KR20180038745A - Manufacturing method of high performance rare earth magnet - Google Patents

Manufacturing method of high performance rare earth magnet Download PDF

Info

Publication number
KR20180038745A
KR20180038745A KR1020160129770A KR20160129770A KR20180038745A KR 20180038745 A KR20180038745 A KR 20180038745A KR 1020160129770 A KR1020160129770 A KR 1020160129770A KR 20160129770 A KR20160129770 A KR 20160129770A KR 20180038745 A KR20180038745 A KR 20180038745A
Authority
KR
South Korea
Prior art keywords
rare earth
heavy rare
powder
sintering
heavy
Prior art date
Application number
KR1020160129770A
Other languages
Korean (ko)
Other versions
KR102012446B1 (en
Inventor
김동환
공군승
Original Assignee
성림첨단산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성림첨단산업(주) filed Critical 성림첨단산업(주)
Priority to KR1020160129770A priority Critical patent/KR102012446B1/en
Publication of KR20180038745A publication Critical patent/KR20180038745A/en
Application granted granted Critical
Publication of KR102012446B1 publication Critical patent/KR102012446B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention provides a method for manufacturing a rare earth magnet which includes the steps of: preparing rare earth magnet powder containing R, Fe, and B as constituent components; mixing a heavy rare earth compound which essentially includes heavy rare earth hydride and further includes any one or more of heavy rare earth oxide and heavy rare earth fluoride, with the rare earth magnet powder; performing the magnetic field formation on the mixed powder; and sintering and diffusing the heavy rare earth at the same time. Accordingly, the present invention can improve the coercive force and the thermal stability of the magnet.

Description

고성능 희토류 소결 자석의 제조방법{MANUFACTURING METHOD OF HIGH PERFORMANCE RARE EARTH MAGNET}TECHNICAL FIELD [0001] The present invention relates to a high-performance rare-earth sintered magnet,

본 발명은 소결자석체의 잔류 자속밀도의 감소를 억제하면서 보자력을 증대시킨 고성능 희토류 소결 자석의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-performance rare-earth sintered magnet in which the coercive force is increased while suppressing a decrease in the residual magnetic flux density of the sintered magnet body.

Nd-Fe-B계 영구자석은 그 뛰어난 자기 특성 때문에 점점 용도가 확대되고 있다. 최근 자석을 응용한 컴퓨터 관련 기기, 하드디스크 드라이브나 CD 플레이어, DVD 플레이어, 휴대 전화를 비롯한 전자 기기의 경박 단소화, 고성능화, 에너지 절약화에 따라 Nd-Fe-B계 자석, 그 중에서도 특히 소형 혹은 박형의 Nd-Fe-B계 소결자석의 고성능화가 요구되고 있다.Nd-Fe-B based permanent magnets are increasingly used because of their excellent magnetic properties. Recently, there has been a growing demand for Nd-Fe-B type magnets, particularly small or large magnets, in accordance with the ever-simplifying, high performance, and energy saving of light-weighted, high performance and energy saving of electronic devices including hard disk drives, CD players, DVD players, High-performance sintered magnets of thin Nd-Fe-B type sintered magnets are required.

자석의 성능의 지표로서 잔류 자속밀도와 보자력의 크기를 들 수 있다. Nd-Fe-B계 소결자석의 잔류 자속밀도 증대는 Nd2Fe14B 화합물의 부피율 증대와 결정 배향도 향상에 의해 달성되며, 지금까지 다양한 프로세스의 개선이 이루어져 왔다. 보자력의 증대에 관해서는 결정립의 미세화를 도모하거나, Nd의 양을 증대시킨 조성 합금을 이용하거나, 혹은 효과가 있는 원소를 첨가하는 등 다양한 접근 방식이 있는 가운데, 현재 가장 일반적인 방법은 Dy나 Tb로 Nd의 일부를 치환한 조성 합금을 이용하는 것이다. Nd2Fe14B 화합물의 Nd를 이들 원소로 치환함으로써 화합물의 이방성 자계가 증대하고 보자력도 증대한다. 한편으로, Dy나 Tb에 의한 치환은 화합물의 포화자기분극을 감소시킨다. 따라서, 상기 방법으로만 보자력의 증대를 도모한다면 잔류 자속밀도의 저하는 피할 수 없게 된다.As an index of the performance of the magnet, there are the residual magnetic flux density and the magnitude of the coercive force. The increase in the residual magnetic flux density of the Nd-Fe-B sintered magnet is achieved by increasing the volume ratio of the Nd2Fe14B compound and improving the crystal orientation, and various processes have been improved to date. With regard to the increase of coercive force, there are various approaches such as finer grain size, use of a composition alloy which increases the amount of Nd, or addition of an effective element, while the most common method at present is Dy or Tb Nd is replaced with a part of Nd. By substituting these elements for Nd of the Nd2Fe14B compound, the anisotropic magnetic field of the compound is increased and the coercive force is also increased. On the other hand, substitution by Dy or Tb reduces saturation magnetization of the compound. Therefore, if the coercive force is increased only by the above method, the decrease of the residual magnetic flux density can not be avoided.

Nd-Fe-B 자석은 결정립 계면에서 역자구의 핵이 생성하는 외부 자계의 크기가 보자력이 된다. 역자구의 핵 생성에는 결정립 계면의 구조가 강하게 영향을 미치고 있으며, 계면 근방에서의 결정구조의 흐트러짐이 자기적인 구조의 흐트러짐을 초래하고 역자구의 생성을 조장한다. 일반적으로는, 결정 계면으로부터 5nm 정도의 깊이까지의 자기적 구조가 보자력의 증대에 기여하고 있다고 한다. In the Nd-Fe-B magnet, the magnitude of the external magnetic field generated by the nuclei of the inverse magnetic poles at the crystal grain interface becomes coercive force. The structure of the grain boundary interface strongly influences the nucleation of the spinel structure. The disorder of the crystal structure in the vicinity of the interface leads to the disorder of the magnetic structure and promotes the generation of the inverse tool. Generally, it is said that the magnetic structure from the crystal interface to the depth of about 5 nm contributes to the increase of the coercive force.

한편, 결정립의 계면 근방에만 약간의 Dy나 Tb를 농화시켜 계면 근방만 이방성 자계를 증대시킴으로써, 잔류 자속밀도의 저하를 억제하면서 보자력을 증대할 수 있으며, Nd2Fe14B 화합물 조성 합금과 Dy 혹은 Tb이 풍부한 합금을 별도로 제작한 후에 혼합하여 소결하는 제조방법이 있다. 이 방법에서는 Dy 혹은 Tb가 풍부한 합금은 소결시에 액상이 되고, Nd2Fe14B 화합물을 둘러싸도록 분포한다. 그 결과, 화합물의 입계 근방에서만 Nd와 Dy 혹은 Tb가 치환되어 잔류 자속밀도의 저하를 억제하면서 효과적으로 보자력을 증대할 수 있다.On the other hand, coercive force can be increased while reducing the residual magnetic flux density by increasing the anisotropic magnetic field only in the vicinity of the interface by concentrating a small amount of Dy or Tb only in the vicinity of the interface of the crystal grains, and the Nd2Fe14B compound composition alloy and the alloy containing Dy or Tb Is separately manufactured and then mixed and sintered. In this method, alloys rich in Dy or Tb become liquid during sintering and are distributed to surround the Nd2Fe14B compound. As a result, Nd and Dy or Tb are substituted only in the vicinity of the grain boundary of the compound, thereby effectively increasing the coercive force while suppressing the decrease of the residual magnetic flux density.

본 발명은 상기의 문제점을 해결하기 위한 것으로,SUMMARY OF THE INVENTION The present invention has been made to solve the above problems,

본 발명은 중희토 사용량을 절감하면서 자석의 보자력과 열안정성을 향상시킬 수 있는 희토류 자석의 제조방법을 제공하는 것을 목적으로 한다.The object of the present invention is to provide a rare earth magnet manufacturing method capable of improving the coercive force and thermal stability of a magnet while reducing the amount of heavy rare earths used.

또한, 중희토 수소화물을 포함하는 중희토 화합물을 희토류자석 분말과 혼합하여 소결 및 열처리를 동시에 수행하여 중희토가 자석 표면 및 내부의 결정립계면에 균일하게 분포하여 자기적 성능이 안정적인 희토류 자석의 제조방법을 제공하는 것을 목적으로 한다.In addition, a rare earth magnet containing a heavy rare earth hydride is mixed with a rare earth magnet powder, sintering and heat treatment are simultaneously carried out, and a rare earth magnet is uniformly distributed on the surface of the magnet and on the grain boundaries of the magnet, And a method thereof.

상기의 목적을 달성하기 위한 수단으로서,As means for achieving the above object,

본 발명은 R, Fe, B를 조성 성분으로 포함하는 희토류 자석 분말을 준비하는 단계; 중희토 수소화물을 필수로 포함하고, 중희토 산화물, 중희토 불화물 중 어느 하나 이상을 포함하는 중희토 화합물을 상기 희토류 자석 분말과 혼합하는 단계; 혼합된 분말을 자장성형하는 단계; 및 소결 및 중희토 확산을 동시에 수행하는 단계;를 포함하는 희토류 자석의 제조방법을 제공한다.The present invention provides a method for producing a rare earth magnet powder, comprising the steps of: preparing a rare earth magnet powder containing R, Fe, B as a component; Mixing a rare earth metal compound, which contains a heavy rare earth metal hydride, a heavy rare earth metal hydride hydride, a heavy rare earth hydride, a heavy rare earth oxide, and a heavy rare earth fluoride, with the rare earth magnet powder; Magnetic field shaping the mixed powder; And performing sintering and heavy rare earth diffusion at the same time.

또한, 상기 중희토 산화물은 Dy 및 Tb 중에서 하나 이상 선택되는 중희토의 산화물이며, 상기 중희토 불화물은 Dy 및 Tb 중에서 하나 이상 선택되는 중희토의 불화물인 희토류 자석의 제조방법을 제공한다.Further, the heavy rare earth oxide is a rare earth oxide selected from at least one of Dy and Tb, and the heavy rare earth fluoride is at least one of Dy and Tb, and is a rare earth magnet.

본 발명의 일실시예에 따른 희토류 자석의 제조방법은 중희토 수소화물을 필수로 포함하고, 중희토 산화물 및 중희토 불화물 중 어느 하나 이상을 더 포함하여 희토류자석 분말과 혼합하여 자장성형을 한 뒤 소결 및 열처리를 동시에 수행하여 중희토가 자석 표면 및 내부의 결정립계면에 균일하게 분포하여 자기적 성능이 안정적이며, 소량의 중희토를 사용하면서도 자석의 보자력과 열안정성을 향상시킬 수 있다.A method for manufacturing a rare-earth magnet according to an embodiment of the present invention includes a heavy rare earth hydride and at least one of a heavy rare earth oxide and a heavy rare earth fluoride is mixed with a rare earth magnet powder to form a magnetic field Sintering and heat treatment are performed at the same time so that the heavy rare earth is uniformly distributed on the surface of the magnet and the grain surface of the magnet so that the magnetic performance is stable and the coercive force and thermal stability of the magnet can be improved while using a small amount of heavy rare earth.

이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, it is needless to say that the present invention is not limited to these embodiments and can be modified into various forms.

그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상부에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다. Wherever certain parts of the specification are referred to as "comprising ", the description does not exclude other parts and may include other parts, unless specifically stated otherwise. Also, when a portion such as a layer, a film, an area, a plate, or the like is referred to as being "above" another portion, this includes not only the case directly above another portion but also the case where another portion is located in the middle. When a portion of a layer, film, region, plate, or the like is referred to as being "directly on" another portion, it means that no other portion is located in the middle.

본 발명의 일실시예에 따른 희토류 자석의 제조방법은 R, Fe, B를 조성 성분으로 포함하는 희토류 자석 분말을 준비하는 단계, 중희토 수소화물을 포함하는 중희토 화합물을 상기 희토류 자석 분말과 혼합하는 단계, 혼합된 분말을 자장성형하는 단계, 및 소결 및 중희토 확산을 동시에 수행하는 단계를 포함한다. 선택적으로 소결 및 확산 후 후열처리하는 단계를 더 포함할 수 있다. A method of manufacturing a rare-earth magnet according to an embodiment of the present invention includes the steps of preparing a rare-earth magnet powder containing R, Fe, and B as a constituent component, mixing a rare earth metal compound containing a rare-earth hydride with the rare earth magnet powder , Subjecting the mixed powder to magnetic field shaping, and performing sintering and heavy rare earth diffusion at the same time. And optionally post-annealing after sintering and diffusion.

이하 각 단계를 상세하게 설명한다.Each step will be described in detail below.

(1) 희토류 자석 분말을 준비하는 단계(1) Step of preparing rare earth magnet powder

R, Fe, B를 조성 성분으로 포함하는 희토류 자석 분말에서, R은 Y 및 Sc을 포함하는 희토류 원소로부터 선택되는 1종 또는 2종 이상 선택될 수 있으며, 조성 성분으로 선택적으로 금속 M이 1종 또는 2종 이상 선택될 수 있다. M의 구체적 예로는 Al, Ga, Cu, Ti, W, Pt, Au, Cr, Ni, Co, Ta, Ag 등을 들 수 있다. 상기 희토류 자석 분말은 제한되지 않으나 Nb-Fe-B계 소결 자석 분말을 사용할 수 있다.In the rare earth magnet powder containing R, Fe and B as constituent components, R may be selected from one or more rare earth elements including Y and Sc, Or two or more species can be selected. Specific examples of M include Al, Ga, Cu, Ti, W, Pt, Au, Cr, Ni, Co, Ta and Ag. The rare earth magnet powder is not limited, but Nb-Fe-B sintered magnet powder can be used.

상기 희토류 자석 분말 조성으로는 제한되지 않으나 R은 27~36 중량%, M은 0 내지 5 중량%, B는 0 내지 2 중량% 범위내이며, 잔부 Fe로 될 수 있다.The composition of the rare earth magnet powder is not limited, but R is in the range of 27 to 36 wt%, M is in the range of 0 to 5 wt%, B is in the range of 0 to 2 wt%, and the balance Fe.

일실시예로서, 상기 조성의 합금을 진공유도 가열방식으로 용해하여 스트립케스팅 방법을 이용하여 합금인곳트로 제조할 수 있다. 이들 합금인곳트의 분쇄능을 향상시키기 위하여 상온~600℃ 범위에서 수소처리 및 탈수소처리를 실시한 후, 젯밀, 아트리타밀, 볼밀, 진동밀 등의 분쇄방식을 이용하여 1~10㎛ 입도범위의 균일하고 미세한 분말로 제조할 수 있다. 합금인곳트로부터 1~10㎛의 분말로 제조하는 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하는 것이 좋다.In one embodiment, the alloy of the above composition may be dissolved in a vacuum induction heating method and made into an alloy using a strip casting method. In order to improve the grindability of the gut of these alloys, hydrogen treatment and dehydrogenation treatment are carried out at a temperature ranging from room temperature to 600 ° C., and then grinding is carried out using a pulverizing method such as a jute mill, an atit tamil ball mill, It can be produced as a uniform and fine powder. It is preferable to carry out the step of producing the powder of 1 to 10 mu m from the gut as the alloy in a nitrogen or inert gas atmosphere in order to prevent oxygen from being contaminated and deteriorating the magnetic properties.

(2) 중희토 화합물을 희토류 자석 분말과 혼합하는 단계(2) mixing the rare earth compound with the rare earth magnet powder

상기 중희토 화합물은 중희토 수소화물을 필수로 포함한다. 중희토로는 Dy 및 Tb 중에서 하나 이상 선택될 수 있으며, 추가적으로 Ho가 포함될 수 있다. 또한, 상기 중희토의 산화물 및 중희토의 불화물 중 어느 하나 이상이 더 포함될 수 있다. 중희토 화합물 총중량 대비 중희토 수소화물은 50 내지 100 중량% 범위내가 후술하는 실시예에서 보듯이 특성이 우수하였다.The heavy rare earth compound includes a heavy rare earth hydride. As the rare earth metal, at least one of Dy and Tb may be selected, and Ho may further be included. Further, at least one of the oxide of heavy rare earth and the fluoride of heavy rare earth may be further included. The ratio of the heavy rare earth hydride to the total weight of the heavy rare earth compound is in the range of 50 to 100% by weight.

이러한 중희토 화합물 분말을 희토류 자석 분말과 혼합하되, 그 비율로서는 후술하는 실시예에서 보듯이, 희토류 자석 분말과 중희토 화합물 총함량 대비 중희토 화합물의 함량은 1 내지 4 중량% 범위내가 좋다.The rare earth compound powder is mixed with the rare earth magnet powder, and the content of the rare earth compound in the total content of the rare earth magnet powder and the heavy rare earth compound is in the range of 1 to 4 wt%, as shown in Examples described later.

혼합하는 방법의 일례로서, 혼합비율을 계량한 후, 3차원 분말혼련기를 이용하여 0.5~5시간 동안 균일하게 혼련할 수 있다. 희토류 분말과 중희토 화합물 분말의 균일한 혼련을 위해 중희토 화합물 분말의 입도를 10nm~50㎛ 범위에서 조절하여 제조하는 것이 좋다. 이러한 혼합 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하는 것이 좋다.As an example of the mixing method, it is possible to uniformly knead the mixture for 0.5 to 5 hours using a three-dimensional powder kneader after weighing the mixing ratio. For uniform kneading of the rare earth powder and the heavy rare earth compound powder, it is preferable to adjust the particle size of the heavy rare earth compound powder in the range of 10 nm to 50 탆. This mixing process is preferably performed in a nitrogen or inert gas atmosphere in order to prevent oxygen from being contaminated and deteriorating magnetic properties.

(3) 자장성형하는 단계(3) Step of forming magnetic field

상기 혼합된 분말을 이용하여 자장성형을 실시한다. 그 일례로서, 혼련된 분말을 금형에 충진하고, 금형의 좌/우에 위치하는 전자석에 의해 직류자장을 인가하여 혼련된 분말을 배향시키고, 동시에 상/하펀치에 의해 압축성형을 실시하여 성형체를 제조할 수 있다. 자장성형 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하는 것이 좋다.The magnetic powder is formed using the mixed powder. As an example thereof, a kneaded powder is filled in a mold, a direct current magnetic field is applied by electromagnets located on the left and right sides of the mold, the kneaded powder is oriented, and compression molding is performed by upper / can do. The magnetic field forming process is preferably performed in a nitrogen or inert gas atmosphere in order to prevent oxygen from being contaminated and deteriorating magnetic properties.

(4) 소결 및 중희토 확산 단계(4) Sintering and heavy rare earth diffusion step

자장 성형이 완료되면 성형체의 소결 및 중희토 확산을 동시에 수행한다. 소결 및 중희토 확산 단계에서는 열처리 온도 및 승온 속도가 매우 중요하다. 후술하는 실험예에서 보듯이, 900 ~ 1100 ℃ 범위내의 온도에서 수결 및 중희토 확산을 수행하는 것이 좋으며, 700℃ 이상에서의 승온 속도는 0.5 ~ 15 ℃/min 범위내로 조절하는 것이 좋다.When the magnetic field shaping is completed, sintering of the formed body and heavy rare earth diffusion are simultaneously performed. In the sintering and heavy rare earth diffusion steps, the heat treatment temperature and heating rate are very important. As shown in the following experimental example, it is preferable to perform the hardening and heavy rare earth diffusion at a temperature within the range of 900 to 1100 占 폚, and the temperature raising rate at 700 占 폚 or higher is preferably controlled within the range of 0.5 to 15 占 폚 / min.

일례로서, 자장성형에 의해 얻어진 성형체를 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거하고, 다시 900~1100 ℃ 범위까지 승온시켜 1-4시간 유지함으로서 소결치밀화와 동시에 중희토 확산을 완료할 수 있다. 소결 및 중희토 확산 단계에서 분위기는 진공 및 아르곤 등의 불활성 분위기로 수행하는 것이 좋으며, 700℃ 이상의 온도에서는 승온속도를 0.1 ~ 10℃/min., 바람직하게는 0.5 ~ 15 ℃/min 으로 조절함으로서 중희토가 결정립의 계면에서 균일하게 확산될 수 있도록 제어하는 것이 좋다.As an example, a compact obtained by magnetic field molding is charged into a sintering furnace and sufficiently maintained at a temperature of 400 DEG C or lower in a vacuum atmosphere to completely remove the remaining impurity organic matter. The temperature is further raised to 900 to 1100 DEG C and maintained for 1 to 4 hours, It is possible to complete the heavy rare earth diffusion simultaneously with the densification. In the sintering and heavy rare earth metal diffusion step, the atmosphere is preferably performed in an inert atmosphere such as vacuum and argon, and at a temperature of 700 ° C or higher, the temperature raising rate is controlled to 0.1 to 10 ° C / min., Preferably 0.5 to 15 ° C / It is preferable to control so that the middle rare earth can be uniformly diffused at the interface of the crystal grains.

선택적으로, 소결 및 확산이 완료된 소결체를 400~900℃ 범위에서 1-4시간 후열처리를 실시하여 안정화시키는 것이 좋으며, 그 후 소정의 크기로 가공하여 희토류 자석을 제조할 수 있다.Optionally, the sintered body having completed sintering and diffusion may be stabilized by heat treatment in the range of 400 to 900 占 폚 for 1 to 4 hours, and then the rare earth magnet can be manufactured by processing to a predetermined size.

이러한 방법으로 제조된 희토류 자석은 중희토가 자석 표면 및 내부의 결정립계면에 균일하게 분포하여 자기적 성능이 안정적이며, 소량의 중희토를 사용하면서도 자석의 보자력과 열안정성을 향상시킬 수 있으며, 중희토 수소화물을 사용함으로써 불순물 유입에 따른 문제점이 최소화될 수 있다.The rare-earth magnet manufactured by this method can uniformly distribute the heavy rare earth to the surface of the magnet and the grain boundary surface of the magnet so that the magnetic performance is stable and the coercive force and the thermal stability of the magnet can be improved while using a small amount of heavy rare earth. By using rare-earth hydrides, the problems due to the influx of impurities can be minimized.

이하 실시예를 통해 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

중희토를 함유하지 않는 32wt%R-66wt%Fe-1wt%M-1wt%B(여기서, R=희토류원소, M=3d 금속)조성의 합금을 진공유도 가열방식으로 용해하여 스트립케스팅 방법을 이용하여 합금인곳트로 제조하였다.The alloy having a composition of 32 wt% R-66 wt% Fe-1 wt% M-1 wt% B (where R = rare earth element, M = 3d metal) which does not contain heavy rare earth is dissolved by a vacuum induction heating method, And the alloy was made into a base material.

제조된 합금인곳트의 분쇄능을 향상시키기 위하여 수소분위기 및 상온에서 수소를 흡수시키고 이어서 진공 및 600℃ 에서 수소를 제거하는 처리를 실시한 후, 젯밀기술을 이용한 분쇄방식에 의해 3.5㎛ 입도의 균일하고 미세한 분말로 제조하였다. 이때, 합금인곳트부터 미세분말로 제조하는 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하였다.In order to improve the crushability of the produced gut, the hydrogen was absorbed at a hydrogen atmosphere and at room temperature, and then subjected to vacuum and removal of hydrogen at 600 ° C. Thereafter, the powder was homogenized by a grinding method using a jet mill technique Min. At this time, in order to prevent the oxygen from being contaminated and deteriorate in the magnetic properties, the process for producing the alloy from the gut to the fine powder was performed in a nitrogen or inert gas atmosphere.

분쇄된 희토류분말 : Dy-H 혹은 Tb-H 중희토화합물 분말의 비율이 95~99.5 : 5~0.5 wt% 범위가 되도록 계량한 후, 3차원 분말혼련기를 이용하여 2 시간 동안 균일하게 혼련하였다. 이때, 사용한 혼련에 사용한 중희토화합물 분말크기= 1㎛를 사용하였다.The weight of the ground rare earth powder: Dy-H or Tb-H was adjusted so that the ratio of the rare earth compound powder was in the range of 95 to 99.5: 5 to 0.5 wt%, and then homogeneously kneaded for 2 hours using a three-dimensional powder kneader. At this time, the heavy rare earth compound powder size used in the kneading used was 1 mu m.

혼련된 분말을 이용하여 다음과 같이 자장성형을 실시하였다. 혼련된 분말을 금형에 충진하고, 금형의 좌/우에 위치하는 전자석에 의해 직류자장을 인가하여 혼련된 분말을 배향시키고, 동시에 상/하펀치에 의해 압축성형을 실시하여 성형체를 제조하였다. Using the kneaded powder, magnetic field molding was carried out as follows. The kneaded powders were filled in a mold, and a direct current magnetic field was applied by electromagnets located on the left and right sides of the mold to orient the kneaded powder, and at the same time, compression molding was carried out by upper and lower punches to produce a molded article.

희토류분말과 중희토화합물 분말의 혼련과 자장성형 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하였다.The kneading of the rare earth powder and the heavy rare earth compound powder and the magnetic field forming process were carried out in a nitrogen or inert gas atmosphere in order to prevent oxygen from being contaminated and deteriorate magnetic properties.

자장성형에 의해 얻어진 성형체를 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거하고, 다시 1020℃ 까지 승온시켜 2시간 유지함으로서 소결치밀화와 동시에 중희토확산을 완료하였다. 소결 및 중희토확산단계에서 분위기는 진공 및 알곤분위기로 수행하였고, 700℃ 이상의 온도에서는 승온속도를 1℃/min. 으로 조절함으로서 중희토가 결정립의 계면에서 균일하게 확산될 수 있도록 제어하였다. 소결이 완료된 소결체는 500℃ 범위에서 2시간 열처리를 실시한 후 크기 12.5*12.5*4mm 크기로 가공하여 자기특성을 측정하였다.The compact obtained by the magnetic field molding was charged into a sintering furnace and sufficiently held at a temperature of 400 DEG C or lower in a vacuum atmosphere to completely remove the remaining impure organic matter. The temperature was further raised to 1020 DEG C and maintained for 2 hours to complete sintering densification and heavy rare earth diffusion Respectively. The sintering and medium rare earth diffusion steps were carried out in a vacuum and argon atmosphere, and at a temperature above 700 ° C, the rate of temperature increase was 1 ° C / min. So that the heavy rare earths can be uniformly diffused at the interface of the crystal grains. After sintering, the sintered body was annealed at 500 ℃ for 2 hours, and then its size was measured to 12.5 * 12.5 * 4mm.

상기와 같이 본 발명에 의해 실시된 샘플 및 비교샘플의 성분분석은 ICP를 이용한 습식분석법을 이용하였고, 자기특성은 B-H loop tracer를 이용하여 최대자장 30 kOe까지 인가하면서 각각의 loop를 측정하여 얻어졌으며, 그 분석결과는 표 1과 같다. 샘플 1-1는 분말혼련과정에서 중희토류 분말을 첨가하지 않고 제조한 샘플이고, 샘플 1-2 ~ 11-13은 분말혼련과정에서 Dy-H 혹은 Tb-H를 희토자석 분말대비 0.5~5wt% 범위로 혼련하여 제조한 샘플이다.As described above, the components of the samples and the comparative samples according to the present invention were analyzed by wet analysis using ICP and magnetic properties were measured by measuring the respective loops while applying a maximum magnetic field of 30 kOe using a BH loop tracer The results of the analysis are shown in Table 1. Sample 1-1 was prepared without addition of heavy rare earth powder in the powder kneading process. Samples 1-2 to 11-13 were prepared by mixing Dy-H or Tb-H with 0.5 to 5 wt% of rare earth magnet powder, In the range of < RTI ID = 0.0 >

샘플Sample 중희토
화합물종류
Middle rare
Compound type
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
소결/확산온도
(℃)
Sintering / diffusion temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
중희토 성분
(wt%)
Middle rare earth component
(wt%)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-11-1 ×× ×× 10201020 1One 0.000.00 13.5013.50 14.514.5 1-21-2 Dy-HDy-H 0.50.5 10201020 1One 0.480.48 13.4213.42 15.915.9 1-31-3 Dy-HDy-H 1One 10201020 1One 0.960.96 13.3313.33 17.417.4 1-41-4 Dy-HDy-H 22 10201020 1One 1.921.92 13.1613.16 20.320.3 1-51-5 Dy-HDy-H 33 10201020 1One 2.882.88 12.9912.99 23.123.1 1-61-6 Dy-HDy-H 44 10201020 1One 3.843.84 12.8212.82 26.026.0 1-71-7 Dy-HDy-H 55 10201020 1One 4.804.80 12.1112.11 27.527.5 1-81-8 Tb-HTb-H 0.50.5 10201020 1One 0.480.48 13.4213.42 16.616.6 1-91-9 Tb-HTb-H 1One 10201020 1One 0.950.95 13.3413.34 18.818.8 1-101-10 Tb-HTb-H 22 10201020 1One 1.901.90 13.1813.18 23.123.1 1-111-11 Tb-HTb-H 33 10201020 1One 2.852.85 13.0213.02 27.327.3 1-121-12 Tb-HTb-H 44 10201020 1One 3.803.80 12.8512.85 31.631.6 1-131-13 Tb-HTb-H 55 10201020 1One 3.753.75 12.1512.15 33.833.8

(a: 희토류 자석 분말과 중희토 화합물 총함량 대비 중희토 화합물의 함량이며, 이하의 표 2 내지 표 5도 동일함)(a: the content of the rare earth compound in the total content of the rare earth magnet powder and the heavy rare earth compound, and the following Tables 2 to 5 are also the same)

표 1에 나타난 결과와 같이, 중희토 화합물의 혼합 비율이 1 중량% 미만에서는 보자력 상승효과가 미미하고, 4중량%를 초과하는 경우 잔류자속밀도가 급격히 감소하는 것을 확인할 수 있다.As shown in Table 1, when the mixing ratio of the heavy rare earth compound is less than 1 wt%, the coercive force increasing effect is insignificant, and when the mixing ratio is more than 4 wt%, the residual magnetic flux density is sharply reduced.

실시예 2Example 2

상기 실시예 1에서 하기의 표 2에서와 같이 중희토 화합물 분말을 달리한 것을 제외하고는 동일하게 실시하였다. The same procedure as in Example 1 was conducted except that the heavy rare earth compound powder was changed as shown in Table 2 below.

샘플Sample 중희토
화합물
종류
Middle rare
compound
Kinds
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
소결/확산
온도
(℃)
Sintering / diffusion
Temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-1
1-1
×× ×× 10201020 1One 13.5013.50 14.514.5
1-41-4 Dy-HDy-H 22 10201020 1One 13.1613.16 20.320.3 2-12-1 Dy-FDy-F 22 10201020 1One 13.1413.14 19.519.5 2-22-2 Dy-ODy-O 22 10201020 1One 13.2013.20 16.116.1 1-101-10 Tb-HTb-H 22 10201020 1One 13.1813.18 23.123.1 2-32-3 Tb-FTb-F 22 10201020 1One 13.1713.17 22.022.0 2-42-4 Tb-OTb-O 22 10201020 1One 13.2113.21 17.517.5

표 2의 결과에 나타난 바와 같이, 중희토 수소화물이 중희토 불화물이나 중희토 산화물보다 보자력 상승 효과가 우수한 것을 확인할 수 있다.As shown in the results of Table 2, it can be confirmed that the heavy rare earth hydride has better coercive force increasing effect than the heavy rare earth fluoride or the heavy rare earth oxide.

실시예 3Example 3

상기 실시예 1에서 하기의 표 3에서와 같이 중희토 화합물 분말을 혼합하여 사용한 것을 제외하고는 동일하게 실시하였다. Except that a heavy rare earth compound powder was mixed in the same manner as in Example 1, as shown in Table 3 below.

샘플Sample 중희토
화합물
종류
Middle rare
compound
Kinds
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
중희토
분말 혼합비율
(wt%)
Middle rare
Powder mixing ratio
(wt%)
소결/확산
온도
(℃)
Sintering / diffusion
Temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-11-1 ×× ×× ×× 10201020 1One 13.5013.50 14.514.5 3-13-1 Dy-H : Dy-FDy-H: Dy-F 22 25 : 7525: 75 10201020 1One 13.1413.14 19.719.7 3-23-2 Dy-H : Dy-FDy-H: Dy-F 22 50 : 5050: 50 10201020 1One 13.1413.14 19.919.9 3-33-3 Dy-H : Dy-FDy-H: Dy-F 22 75 : 2575: 25 10201020 1One 13.1513.15 21.121.1 1-41-4 Dy-HDy-H 22 100100 10201020 1One 13.1613.16 20.320.3 3-43-4 Tb-H : Tb-FTb-H: Tb-F 22 25 : 7525: 75 10201020 1One 13.1713.17 22.422.4 3-53-5 Tb-H : Tb-FTb-H: Tb-F 22 50 : 5050: 50 10201020 1One 13.1713.17 22.722.7 3-63-6 Tb-H : Tb-FTb-H: Tb-F 22 75 : 2575: 25 10201020 1One 13.1713.17 22.922.9 1-101-10 Tb-HTb-H 22 100100 10201020 1One 13.1813.18 23.123.1

표 3의 결과에 나타난 바와 같이, 중희토 화합물 총중량 대비 중희토 수소화물은 50 내지 100 중량% 범위내에 포함되는 것이 보다 우수하게 나타났다.As shown in the results of Table 3, it was found that the heavy rare earth hydride was contained in the range of 50 to 100 wt% with respect to the total heavy rare earth compound.

실시예 4Example 4

상기 실시예 1에서 하기의 표 4에서와 같이 소결 확산 온도를 다양하게 한 것을 제외하고는 동일하게 실시하였다.The same procedure was performed as in Example 1, except that sintering diffusion temperature was varied as shown in Table 4 below.

샘플Sample 중희토
화합물
종류
Middle rare
compound
Kinds
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
소결/확산
온도
(℃)
Sintering / diffusion
Temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-11-1 ×× ×× 10201020 1One 13.5013.50 14.514.5 4-14-1 Dy-HDy-H 22 880880 1One 10.2510.25 3.53.5 4-24-2 Dy-HDy-H 22 900900 1One 11.8811.88 11.311.3 4-34-3 Dy-HDy-H 22 980980 1One 13.0013.00 19.519.5 4-44-4 Dy-HDy-H 22 10001000 1One 13.1113.11 20.020.0 1-41-4 Dy-HDy-H 22 10201020 1One 13.1613.16 20.320.3 4-54-5 Dy-HDy-H 22 10401040 1One 13.1713.17 20.120.1 4-64-6 Dy-HDy-H 22 10601060 1One 13.1613.16 20.020.0 4-74-7 Dy-HDy-H 22 11001100 1One 13.1413.14 18.618.6 4-84-8 Tb-HTb-H 22 880880 1One 10.5510.55 5.75.7 4-94-9 Tb-HTb-H 22 900900 1One 11.9311.93 12.812.8 4-104-10 Tb-HTb-H 22 980980 1One 13.0513.05 22.522.5 4-114-11 Tb-HTb-H 22 10001000 1One 13.1213.12 22.922.9 1-91-9 Tb-HTb-H 22 10201020 1One 13.1813.18 23.123.1 4-124-12 Tb-HTb-H 22 10401040 1One 13.1913.19 23.023.0 4-134-13 Tb-HTb-H 22 10601060 1One 13.1813.18 22.822.8 4-144-14 Tb-HTb-H 22 11001100 1One 13.1613.16 21.421.4

표 4에 나타난 바와 같이, 소결 및 중희토 확산 온도는 900 ~ 1100 ℃ 범위내가 우수한 것을 확인할 수 있다.As shown in Table 4, it can be seen that the sintering and heavy rare earth diffusion temperature is excellent in the range of 900 to 1100 ° C.

실시예 5Example 5

상기 실시예 1에서 하기의 표 5에서와 같이 700℃ 이상의 온도에서의 승온 속도를 다양하게 한 것을 제외하고는 동일하게 실시하였다. The same procedure was performed as in Example 1, except that the heating rate was varied at a temperature of 700 ° C or more as shown in Table 5 below.

샘플Sample 중희토
화합물
종류
Middle rare
compound
Kinds
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
소결/확산
온도
(℃)
Sintering / diffusion
Temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-11-1 ×× ×× 10201020 1One 13.5013.50 14.514.5 5-15-1 Dy-HDy-H 22 10201020 0.10.1 13.1913.19 20.320.3 5-25-2 Dy-HDy-H 22 10201020 0.50.5 13.1913.19 20.320.3 1-41-4 Dy-HDy-H 22 10201020 1One 13.1613.16 20.320.3 5-35-3 Dy-HDy-H 22 10201020 22 13.1513.15 20.120.1 5-45-4 Dy-HDy-H 22 10201020 55 13.1513.15 20.120.1 5-55-5 Dy-HDy-H 22 10201020 1010 13.1413.14 19.819.8 5-65-6 Dy-HDy-H 22 10201020 1515 13.1113.11 19.219.2 5-75-7 Dy-HDy-H 22 10201020 2020 13.0613.06 18.718.7 5-85-8 Tb-HTb-H 22 10201020 0.10.1 13.1913.19 23.123.1 5-95-9 Tb-HTb-H 22 10201020 0.50.5 13.1913.19 23.123.1 1-91-9 Tb-HTb-H 22 10201020 1One 13.1813.18 23.123.1 5-105-10 Tb-HTb-H 22 10201020 22 13.1813.18 22.822.8 5-115-11 Tb-HTb-H 22 10201020 55 13.1613.16 22.722.7 5-125-12 Tb-HTb-H 22 10201020 1010 13.1513.15 22.522.5 5-135-13 Tb-HTb-H 22 10201020 1515 13.1113.11 22.122.1 5-145-14 Tb-HTb-H 22 10201020 2020 13.0813.08 21.421.4

표 1에 나타난 바와 같이 승온 속도는 0.1 ~ 15 ℃/min 범위내에서 우수한 특성을 나타내며, 양산성을 고려한다면 승온 속도는 0.5 ~ 15 ℃/min 범위내가 바람직하다.As shown in Table 1, the heating rate is excellent in the range of 0.1 to 15 ° C / min, and the heating rate is preferably in the range of 0.5 to 15 ° C / min in consideration of mass productivity.

실시예Example 6 6

상기 실시예 1에서 하기의 표 6에서와 같이 중희토 수소화물 및 불화불을 ㅎ함게 첨가한 것을 제외하고는 동일하게 실시하였다. Except that heavy rare earth hydrides and fluorine were added in the same manner as in Example 1, as shown in Table 6 below.

샘플Sample 중희토
화합물
종류
Middle rare
compound
Kinds
중희토 화합물a
(wt%)
The heavy rare earth compound a
(wt%)
소결/확산
온도
(℃)
Sintering / diffusion
Temperature
(° C)
소결/확산 승온속도
(℃/min.)
Sintering / diffusion heating rate
(° C / min.)
잔류자속
밀도
(kG)
Residual magnetic flux
density
(kG)
보자력
(kOe)
Coercivity
(kOe)
1-11-1 ×× ×× 10201020 1One 13.5013.50 14.514.5 6-16-1 Dy-H, Dy-FDy-H, Dy-F 22 10201020 1One 13.1713.17 20.6320.63 6-26-2 Dy-H, Tb-FDy-H, Tb-F 22 10201020 1One 13.1313.13 23.3423.34

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (5)

R, Fe, B를 조성 성분으로 포함하는 희토류 자석 분말을 준비하는 단계(여기서, R은 Y 및 Sc을 포함하는 희토류 원소로부터 선택되는 1종 또는 2종 이상이며, M은 금속 중 1종 또는 2종 이상이다);
중희토 수소화물을 필수로 포함하고,
중희토 산화물, 중희토 불화물 중 어느 하나 이상을 포함하는 중희토 화합물을 상기 희토류 자석 분말과 혼합하는 단계;
혼합된 분말을 자장성형하는 단계; 및
소결 및 중희토 확산을 동시에 수행하는 단계;를 포함하는 희토류 자석의 제조방법.
Preparing a rare earth magnet powder containing R, Fe and B as compositional components, wherein R is at least one selected from rare earth elements including Y and Sc, and M is one or two of metals More than species);
A rare earth metal hydride,
Mixing a rare earth metal compound containing at least one of a heavy rare earth oxide and a heavy rare earth fluoride with the rare earth magnet powder;
Magnetic field shaping the mixed powder; And
Sintering and heavy rare earth diffusion at the same time.
제1항에 있어서,
상기 중희토 산화물은 Dy 및 Tb 중에서 하나 이상 선택되는 중희토의 산화물인 희토류 자석의 제조방법.
The method according to claim 1,
Wherein the heavy rare earth oxide is an oxide of a rare earth rare earth selected from at least one of Dy and Tb.
제1항에 있어서,
상기 중희토 불화물은 Dy 및 Tb 중에서 하나 이상 선택되는 중희토의 불화물인 희토류 자석의 제조방법.
The method according to claim 1,
Wherein the heavy rare earth fluoride is a rare earth fluoride selected from at least one of Dy and Tb.
제1항에 있어서,
희토류 자석 분말에는 M(금속)이 더 포함되는 희토류 자석의 제조방법.
The method according to claim 1,
Wherein the rare-earth magnet powder further contains M (metal).
제1항에 있어서,
상기 소결 및 중희토 확산 완료후 400 ~ 600℃ 범위내에서 후열처리하는 단계를 더 포함하는 희토류 자석의 제조방법.
The method according to claim 1,
After the sintering and the heavy rare earth metal diffusion are completed, post-heat treatment is performed in a temperature range of 400 to 600 占 폚.
KR1020160129770A 2016-10-07 2016-10-07 Manufacturing method of high performance rare earth magnet KR102012446B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160129770A KR102012446B1 (en) 2016-10-07 2016-10-07 Manufacturing method of high performance rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160129770A KR102012446B1 (en) 2016-10-07 2016-10-07 Manufacturing method of high performance rare earth magnet

Publications (2)

Publication Number Publication Date
KR20180038745A true KR20180038745A (en) 2018-04-17
KR102012446B1 KR102012446B1 (en) 2019-08-20

Family

ID=62082964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160129770A KR102012446B1 (en) 2016-10-07 2016-10-07 Manufacturing method of high performance rare earth magnet

Country Status (1)

Country Link
KR (1) KR102012446B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125770A (en) * 2018-04-30 2019-11-07 성림첨단산업(주) Manufacturing method of rare earth sintered magnet
CN111902898A (en) * 2018-10-22 2020-11-06 株式会社Lg化学 Method for producing sintered magnet and sintered magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266037A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth permanent magnet
JP2011114335A (en) * 2009-11-23 2011-06-09 Yantai Shougang Magnetic Materials Inc Method of manufacturing rare earth permanent magnet material
KR101516567B1 (en) * 2014-12-31 2015-05-28 성림첨단산업(주) RE-Fe-B BASED RARE EARTH MAGNET BY GRAIN BOUNDARY DIFFUSION OF HAEVY RARE EARTH AND MANUFACTURING METHODS THEREOF
KR101548684B1 (en) * 2014-04-18 2015-09-11 고려대학교 산학협력단 Fabrication Method of Rare earth Sintered Magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266037A (en) * 2006-03-27 2007-10-11 Tdk Corp Manufacturing method of rare-earth permanent magnet
JP2011114335A (en) * 2009-11-23 2011-06-09 Yantai Shougang Magnetic Materials Inc Method of manufacturing rare earth permanent magnet material
KR101548684B1 (en) * 2014-04-18 2015-09-11 고려대학교 산학협력단 Fabrication Method of Rare earth Sintered Magnet
KR101516567B1 (en) * 2014-12-31 2015-05-28 성림첨단산업(주) RE-Fe-B BASED RARE EARTH MAGNET BY GRAIN BOUNDARY DIFFUSION OF HAEVY RARE EARTH AND MANUFACTURING METHODS THEREOF

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125770A (en) * 2018-04-30 2019-11-07 성림첨단산업(주) Manufacturing method of rare earth sintered magnet
WO2019212101A1 (en) * 2018-04-30 2019-11-07 성림첨단산업(주) Method for manufacturing rare earth permanent magnet
CN112119475A (en) * 2018-04-30 2020-12-22 星林尖端产业(株) Method for producing rare earth sintered permanent magnet
US11915861B2 (en) 2018-04-30 2024-02-27 Star Group Ind. Co., Ltd Method for manufacturing rare earth permanent magnet
CN111902898A (en) * 2018-10-22 2020-11-06 株式会社Lg化学 Method for producing sintered magnet and sintered magnet
EP3754676A4 (en) * 2018-10-22 2021-07-07 Lg Chem, Ltd. Method for manufacturing sintered magnet, and sintered magnet
US20210225587A1 (en) * 2018-10-22 2021-07-22 Lg Chem, Ltd. Method for Preparing Sintered Magnet and Sintered Magnet
US11978576B2 (en) * 2018-10-22 2024-05-07 Lg Chem, Ltd. Method for preparing sintered magnet and sintered magnet

Also Published As

Publication number Publication date
KR102012446B1 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
RU2367045C2 (en) Production of material of rare earth permanent magnet
CN103280290B (en) Containing cerium low melting point rare earth permanent magnetic liquid phase alloy and permanent magnet preparation method thereof
EP2779179B1 (en) R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet
CN108220732B (en) Alloy material, bonded magnet and method for modifying rare earth permanent magnet powder
CN111636035B (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw materials and preparation method
WO2008065903A1 (en) R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
CN110537235B (en) Method for producing R-T-B sintered magnet
EP2808876B1 (en) Method for preparing R-Fe-B based sintered magnet
CN110047636A (en) A kind of preparation method of high-coercive force richness La/Ce sintered magnet
CN111613410B (en) Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN109935432A (en) R-T-B system permanent magnet
JP2015179841A (en) Method for manufacturing r-t-b-based sintered magnet
CN112509775A (en) Neodymium-iron-boron magnet with low-amount heavy rare earth addition and preparation method thereof
EP4152349A1 (en) Method for preparing ndfeb magnets including lanthanum or cerium
EP0633582A1 (en) Rare earth magnetic powder, method of its manufacture, and resin-bonded magnet
CN108987017A (en) A kind of no heavy rare earth sintered NdFeB
CN111446055A (en) High-performance neodymium iron boron permanent magnet material and preparation method thereof
KR101733181B1 (en) Manufacturing method of rare earth magnet
CN112908672B (en) Grain boundary diffusion treatment method for R-Fe-B rare earth sintered magnet
KR102012446B1 (en) Manufacturing method of high performance rare earth magnet
CN108806910B (en) Method for improving coercive force of neodymium iron boron magnetic material
CN111968813B (en) NdFeB-based magnetic powder, ndFeB-based sintered magnet, and method for producing same
KR101567169B1 (en) A method for manufacturing permanent magnet by using sputtering powder
CN107403675B (en) A kind of preparation method of high thermal stability neodymium iron boron magnetic body

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant