JP3459477B2 - Production method of raw material powder for rare earth magnet - Google Patents

Production method of raw material powder for rare earth magnet

Info

Publication number
JP3459477B2
JP3459477B2 JP27061994A JP27061994A JP3459477B2 JP 3459477 B2 JP3459477 B2 JP 3459477B2 JP 27061994 A JP27061994 A JP 27061994A JP 27061994 A JP27061994 A JP 27061994A JP 3459477 B2 JP3459477 B2 JP 3459477B2
Authority
JP
Japan
Prior art keywords
powder
raw material
rare earth
atomic
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27061994A
Other languages
Japanese (ja)
Other versions
JPH08111308A (en
Inventor
裕治 金子
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP27061994A priority Critical patent/JP3459477B2/en
Priority to US08/523,928 priority patent/US5666635A/en
Priority to TW084109510A priority patent/TW290697B/zh
Priority to EP95306507A priority patent/EP0706190B1/en
Priority to AT95306507T priority patent/ATE183016T1/en
Priority to DE69511202T priority patent/DE69511202T2/en
Priority to CN95117263A priority patent/CN1120507C/en
Priority to KR1019950034256A priority patent/KR100202161B1/en
Priority to RU95117066A priority patent/RU2112627C1/en
Publication of JPH08111308A publication Critical patent/JPH08111308A/en
Application granted granted Critical
Publication of JP3459477B2 publication Critical patent/JP3459477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、Fe−B−R系希土
類磁石用原料粉末の微粉砕方法に係り、所要組成の粗粉
砕粉に特定の液状潤滑剤を混合してジェットミル粉砕
し、粉砕能率を向上させると共にプレス充填性にすぐ
れ、しかも配向性にすぐれた原料粉末を得る製造方法に
関する。 【0002】 【従来の技術】一般に、Fe−B−R系希土類磁石用原
料粉末は、通常、下記1)〜2)工程あるいは1)a〜
2)b工程により製造される。 1)出発原料として、希土類金属、電解鉄、フェロボロ
ン合金あるいはさらに電解Coを高周波溶解して鋳塊を
製造する。 2)鋳塊をH2吸蔵粉砕法により粗粉砕後、ボールミル
アトライターによる湿式粉砕してあるいは不活性ガス
によるジェットミル粉砕して、1.5μm〜5μm の
微細粉原料とする。 【0003】1)a 希土類酸化物のうち少なくとも1
種、鉄粉及び純ボロン粉、フェロボロン粉及び硼素酸化
物のうち少なくとも1種、あるいは上記構成元素の合金
粉のまたは混合酸化物を所要組成に配合した混合粉に、
金属Ca及びCaCl2を混合して、不活性ガス雰囲気
中にて、還元拡散を行なって得られた反応生成物をスラ
リー化し、水処理する。 2)b 前記処理物をボールミル アトライターによる
湿式粉砕、あるいはジェットミルによる乾式粉砕によ
り、1.5μm〜5μmの微粉砕粉にし、原料粉末とす
る。 【0004】前記の如く、希土類磁石用原料粉末の微粉
砕は湿式粉砕にて行われており、例えば、アトライター
等の容器内に有機溶媒とともに原料粉末が投入されて微
粉砕するが、得られる微粉砕粉には有機溶媒によりC、
2が含有され、また、ボールの摩耗による異物の混入
等の問題を生ずるため、乾式粉砕法へと移行しつつあ
る。 【0005】 【発明が解決しようとする課題】しかし、乾式粉砕であ
るジェットミルによる微粉砕においては、ジェットミル
流を発生させる気体に、微粉砕粉の酸化防止ならびに発
火燃焼防止のため、純度95%以上のN2ガス、または
Arガスが使用されており、アトライター微粉砕法等の
湿式粉砕法に比し、粉砕効率が悪く、成型性も悪い問題
があった。 【0006】従来の乾式粉砕法の問題点を解決するため
に、ジェットミル粉砕前に粗粉砕粉にステアリン酸亜
鉛、ステアリン酸カルシウムなどステアリン酸系固体潤
滑剤を添加混合後、ジェットミル粉砕するか、あるいは
ジェットミル粉砕後の微粉砕粉に前記ステアリン酸系固
体潤滑剤を添加混合後、成形する方法が試みられている
が、希土類磁石用原料合金の微粉末に前記固体潤滑剤を
均一に混合することは極めて困難であり、また、プレス
成形時に単重バラツキを発生したり、割れなど不良の原
因となっていた。 【0007】この発明は、Fe−B−R系希土類磁石用
原料粉末の微粉砕方法において、特に、ジェットミル粉
砕における粉砕能率を大きく向上させると共にプレス充
填性にすぐれ、かつすぐれた配向性を有する磁石用原料
粉末の微粉砕方法の提供を目的としている。 【0008】 【課題を解決するための手段】発明者は、Fe−B−R
系希土類磁石用原料粉末のジェットミル微粉砕法におい
て、微粉砕能率の向上と共にプレス充填性にすぐれ、プ
レス原料微粉末の磁界中プレス成型時、容易に磁界方向
に配向する微粉末のプレス原料粉末の製造法について種
々研究した結果、鋳塊粉砕法あるいはCa還元法により
得られた磁石組成の特定粒径の粗粉砕粉に特定の液状潤
滑剤を特定量添加して、ジェットミル粉砕することによ
り、微粉砕後の平均粒径1.5〜5.0μmの微粉末の
粒子表面に均一に潤滑剤を被覆させることが可能とな
り、プレス原料粉末として所要の平均粒度を有する微粉
砕粉を得る能率が大幅に向上すると共に、粉末の流動性
が向上してプレス充填性が向上し、また、この発明によ
り得られた潤滑剤を表面に被覆した微粉砕粉は磁界中で
のプレス成型において、粉砕助剤の潤滑性により、微粉
砕粉の各粒子は磁界方向に容易に配向することにより、
すぐれた磁石特性を有する異方性焼結磁石が得られるこ
とを知見した。 【0009】この発明は、R(Rは希土類元素の少なく
とも1種からなる)10〜30at%、B1〜28wt
%、Fe42〜89at%(ただしFeの一部をCoに
て置換できる)を主成分とし、平均粒度10μm〜50
0μmの希土類磁石用原料粉末の粗粉砕粉に、少なくと
も1種の脂肪酸エステルを石油系溶剤又はアルコール系
溶剤に5wt%〜50wt%分散した液状潤滑剤を、
0.02〜5.0wt% 添加混合後、不活性ガスを用
いてジェットミル粉砕を行い、表面に前記潤滑剤が均一
被覆された平均粒度1.5μm〜5μmの微粉末に微粉
砕することを特徴とする希土類磁石用原料粉末の製造方
法である。 【0010】 【作用】この発明において、粗粉砕粉をジェットミルに
より微粉砕化するため添加する液状潤滑剤は、飽和ある
いは不飽和脂肪酸類エステル、並びに酸性塩としてほう
酸エステル等を石油系溶剤やアルコール系の溶剤に分散
させて用いる。液状潤滑剤中の脂肪酸エステル量は5w
t%〜50wt%が好ましい。 【0011】この発明の脂肪酸エステル系の潤滑剤とは
化学式 RCOOR′ で示されるものである。上記化
学式において、Rは、Cn2n+2(アルカン) あるい
は、Cn2n(アルケン) Cn2n-2(アルキン)の
構造式で示されるものである。 【0012】また、液状潤滑剤の添加量が、0.02w
t%未満では、粉末粒子への被覆が十分でなく、プレス
充填性や配向性の改善が認められず、また、5wt%を
超えると、粉砕助剤中の不揮発残分が焼結体中に残存し
て、焼結密度の低下を生じ、磁石特性の劣化を招来する
ので好ましくない。 【0013】この発明において、粗粉砕粉の平均粒度を
限定した理由は、平均粒度が10μm未満では原料粉末
を大気中で安全に取扱うことが困難であり、原料粉末の
酸化により磁石特性が劣化するため好ましくなく、ま
た、500μmを超えるとジェットミル粉砕機への原料
供給が困難となり、粉砕能率を著しく低下するので好ま
しくない。 【0014】この発明による微粉砕粉の平均粒度は、
1.5μm未満では粉末は極めて活性となり、プレス成
形などの工程において、発火する危険性があり、磁石特
性の劣化を生じ好ましくなく、また、5μmを超える
と、焼結に得られる永久磁石の結晶粒が大きくなり、容
易に磁化反転が起こり、保磁力の低下を招来し好ましく
ないため、1.5μm〜5μmの平均粒度とする。好ま
しい平均粒度は2.5μm〜4μmである。 【0015】以下にこの発明における、希土類磁石用粗
粉砕合金粉の組成限定理由を説明する。この発明の永久
磁石用粗粉砕合金粉に含有される希土類元素Rはイット
リウム(Y)を包含し、軽希土類及び重希土類を包含す
る希土類元素である。Rとしては、軽希土類をもって足
り、特にNd、Prが好ましい。また通例Rのうち1種
もって足りるが、実用上は2種以上の混合物(ミッシュ
メタル、ジジムなど)を入手上の便宜などの理由により
用いることができ、なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するもので差し支えない。Rは、R−Fe−B
系永久磁石を製造する合金粉末の必須元素であって、1
0原子%未満では高磁気特性、特に高保磁力が得られ
ず、30原子%を超えると残留磁束密度(Br)が低下
して、すぐれた特性の永久磁石が得られない。よって、
Rは10原子%〜30原子%の範囲とする。 【0016】Bは、R−Fe−B系永久磁石を製造する
合金粉末の必須元素であって、1原子%未満では高い保
磁力(iHc)は得られず、28原子%を超えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られない。よって、Bは、1原子%〜28原子%の範
囲とする。 【0017】必須元素であるFeは、42原子%未満で
は残留磁束密度(Br)が低下し、89%原子を超える
と高い保磁力が得られないので、Feは42原子%〜8
9原子%に限定する。また、Feの一部をCoで置換す
る理由は、永久磁石の温度特性を向上させる効果及び耐
食性を向上させる効果が得られるためであるが、Coは
Feの50%を超えると高い保磁力が得られず、すぐれ
た永久磁石が得られない。よって、CoはFeの50%
を上限とする。 【0018】この発明の合金粉末において、高い残留磁
束密度と高い保磁力を共に有するすぐれた永久磁石を得
るためには、R12原子%〜16原子%、B4原子%〜
12原子%、Fe72原子%〜84原子%が好ましい。
また、この発明による合金粉末は、R、B、Feの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC、3.5原子%以下の
P、2.5原子%以下のS、3.5原子%以下のCuの
うち少なくとも1種、合計量で4.0原子%以下で置換
することにより、磁石合金の製造性改善、低価格化が可
能である。 【0019】さらに、前記R、B、Fe合金あるいはC
oを含有するR−Fe−B合金に、9.5原子%以下の
Al、4.5原子%以下のTi、9.5原子%以下の
V、8.5原子%以下のCr、8.0原子%以下のM
n、5原子%以下のBi、12.5原子%以下のNb、
10.5原子%以下のTa、9.5原子%以下のMo、
9.5原子%以下のW、2.5原子%以下のSb、7原
子%以下のGe、3.5原子%以下のSn、5.5原子
%以下のZr、5.5原子%以下のHfのうち少なくと
も1種添加含有させることにより、永久磁石合金の高保
磁力が可能になる。 【0020】この発明のR−Fe−B系永久磁石におい
て、結晶相は主相が正方晶であることが不可欠であり、
特に、微細で均一な合金粉末を得て、すぐれた磁気特性
を有する焼結永久磁石を作成するのに効果的である。 【0021】 【実施例】出発原料として、純度99.9%の電解鉄、
B 19.8wt%含有のフェロボロン合金、純度9
9.7%以上のNd,Dyを使用し、これらを配合後高
周波溶解し、その後水冷銅鋳型に鋳造し、14.5at
%Nd−0.5at%Dy−6.2at%B−78.8
at%Feなる組成の鋳塊を得た。この後、前記鋳塊を
スタンプミルにより粗粉砕して、更に水素吸蔵による崩
壊などを行って平均粒度40μmの粗粉砕粉を得た。得
られた粗粉砕粉に表1の如く、液状潤滑剤として脂肪酸
エステル(品名 沸点180℃、有効成分25wt%、
シクロヘキサン75wt%)を添加配合し、ジェットミ
ルを使用し、不活性ガスN2ガスでガス圧7kg/m2
条件で微粉砕した。平均粒径約3μmの微粉末を製造す
る場合の粉砕能率を表1に表す。 【0022】得られた微粉砕粉をプレスの金型に装入
し、10kOeの磁界中で配向し、磁界に直角方向に
1.5ton/cm2の圧力で成形して、15mm×2
0mm×8mm寸法の成型体を得た。得られた成型体を
1100℃×4時間、Ar雰囲気中の条件にて焼結し、
さらに、Ar雰囲気中で600℃×1時間の時効処理を
行なった。得られた試験片の磁気特性を測定し、その結
果を表2に示す。なお、表1の比較例(No.6)は、
実施例1と同一の粗粉砕粉に潤滑剤としてステアリン酸
亜鉛を添加する以外は実施例1と同一の微粉砕条件、同
一製造条件にて得られた試験片であり、その磁石特性を
表2に示す。また、比較例(No.7)は実施例1と同
一の粗粉砕粉に潤滑剤を添加しない以外は実施例1と同
一の微粉砕条件、同一製造条件にて得られた試験片の磁
石特性を表2に示す。 【0023】 【表1】【0024】 【表2】 【0025】 【発明の効果】この発明は、R−B−Fe系希土類磁石
用原料粉末の平均粒度10μm〜500μmの粗粉砕粉
に脂肪酸エステルを液状化した潤滑剤を所定量 添加混
合後、不活性ガスを用いたジェットミル粉砕を行って、
平均粒度1.5μm〜5μmの微粉末に微粉砕すること
を特徴とし、微粉砕後の微粉末粒子の表面に均一に潤滑
剤を被覆させることが可能となり、プレス原料粉末とし
て所要の平均粒度を有する微粉砕粉を得る能率が大幅に
向上する効果が得られ、また、粉末の流動性が向上して
プレス充填性が大きく向上する。さらに、この発明は、
得られた微粉砕粉は表面に粉砕助剤を均一に被覆してい
ることから、磁界中でのプレス成型において、当該粉砕
助剤の潤滑性により、微粉砕粉の各粒子は磁界方向に容
易に配向し、すぐれた磁石特性を有する異方性焼結磁石
が得られる利点がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for finely pulverizing a raw material powder for an Fe--BR--Rare earth magnet, and a liquid lubricating method specific to a coarsely pulverized powder having a required composition. The present invention relates to a method for producing a raw material powder which is mixed with an agent and jet mill-pulverized to improve the pulverizing efficiency, to have excellent press filling properties, and to have excellent orientation. 2. Description of the Related Art In general, raw material powders for Fe-BR based rare earth magnets are usually prepared in the following steps 1) to 2) or 1) a to 1).
2) It is manufactured by the step b. 1) As a starting material, a rare earth metal, electrolytic iron, ferroboron alloy or electrolytic Co is melted by high frequency to produce an ingot. 2) After roughly pulverizing the ingot by the H 2 occlusion pulverization method,
Wet pulverization with an attritor or jet mill pulverization with an inert gas is used to obtain a raw material of fine powder of 1.5 μm to 5 μm. 1) a At least one of the rare earth oxides
Seed, iron powder and pure boron powder, at least one of ferroboron powder and boron oxide, or an alloy powder of the above constituent elements or a mixed powder prepared by mixing a mixed oxide with a required composition,
The metal Ca and CaCl 2 are mixed, and the reaction product obtained by performing reduction diffusion in an inert gas atmosphere is slurried and treated with water. 2) b The processed material is pulverized into a fine powder of 1.5 μm to 5 μm by wet pulverization using a ball mill attritor or dry pulverization using a jet mill to obtain a raw material powder. As described above, the fine pulverization of the raw material powder for the rare earth magnet is performed by wet pulverization. For example, the raw material powder is charged together with an organic solvent into a vessel such as an attritor and finely pulverized. The finely pulverized powder is C,
Since it contains O 2 and causes problems such as mixing of foreign substances due to abrasion of balls, it is shifting to a dry pulverization method. [0005] However, in the case of fine pulverization by a jet mill which is dry pulverization, a gas which generates a jet mill flow has a purity of 95 to prevent oxidation of the finely pulverized powder and ignition and combustion. % Or more of N 2 gas or Ar gas is used, and there is a problem that the pulverization efficiency is poor and the moldability is poor as compared with a wet pulverization method such as an attritor pulverization method. [0006] In order to solve the problems of the conventional dry pulverization method, a solid stearic acid lubricant such as zinc stearate and calcium stearate is added to the coarsely pulverized powder before the jet mill pulverization and then mixed, followed by jet mill pulverization. Alternatively, a method of adding and mixing the stearic acid-based solid lubricant to the finely pulverized powder after jet mill pulverization and then shaping the mixture has been attempted, but the solid lubricant is uniformly mixed with the fine powder of the raw alloy for the rare earth magnet. This is extremely difficult, and has caused a single weight variation at the time of press molding and causes defects such as cracks. The present invention relates to a method of finely pulverizing a raw material powder for a Fe-BR based rare earth magnet, particularly to greatly improve the pulverizing efficiency in jet mill pulverization, to have excellent press filling properties, and to have excellent orientation. It aims to provide a method for finely pulverizing raw material powder for magnets. Means for Solving the Problems The present inventors have proposed Fe—BR
In the jet mill pulverization of raw material powders for rare earth magnets, the press raw material powder has excellent press-filling properties with improved pulverization efficiency, and is easily oriented in the direction of the magnetic field when press-formed in the magnetic field. As a result of various studies on the production method of the magnet, a specific amount of a specific liquid lubricant was added to a coarsely pulverized powder having a specific particle diameter of a magnet composition obtained by an ingot pulverization method or a Ca reduction method, and then jet-milled. It is possible to evenly coat the surface of the fine powder having an average particle size of 1.5 to 5.0 μm with the lubricant after the pulverization, and to obtain a finely pulverized powder having a required average particle size as a press raw material powder. Is greatly improved, the fluidity of the powder is improved, and the press-filling property is improved. Further, the finely pulverized powder coated on the surface with the lubricant obtained by the present invention can be used for press molding in a magnetic field. By lubricating the grinding aid, each particle of the finely pulverized powder by easily oriented in the direction of the magnetic field,
It has been found that an anisotropic sintered magnet having excellent magnet properties can be obtained. According to the present invention, R (R is at least one kind of rare earth element) 10 to 30 at%, B 1 to 28 wt%
%, Fe 42 to 89 at% (Fe can be partially replaced by Co) as a main component, and an average particle size of 10 μm to 50%.
At least one fatty acid ester is added to a roughly pulverized powder of a raw material powder for a rare earth magnet of 0 μm in a petroleum solvent or an alcohol solvent.
A liquid lubricant dispersed in a solvent in an amount of 5 wt% to 50 wt% ,
After adding and mixing 0.02 to 5.0 wt%, the mixture is pulverized by a jet mill using an inert gas, and the lubricant is uniformly applied to the surface.
A method for producing a raw material powder for a rare earth magnet, which comprises pulverizing into a fine powder having a coated average particle size of 1.5 μm to 5 μm. In the present invention, the liquid lubricant to be added for finely pulverizing the coarsely pulverized powder with a jet mill is a saturated or unsaturated fatty acid ester, or a boric acid ester or the like as an acid salt in a petroleum solvent or alcohol. Used by dispersing in a system solvent. The amount of fatty acid ester in the liquid lubricant is 5w
t% to 50 wt% is preferred. The fatty acid ester lubricant of the present invention is represented by the chemical formula RCOOR '. In the above formula, R represents, or C n H 2n + 2 (alkane), those represented by the structural formula C n H 2n (alkene) C n H 2n-2 (alkyne). The amount of the liquid lubricant added is 0.02 watts.
If the amount is less than t%, the coating on the powder particles is not sufficient, and no improvement in the press-filling property and orientation is observed. If the amount exceeds 5% by weight, the non-volatile residue in the pulverization aid is contained in the sintered body. It is not preferable because it remains and lowers the sintered density, leading to deterioration of the magnet characteristics. In the present invention, the reason why the average particle size of the coarsely pulverized powder is limited is that if the average particle size is less than 10 μm, it is difficult to handle the raw material powder safely in the atmosphere, and the magnet characteristics deteriorate due to oxidation of the raw material powder. If the thickness exceeds 500 μm, it is not preferable because it becomes difficult to supply the raw materials to the jet mill pulverizer, and the pulverization efficiency is significantly reduced. The average particle size of the finely pulverized powder according to the present invention is:
If the particle size is less than 1.5 μm, the powder becomes extremely active, and there is a risk of ignition in a process such as press molding, causing deterioration of magnet properties. This is undesirable, and if it exceeds 5 μm, the crystal of the permanent magnet obtained by sintering is obtained. Since the size of the grains becomes large, magnetization reversal easily occurs, and the coercive force is lowered, which is not preferable. Preferred average particle size is from 2.5 μm to 4 μm. The reasons for limiting the composition of the coarsely pulverized alloy powder for rare earth magnets in the present invention will be described below. The rare earth element R contained in the coarsely crushed alloy powder for a permanent magnet of the present invention is a rare earth element containing yttrium (Y) and including light rare earths and heavy rare earths. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining, and R is not a pure rare earth element. It may contain impurities which are unavoidable in production as far as it is industrially available. R is R-Fe-B
Essential element of the alloy powder for producing the permanent magnet
If it is less than 0 at%, high magnetic properties, particularly high coercive force, cannot be obtained. If it exceeds 30 at%, the residual magnetic flux density (Br) is reduced, and a permanent magnet having excellent properties cannot be obtained . I'm,
R is in the range of 10 at% to 30 at%. B is an essential element of the alloy powder for producing the R—Fe—B permanent magnet. If it is less than 1 atomic%, a high coercive force (iHc) cannot be obtained. Since the density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is set in the range of 1 to 28 atomic%. Fe, which is an essential element, has a residual magnetic flux density (Br) lower than 42 atomic%, and a high coercive force cannot be obtained if it exceeds 89 atomic%.
Limited to 9 atomic%. The reason why part of Fe is replaced by Co is that the effect of improving the temperature characteristics of the permanent magnet and the effect of improving the corrosion resistance are obtained. However, when Co exceeds 50% of Fe, a high coercive force is obtained. No permanent magnet can be obtained. Therefore, Co is 50% of Fe
Is the upper limit. In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy powder of the present invention, R12 atomic% to 16 atomic%, B4 atomic%
It is preferably 12 atomic% and Fe 72 to 84 atomic%.
In addition, the alloy powder according to the present invention includes R, B, Fe,
The presence of unavoidable impurities in industrial production can be tolerated.
Of at least one of C of 4.0 atomic% or less, P of 3.5 atomic% or less, S of 2.5 atomic% or less, and Cu of 3.5 atomic% or less in a total amount of 4.0%. By substituting at 0 atomic% or less, the productivity of the magnet alloy can be improved and the price can be reduced. Further, the R, B, Fe alloy or C
In an R-Fe-B alloy containing o, 9.5 atomic% or less of Al, 4.5 atomic% or less of Ti, 9.5 atomic% or less of V, 8.5 atomic% or less of Cr, M of 0 atomic% or less
n, Bi at 5 atomic% or less, Nb at 12.5 atomic% or less,
10.5 atomic% or less of Ta, 9.5 atomic% or less of Mo,
9.5 atomic% or less W, 2.5 atomic% or less Sb, 7 atomic% or less Ge, 3.5 atomic% or less Sn, 5.5 atomic% or less Zr, 5.5 atomic% or less By adding and including at least one of Hf, a high coercive force of the permanent magnet alloy becomes possible. In the R—Fe—B permanent magnet of the present invention, it is essential that the main phase of the crystal phase is tetragonal.
In particular, it is effective for obtaining a fine and uniform alloy powder and producing a sintered permanent magnet having excellent magnetic properties. EXAMPLES As starting materials, electrolytic iron having a purity of 99.9% was used.
B Ferroboron alloy containing 19.8 wt%, purity 9
9.7% or more of Nd and Dy are used, and after mixing these, high-frequency melting is performed, and then cast into a water-cooled copper mold to obtain 14.5 at.
% Nd-0.5 at% Dy-6.2 at% B-78.8
An ingot having a composition of at% Fe was obtained. Thereafter, the ingot was coarsely pulverized by a stamp mill and further collapsed by hydrogen absorption to obtain a coarsely pulverized powder having an average particle size of 40 μm. As shown in Table 1, a fatty acid ester (product name: boiling point: 180 ° C., active ingredient: 25 wt%,
Cyclohexane (75 wt%) was added and blended, and finely pulverized with an inert gas N 2 gas at a gas pressure of 7 kg / m 2 using a jet mill. Table 1 shows the crushing efficiency when producing fine powder having an average particle size of about 3 μm. The obtained finely pulverized powder is charged into a press mold, oriented in a magnetic field of 10 kOe, and molded in a direction perpendicular to the magnetic field at a pressure of 1.5 ton / cm 2 to form a 15 mm × 2
A molded article having a size of 0 mm × 8 mm was obtained. The obtained molded body was sintered at 1100 ° C. for 4 hours under conditions in an Ar atmosphere,
Further, aging treatment was performed at 600 ° C. for 1 hour in an Ar atmosphere. The magnetic properties of the obtained test pieces were measured, and the results are shown in Table 2. In addition, the comparative example (No. 6) of Table 1 is:
The test pieces were obtained under the same finely pulverizing conditions and the same manufacturing conditions as in Example 1 except that zinc stearate was added as a lubricant to the same coarsely pulverized powder as in Example 1. Shown in In Comparative Example (No. 7), the magnet properties of the test pieces obtained under the same fine pulverization conditions and the same production conditions as in Example 1 except that no lubricant was added to the same coarsely pulverized powder as in Example 1 Are shown in Table 2. [Table 1] [Table 2] According to the present invention, a predetermined amount of a lubricant obtained by liquefying a fatty acid ester is added to coarsely ground powder having an average particle size of 10 μm to 500 μm of a raw material powder for an RB—Fe rare earth magnet, and then mixed. Performing jet mill pulverization using active gas,
It is characterized by being finely pulverized to a fine powder having an average particle size of 1.5 μm to 5 μm, and it is possible to uniformly coat the surface of the fine powder particles after the fine pulverization with a lubricant. The effect of greatly improving the efficiency of obtaining the finely pulverized powder is obtained, and the fluidity of the powder is improved, and the press filling property is greatly improved. In addition, the present invention
Since the obtained finely pulverized powder uniformly coats the pulverization aid on the surface, each particle of the finely pulverized powder is easily oriented in the direction of the magnetic field due to the lubricity of the pulverization aid in a press molding in a magnetic field. There is an advantage that an anisotropic sintered magnet having excellent magnet properties can be obtained.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/00 303 H01F 1/06 A (56)参考文献 特開 平5−94922(JP,A) 特開 平1−119603(JP,A) 特開 平1−255602(JP,A) 特開 平4−7804(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/00 - 1/117 B22F 1/00 - 8/00 B22F 9/00 - 9/30 C22C 33/02 C22C 38/00 303 C10M 101/00 - 177/00 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C22C 38/00 303 H01F 1/06 A (56) References JP-A-5-94922 (JP, A) JP-A-1-119603 (JP, A) JP-A-1-255602 (JP, A) JP-A-4-7804 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 1/00-1/117 B22F 1 / 00-8/00 B22F 9/00-9/30 C22C 33/02 C22C 38/00 303 C10M 101/00-177/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 R(Rは希土類元素の少なくとも1種か
らなる)10〜30at%、B1〜28at%、Fe4
2〜89at%(ただしFeの1部をCoにて置換でき
る)を主成分とし、平均粒度10μm〜500μmの希
土類磁石用原料粉末の粗粉砕粉に、少なくとも1種の脂
肪酸エステル少なくとも1種の脂肪酸エステルを石油系
溶剤又はアルコール系溶剤に5wt%〜50wt%分散
した液状潤滑剤を、0.02〜5.0wt% 添加混合
後、不活性ガスを用いたジェットミル粉砕を行い、表面
に前記潤滑剤が均一被覆された平均粒度1.5μm〜5
μmの微粉末に微粉砕することを特徴とする希土類磁石
用原料粉末の製造方法。
(57) Claims 1. R (R is at least one of rare earth elements) 10 to 30 at%, B 1 to 28 at%, Fe4
At least one fatty acid ester and at least one fatty acid are added to coarsely pulverized raw material powder for a rare earth magnet having a main component of 2 to 89 at% (a part of Fe can be replaced by Co) and having an average particle size of 10 μm to 500 μm. Esters to petroleum
5wt% -50wt% dispersion in solvent or alcohol solvent
After adding and mixing 0.02 to 5.0 wt% of the obtained liquid lubricant, the mixture was subjected to jet mill pulverization using an inert gas to obtain a surface.
The average particle size of the lubricant is uniformly coated on 1.5μm~5
A method for producing a raw material powder for a rare earth magnet, which comprises pulverizing the raw material powder into a fine powder of μm.
JP27061994A 1994-10-07 1994-10-07 Production method of raw material powder for rare earth magnet Expired - Lifetime JP3459477B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27061994A JP3459477B2 (en) 1994-10-07 1994-10-07 Production method of raw material powder for rare earth magnet
US08/523,928 US5666635A (en) 1994-10-07 1995-09-06 Fabrication methods for R-Fe-B permanent magnets
TW084109510A TW290697B (en) 1994-10-07 1995-09-12
AT95306507T ATE183016T1 (en) 1994-10-07 1995-09-14 METHOD FOR PRODUCING R-FE-B PERMANENT MAGNETS
EP95306507A EP0706190B1 (en) 1994-10-07 1995-09-14 Fabrication method for R-Fe-B permanent magnets
DE69511202T DE69511202T2 (en) 1994-10-07 1995-09-14 Process for the production of R-Fe-B permanent magnets
CN95117263A CN1120507C (en) 1994-10-07 1995-10-05 Method for producing R-Fe-B series permanent magnet
KR1019950034256A KR100202161B1 (en) 1994-10-07 1995-10-06 Fabrication methods for r-fe-b permanent magnets
RU95117066A RU2112627C1 (en) 1994-10-07 1995-10-06 PROCESS OF MANUFACTURE OF R-Fe-B PERMANENT MAGNETS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27061994A JP3459477B2 (en) 1994-10-07 1994-10-07 Production method of raw material powder for rare earth magnet

Publications (2)

Publication Number Publication Date
JPH08111308A JPH08111308A (en) 1996-04-30
JP3459477B2 true JP3459477B2 (en) 2003-10-20

Family

ID=17488616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27061994A Expired - Lifetime JP3459477B2 (en) 1994-10-07 1994-10-07 Production method of raw material powder for rare earth magnet

Country Status (1)

Country Link
JP (1) JP3459477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597660A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288679C (en) * 1998-04-22 2006-12-06 株式会社新王磁材 Method for producing R-Fe-B permanent magnet, and lubricating agent for use in shaping the same
CN104190944B (en) * 2014-08-12 2016-04-13 宁波韵升股份有限公司 A kind of preparation method of Sintered NdFeB magnet and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597660A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
EP2597659A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Also Published As

Publication number Publication date
JPH08111308A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
US5666635A (en) Fabrication methods for R-Fe-B permanent magnets
CN112136192B (en) Method for producing rare earth sintered permanent magnet
KR100187611B1 (en) Powder mixture for use in pressing to prepare rare earth/iron-based sintered permanent magnet
CN112119475B (en) Method for producing rare earth sintered permanent magnet
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
JP7463791B2 (en) R-T-B rare earth sintered magnet and method for producing the same
JP4662009B2 (en) Rare earth permanent magnet manufacturing method
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JP2000306753A (en) MANUFACTURE OF R-Fe-B PERMANENT MAGNET AND LUBRICANT FOR FORMING THE SAME
JP4282002B2 (en) Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP3498395B2 (en) Manufacturing methods and molding materials for rare earth and iron-based sintered permanent magnets
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JP4753044B2 (en) Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet
JPS6398107A (en) Manufacture of rare earth permanent magnet
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet
JPH08167516A (en) Manufacturing for material of r-fe-b-based permanent magnet
WO2023080169A1 (en) R-t-b based permanent magnet
JP2022174820A (en) Rare earth sintered magnet and method for producing rare earth sintered magnet
JPH08316017A (en) Manufacture of rare earth element-iron-boron sintered permanent magnet and molding material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

EXPY Cancellation because of completion of term