JP2007266037A - Manufacturing method of rare-earth permanent magnet - Google Patents

Manufacturing method of rare-earth permanent magnet Download PDF

Info

Publication number
JP2007266037A
JP2007266037A JP2006085101A JP2006085101A JP2007266037A JP 2007266037 A JP2007266037 A JP 2007266037A JP 2006085101 A JP2006085101 A JP 2006085101A JP 2006085101 A JP2006085101 A JP 2006085101A JP 2007266037 A JP2007266037 A JP 2007266037A
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
heat treatment
magnetic field
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006085101A
Other languages
Japanese (ja)
Inventor
Shuichiro Irie
周一郎 入江
Eiji Kato
英治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006085101A priority Critical patent/JP2007266037A/en
Publication of JP2007266037A publication Critical patent/JP2007266037A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to manufacture a rare-earth permanent magnet excellent in magnetic characteristics such as residual magnetic flux density by improving orientation degree of a rare-earth alloy powder. <P>SOLUTION: A finely pulverized rare-earth alloy powder is molded in a magnetic field, and sintered. Prior to the magnetic molding, the finely pulverized rare-earth alloy powder is subjected to heat treatment. A heat treatment temperature is preferably 600°C-900°C. The rare-earth alloy powder subjected to heat treatment may be re-pulverized. The powder may be magnetized before the heat treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、希土類合金粉末の成形体を焼結して希土類永久磁石とする希土類永久磁石の製造方法に関し、特に、配向の向上による磁気特性の向上を実現するための新規技術に関する。   The present invention relates to a method for producing a rare earth permanent magnet obtained by sintering a compact of a rare earth alloy powder to obtain a rare earth permanent magnet, and more particularly to a novel technique for realizing improvement in magnetic properties by improving orientation.

例えばハードディスクドライブ用ボイスコイルモータや自動車駆動用モータ等の幅広い分野において、モータの小型化及び高性能化が要求されている。モータの小型化及び高性能化を図るためには、モータに組み込まれる磁石の性能向上が重要であり、近年では非常に高い磁気特性を示す例えばネオジム鉄ボロン系焼結磁石等の希土類永久磁石が広く使用されている。   For example, in a wide range of fields such as a hard disk drive voice coil motor and an automobile drive motor, miniaturization and high performance of the motor are required. In order to reduce the size and performance of motors, it is important to improve the performance of magnets incorporated in motors. In recent years, rare earth permanent magnets such as neodymium iron boron-based sintered magnets that exhibit extremely high magnetic properties have been used. Widely used.

希土類永久磁石の製造方法としては、粉末冶金法が知られており、具体的には、所望組成の原料合金を用い、粗粉砕工程、微粉砕工程、成形工程、焼結工程といった工程を経て製造されている。すなわち、前記希土類永久磁石を作製するには、粗粉砕及び微粉砕した希土類合金粉末を成形装置の金型キャビティ内に充填して所定の形状の成形体に磁場中成形し、これを焼結して焼結体とする。   As a method for producing a rare earth permanent magnet, a powder metallurgy method is known. Specifically, a raw material alloy having a desired composition is used and manufactured through processes such as a coarse pulverization process, a fine pulverization process, a molding process, and a sintering process. Has been. That is, in order to produce the rare earth permanent magnet, the coarsely and finely ground rare earth alloy powder is filled in a mold cavity of a molding apparatus, molded into a molded body of a predetermined shape in a magnetic field, and sintered. To obtain a sintered body.

前述の粉末冶金法により作製される希土類永久磁石においては、磁気特性の向上が課題になっており、種々の試みがなされている。その中でも、磁場中配向しながら成形することで形成される成形体において、希土類合金粉末の配向性を向上させることが有効であると考えられる。   In the rare earth permanent magnets produced by the above-mentioned powder metallurgy method, improvement of magnetic properties has been an issue, and various attempts have been made. Among them, it is considered effective to improve the orientation of the rare earth alloy powder in a molded body formed by molding while being oriented in a magnetic field.

ここで、希土類合金粉末の配向度を向上させるためには、例えば成形に際して多量の潤滑剤を加えることが効果的であるが、潤滑剤の量を増やしすぎると製品(焼結体)中の炭素量が増加して磁気特性が却って損なわれるおそれがある。このような状況から、少量の添加でも十分な潤滑性を発揮する潤滑剤の使用が検討されている(例えば、特許文献1等を参照)。
特開2006−41501号公報
Here, in order to improve the degree of orientation of the rare earth alloy powder, for example, it is effective to add a large amount of lubricant at the time of molding. However, if the amount of the lubricant is excessively increased, the carbon in the product (sintered body) The amount may increase and the magnetic properties may be lost. Under such circumstances, use of a lubricant that exhibits sufficient lubricity even when added in a small amount has been studied (see, for example, Patent Document 1).
JP 2006-41501 A

しかしながら、潤滑剤による改善はほぼ限界に達しており、例えば潤滑剤の種類や添加量の変更だけで潤滑性をこれ以上改善することは難しいのが実情である。   However, the improvement by the lubricant has almost reached its limit. For example, it is actually difficult to improve the lubricity further only by changing the type and addition amount of the lubricant.

希土類合金粉末の配向度を向上するための方法としては、潤滑剤の使用の他、例えば磁場中成形時に印加する磁場の強さを強くすることも考えられる。磁場発生設備の大電流化や磁束密度の高効率化等により、印加する磁場の強さを強くすることができ、希土類合金粉末の配向度が向上する。しかしながら、磁場発生設備において、これ以上の大電流化は、設備投資の増加を招くばかりか、敷地面積が膨大になる等の問題がある。また、磁束密度の高効率化にも限度がある。   As a method for improving the degree of orientation of the rare earth alloy powder, in addition to the use of a lubricant, for example, increasing the strength of the magnetic field applied during molding in a magnetic field may be considered. By increasing the current of the magnetic field generating facility and increasing the efficiency of the magnetic flux density, the strength of the applied magnetic field can be increased, and the degree of orientation of the rare earth alloy powder is improved. However, in a magnetic field generating facility, increasing the current further causes not only an increase in capital investment but also a problem that the site area becomes enormous. There is also a limit to increasing the efficiency of magnetic flux density.

本発明は、このような従来の実情に鑑みて提案されたものであり、希土類合金粉末の一層の配向度の改善を実現することができ、例えば残留磁束密度等の磁気特性に優れた希土類永久磁石を製造し得る製造方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and can further improve the degree of orientation of the rare earth alloy powder, for example, a rare earth permanent having excellent magnetic properties such as residual magnetic flux density. It aims at providing the manufacturing method which can manufacture a magnet.

前述の目的を達成するために、本発明の希土類永久磁石の製造方法は、微粉砕した希土類合金粉末を磁場中成形した後、焼結する希土類永久磁石の製造方法であって、前記微粉砕した希土類合金粉末を加熱処理した後、磁場中成形することを特徴とする。   In order to achieve the above-mentioned object, a method for producing a rare earth permanent magnet according to the present invention is a method for producing a rare earth permanent magnet in which a finely ground rare earth alloy powder is molded in a magnetic field and then sintered. The rare earth alloy powder is heat-treated and then molded in a magnetic field.

微粉砕した希土類合金粉末は角張った形状をしており、そのまま磁場中配向した場合、摩擦力や立体的な障害等により自由な配向が阻害され、配向度が思うように向上しない。これに対して、微粉砕した希土類合金粉末を、磁場中成形に先立って加熱処理すると、ある程度丸みを帯びた形状となり、磁場中配向の際の摩擦力や立体障害が低減され、速やかに配向して配向度が改善される。   The finely pulverized rare earth alloy powder has an angular shape, and when oriented as it is in a magnetic field, free orientation is hindered by frictional force, steric hindrance, etc., and the degree of orientation does not improve as expected. In contrast, when the pulverized rare earth alloy powder is heat-treated prior to molding in a magnetic field, it becomes a rounded shape to some extent, and the frictional force and steric hindrance during orientation in the magnetic field are reduced, so that it is oriented quickly. The degree of orientation is improved.

本発明によれば、磁場中成形の際に配向度を大幅に向上することができ、残留磁束密度等の磁気特性に優れた希土類永久磁石を製造することが可能である。また、前記配向度の改善に際して、潤滑剤を過度に加える必要もなく、磁場発生設備を大電流化する必要もないことから、磁気特性の低下や設備投資の増加等を招くこともない。   According to the present invention, the degree of orientation can be greatly improved during molding in a magnetic field, and a rare earth permanent magnet excellent in magnetic characteristics such as residual magnetic flux density can be manufactured. Further, when the degree of orientation is improved, it is not necessary to add a lubricant excessively, and it is not necessary to increase the current of the magnetic field generating equipment, so that the magnetic characteristics are not lowered and the equipment investment is not increased.

以下、本発明を適用した希土類永久磁石の製造方法について、図面を参照しながら詳細に説明する。   Hereinafter, a method for producing a rare earth permanent magnet to which the present invention is applied will be described in detail with reference to the drawings.

希土類永久磁石(希土類焼結磁石)は、例えば希土類元素R、遷移金属元素T及びホウ素を主成分とするものであるが、磁石組成は特に限定されず、用途等に応じて任意に選択すればよい。例えば、希土類元素Rとは、具体的にはY、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb又はLuのことをいい、これらから1種又は2種以上を用いることができる。中でも、資源的に豊富で比較的安価であることから、希土類元素Rの主成分をNdとすることが好ましい。また、遷移金属元素Tは、従来から用いられている遷移金属元素をいずれも用いることができ、例えばFe、Co、Ni等から1種又は2種以上を用いることができる。これらの中では、磁気特性の点からFeを主体とすることが好ましく、これに加えてキュリー温度の向上、粒界相の耐蝕性向上等に効果があるCoを添加することが好ましい。また、前記希土類元素R、遷移金属元素T及びホウ素Bのみならず、他の元素の含有を許容する。例えば、Al、Cu、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に、磁気特性を害する酸素は、その量を7000ppm以下、さらには5000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。   The rare earth permanent magnet (rare earth sintered magnet) is composed mainly of, for example, rare earth element R, transition metal element T and boron, but the magnet composition is not particularly limited, and can be arbitrarily selected according to the application. Good. For example, the rare earth element R specifically means Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu. 1 type (s) or 2 or more types can be used. Among them, it is preferable that the main component of the rare earth element R is Nd because it is abundant in resources and relatively inexpensive. Moreover, as the transition metal element T, any conventionally used transition metal element can be used. For example, one or more of Fe, Co, Ni and the like can be used. Among these, from the viewpoint of magnetic properties, it is preferable to mainly contain Fe, and in addition to this, it is preferable to add Co that is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase. In addition to the rare earth element R, transition metal element T, and boron B, the inclusion of other elements is allowed. For example, elements such as Al, Cu, Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 7000 ppm or less, more preferably 5000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.

合金化工程では、原料となる金属、あるいは合金を所望の希土類合金粉末の組成に応じて配合し、真空あるいは不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、任意の方法を採用し得るが、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であり、得られる合金の形態の点でも好適である。   In the alloying step, a raw material metal or alloy is blended according to the composition of the desired rare earth alloy powder, and melted in a vacuum or an inert gas, for example, Ar atmosphere, and cast to form an alloy. As the casting method, any method can be adopted, but the strip casting method (continuous casting method) in which a molten high-temperature liquid metal is supplied onto a rotating roll and the alloy thin plate is continuously cast is a viewpoint of productivity and the like. From the viewpoint of the form of the resulting alloy.

前記合金化の際に用いる原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。合金は、ほぼ最終磁石組成である単一の合金を用いても良いし、最終磁石組成になるように、組成の異なる複数種類の合金を用意し、これを例えば微粉砕工程後に混合しても良い。   As the raw material metal (alloy) used in the alloying, pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. As the alloy, a single alloy having a final magnet composition may be used, or a plurality of types of alloys having different compositions may be prepared and mixed after, for example, a pulverization process so as to have a final magnet composition. good.

粗粉砕工程では、先に鋳造した原料合金の薄板、あるいはインゴット等を、粒径数百μm程度になるまで粗粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができ、通常は不活性ガス雰囲気中にて行う。粗粉砕に先立って、水素吸蔵粉砕を併せて行うことが効果的である。水素吸蔵粉砕は、原料合金に水素を吸蔵させた後に放出させることにより行うものであり、この水素吸蔵粉砕の後には、希土類永久磁石において不純物となる水素を減少させることを目的として、脱水素処理を行うことが好ましい。水素吸蔵粉砕は、室温から200℃程度の温度で30分以上、好ましくは1時間以上行い、脱水素処理は、真空中又はアルゴンガス雰囲気下にて、350℃〜650℃で行う。なお、前記水素吸蔵処理や脱水素処理は必須の処理ではない。また、この水素吸蔵粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することも可能である。   In the coarse pulverization step, the previously cast raw alloy thin plate, ingot, or the like is coarsely pulverized until the particle size becomes approximately several hundred μm. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used, and the pulverization is usually performed in an inert gas atmosphere. Prior to the coarse pulverization, it is effective to perform the hydrogen occlusion pulverization together. Hydrogen storage and pulverization is performed by occluding hydrogen in the raw material alloy and then releasing it. After this hydrogen storage and pulverization, dehydrogenation treatment is performed for the purpose of reducing hydrogen as an impurity in the rare earth permanent magnet. It is preferable to carry out. The hydrogen occlusion pulverization is performed at a temperature from room temperature to about 200 ° C. for 30 minutes or more, preferably 1 hour or more, and the dehydrogenation treatment is performed at 350 ° C. to 650 ° C. in a vacuum or an argon gas atmosphere. The hydrogen storage process and the dehydrogenation process are not essential processes. Moreover, this hydrogen occlusion pulverization can be positioned as coarse pulverization, and mechanical coarse pulverization can be omitted.

前述の粗粉砕工程が終了した後、必要に応じて粗粉砕した原料合金粉に潤滑剤を添加する。これが、いわゆる前添加工程である。添加する潤滑剤の種類は問わないが、入手容易性等の観点から、脂肪酸系化合物を用いることが好ましい。脂肪酸系化合物としては、ステアリン酸やカプリル酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸の金属セッケン、脂肪酸アミドまたは脂肪酸ビスアミド等が好ましく、その中でも脂肪酸アミドが特に好ましい。脂肪酸アミドの中でも、特にカプリル酸アミド、カプリン酸アミド、ラウリン酸アミド、ステアリン酸アミド、オレイン酸アミド、ベヘン酸アミドの1種又は2種以上を用いることが好ましい。あるいは、潤滑剤としてショウノウ又はパラフィンを用いることも可能である。さらには、液体状の潤滑剤を微粉砕用の潤滑剤として用いることもできる。液体状の潤滑剤としては、ケトン、アルコール、ステアリン酸やカプリル酸等の脂肪酸、脂肪酸エステル、パラフィン類、トルエンやキシレン等の芳香族化合物等を用いることができる。これらの中で、脂肪酸エステルは、その潤滑性、入手容易性等の観点から好ましい。脂肪酸エステルの中でも、カプリル酸エチル、カプリル酸ブチル、ラウリン酸エチル、ラウリン酸ブチル、オレイン酸メチル、オレイン酸エチル、オレイン酸ブチルの1種又は2種以上を用いることが好ましい。   After the above-described coarse pulverization step is completed, a lubricant is added to the coarsely pulverized raw material alloy powder as necessary. This is a so-called pre-adding step. The type of lubricant to be added is not limited, but it is preferable to use a fatty acid compound from the viewpoint of easy availability. As the fatty acid compound, fatty acids such as stearic acid and caprylic acid, metal soaps of fatty acids such as zinc stearate and calcium stearate, fatty acid amides or fatty acid bisamides are preferable, and among these, fatty acid amides are particularly preferable. Among fatty acid amides, it is particularly preferable to use one or more of caprylic acid amide, capric acid amide, lauric acid amide, stearic acid amide, oleic acid amide, and behenic acid amide. Alternatively, camphor or paraffin can be used as the lubricant. Furthermore, a liquid lubricant can also be used as a fine grinding lubricant. Examples of liquid lubricants include ketones, alcohols, fatty acids such as stearic acid and caprylic acid, fatty acid esters, paraffins, and aromatic compounds such as toluene and xylene. Among these, fatty acid esters are preferable from the viewpoints of lubricity and availability. Among fatty acid esters, it is preferable to use one or more of ethyl caprylate, butyl caprylate, ethyl laurate, butyl laurate, methyl oleate, ethyl oleate, and butyl oleate.

添加する際の潤滑剤の粒径についても特に制約はないが、粗粉砕粉と同等以下の粒径を有していることが好ましい。潤滑剤の添加量は、粉砕性を向上させるという点からすれば、なるべく多くするのが好ましいが、磁気特性及び成形体の強度の観点からすれば、なるべく少なくするのが好ましい。したがって、後述する成形用の潤滑剤との合計で0.01〜1質量%の範囲で添加することができる。   The particle size of the lubricant at the time of addition is not particularly limited, but preferably has a particle size equal to or smaller than that of the coarsely pulverized powder. The addition amount of the lubricant is preferably as much as possible from the viewpoint of improving the grindability, but is preferably as small as possible from the viewpoint of the magnetic properties and the strength of the molded body. Therefore, it can be added in a range of 0.01 to 1% by mass in total with the molding lubricant described later.

前添加において、潤滑剤添加後の混合工程は必須のものではないが、微粉砕用の潤滑剤を添加後、あるいは添加中に、粗粉砕粉と微粉砕用の潤滑剤とを混合することが好ましい。これにより、後述する微粉砕の際に、粗粉砕粉に対する潤滑剤の分散性を向上する効果が期待される。なお、前記混合は、スクリュー式の混合装置(例えば、ホソカワミクロン社製、商品名ナウタミキサ)等により5〜30分間程度行えばよい。   In the pre-addition, the mixing step after the addition of the lubricant is not essential, but the coarsely pulverized powder and the finely pulverized lubricant may be mixed after or during the addition of the finely pulverized lubricant. preferable. Thereby, the effect of improving the dispersibility of the lubricant with respect to the coarsely pulverized powder during fine pulverization described later is expected. The mixing may be performed for about 5 to 30 minutes using a screw-type mixing device (for example, trade name Nauta mixer manufactured by Hosokawa Micron Corporation).

粗粉砕工程の後、微粉砕工程を行うが、この微粉砕工程には主にジェットミル(気流式粉砕機)を用い、平均粒径2.5〜6μm、望ましくは3〜5μmの希土類合金粉末(粉砕粉)を得る。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉を加速し、粗粉砕粉同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。   After the coarse pulverization step, a fine pulverization step is performed. In this fine pulverization step, a jet mill (airflow type pulverizer) is mainly used, and a rare earth alloy powder having an average particle diameter of 2.5 to 6 μm, preferably 3 to 5 μm. (Ground powder) is obtained. The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, and this high-speed gas flow accelerates the coarsely pulverized powder. It is a method of generating a collision and crushing.

微粉砕工程の後、通常は、磁場中成形工程において希土類合金粉末を磁場中にて成形する。ただし、前記微粉砕工程後の希土類合金粉末は、図1(a)に示すように、角張った形状を有しており、立体的な障害や摩擦力等により自由に動くことができず、配向度を高める上で障害となる。   After the pulverizing step, the rare earth alloy powder is usually formed in a magnetic field in a forming step in a magnetic field. However, the rare earth alloy powder after the fine pulverization step has an angular shape as shown in FIG. 1 (a), and cannot move freely due to steric hindrance or frictional force. It becomes an obstacle to increase the degree.

そこで、本発明においては、微粉砕した希土類合金粉末を加熱処理することでその形状を丸みを帯びたものとし、磁場中成形の際の立体的な障害を極力排除するとともに摩擦力を低減し、配向し易くする。   Therefore, in the present invention, the pulverized rare earth alloy powder is heat-treated to round its shape, and as much as possible to eliminate steric hindrance during molding in a magnetic field and reduce frictional force, Make it easy to align.

図1(b)は、前記加熱処理後の希土類合金粉末の形状を模式的に示すものである。図1(b)に示すように、適切な加熱処理を行うことによって粒子(希土類合金粉末)の表面に溶融した液相が形成される。この液相を利用し、複数の粒子が緻密化を開始する前の状態で冷却凝固することで、ネック成長以前の球状化した粒子の集合体が得られる。得られる粒子の集合体は非常に脆く、例えばジェットミルによる粉砕等、特別な粉砕工程を経ることなく磁場中成形工程に使用することが可能である。加熱処理した希土類合金粉末は、前記球状化により配向がし易くなり、これを成形して希土類永久磁石を作製することで、配向度が向上し残留磁束密度等の磁気特性が向上する。   FIG. 1 (b) schematically shows the shape of the rare earth alloy powder after the heat treatment. As shown in FIG. 1B, a molten liquid phase is formed on the surfaces of the particles (rare earth alloy powder) by performing an appropriate heat treatment. Utilizing this liquid phase, a plurality of particles are cooled and solidified in a state before starting densification, whereby an aggregate of spheroidized particles before neck growth is obtained. The obtained aggregate of particles is very brittle, and can be used in a molding step in a magnetic field without going through a special grinding process such as grinding with a jet mill. The heat-treated rare earth alloy powder is easily oriented due to the spheroidization, and forming this rare earth permanent magnet improves the degree of orientation and improves magnetic properties such as residual magnetic flux density.

前記加熱処理においては、加熱温度を適正に設定することが望ましい。例えば、加熱温度があまり低すぎると、前記液相による球状化が進まず、目的を達成できなくなるおそれがある。逆に、加熱処理温度が高すぎると、緻密化が進みすぎ、粒子の集合体を解砕することが難しくなるおそれがある。このような観点から、前記加熱温度は600℃以上とすることが好ましく、700℃〜900℃とすることがより好ましい。また、加熱処理の際の保持時間は、1時間以内とすることが好ましい。前記加熱処理時の雰囲気は、減圧雰囲気(真空)、あるいは不活性ガス雰囲気とすることが好ましく、不活性ガス雰囲気とする場合には、不活性ガスとしてArガスを用いることが望ましい。   In the heat treatment, it is desirable to set the heating temperature appropriately. For example, if the heating temperature is too low, spheroidization by the liquid phase does not proceed and the object may not be achieved. On the other hand, when the heat treatment temperature is too high, densification proceeds too much, and it may be difficult to break up the aggregate of particles. From such a viewpoint, the heating temperature is preferably 600 ° C. or higher, and more preferably 700 ° C. to 900 ° C. In addition, the holding time during the heat treatment is preferably within 1 hour. The atmosphere during the heat treatment is preferably a reduced pressure atmosphere (vacuum) or an inert gas atmosphere. When an inert gas atmosphere is used, it is desirable to use Ar gas as the inert gas.

また、前記加熱処理した希土類合金粉末を再粉砕して使用することも可能である。前述の通り、加熱処理した希土類合金粉末は球状化した粒子の集合体となり、この粒子の集合体は非常に脆いものであるが、ジェットミル等により粉砕処理を再び施すことで、より一層配向度が改善され残留磁束密度が向上する。前記粒子の集合体は非常に脆いものであるが、一部、液相により複数の粒子が緻密化を開始している粒子も存在する。ランダムに配向した複数の粒子が液相により緻密化してしまうと、互いに自由に動くことができず、配向度向上の妨げになるおそれがある。そこで、このような粒子を再粉砕することで、図1(c)に示すように、単一の配向軸を持つ粒子に分離することができ、前記不都合を解消することができる。   Further, the heat-treated rare earth alloy powder can be reground and used. As described above, the heat-treated rare earth alloy powder becomes an aggregate of spheroidized particles, and this aggregate of particles is very brittle. However, the orientation degree can be increased by re-grinding with a jet mill or the like. Is improved and the residual magnetic flux density is improved. The aggregate of the particles is very fragile, but there are also particles in which a plurality of particles have started to be densified due to the liquid phase. If a plurality of randomly oriented particles become dense due to the liquid phase, they cannot move freely with each other, which may hinder the improvement of the degree of orientation. Therefore, by re-pulverizing such particles, as shown in FIG. 1C, the particles can be separated into particles having a single orientation axis, and the inconvenience can be solved.

さらに、前記加熱処理の前に予め着磁を施すことも有効である。加熱処理をする前に、希土類合金粉末を予め磁場配向させておき、着磁された状態のまま加熱処理することで配向度がさらに改善され、残留磁束密度等の磁気特性が向上する。これは、加熱処理後に一部緻密化が始まった粒子において、各粒子がランダムに配向した状態とするのではなく、配向方向が一致した状態とすることで、全体の配向度を高い状態にすることができるからである。   It is also effective to pre-magnetize before the heat treatment. Prior to the heat treatment, the rare earth alloy powder is preliminarily magnetically oriented, and the heat treatment is performed in a magnetized state, whereby the degree of orientation is further improved and the magnetic properties such as residual magnetic flux density are improved. This is because, in the particles partially densified after the heat treatment, each particle is not in a randomly oriented state, but in a state in which the orientation directions coincide with each other, thereby making the whole degree of orientation high. Because it can.

図2(a)は希土類合金粉末を加熱処理前に着磁した状態を示し、図2(b)はこれを加熱処理した状態を示す。図2(a)に示すように、着磁により各粒子の配向軸が一方向に揃った状態となる。図2(b)に示すように、この状態は加熱処理後にも維持される。このように希土類合金粉末の状態で配向軸が揃った状態にしておけば、成形後にもこの状態が反映され、配向度が高いものとなる。なお、着磁の条件としては、例えば印加する磁場の強さを398kA/m以上とすればよい。   FIG. 2A shows a state in which the rare earth alloy powder is magnetized before the heat treatment, and FIG. 2B shows a state in which the rare earth alloy powder is heat-treated. As shown in FIG. 2A, the orientation axes of the particles are aligned in one direction by magnetization. As shown in FIG. 2B, this state is maintained even after the heat treatment. If the orientation axes are aligned in the state of the rare earth alloy powder in this way, this state is reflected even after molding, and the degree of orientation is high. As a condition for magnetization, for example, the strength of the applied magnetic field may be 398 kA / m or more.

なお、加熱処理前に着磁を施した場合にも、加熱処理後に再粉砕を行うようにしてもよい。図2(c)に示すように、再粉砕してもなお単一の配向軸を持つ粒子に分離することができない粒子が存在する可能性があるが、このような極少数の粒子についても、予め配向しておくことで粒子内の配向を揃えておけば、より高い配向度を得ることができる。   Note that even when magnetization is performed before the heat treatment, re-pulverization may be performed after the heat treatment. As shown in FIG. 2 (c), there may be particles that cannot be separated into particles having a single orientation axis even after re-grinding. A higher degree of orientation can be obtained if the orientation in the particles is aligned by pre-orientation.

前述の加熱処理は、例えば主相系合金の粉末と粒界相系合金の粉末を混合使用する場合、主相系合金に対してのみ行うことでも効果は得られるが、粒界相系合金とともに処理する方が好ましく、球状化の効果が高い。   For example, when the main phase alloy powder and the grain boundary phase alloy powder are mixed and used, the above-mentioned heat treatment can be effected only on the main phase alloy, but together with the grain boundary phase alloy, It is preferable to treat it, and the effect of spheroidization is high.

以上のように、本発明においては、微粉砕した希土類合金粉末を磁場中成形する前に加熱処理するというのが基本的な考えであり、さらに再粉砕や着磁を組み合わせることが可能である。図3は、微粉砕(工程A)から磁場中成形(工程C)までのプロセス例を示すものである。前述の通り、本発明においては、図3(a)に示すように、微粉砕(工程A)の後、希土類合金粉末に加熱処理(工程B−1)を行い、加熱処理後の希土類合金粉末を使用して磁場中成形(工程C)を行う。あるいは、図3(b)に示すように、微粉砕(工程A)の後、希土類合金粉末に加熱処理(工程B−1)を行い、再粉砕(工程B−2)してから希土類合金粉末を磁場中成形(工程C)に供する。さらには、加熱処理前に着磁を行うことも可能であり、この場合には、図3(c)に示すように、微粉砕(工程A)の後、希土類合金粉末に着磁(工程B−3)を施し、加熱処理(工程B−1)を行った希土類合金粉末を使用して磁場中成形(工程C)を行う。あるいは、図3(d)に示すように、微粉砕(工程A)の後、希土類合金粉末に着磁(工程B−3)を施し、加熱処理(工程B−1)を行った後、再粉砕(工程B−2)してから希土類合金粉末を磁場中成形(工程C)に供する。   As described above, in the present invention, the basic idea is to heat-treat the finely pulverized rare earth alloy powder before forming it in a magnetic field, and it is possible to combine repulverization and magnetization. FIG. 3 shows a process example from fine grinding (step A) to molding in a magnetic field (step C). As described above, in the present invention, as shown in FIG. 3A, after the fine pulverization (step A), the rare earth alloy powder is subjected to heat treatment (step B-1), and the rare earth alloy powder after the heat treatment is performed. Is used to perform molding in a magnetic field (step C). Alternatively, as shown in FIG. 3 (b), after the fine pulverization (step A), the rare earth alloy powder is subjected to heat treatment (step B-1) and re-pulverized (step B-2), and then the rare earth alloy powder. Is subjected to molding in a magnetic field (step C). Furthermore, it is possible to perform magnetization before the heat treatment. In this case, as shown in FIG. 3C, after the fine pulverization (step A), the rare earth alloy powder is magnetized (step B). -3) is performed, and in the magnetic field (step C) is performed using the rare earth alloy powder subjected to the heat treatment (step B-1). Alternatively, as shown in FIG. 3 (d), after pulverization (step A), the rare earth alloy powder is magnetized (step B-3) and subjected to heat treatment (step B-1). After pulverization (step B-2), the rare earth alloy powder is subjected to molding in a magnetic field (step C).

磁場中成形工程では、具体的には、前記加熱処理後の希土類合金粉末を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。前記磁場中成形は、成形圧力と磁界方向が平行な平行磁界成形、成形圧力と磁界方向が直交する直行磁界成形のいずれであってもよい。さらに、磁界印加手段として、パルス電源と空芯コイルも採用することができる。この磁場中成形は、例えば700〜1600kA/mの磁場中で、30〜300MPa、好ましくは130〜160MPa前後の圧力で行えばよい。   Specifically, in the forming step in a magnetic field, the rare earth alloy powder after the heat treatment is filled in a mold in which an electromagnet is arranged, and forming is performed in a magnetic field in a state where crystal axes are oriented by applying a magnetic field. The forming in the magnetic field may be either a parallel magnetic field forming in which the forming pressure and the magnetic field direction are parallel, or an orthogonal magnetic field forming in which the forming pressure and the magnetic field direction are orthogonal to each other. Further, a pulse power source and an air-core coil can be employed as the magnetic field applying means. The forming in the magnetic field may be performed in a magnetic field of 700 to 1600 kA / m, for example, at a pressure of 30 to 300 MPa, preferably about 130 to 160 MPa.

前記磁場中成形工程により成形した成形体に対し、焼結工程において焼結処理(本焼成)を実施する。焼結処理では、前記成形体を真空または不活性ガス雰囲気中(Arガス雰囲気中等)で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1200℃で1〜10時間程度焼結すればよく、焼結後、急冷することが好ましい。なお、焼結工程においては、必要に応じて、焼結に先立って脱脂処理を行うことが好ましい。また、高特性化を目的とした不純物減量、特に酸素量低減のために水素粉砕から焼結炉入れまでの酸素濃度を100ppm程度に制御して製造しても良い。   Sintering (main firing) is performed in the sintering step on the compact formed by the forming step in the magnetic field. In the sintering process, the compact is sintered in a vacuum or in an inert gas atmosphere (such as in an Ar gas atmosphere). The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. For example, sintering may be performed at 1000 to 1200 ° C. for about 1 to 10 hours. It is preferable to do. In addition, in a sintering process, it is preferable to perform a degreasing process prior to sintering as needed. Further, in order to reduce impurities for the purpose of improving characteristics, particularly to reduce the amount of oxygen, the oxygen concentration from hydrogen crushing to putting into a sintering furnace may be controlled to about 100 ppm.

前記焼結処理後には、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類磁石の保磁力Hcjを制御する上で重要な工程であり、例えば真空中又は不活性ガス雰囲気中で行う。時効処理としては、2段時効処理が好ましい。2段時効処理は、1段目の時効処理工程においては800℃前後の温度で1時間〜3時間保持し、2段目の時効処理工程においては600℃前後の温度で1時間〜3時間保持して行えばよい。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を1段で行う場合には、600℃近傍で時効処理を施すとよい。   After the sintering treatment, the obtained sintered body is preferably subjected to aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth magnet, and is performed, for example, in a vacuum or in an inert gas atmosphere. As the aging treatment, a two-stage aging treatment is preferable. The second stage aging treatment is held at a temperature of about 800 ° C. for 1 hour to 3 hours in the first stage aging treatment process, and is kept at a temperature of about 600 ° C. for 1 hour to 3 hours in the second stage aging treatment process. Just do it. Since the coercive force Hcj is greatly increased by heat treatment near 600 ° C., the aging treatment is preferably performed near 600 ° C. when the aging treatment is performed in one stage.

前記焼結工程の後、機械加工工程や被膜形成工程を行い、希土類永久磁石を完成する。機械加工工程は、所望の形状に機械的に加工する工程である。被膜形成工程は、得られた希土類永久磁石の酸化を抑えること等を目的に行う工程であり、例えばめっき被膜や樹脂被膜を希土類永久磁石の表面に形成する工程である。   After the sintering process, a machining process and a film forming process are performed to complete a rare earth permanent magnet. The machining process is a process of mechanically processing into a desired shape. The film forming step is a step performed for the purpose of suppressing oxidation of the obtained rare earth permanent magnet, and is a step of forming, for example, a plating film or a resin film on the surface of the rare earth permanent magnet.

以上のような希土類永久磁石の製造方法によれば、製造される希土類永久磁石において、配向度を向上して残留磁束密度等の磁気特性を向上することができる。また、配向度の改善に際して、潤滑剤を過度に加える必要もないことから、磁気特性の低下を招くことはない。さらに、磁場発生設備を大電流化する必要がないことから、設備投資の増加等を招くこともなく、製造コストを抑えることが可能である。   According to the method for producing a rare earth permanent magnet as described above, in the produced rare earth permanent magnet, the degree of orientation can be improved and the magnetic properties such as residual magnetic flux density can be improved. In addition, when the degree of orientation is improved, it is not necessary to add a lubricant excessively, so that the magnetic properties are not deteriorated. Further, since it is not necessary to increase the current of the magnetic field generating facility, it is possible to suppress the manufacturing cost without causing an increase in capital investment.

以下、本発明を具体的な実験結果に基づいて説明する。   Hereinafter, the present invention will be described based on specific experimental results.

実験1
先ず、ストリップキャスト法により下記の組成を有する2種類の合金を作製した。
合金1:Nd28.0質量%、Al0.2質量%、B1.0質量%、Zr0.2質量%、残部Fe
合金2:Nd32.0質量%、Co10.0質量%、Cu1.0質量%、Al0.2質量%、残部Fe
Experiment 1
First, two types of alloys having the following compositions were produced by a strip casting method.
Alloy 1: Nd 28.0 mass%, Al 0.2 mass%, B 1.0 mass%, Zr 0.2 mass%, balance Fe
Alloy 2: Nd 32.0 mass%, Co 10.0 mass%, Cu 1.0 mass%, Al 0.2 mass%, balance Fe

次に、前記各合金に対して水素粉砕工程(粗粉砕工程)及び微粉砕工程を行った。ここで、水素粉砕工程では、室温にて水素を吸蔵させた後、Ar雰囲気中で600℃、1時間の脱水素を行った。微粉砕工程では、粉砕時に潤滑剤としてオレイン酸アミドを0.15質量%混合し、高圧窒素ガスを用いた気流式粉砕機(ジェットミル)を用いて平均粒径3μm〜6μmとなるように微粉砕を行った。   Next, a hydrogen pulverization step (coarse pulverization step) and a fine pulverization step were performed on each of the alloys. Here, in the hydrogen pulverization step, after hydrogen was occluded at room temperature, dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere. In the fine pulverization step, 0.15% by mass of oleic acid amide is mixed as a lubricant at the time of pulverization, and finely adjusted to have an average particle size of 3 μm to 6 μm by using an air flow type pulverizer (jet mill) using high-pressure nitrogen gas. Grinding was performed.

続いて、微粉砕した各合金の微粉末を下記最終組成となるように配合し混合した。そして、この混合した希土類合金粉末に対して加熱処理工程を行った。加熱処理工程では、1Pa以下の真空下で温度を上昇させ、所定の温度(500℃〜1100℃)に到達した直後に冷却を開始した(実施例1−1〜実施例1−7)。
最終組成:Nd28.4質量%、Co1.0質量%、Cu0.1質量%、Al0.2質量%、B1.0質量%、Zr0.2質量%、残部Fe
Subsequently, finely pulverized fine powders of each alloy were mixed and mixed so as to have the following final composition. And the heat processing process was performed with respect to this mixed rare earth alloy powder. In the heat treatment step, the temperature was increased under a vacuum of 1 Pa or less, and cooling was started immediately after reaching a predetermined temperature (500 ° C. to 1100 ° C.) (Example 1-1 to Example 1-7).
Final composition: Nd 28.4 mass%, Co 1.0 mass%, Cu 0.1 mass%, Al 0.2 mass%, B 1.0 mass%, Zr 0.2 mass%, balance Fe

さらに、前記加熱処理した希土類合金粉末を、高圧窒素ガスを用いた気流粉砕機(ジェットミル)を用いて平均粒径3μm〜6μmとなるように再粉砕を行った(実施例2−1〜実施例2−7)。   Further, the heat-treated rare earth alloy powder was reground to an average particle size of 3 μm to 6 μm using an airflow pulverizer (jet mill) using high-pressure nitrogen gas (Example 2-1 to Example 2). Example 2-7).

次いで、得られた希土類合金粉末を磁場中にて成形した。具体的には、電磁石に抱かれた金型内に希土類合金粉末を充填し、磁場印加によって結晶軸を配向させた状態で成形した。成形条件としては、印加磁場の強さを1194kA/m、圧力を117.6MPaとした。   Next, the obtained rare earth alloy powder was molded in a magnetic field. Specifically, rare earth alloy powder was filled in a mold held by an electromagnet, and the crystal axis was oriented by applying a magnetic field. As molding conditions, the strength of the applied magnetic field was 1194 kA / m and the pressure was 117.6 MPa.

成形した成形体は、焼結・時効工程を行い、希土類永久磁石とした。焼結・時効工程は、成形体を真空中に置き、1030℃〜1090℃で4時間焼結した後、急冷した。得られた焼結体に対して、Ar雰囲気中で2段時効を行った。なお、前述の粉砕から焼結・時効までの各工程は、酸素濃度を100ppm以下に制御して行った。   The molded body was subjected to a sintering / aging process to obtain a rare earth permanent magnet. In the sintering / aging process, the compact was placed in a vacuum, sintered at 1030 ° C. to 1090 ° C. for 4 hours, and then rapidly cooled. The obtained sintered body was subjected to two-stage aging in an Ar atmosphere. In addition, each process from the above-mentioned grinding | pulverization to sintering and aging was performed by controlling oxygen concentration to 100 ppm or less.

以上により作製された希土類永久磁石について、磁気特性(残留磁束密度Br)の測定を行った。結果を表1に示す。なお、この表1には、各実施例における加熱処理温度、再粉砕の有無についても併せて示す。さらに、加熱処理を行っていない希土類合金粉末を成形に使用した例を比較例1−1として示す。   The magnetic characteristics (residual magnetic flux density Br) were measured for the rare earth permanent magnet produced as described above. The results are shown in Table 1. Table 1 also shows the heat treatment temperature and the presence or absence of regrinding in each example. Furthermore, an example in which a rare earth alloy powder not subjected to heat treatment is used for molding is shown as Comparative Example 1-1.

Figure 2007266037
Figure 2007266037

この表1から明らかなように、加熱処理を行うことで残留磁束密度の向上が見られる。これは、前記加熱処理により希土類合金粉末が球状化し、配向度が向上したことによるものと考えられる。ただし、加熱処理温度が1100℃の場合には、加熱処理後の集合体を解砕することができず、成形体を作製することができなかった。また、加熱処理温度500℃、あるいは1000℃においては、若干の特性の低下が見られる。したがって、前記加熱処理に際しては、加熱処理温度を600℃〜900℃とすることが好ましい。前記温度範囲とすることで、確実に磁気特性を向上することが可能である。さらに、再粉砕の有無による相違を見ると、再粉砕を行った場合の方が磁気特性の改善効果が大きいことがわかる。   As is apparent from Table 1, the residual magnetic flux density is improved by performing the heat treatment. This is considered to be because the rare earth alloy powder was spheroidized by the heat treatment and the degree of orientation was improved. However, when the heat treatment temperature was 1100 ° C., the aggregate after the heat treatment could not be crushed, and a molded body could not be produced. Further, at the heat treatment temperature of 500 ° C. or 1000 ° C., a slight decrease in characteristics is observed. Therefore, in the heat treatment, the heat treatment temperature is preferably set to 600 ° C to 900 ° C. By setting the temperature range, it is possible to reliably improve the magnetic characteristics. Further, looking at the difference depending on the presence or absence of re-pulverization, it can be seen that the effect of improving magnetic properties is greater when re-pulverization is performed.

実験2
本実験では、希土類合金粉末の加熱処理前に着磁を行い、他は先の実験1と同様にして希土類永久磁石の作製を行った。着磁は、希土類合金粉末を蓋付き容器に入れ、1194kA/mの磁場中で行った。結果を表2に示す。
Experiment 2
In this experiment, magnetization was performed before the heat treatment of the rare earth alloy powder, and a rare earth permanent magnet was prepared in the same manner as in Experiment 1 above. Magnetization was performed in a magnetic field of 1194 kA / m by placing a rare earth alloy powder in a covered container. The results are shown in Table 2.

Figure 2007266037
Figure 2007266037

この表2に示す結果と先の表1に示す結果を比べてみると、加熱処理温度が同じで再粉砕の有無も同じ場合、着磁を行うことでさらに磁気特性が向上していることがわかる。   Comparing the results shown in Table 2 with the results shown in Table 1 above, when the heat treatment temperature is the same and the presence or absence of re-grinding is the same, the magnetic properties are further improved by performing magnetization. Recognize.

加熱処理による希土類合金粉末の球状化の様子を示す模式図であり、(a)は加熱処理前の状態、(b)は加熱処理後の状態、(c)は再粉砕後の状態をそれぞれ示す。It is a schematic diagram which shows the mode of the spheroidization of the rare earth alloy powder by heat processing, (a) shows the state before heat processing, (b) shows the state after heat processing, (c) shows the state after regrinding, respectively. . 着磁した場合の希土類合金粉末の様子を示す模式図であり、(a)は着磁した状態、(b)は加熱処理後の状態、(c)は再粉砕後の状態をそれぞれ示す。It is a schematic diagram which shows the mode of the rare earth alloy powder in the case of being magnetized, (a) shows the magnetized state, (b) shows the state after heat treatment, and (c) shows the state after regrinding. 本発明を適用した場合の微粉砕工程から磁場中成形工程までのプロセス例を示す工程図であり、(a)は加熱処理のみを行う場合、(b)は加熱処理及び再粉砕を行う場合、(c)は着磁及び加熱処理を行う場合、(d)は着磁、加熱処理及び再粉砕を行う場合である。It is process drawing which shows the process example from the fine crushing process at the time of applying this invention to the formation process in a magnetic field, (a) When performing only heat processing, (b) When performing heat processing and re-grinding, (C) is a case where magnetization and heat treatment are performed, and (d) is a case where magnetization, heat treatment and regrind are performed.

符号の説明Explanation of symbols

A 微粉砕工程、B−1 加熱処理工程、B−2 再粉砕工程、B−3 着磁工程、C 磁場中成形工程 A fine pulverization step, B-1 heat treatment step, B-2 re-pulverization step, B-3 magnetization step, C magnetic field forming step

Claims (5)

微粉砕した希土類合金粉末を磁場中成形した後、焼結する希土類永久磁石の製造方法であって、
前記微粉砕した希土類合金粉末を加熱処理した後、磁場中成形することを特徴とする希土類永久磁石の製造方法。
A method for producing a rare earth permanent magnet, in which a finely ground rare earth alloy powder is molded in a magnetic field and then sintered.
A method for producing a rare earth permanent magnet, comprising subjecting the finely pulverized rare earth alloy powder to heat treatment and then molding in a magnetic field.
前記加熱処理した希土類合金粉末を粉砕した後、磁場中成形することを特徴とする請求項1記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to claim 1, wherein the heat-treated rare earth alloy powder is pulverized and then molded in a magnetic field. 前記粉砕はジェットミルにより行うことを特徴とする請求項2記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to claim 2, wherein the grinding is performed by a jet mill. 前記加熱処理する前に希土類合金粉末を着磁することを特徴とする請求項1から3のいずれか1項記載の希土類永久磁石の製造方法。   4. The method for producing a rare earth permanent magnet according to claim 1, wherein the rare earth alloy powder is magnetized before the heat treatment. 前記加熱処理の温度を600℃以上とすることを特徴とする請求項1から4のいずれか1項記載の希土類永久磁石の製造方法。
The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein the temperature of the heat treatment is 600 ° C or higher.
JP2006085101A 2006-03-27 2006-03-27 Manufacturing method of rare-earth permanent magnet Withdrawn JP2007266037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085101A JP2007266037A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085101A JP2007266037A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JP2007266037A true JP2007266037A (en) 2007-10-11

Family

ID=38638786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085101A Withdrawn JP2007266037A (en) 2006-03-27 2006-03-27 Manufacturing method of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2007266037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038745A (en) * 2016-10-07 2018-04-17 성림첨단산업(주) Manufacturing method of high performance rare earth magnet
CN114062407A (en) * 2021-10-13 2022-02-18 杭州电子科技大学 Sample preparation method for rare earth magnetic alloy XRD analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038745A (en) * 2016-10-07 2018-04-17 성림첨단산업(주) Manufacturing method of high performance rare earth magnet
KR102012446B1 (en) * 2016-10-07 2019-08-20 성림첨단산업(주) Manufacturing method of high performance rare earth magnet
CN114062407A (en) * 2021-10-13 2022-02-18 杭州电子科技大学 Sample preparation method for rare earth magnetic alloy XRD analysis
CN114062407B (en) * 2021-10-13 2024-02-06 杭州电子科技大学 Sample preparation method for XRD analysis of rare earth magnetic alloy

Similar Documents

Publication Publication Date Title
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2018088516A (en) Composite magnetic material
JP2011042837A (en) Magnetically anisotropic magnet material and production method therefor
JP3724513B2 (en) Method for manufacturing permanent magnet
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
WO2004029995A1 (en) R-t-b rare earth permanent magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2016017203A (en) Production method for r-t-b-based rear earth sintered magnetic alloy and production method for r-t-b-based rear earth sintered magnet
CN113593882A (en) 2-17 type samarium-cobalt permanent magnet material and preparation method and application thereof
JP2011014631A (en) R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP2020155634A (en) R-t-b based permanent magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP7463791B2 (en) R-T-B rare earth sintered magnet and method for producing the same
JP2007266037A (en) Manufacturing method of rare-earth permanent magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP2005288493A (en) Method and apparatus for producing alloy strip, and method for producing alloy powder
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602