248A (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
JP5274781B2 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
US11145443B2 (en) R-T-B-based magnet material alloy and method for producing the same
JPWO2009075351A1 (en) R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US7846273B2 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JPH1036949A (en) Alloy for rare earth magnet and its production
JP4366360B2 (en) Raw material alloy for RTB-based permanent magnet and RTB-based permanent magnet
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
US20050098239A1 (en) R-T-B based permanent magnet material alloy and R-T-B based permanent magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
CN104114305A (en) R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD FOR PRODUCING SAME
JP4276541B2 (en) Alloy for Sm-Co magnet, method for producing the same, sintered magnet, and bonded magnet
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP2002208509A (en) Rare earth magnet and its manufacturing method
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP2004181531A (en) Method for producing rare-earth containing alloy flake, alloy flake for rare-earth magnet, alloy powder for rare-earth sintered magnet, rare-earth sintered magnet, alloy powder for bonded magnet and bonded magnet, and evaluation method for metallic structure
JP3536943B2 (en) Alloy for rare earth magnet and method for producing the same
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2004043921A (en) Rare-earth-containing alloy flake, its manufacturing process, rare-earth sintered magnet, alloy powder for this, bond magnet and alloy powder for this

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028521.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514309

Country of ref document: JP

122 Ep: pct application non-entry in european phase