JPS6398107A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPS6398107A
JPS6398107A JP61243214A JP24321486A JPS6398107A JP S6398107 A JPS6398107 A JP S6398107A JP 61243214 A JP61243214 A JP 61243214A JP 24321486 A JP24321486 A JP 24321486A JP S6398107 A JPS6398107 A JP S6398107A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
rare earth
powder
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61243214A
Other languages
Japanese (ja)
Other versions
JP2682619B2 (en
Inventor
Hideki Nakamura
英樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61243214A priority Critical patent/JP2682619B2/en
Publication of JPS6398107A publication Critical patent/JPS6398107A/en
Application granted granted Critical
Publication of JP2682619B2 publication Critical patent/JP2682619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Abstract

PURPOSE:To obtain a permanent magnet which contains little oxygen and is excellent in magnetic characteristics by mixing an organic antioxidant in a rough alloy powder material and by grinding it finely. CONSTITUTION:The mean grain size of a rough alloy powder material is made 30-60 meshes or under, the mean grain size of fine powder is made 1-10 mum, mixed and compounded with an organic antioxidant by a mortar or a mixer and stirrer and ground further finely. During being ground finely, the organic antioxidant is mixed in the powder uniformly and each particle of the fine powder is covered by such as a surface covering agent. For the organic antioxidant, an organic substance which protects an R-Fe-B alloy from oxidation, reduces the friction between a metal mold and a form and is vaporized and dispersed by sintering such as paraffin which is so far used for the surface covering agent is used. The compounded rate of the organic antioxidant is made 0.001-0.2 weight against the R-Fe-B alloy 100 weight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化され易い希土類元素(Yを含む、以下同
じ)を含む希土類永久磁石用合金粉末を粉末冶金法で永
久磁石に作製する方法の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing a permanent magnet using a powder metallurgy method from a rare earth alloy powder for a permanent magnet containing an easily oxidized rare earth element (including Y, the same applies hereinafter). This is related to the improvement of.

〔従来の技術〕[Conventional technology]

希土類永久磁石の中で、希土類元素、鉄およびホウ素を
必須元素とする合金(以下、R−Fe−B合金という)
は高価なCoを必須成分とせず、かつ安価なFeおよび
Bを多量に使用できるため、従来の高性能磁石の代表で
あった希土類−コバルト磁石より原料コストが安価であ
り、しかも希土類−コバルト磁石を稜ぐ高性能が期待で
きるため、その実用化に向かっての研究が活発に為され
ている。
Among rare earth permanent magnets, alloys containing rare earth elements, iron, and boron as essential elements (hereinafter referred to as R-Fe-B alloy)
Because it does not require expensive Co as an essential component and can use large amounts of inexpensive Fe and B, the raw material cost is lower than that of rare earth-cobalt magnets, which have been typical of conventional high-performance magnets, and rare earth-cobalt magnets Since it is expected to have high performance that exceeds the above, research is being actively conducted toward its practical application.

R−Fe−B合金磁石の製造方法の一つに粉末冶金法が
ある。この方法では、一般に合金を溶製し、造塊した後
、得られたインゴットを粗粉砕および微粉砕し、最終的
には平均粒径が数μmの微粉末とする段階が実施される
。かくして得られた微粉末は各種用途に合わせた形状に
成型された後に、焼結、時効等の工程を経て、永久磁石
となる。
One of the methods for manufacturing R-Fe-B alloy magnets is a powder metallurgy method. In this method, the alloy is generally melted and agglomerated, and then the obtained ingot is coarsely and finely crushed to finally form a fine powder with an average particle size of several μm. The fine powder thus obtained is molded into a shape suitable for various uses, and then undergoes processes such as sintering and aging to become a permanent magnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

R−Fe−B合金は非常に酸化し易く、酸化により磁気
特性は劣化するため、パラフィン等の表面被覆剤を微粉
砕粉末と混合したり、あるいは成型時の潤滑剤であるス
テアリン酸亜鉛などを微粉砕粉末と混合するなどの工夫
により微粉末の酸化を妨げる手段が一般に採用されてい
る。しかしながら、これらの手段による処理を経て製造
されたR−Fe−B合金磁石には次のような問題がある
ことに本発明者らは着目した。
R-Fe-B alloy is very easily oxidized, and its magnetic properties deteriorate due to oxidation. Therefore, surface coating agents such as paraffin are mixed with finely ground powder, or zinc stearate, which is a lubricant during molding, is used. Generally, measures are taken to prevent oxidation of the fine powder, such as by mixing it with finely ground powder. However, the inventors of the present invention have noticed that R-Fe-B alloy magnets manufactured through treatments using these methods have the following problems.

(1)活性な表面の単位重量当たりの割合が極めて大で
ある微粉の状態でR−Fe−B合金とパラフィン、ステ
アリン酸亜鉛などとを混合するために、混合前に既にか
なり酸化が進行しているか且/または混合中に酸化が進
行することに起因して、製品の酸素含有量がかなり高く
なる。かかる製品の酸素含有量を低くすると磁気特性の
向上が期待できる。
(1) Because the R-Fe-B alloy is mixed with paraffin, zinc stearate, etc. in the form of fine powder with an extremely large proportion of active surface per unit weight, oxidation has already progressed considerably before mixing. Due to the oxidation that occurs during mixing and/or mixing, the oxygen content of the product can be quite high. If the oxygen content of such products is lowered, the magnetic properties can be expected to improve.

(2)パラフィン、ステアリン酸亜鉛などと微粉砕粉末
を混合するという工程が通常の粉末冶金工程に附加され
る。
(2) A step of mixing finely ground powder with paraffin, zinc stearate, etc. is added to the normal powder metallurgy process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した問題点を効果的に解決すべく、合金
粗粉材に酸化防止有機剤を混合し、微粉砕を行なうこと
を特徴とし、その後通常の粉末冶金法により、酸素量が
少なくかつ磁気特性が優れた永久磁石を得る希土類永久
磁石の製造方法である。
In order to effectively solve the above-mentioned problems, the present invention is characterized by mixing an antioxidant organic agent into a coarse alloy powder material and pulverizing it, and then using a normal powder metallurgy method to reduce the amount of oxygen. The present invention also provides a method for producing a rare earth permanent magnet, which provides a permanent magnet with excellent magnetic properties.

本発明において、合金粗粉材および微粉材は従来、それ
ぞれ、ディスクミル、およびジェットミルにより粉砕さ
れる平均粒径のものを指し、合金粗粉材の典型的平均粒
径は30〜60メソシユアンダーであり、微粉の典型的
平均粒径ば1〜10μmである。上記合金粗粉材の平均
粒径では、単位重量当たりの比表面積が小さいため、通
常の方法で粉砕しても酸化は少ない。かかる合金粗粉材
と酸化防止有機剤とを乳鉢あるいは混合攪拌機で混合す
るなどの方法で配合し、さらに微粉砕を行なうと、微粉
砕中に酸化防止有機剤が粉末中に均一に混合されまた微
粉末の個々の粒子は表面被覆剤などにより被覆される。
In the present invention, alloy coarse powder material and fine powder material refer to average particle diameters that are conventionally pulverized by a disk mill and a jet mill, respectively, and the typical average particle diameter of alloy coarse powder material is 30 to 60 mesos. The typical average particle size of the fine powder is 1 to 10 μm. Since the average particle size of the above alloy coarse powder material has a small specific surface area per unit weight, oxidation is small even if it is pulverized by a normal method. When the alloy coarse powder material and the antioxidant organic agent are mixed in a mortar or mixer, and then finely pulverized, the antioxidant organic agent is uniformly mixed into the powder during the pulverization. The individual particles of fine powder are coated with a surface coating agent or the like.

酸化防止有機剤としては、従来表面被覆剤として使用さ
れているパラフィンなど、酸化からR−Fe−B合金を
保護し、成型工程では金型と成型体の摩擦を低減する作
用をし、焼結工程では揮散する有機物質を用いることが
できる。また従来離型剤として使用されているステアリ
ン酸亜鉛、ステアリン酸銅などを使用する事ができる。
Antioxidant organic agents, such as paraffin, which is conventionally used as a surface coating agent, protect the R-Fe-B alloy from oxidation, reduce friction between the mold and the molded body during the molding process, and reduce the friction between the mold and the molded body during the sintering process. Organic substances that volatilize can be used in the process. Furthermore, zinc stearate, copper stearate, etc., which are conventionally used as mold release agents, can be used.

なお、これらに限らず、成型中の粉末の流動、充填の障
害とならないバルチメン酸などの有機物質を使用するこ
ともできる。
Note that the present invention is not limited to these, and organic substances such as bartimenic acid that do not interfere with powder flow and filling during molding may also be used.

R−Fe−B合金と酸化防止有機剤との配合量割合は特
に制限がないが、前者が多すぎると酸化防止の効果がな
く、一方後者が多すぎると成型工程に悪影響があり、ま
た燃焼ガスの処理が厄介になるため、適当なる配合量比
に調節する。その−例は、R−Fe−B合金100重量
部に対して酸化防止有機剤を0.001〜0.2重量部
である。
There is no particular limit to the blending ratio of the R-Fe-B alloy and the antioxidant organic agent, but too much of the former will have no oxidation prevention effect, while too much of the latter will have a negative impact on the molding process and may cause combustion. Since gas treatment becomes difficult, adjust the blending ratio to an appropriate level. An example thereof is 0.001 to 0.2 parts by weight of the antioxidant organic agent per 100 parts by weight of the R-Fe-B alloy.

R−Fe−B合金の組成は、本発明においては、何等制
限されない。即ち、永久磁石として有用な磁気的性質を
具備するに足る程度の希土類元素を含み、このために易
酸化性を帯びるあらゆるR−Fe−B合金に本発明法が
適用できる。その組成の一具体例を示すと、5〜35%
R150〜93%Fe。
The composition of the R-Fe-B alloy is not limited in any way in the present invention. That is, the method of the present invention can be applied to any R-Fe-B alloy that contains rare earth elements in an amount sufficient to provide magnetic properties useful as a permanent magnet and is therefore easily oxidized. A specific example of its composition is 5 to 35%
R150-93% Fe.

2〜15%Bであり、Feは鉄族遷位金属で置換可能で
あり、また添加元素として、V、Ta、W。
2 to 15% B, Fe can be replaced with iron group transition metal, and additional elements include V, Ta, and W.

Nb  、Mo  、Cr  、Ti  、Hf  、
Ni  、Sn  、Zr。
Nb, Mo, Cr, Ti, Hf,
Ni, Sn, Zr.

Mn  、Ge 、Biなどを適当量添加する組成例も
可能である。希土類元素としては、Ndを始めとしてあ
らゆる元素を用いることができるが、特にミツシュメタ
ルを用いたR−Fe−B合金に本発明法を適用すると酸
化防止の効果が大きく、著しい磁気特性の改良がある。
A composition example in which appropriate amounts of Mn, Ge, Bi, etc. are added is also possible. As the rare earth element, any element including Nd can be used, but especially when the method of the present invention is applied to the R-Fe-B alloy using Mitsushi metal, the effect of preventing oxidation is large and the magnetic properties are significantly improved. .

微粉砕後の工程は通常の粉末冶金工程であり、本発明が
特徴とするところではない。唯、この工程は酸化防止有
機剤を揮散させるために、本発明において必須の工程で
ある。
The process after pulverization is a normal powder metallurgy process and is not a feature of the present invention. However, this step is an essential step in the present invention in order to volatilize the antioxidant organic agent.

〔作 用〕[For production]

R−Fe−B合金の粗粉と表面被覆剤などを混合しなが
ら微粉砕すると、微粉砕工程で表面被覆剤などが粉末の
表面を被覆して空気による酸化の進行を妨げ、酸化され
易い微粉が多くなるにともなって表面被覆剤が粉末をよ
り密に被覆し、表面が活性な微粉状態でのR−Fe−B
系合金と表面被覆剤との混合のだめの工程が省略され、
これらの作用によって、焼結磁石中の酸素量が少なくな
りそして磁気特性が向上する。
When coarse powder of R-Fe-B alloy is mixed with a surface coating agent and pulverized, the surface coating agent coats the surface of the powder during the pulverization process and prevents the progress of oxidation by air, resulting in a fine powder that is easily oxidized. As the amount of R-Fe-B increases, the surface coating agent coats the powder more densely, and the R-Fe-B in the fine powder state with active surface
The process of mixing the alloy and surface coating agent is omitted.
These effects reduce the amount of oxygen in the sintered magnet and improve its magnetic properties.

以下、実施例によりさらに具体的に本発明を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例〕 実施例I Nd + J7Fe76の組成を有する合金を溶製した
後、造塊し、得られたインゴットを32メソシユ以下の
粒度まで粗粉砕を行なった。得られた粗粉に対して0.
05重量%のステア−リン酸亜鉛をN2ガス雰囲気で混
合、攪拌した後、ジェット・ミル粉砕を行ない、平均粒
径が4μmの微粉を得た。
(Example) Example I After melting an alloy having a composition of Nd + J7Fe76, it was ingot-formed, and the obtained ingot was coarsely ground to a particle size of 32 mesosinus or less. 0.
After mixing and stirring 0.5% by weight of zinc stearate phosphate in an N2 gas atmosphere, jet milling was performed to obtain fine powder with an average particle size of 4 μm.

この微粉を10kOeの磁場中で1,5ton/cml
の圧力で圧粉した後、1100℃、2時間、Arガス雰
囲気中で焼結し、続いて600℃、1時間で時効処理を
行なった(試料A)。
This fine powder was heated to 1.5 ton/cm in a 10 kOe magnetic field.
The powder was compacted at a pressure of 1,100° C. for 2 hours in an Ar gas atmosphere, and then aged at 600° C. for 1 hour (Sample A).

比較例1 実施例1で得られた32メツシユ以下の粗粉をジェット
・ミル粉砕して、平均粒径が4μmの微粉を得た。得ら
れた微粉に対して0.05重量%のステアアリン酸亜鉛
をN2ガス雰囲気で混合、撹拌した後、実施例1と同じ
条件で磁場中成形、焼結、時効を行なった(試料B)。
Comparative Example 1 The coarse powder of 32 meshes or less obtained in Example 1 was pulverized with a jet mill to obtain a fine powder with an average particle size of 4 μm. After mixing and stirring 0.05% by weight of zinc stearate with respect to the obtained fine powder in an N2 gas atmosphere, molding in a magnetic field, sintering, and aging were performed under the same conditions as in Example 1 (Sample B).

実施例2 組成が((Ceo、 tLao、 a) o、 s (
Ndo、 bsPro、 + 5Dyo、 z) o、
 s)o、 + 7 ((Fe0. q、Alo、 0
3) 0.92B0.08) 0.83である合金を実
施例1と同じ方法で平均粒径が4μmのia粉にした。
Example 2 The composition is ((Ceo, tLao, a) o, s (
Ndo, bsPro, +5Dyo, z) o,
s) o, + 7 ((Fe0. q, Alo, 0
3) 0.92B0.08) 0.83 alloy was made into IA powder with an average particle size of 4 μm in the same manner as in Example 1.

この微粉を10kOeの磁場中でl、 5 ton/ 
a+lの圧力で圧粉した後、1070℃、2時間、Ar
ガス雰囲気中で焼結し、続いて600’C11時間で時
効処理を行なった(試料C)。
This fine powder was heated in a magnetic field of 10 kOe at 1,5 ton/
After compacting with a pressure of a + l, Ar
It was sintered in a gas atmosphere and then aged at 600'C for 11 hours (Sample C).

比較例2 実施例2の粗粉を比較例1と同様に微粉にし、得られた
微粉に対して0.05重量%のステア;リン酸亜鉛をN
2ガス雰囲気で混合、攪拌した後、実施例2と同じ条件
で磁場中成形、焼結、時効を行なった(試料D)。
Comparative Example 2 The coarse powder of Example 2 was made into fine powder in the same manner as Comparative Example 1, and 0.05% by weight of stare was added to the resulting fine powder; zinc phosphate was added with N
After mixing and stirring in a two-gas atmosphere, molding in a magnetic field, sintering, and aging were performed under the same conditions as in Example 2 (Sample D).

試料A〜Dの磁気特性および焼結体中の酸素量を表1に
示す。
Table 1 shows the magnetic properties of samples A to D and the amount of oxygen in the sintered bodies.

表  1 表1に示すように、本発明の実施例では製品の酸素量が
少なくなる。唯、微粉砕前の酸化、微粉砕中の若干の酸
化、および粉末冶金工程での酸化が避けられないため、
製品の酸素量が痕跡量になっているのではない。それに
も拘わらず、保磁力(iHc)および最大エネルギ積(
BH)、、、の向上はNd系R−Fe−B合金磁石およ
びミ’7シユメタル系R−Fe−B合金磁石の両者で顕
著である。
Table 1 As shown in Table 1, in the examples of the present invention, the amount of oxygen in the product is reduced. However, oxidation before pulverization, some oxidation during pulverization, and oxidation during the powder metallurgy process are unavoidable.
The amount of oxygen in the product is not a trace amount. Nevertheless, the coercive force (iHc) and the maximum energy product (
The improvement in BH) is remarkable for both the Nd-based R-Fe-B alloy magnet and the Mi'7 metal-based R-Fe-B alloy magnet.

〔発明の効果〕〔Effect of the invention〕

本発明によると、R−Fe−B合金磁石の製品酸素量を
簡筆かつ確実な手段で低減するとともに、磁気特性の顕
著な向上を達成できる。このためのコスト増要因は殆ど
なく、却って微粉末と表面被覆剤との混合を省略するこ
とによるコスト低減が期待できる。よって、本発明は、
R−Fe−B合金磁石の弱点である酸化による磁気特性
劣化を軽減する点で工業的に有意義である。
According to the present invention, it is possible to reduce the amount of oxygen in a product of an R-Fe-B alloy magnet by a simple and reliable means, and to achieve a remarkable improvement in magnetic properties. There is almost no cost increase factor for this, and on the contrary, cost reduction can be expected by omitting the mixing of the fine powder and the surface coating agent. Therefore, the present invention
It is industrially significant in that it reduces deterioration of magnetic properties due to oxidation, which is a weak point of R-Fe-B alloy magnets.

Claims (1)

【特許請求の範囲】 1、希土類元素(Yを含む)、鉄およびホウ素を必須元
素とする合金を粗粉砕および微粉砕して、粉末冶金法に
より永久磁石を製造する方法において、合金粗粉材に酸
化防止有機剤を配合して微粉砕を行ない、その後通常の
粉末冶金法により、酸素量が少なくかつ磁気特性が優れ
た永久磁石を得ることを特徴とする希土類永久磁石の製
造方法。 2、希土類元素がミッシュメタルである特許請求の範囲
第1項記載の希土類永久磁石の製造方法。
[Claims] 1. In a method for manufacturing a permanent magnet by a powder metallurgy method by coarsely pulverizing and finely pulverizing an alloy containing rare earth elements (including Y), iron and boron as essential elements, an alloy coarse powder material A method for producing a rare earth permanent magnet, which comprises blending an antioxidant organic agent into finely pulverizing the mixture and then using a normal powder metallurgy method to obtain a permanent magnet with a low oxygen content and excellent magnetic properties. 2. The method for producing a rare earth permanent magnet according to claim 1, wherein the rare earth element is a misch metal.
JP61243214A 1986-10-15 1986-10-15 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP2682619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243214A JP2682619B2 (en) 1986-10-15 1986-10-15 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243214A JP2682619B2 (en) 1986-10-15 1986-10-15 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPS6398107A true JPS6398107A (en) 1988-04-28
JP2682619B2 JP2682619B2 (en) 1997-11-26

Family

ID=17100522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243214A Expired - Lifetime JP2682619B2 (en) 1986-10-15 1986-10-15 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2682619B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310797A (en) * 2005-03-30 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet
JP2006310786A (en) * 2005-03-28 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet and method for mixing material powder and lubricant
CN112413023A (en) * 2020-11-20 2021-02-26 贵州新安航空机械有限责任公司 Processing method of sheet powder metallurgy brake disc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134101A (en) * 1984-07-25 1986-02-18 Sumitomo Special Metals Co Ltd Molding improving agent of alloy powder for permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134101A (en) * 1984-07-25 1986-02-18 Sumitomo Special Metals Co Ltd Molding improving agent of alloy powder for permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310786A (en) * 2005-03-28 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet and method for mixing material powder and lubricant
JP4716020B2 (en) * 2005-03-28 2011-07-06 Tdk株式会社 Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant
JP2006310797A (en) * 2005-03-30 2006-11-09 Tdk Corp Process for producing rare earth permanent magnet
CN112413023A (en) * 2020-11-20 2021-02-26 贵州新安航空机械有限责任公司 Processing method of sheet powder metallurgy brake disc
CN112413023B (en) * 2020-11-20 2022-11-08 贵州新安航空机械有限责任公司 Processing method of thin sheet powder metallurgy brake disc

Also Published As

Publication number Publication date
JP2682619B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
EP3827916A1 (en) A manufacturing method of sintered nd-fe-b permanent magnet
JPWO2003001541A1 (en) Rare earth magnet and method of manufacturing the same
EP0249973A1 (en) Permanent magnetic material and method for producing the same
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPS6393841A (en) Rare-earth permanent magnet alloy
CN112119475A (en) Method for producing rare earth sintered permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH0354806A (en) Manufacture of rare-earth permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
JPS6398107A (en) Manufacture of rare earth permanent magnet
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
CN114496438A (en) Method for manufacturing rare earth sintered magnet
JP2021150621A (en) R-t-b series rare earth sintered magnet and manufacturing method thereof
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JPH10321451A (en) Rare earth sintered magnet manufacturing method
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JPH08167516A (en) Manufacturing for material of r-fe-b-based permanent magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JP3171640B2 (en) Method for producing magnet and method for producing magnet powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term