JPH066727B2 - Method for producing raw material powder for permanent magnet material - Google Patents

Method for producing raw material powder for permanent magnet material

Info

Publication number
JPH066727B2
JPH066727B2 JP61174329A JP17432986A JPH066727B2 JP H066727 B2 JPH066727 B2 JP H066727B2 JP 61174329 A JP61174329 A JP 61174329A JP 17432986 A JP17432986 A JP 17432986A JP H066727 B2 JPH066727 B2 JP H066727B2
Authority
JP
Japan
Prior art keywords
powder
permanent magnet
atom
raw material
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61174329A
Other languages
Japanese (ja)
Other versions
JPS6333506A (en
Inventor
晶康 太田
日登志 山本
節夫 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61174329A priority Critical patent/JPH066727B2/en
Publication of JPS6333506A publication Critical patent/JPS6333506A/en
Publication of JPH066727B2 publication Critical patent/JPH066727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−R系永久磁石材料の原料用粉末
を製造する方法に係り、特に、取扱いが安全であり、か
つ大気中でのプレス成形が可能で安定したFe−B−R
系永久磁石材料用原料粉末の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a powder for a raw material of a Fe—BR permanent magnet material, and in particular, it is safe to handle and press-molded in the atmosphere. Possible and stable Fe-BR
The present invention relates to a method for producing a raw material powder for a permanent magnet material.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求めら
れ、さらに資源的に豊富で、今後の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやCoを含有しない新しい高性能永
久磁石としてFe−B−R系(RはYを含む希土類元素の
うち少なくとも1種)永久磁石を提案した(特開昭59-4600
8号、特開昭59-64733号、特開昭59-89401号、特開昭59-
132104号)。この永久磁石は、RとしてNdやPrを中心
とする資源的に豊富な軽希土類を用い、Feを主成分と
して20MGOe以上の極めて高いエネルギー積を示す、
すぐれた永久磁石である。
BACKGROUND ART At present, there is a demand for a permanent magnet material that has high magnetic properties and is inexpensive, and there is a strong demand for a permanent magnet material that is rich in resources and that can be stably supplied in the future with a composition element. As a new high-performance permanent magnet containing no expensive Sm or Co, an Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) is proposed (Japanese Patent Laid-Open No. 59-4600).
No. 8, JP-A-59-64733, JP-A-59-89401, JP-A-59-
No. 132104). This permanent magnet uses a resource-rich light rare earth centered on Nd and Pr as R, and has an extremely high energy product of 20 MGOe or more with Fe as the main component.
It is an excellent permanent magnet.

上記の新規なFe−B−R系、Fe−Co−B−R系(Rは
Yを含む希土類元素のうち少なくとも1種)永久磁石
を、製造するための出発原料の希土類金属は、一般にC
a還元法、電解法により製造され、この希土類原料を用
いて、例えば次の工程により、上記の新規な永久磁石が
製造される。
The rare earth metal as a starting material for producing the novel Fe-B-R system, Fe-Co-B-R system (R is at least one of rare earth elements including Y) permanent magnet is generally C
a Reduction method and electrolysis method are used, and the novel permanent magnet is manufactured by using the rare earth raw material, for example, in the following step.

出発原料として、純度99.9%の電解鉄、B19.4%を含
有し残部はFe及びAl,Si,C等の不純物からなるフェ
ロボロン合金、純度99.7%以上の希土類金属、あるいは
さらに、純度99.9%の電解Coを高周波溶解し、その後
水冷銅鋳型に鋳造する、 スタンプミルにより35メッシュスルーまでに粗粉砕
し、次にボールミルアトライターにより、例えば粗粉砕
粉300gを6時間粉砕して3〜10μmの微細粉となす、 磁界(10kOe)中配向して、成形(1.5t/cm2にて加圧)す
る、 焼結、1000℃〜1200℃,1時間,Ar中の焼結後に放冷す
る。
As a starting material, electrolytic iron having a purity of 99.9%, a ferroboron alloy containing B19.4% and the balance being Fe and impurities such as Al, Si and C, a rare earth metal having a purity of 99.7% or more, or further, having a purity of 99.9%. Electrolytic Co is melted by high frequency, then cast in a water-cooled copper mold, roughly crushed by a stamp mill to a size of 35 mesh through, then crushed by a ball mill attritor, for example, 300 g of coarsely crushed powder for 6 hours, and finely ground to 3 to 10 μm. Form into powder, orient in a magnetic field (10 kOe) and form (pressurize at 1.5 t / cm 2 ), sinter, 1000 ° C. to 1200 ° C., 1 hour, let stand to cool after sintering in Ar.

上記の如く、この永久磁石用合金粉末は、所要組成の鋳
塊を機械的粉砕及び微粉砕を行なって得られるが、本系
磁石用合金は非常に粉砕し難く、粗粉砕粉は偏平状にな
りやすく、粉砕機の負荷が高く摩耗しやすい上、次工程
の微粉砕工程で必要な35メッシュスルー粉末を量産的に
得ることは困難であり、また、粗粉砕粉末の歩留及び粉
砕能率が悪い等の問題があった。
As described above, this alloy powder for permanent magnets can be obtained by mechanically pulverizing and finely pulverizing an ingot of the required composition.However, this alloy for magnets is extremely difficult to pulverize, and coarsely pulverized powder is flattened. In addition, the load of the crusher is high and it is easily worn, and it is difficult to mass-produce the 35-mesh through powder required in the next fine crushing step, and the yield and crushing efficiency of the coarsely crushed powder are high. There were problems such as badness.

そこで、出願人は先に、機械的粗粉砕を要しない永久磁
石用合金粉末の製造方法として、先に、Ca還元法によ
る製造方法を提案(特開昭59-219404号)し、さらに、酸
素,炭素,カルシウム含有量を低減したCa還元による希
土類磁石用合金粉末の製造方法を提案(特願昭59-182574
号,特願昭59-248798号)した。
Therefore, the applicant has previously proposed a production method by the Ca reduction method as a production method of alloy powder for permanent magnets which does not require mechanical coarse pulverization (Japanese Patent Laid-Open No. 59-219404), and further, Proposed a method for producing alloy powder for rare earth magnets by Ca reduction with reduced carbon and carbon contents (Japanese Patent Application No. 59-182574)
No., Japanese Patent Application No. 59-248798).

その要旨は、所要組成となるように、希土類酸化物のう
ち少なくとも1種と、鉄粉,純ボロン粉,フェロボロン粉
および硼素酸化物のうち少なくとも1種、あるいは上記
厚生元素の合金粉または混合酸化物を上記組成に配合し
た混合粉に、上記希土類酸化物などの原料粉末に含まれ
る酸素量に対して、化学量論的必要量の1.5〜3.5倍(重
量比)の金属Caと希土類酸化物の1wt%〜15wt%のCaCl2
を混合し、不活性ガス雰囲気中で900℃〜1200℃で還元
拡散を行ない、得られた反応生成物を水中に入れてスラ
リー化し、さらに該スラリーを水処理するか、あるい
は、さらに、該スラリーを15℃以下に冷却したイオン交
換水により処理することにある。
The gist is that at least one of rare earth oxides and at least one of iron powder, pure boron powder, ferroboron powder and boron oxide, or alloy powder or mixed oxide of the above welfare elements should be provided so that the required composition is obtained. In a mixed powder of the above composition, the amount of metal Ca and the rare earth oxide is 1.5 to 3.5 times (the weight ratio) the stoichiometrically necessary amount with respect to the amount of oxygen contained in the raw material powder such as the above rare earth oxide. 1 wt% to 15 wt% of CaCl2
Are mixed and subjected to reduction diffusion at 900 ° C. to 1200 ° C. in an inert gas atmosphere, the obtained reaction product is put into water to form a slurry, and the slurry is further treated with water, or further, the slurry is added. Is treated with ion-exchanged water cooled to 15 ° C or lower.

かかるCa還元法による原料粉は鋳塊粉砕粉の如き溶
解、造塊、粗粉砕工程が省略されるため、製造コストの
低減に有効である。
The raw material powder obtained by the Ca reduction method is effective in reducing the manufacturing cost, because the melting, agglomeration, and coarse crushing steps such as ingot crushed powder are omitted.

しかし、Ca還元法にて得られた粗粉砕粉はさらに微粉
砕され、かかる微粉砕はボールミルアトライター等の湿
式粉砕にて行なわれるが、通常アトライター等の容器内
に有機溶媒とともに原料粉末が投入、微粉砕され、Ca
還元法にて得られたFe−B−R系希土類磁石材料の原
料用粉末は、主にFe粉中に還元された希土類元素及び
Bが侵入拡散し、得られた還元粉の中心部はR2Fe14
の化学式にて示される正方晶構造を有する化合物で、そ
の周辺部は希土類元素の多いRリッチ相であるが、前記
Rリッチ相は有機溶媒中のCやClと容易に反応して製
品磁石の磁気特性を低下させる。特に、Cは磁気特性や
耐食性に悪い影響を与える。また、ボールの摩耗による
異物の混入等の問題を生じるため、最近では、乾式粉砕
法へと移行しつつある。
However, the coarsely pulverized powder obtained by the Ca reduction method is further finely pulverized, and such fine pulverization is performed by wet pulverization with a ball mill attritor or the like. Input, finely pulverized, Ca
In the Fe-BR rare earth magnet material powder obtained by the reduction method, the reduced rare earth element and B are mainly infiltrated and diffused into the Fe powder, and the central portion of the obtained reduced powder is R. 2 Fe 14 B
The compound having a tetragonal structure represented by the following chemical formula is a R-rich phase in which the peripheral portion is rich in rare earth elements, and the R-rich phase easily reacts with C or Cl in an organic solvent to produce a product magnet. Reduces magnetic properties. In particular, C adversely affects the magnetic properties and corrosion resistance. Further, since problems such as mixing of foreign matters due to wear of the balls occur, a dry pulverization method has been recently adopted.

しかし、乾式粉砕のジェットミルによる微粉砕粉は、そ
の表面が非常に活性化するため、粉砕機から取り出す際
あるいは大気中でプレス成形する場合に酸化に伴なう発
火が懸念され、その取扱いが困難でかつプレス成形がで
きない問題があった。
However, since the surface of finely pulverized powder produced by a jet mill for dry pulverization is extremely activated, there is concern about ignition associated with oxidation when it is taken out from the pulverizer or when press-molded in the atmosphere, and its handling is difficult. There was a problem that press molding was difficult.

この対策として、ジェットミル粉砕粉をプレス成形前
に、微量のO2含有雰囲気中で徐々に酸化させたり、あ
るいはO2含有の有機溶剤中で、前記微粉末の安定化処
理を図るなどの手段が取られるが、前記方法では、微粉
末の安定化処理後の表面に強固な酸化被膜が形成され難
く、粉末安定化に難があり、製造コストが嵩むなどの問
題を有していた。
As measures against this, means such as gradually oxidizing the jet mill pulverized powder in a small amount of O 2 -containing atmosphere before press molding, or stabilizing the fine powder in an O 2 -containing organic solvent. However, the above method has a problem that it is difficult to form a strong oxide film on the surface of the fine powder after the stabilization treatment, the powder is difficult to stabilize, and the manufacturing cost increases.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする永久磁石
材料用原料粉末の製造において、ジェットミル粉砕法を
改善し、より安定した微粉末を得て、大気中でのプレス
成形を可能となし、プレス能率の向上、製品品質の低下
防止、並びにすぐれた磁石特性が得られるFe−B−R
系永久磁石材料を製造できる原料粉末の製造方法を目的
としている。
The object of the present invention is to improve the jet mill pulverization method in the production of raw material powders for permanent magnet materials containing rare earths, boron and iron as main components, to obtain more stable fine powders, and to perform press molding in the atmosphere. Fe-B-R, which enables high press efficiency, prevents deterioration of product quality, and has excellent magnet characteristics.
An object of the present invention is to provide a method for producing a raw material powder capable of producing a permanent magnet material.

発明の構成と効果 発明者らは、微粉砕後の大気中での発火防止、あるいは
大気中でのプレス成形が可能となると共に安定した磁石
特性を有する永久磁石材料原料粉末を得る方法について
種々検討した結果、前記したCa還元法にて得た特定粒
度の粗粉砕粉を、特定量O2を含有した超音速不活性ガ
ス気流にて、微粉末に微粉砕することにより得られた微
粉末は、その表面に安定した酸化被膜が形成され、粉砕
機より取り出した際、あるいは大気中にてプレス成形す
るときの発火が防止され、安定したプレス成形が可能
で、プレス能率が向上、製品の磁石特性,形状,寸法的ば
らつきが減少し、製品歩留向上に多大の効果を有するこ
とを知見した。
Structure and Effect of the Invention The inventors have made various studies on a method for obtaining a raw material powder of a permanent magnet material capable of preventing ignition in the air after fine pulverization or performing press molding in the air and having stable magnet characteristics. As a result, the finely pulverized powder obtained by finely pulverizing the coarsely pulverized powder having a specific particle size obtained by the above Ca reduction method into a fine powder in a supersonic inert gas flow containing a specific amount of O 2 is obtained. , A stable oxide film is formed on the surface, ignition is prevented when taken out from the crusher or when press molding in the atmosphere, stable press molding is possible, press efficiency is improved, product magnet It was found that the characteristics, shapes, and dimensional variations were reduced, and that it had a great effect on improving the product yield.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho,Tbのうち少なくとも1種ある
いはさらに、La,Ce,Sm,Gd,Er,EuTm,Yb,Lu,Y
のうち少なくとも1種からなる) 12原子%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%、 を主成分とする希土類磁石用合金粉末の製造方法におい
て、 Ca還元法にて得た平均粒度500μm〜10μmの粗粉砕粉
を、 O2を50ppm〜60000ppm含有した超音速不活性ガス気流粉
砕用粉砕室内に噴射し、 平均粒度1.5μm〜5μmの微粉末に微粉砕することを特
徴とする永久磁石材料用原料粉末の製造方法である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, EuTm, Yb, Lu, Y).
In the method for producing an alloy powder for a rare earth magnet, which comprises 12 atomic% to 20 atomic%, B4 atomic% to 20 atomic%, Fe65 atomic% to 81 atomic% as a main component, a Ca reduction method is used. The coarsely pulverized powder having an average particle size of 500 μm to 10 μm obtained in 1. is injected into a pulverization chamber for supersonic inert gas flow pulverization containing O 2 at 50 ppm to 60,000 ppm, and finely pulverized to a fine powder having an average particle size of 1.5 μm to 5 μm. A method for producing a raw material powder for a permanent magnet material, comprising:

上記の製造方法で得られる永久磁石材料は、平均結晶粒
径が1〜80μmの範囲にある正方晶系の結晶構造を有す
る化合物を主相とし、体積比で1%〜50%の非磁性相(酸
化物相を除く)を含むことを特徴とし、RとしてNdある
いはさらにPrを中心とする資源的に豊富な軽希土類を
主に用い、Fe、B、R,を主成分とすることにより、20
MGOe以上の極めて高いエネルギー積並びに、高残留
磁束密度、高保磁力を有したFe−B−R系永久磁石材
料を安価に得ることができる。
The permanent magnet material obtained by the above production method has a compound having a tetragonal crystal structure having an average crystal grain size in the range of 1 to 80 μm as a main phase and a nonmagnetic phase of 1% to 50% by volume. (Excluding oxide phase) is included, and R is mainly a light rare earth which is rich in resources centered on Nd or Pr, and Fe, B, and R are the main components. 20
It is possible to inexpensively obtain an Fe-BR type permanent magnet material having an extremely high energy product equal to or higher than MGOe, a high residual magnetic flux density, and a high coercive force.

図面に基づく発明の開示 第1はジェットミル粉砕機の縦断説明図である。Disclosure of the Invention Based on the Drawings The first is a vertical cross-sectional explanatory view of a jet mill crusher.

この発明による製造方法は、まず、Nd酸化物(Nd23)
やPr酸化物(Pr611)などの軽希土類酸化物の少なく
とも1種、あるいはさらに、Tb酸化物(Tb34)やDy酸
化物(Dy23)などの重希土類酸化物の少なくとも一種
と、Fe粉,純ボロン粉、フェロボロン粉(Fe−B粉),B
23粉末などの硼素酸化物のうち少なくとも1種の原料
粉末、またはCoや添加元素を含む場合は、各々の金属
粉、合金粉、酸化粉末を、所要組成となるように配合
し、必要に応じて、金属粉,酸化物粉(構成元素との混合
酸化物も含む),合金粉(構成元素との混合酸化物も含む)
あるいはその他のCa還元可能な化合物粉末として添加
元素を加えて原料混合粉末とする。
In the manufacturing method according to the present invention, first, Nd oxide (Nd 2 O 3 )
Or at least one light rare earth oxide such as Pr oxide (Pr 6 O 11 ) or a heavy rare earth oxide such as Tb oxide (Tb 3 O 4 ) or Dy oxide (Dy 2 O 3 ). At least one, Fe powder, pure boron powder, ferroboron powder (Fe-B powder), B
When at least one raw material powder of boron oxide such as 2 O 3 powder, or Co or an additive element is contained, the respective metal powders, alloy powders, and oxide powders are mixed so as to have a required composition, and necessary. Depending on the, metal powder, oxide powder (including mixed oxide with constituent elements), alloy powder (including mixed oxide with constituent elements)
Alternatively, an additive element is added as another Ca-reducible compound powder to obtain a raw material mixed powder.

さらに、上記原料混合粉末に、希土類元素の還元剤とし
て金属Ca粉末、還元反応生成物の崩壊を容易にするた
めのCaCl2粉末を添加する。金属Caの必要量は、希土
類酸化物などの原料粉末に含まれる酸化量に対して、化
学量論的必要量の1.1〜3.5倍であり、CaC12は希土類
酸化物の 1wt%〜15wt%とする。
Furthermore, metallic Ca powder as a reducing agent for rare earth elements and CaCl 2 powder for facilitating the decomposition of the reduction reaction product are added to the above raw material mixed powder. The required amount of metal Ca is 1.1 to 3.5 times the stoichiometrically required amount with respect to the amount of oxidation contained in the raw material powder such as rare earth oxide, and CaC1 2 is 1 wt% to 15 wt% of the rare earth oxide. To do.

上述した希土類酸化物及び原料粉、還元剤を所定量配置
したのち、例えばV型混合機等を使用し、不活性ガス雰
囲気中で、混合を行なう。ついで、混合した粉末を不活
性ガス流気雰囲気で、900℃〜1200℃の温度範囲で、0.5
時間から5時間、還元・拡散反応を行なわせる。このと
き、昇温速度は、出発原料粉末に含有される吸着水分ガ
ス成分を除去するため、5℃/min以下が好ましい。
After arranging a predetermined amount of the above-mentioned rare earth oxide, raw material powder and reducing agent, mixing is performed in an inert gas atmosphere using, for example, a V-type mixer. Then, the mixed powder is heated in an inert gas atmosphere at a temperature range of 900 ° C to 1200 ° C for 0.5
The reduction / diffusion reaction is carried out for 5 hours. At this time, the temperature rising rate is preferably 5 ° C./min or less in order to remove the adsorbed moisture gas component contained in the starting raw material powder.

得られた還元反応生成物を、15℃以下に冷却されたイオ
ン交換水中に投入し、反応副生成物をH2Oと反応させ
て、Ca(OH)2となす、すなわち、化学量論的必要量の
1.1〜3.5倍の還元剤を配合して得られた還元反応生成物
は、水中において、発熱、自然崩壊してスラリー状態と
なるので、特別に機械的粉砕を必要としない利点があ
る。このスラリーをさらに、15℃以下に冷却したイオン
交換水を用いて、充分にCa分を除去処理して、さら
に、室温で真空乾燥し、10〜500μmのFe−B−R系永
久磁石用合金粉末を得る。
The obtained reduction reaction product is put into ion-exchanged water cooled to 15 ° C. or lower, and the reaction by-product is reacted with H 2 O to form Ca (OH) 2 , that is, stoichiometrically. The required amount
The reduction reaction product obtained by blending 1.1 to 3.5 times the reducing agent is heated in water and spontaneously disintegrates into a slurry state, which is advantageous in that it does not require special mechanical pulverization. This slurry was further subjected to a treatment for sufficiently removing Ca by using ion-exchanged water cooled to 15 ° C. or less, and further vacuum dried at room temperature to obtain an alloy for a Fe-BR permanent magnet of 10 to 500 μm. Get a powder.

得られた平均粒度500μm〜10μmの粗粉砕粉(1)は、ジ
ェットミル粉砕機の原料ポッパ(2)に装入され、原料ホ
ッパ(2)の切出し口は、O2供給管(3)が配設された不活
性ガス供給本管(4)より分岐したガス導入管(5)の途中に
接続嵌入されている。
The obtained coarsely pulverized powder (1) having an average particle size of 500 μm to 10 μm is charged into the raw material popper (2) of the jet mill pulverizer, and the cutout port of the raw material hopper (2) is connected to the O 2 supply pipe (3). It is connected and fitted in the middle of a gas introduction pipe (5) branched from the arranged inert gas supply main pipe (4).

ガス導入管(5)内を流れる50ppm〜60000ppmのO2含有の
超音速不活性ガスにより、前記粗粉砕粉(1)は、粉砕室
(6)内に、その内部の循環流に対して接線方向に噴射さ
れる。
The coarsely pulverized powder (1) is crushed by the supersonic inert gas containing 50 ppm to 60,000 ppm of O 2 flowing in the gas introduction pipe (5).
Injected in (6) tangentially to the circulating flow therein.

この際、原料粉末と超音速不活性ガスとの衝突、粉末同
志の衝突あるいは粉末と粉砕室壁との衝突、摩擦により
微粉砕化される。
At this time, the raw material powder and the supersonic inert gas collide with each other, the powders collide with each other, or the powder collides with the wall of the grinding chamber, and is finely ground by friction.

極微粉は、粉砕室(6)中央に接続されるサイクロン(7)内
へ降下し、浮遊旋回し、さらに、サイクロン中央に配置
された垂直方向の排出管(8)を通って、不活性ガスとと
もに外部へ排出され、さらに分級される。
The ultra-fine powder descends into a cyclone (7) connected to the center of the crushing chamber (6), floats and swirls, and further passes through a vertical discharge pipe (8) arranged in the center of the cyclone, and then an inert gas. Along with this, it is discharged to the outside and further classified.

一方、極微粉とともに降下した微粉末は、サイクロン
(7)底部に堆積し、不活性ガスの送給と中止した状態
で、底部の切出ホッパ(9)を開き、製品として取り出
し、平均粒度1.5μm〜5μmの微粉状原料粉末を得る。
On the other hand, the fine powder that fell with the ultrafine powder was a cyclone.
(7) The hopper (9) for cutting out at the bottom is opened in a state where it is deposited on the bottom and the feeding of the inert gas is stopped, and the product is taken out as a product to obtain a fine powder raw material powder having an average particle size of 1.5 μm to 5 μm.

得られた微粉末を、前述した粉末冶金的製造工程、例え
ば、限界中配向にて所要形状,寸法に成型した後、真空
中にて焼結後放冷し、さらに、Ar雰囲気中に時効処理
する工程を経て永久磁石材料を得る。
The obtained fine powder is subjected to the above-mentioned powder metallurgical manufacturing process, for example, after being formed into the required shape and size in the limit orientation, sintered in a vacuum and allowed to cool, and further subjected to an aging treatment in an Ar atmosphere. A permanent magnet material is obtained through the process.

発明の好ましい実施態様 この発明において、超音速不活性ガスに混入するO2
は50ppmでは、微粉末表面に安定した酸化被膜を形成す
ることができず、また、60000ppmを越えると、微粉末表
面に生成される酸化被膜が厚すぎて、製品の磁石特性が
劣化するため好ましくなく、O2量は50ppm〜60000ppmに
限定する。好ましい範囲は、80ppm〜30000ppmである。
さらに好ましい範囲は、100ppm〜10000ppmである。
Preferred Embodiment of the Invention In the present invention, when the amount of O 2 mixed in the supersonic inert gas is 50 ppm, a stable oxide film cannot be formed on the fine powder surface, and when it exceeds 60,000 ppm, the fine powder surface is not formed. Since the oxide film formed in 1) is too thick and the magnetic properties of the product are deteriorated, it is not preferable, and the O 2 amount is limited to 50 ppm to 60,000 ppm. A preferred range is 80 ppm to 30,000 ppm.
A more preferable range is 100 ppm to 10,000 ppm.

また、この発明において、Ca還元法による自然崩壊に
よる粗粉砕粉の平均粒度が、10μm未満では、原料を大
気中で全体に取扱うことが困難であり、原料粉末の酸化
により磁石特性が劣化するため好ましくなく、500μm
を越えると、粉砕機の粉砕能率が著しく低下するため好
ましくない、粗粉砕粉の平均粒度は、10μm〜500μm
となる。
Further, in the present invention, if the average particle size of the coarsely pulverized powder due to natural disintegration by the Ca reduction method is less than 10 μm, it is difficult to handle the raw material as a whole in the air, and the magnet characteristics are deteriorated by the oxidation of the raw material powder. Not preferred, 500 μm
If it exceeds, the crushing efficiency of the crusher is remarkably reduced, and the average particle size of the coarsely crushed powder is 10 μm to 500 μm.
Becomes

この発明による微粉砕粉の平均粒度が、1.5μm未満で
は、粉末の酸化度が大きくなるため、磁石特性の劣化を
生じ好ましくなく、また、5μmを越えると、焼結し得
られた永久磁石の粒子径が大きくなり、容易に磁化反転
が起り、保磁力の低下を招来し好ましくないため、1.5
μm〜5μmの平均粒度とする。
If the average particle size of the finely pulverized powder according to the present invention is less than 1.5 μm, the degree of oxidation of the powder increases, which is not preferable, and if it exceeds 5 μm, the sintered permanent magnet of Since the particle size becomes large, the magnetization reversal easily occurs, and the coercive force is lowered, which is not preferable.
The average particle size is μm to 5 μm.

また、この発明において、前記微粉砕原料粉を、所要形
状,寸法に磁場中成形する際の磁場条件は、7kOe〜20k
Oeが好ましく、プレス条件は、0.5t/cm2〜8t/cm2が好
ましい。
Further, in the present invention, the magnetic field condition when the finely pulverized raw material powder is molded into a required shape and size in a magnetic field is 7 kOe to 20 k.
Oe are preferable, pressing conditions, 0.5t / cm 2 ~8t / cm 2 is preferred.

また、焼結における温度条件は 900℃〜1200℃が好ましく、さらに好ましくは、1000℃
〜1150℃で、時間は30分から8時間が好ましい。900℃
未満では、焼結磁石体として充分な強度が得られず、12
00℃を越えると、焼結体が変形し、配向が崩れ、磁束密
度の低下、角型性の低下を招来し、また結晶粒の粗大化
が進行して保磁力を低下するため好ましくない。
The temperature condition in sintering is preferably 900 ° C to 1200 ° C, more preferably 1000 ° C.
The temperature is preferably 1150 ° C, and the time is preferably 30 minutes to 8 hours. 900 ° C
If it is less than 12%, sufficient strength as a sintered magnet body cannot be obtained.
If the temperature exceeds 00 ° C, the sintered body is deformed, the orientation is disturbed, the magnetic flux density is lowered, the squareness is lowered, and the crystal grains are coarsened to lower the coercive force, which is not preferable.

また、この発明において、磁石材料の残留磁束密度、保
磁力、減磁曲線の角型性を改善向上させるため、350℃
〜焼結温度の時効処理することが好ましい。時効処理温
度が350℃未満では拡散速度低下のため効果がなく、焼
結温度を越えると再焼結が起り過焼結となる。
Further, in this invention, in order to improve and improve the residual magnetic flux density, coercive force, and squareness of the demagnetization curve of the magnet material,
~ Aging treatment at a sintering temperature is preferable. If the aging temperature is lower than 350 ° C, there is no effect because the diffusion rate decreases, and if it exceeds the sintering temperature, re-sintering occurs and oversintering occurs.

さらには、時効処理温度は450℃〜800℃の範囲が好まし
く、また、時効処理時間は5分〜40時間が好ましい。5
分未満では時効処理効果が少なく、得られる磁石材料の
磁石特性のばらつきが大きくなり、40時間を越えると工
業的に長時間を要しすぎ実用的でない。磁石特性の好ま
しい発現と実用的な面から時効処理時間は30分から8時
間が好ましい。また、時効処理は2段以上の多段時効処
理を用いることもできる。
Furthermore, the aging treatment temperature is preferably in the range of 450 ° C. to 800 ° C., and the aging treatment time is preferably 5 minutes to 40 hours. 5
If it is less than 5 minutes, the effect of aging treatment is small and the variation of the magnetic properties of the obtained magnet material becomes large. If it exceeds 40 hours, it takes a long time industrially and is not practical. The aging treatment time is preferably 30 minutes to 8 hours from the viewpoint of preferable expression of magnet characteristics and practical use. Further, as the aging treatment, a multi-step aging treatment having two or more steps can be used.

また、多段時効処理に代えて、400℃〜焼結温度の時効
処理温度から室温までを空冷あるいは水冷などで冷却方
法で、0.2℃/min〜20℃/minの冷却速度で冷却する方法
によっても、上記時効処理と同等の磁石特性を有する永
久磁石材料を得ることができる。
Also, instead of the multi-step aging treatment, a cooling method from the aging treatment temperature of 400 ° C to the sintering temperature to room temperature may be performed by cooling with air cooling or water cooling, or by a method of cooling at a cooling rate of 0.2 ° C / min to 20 ° C / min. It is possible to obtain a permanent magnet material having the same magnetic characteristics as those of the above-mentioned aging treatment.

永久磁石材料用原料粉末の成分限定理由 この発明の永久磁石材料用原料粉末に用いる希土類元素
Rは、組成の12原子%〜20原子%を占めるが、Nd、P
r、Dy、Ho、Tbのうち少なくとも1種、あるいはさら
に、La、Ce、Sm、Gd、Er、EuhTm、Yb、Lu、Y
のうち少なくとも1種を含むものが好ましい。
Reasons for Limiting Components of Raw Material Powder for Permanent Magnet Material The rare earth element R used in the raw material powder for permanent magnet material of the present invention occupies 12 atom% to 20 atom% of the composition, but Nd, P
At least one of r, Dy, Ho, Tb, or further La, Ce, Sm, Gd, Er, EuhTm, Yb, Lu, Y
Among them, those containing at least one kind are preferable.

また、通常Rのうち1種(好ましくはNd、Pr、Dy、H
o、Tb等)をもって足りるが、実用上は2種以上の混合物
(ミッシュメタル、ジジム等)を入手上の便宜等の理由
により用いることができる。
In addition, usually one of R (preferably Nd, Pr, Dy, H
O, Tb, etc.) is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as availability.

また、主相を構成するR中のSm、Laはできるだけ少な
いほうが好ましく、例えば、Smは、1原子%以下、さ
らに好ましくは0.5原子%以下である。
Further, it is preferable that Sm and La in R constituting the main phase are as small as possible, for example, Sm is 1 atom% or less, more preferably 0.5 atom% or less.

また、温度特性の向上のためには、R混合系として、N
d、Pr、または、これらに0.005原子%〜5原子%、好
ましくは0.2原子%〜3原子%のDy、Ho、Tb等の組み
合わせが望ましい。
In addition, in order to improve the temperature characteristics, as an R mixed system, N
Desirably, d, Pr, or a combination of 0.005 atom% to 5 atom%, preferably 0.2 atom% to 3 atom% of Dy, Ho, Tb, etc., is added.

さらに、特性、コスト、資源的観点から、Rとしては、
Nd、Prが、全Rの50%以上、さらには80%以上である
ことが好ましい。
Furthermore, from the viewpoint of characteristics, cost and resources, R is
Nd and Pr are preferably 50% or more, and more preferably 80% or more of the total R.

Rは、新規な上記系永久磁石材料用原料粉末における、
必須元素であって、12原子%未満では、結晶構造がa−
鉄と同一構造の立方晶組織が析出するため、高磁気特
性、特に高保磁力が得られず、20原子%を越えると、R
リッチな非磁性相が多くなり、残留磁束密度(Br)が低
下して、すぐれた特性の永久磁石が得られない。よっ
て、希土類元素は、12原子%〜20原子%の範囲とする。
R is the raw material powder for the above new permanent magnet material,
It is an essential element, and if it is less than 12 atomic%, the crystal structure is a-
Since a cubic crystal structure having the same structure as iron is deposited, high magnetic properties, especially high coercive force cannot be obtained.
The rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 12 atom% to 20 atom%.

Bは、この発明による永久磁石用原料粉末における、必
須元素であって、4原子%未満では、菱面体構造が主相
となり、高い保磁力(iHc)は得られず、20原子%を越え
ると、Bリッチな非磁性相が多くなり、残留磁束密度
(Br)が低下するため、すぐれた永久磁石が得られな
い。よって、Bは、4原子%〜20原子%の範囲とする。
B is an essential element in the raw material powder for a permanent magnet according to the present invention. If it is less than 4 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained, and if it exceeds 20 atomic%. , B-rich non-magnetic phase increases and residual magnetic flux density
Since (Br) is lowered, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 4 atom% to 20 atom%.

Feは、新規な上記系永久磁石材料用原料粉末におい
て、必須元素であり、65原子%未満では残留磁束密度
(Br)が低下し、81原子%を越えると、高い保磁力が得
られないので、Feは65原子%〜81原子%の含有とす
る。
Fe is an essential element in the new raw material powder for permanent magnet materials, and if the content is less than 65 atom%, the residual magnetic flux density
If (Br) is lowered and exceeds 81 atom%, a high coercive force cannot be obtained, so Fe is contained at 65 atom% to 81 atom%.

また、この発明による永久磁石材料用原料粉末におい
て、Feの一部をCoで置換することは、得られる磁石の
磁気特性を損うことなく、温度特性を改善することがで
き、粉末や製品の耐酸化性を向上させることができる
が、Co置換量がFeの25%を越えると、逆に磁気特性が
劣化するため、好ましくない。Coの原子比率がFeとC
oの合計量で5%〜15の場合は、(Br)は置換しない場合
に比較して増加するため、高磁束密度を得るためには好
ましい。
Further, in the raw material powder for a permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. Although the oxidation resistance can be improved, if the Co substitution amount exceeds 25% of Fe, the magnetic characteristics are deteriorated, which is not preferable. The atomic ratio of Co is Fe and C
In the case where the total amount of o is 5% to 15, (Br) is increased as compared with the case where no substitution is carried out, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石材料は、R、B、Feの
他、工業的生産上不可避的不純物の存在を許容できる
が、Bの一部を4.0原子%以下のC、2.0原子%以下の
P、2.0原子%以下のS、2.0原子%以下のCuのうち少
なくとも1種、合計量で2.0原子%以下で置換することに
より、永久磁石の製造性改善、低価格化が可能である。
Further, the permanent magnet material according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but part of B is 4.0 atomic% or less of C and 2.0 atomic% or less of P. , S of 2.0 atomic% or less and Cu of 2.0 atomic% or less, by substituting 2.0 atomic% or less in total, it is possible to improve the manufacturability and reduce the cost of the permanent magnet.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石材料に対してその保磁力、減磁曲線の角
型性を改善あるいは製造性の改善、低価格化に効果があ
るため添加することができる。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet material because it is effective in improving the coercive force, the squareness of the demagnetization curve, the productivity, and the cost.

5.0原子%以下のA1、3.0原子%以下のTi、 5.5原子%以下のV、4.5原子%以下のCr、 5.0原子%以下のMn、5.0原子%以下のBi、 9.0原子%以下のNb、7.0原子%以下のTa、 5.2原子%以下のMo、5.0原子%以下のW、 1.0原子%以下のSb、3.5原子%以下のGe、 1.5原子%以下のSn、3.3原子%以下のZr、 6.0原子%以下のNi、5.0原子%以下のSi、 1.1原子%以下のZn、3.3原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。なお、添加量の上
限は、磁石材料の(BH)maxを20MGOe以上とするに
は、(Br)が少なくとも9kG以上必要となるため、該条
件を満す範囲とした。
5.0 atomic% or less A1, 3.0 atomic% or less Ti, 5.5 atomic% or less V, 4.5 atomic% or less Cr, 5.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.0 atomic% or less Nb, 7.0 Ta less than atomic%, Mo less than 5.2 atomic%, W less than 5.0 atomic%, Sb less than 1.0 atomic%, Ge less than 3.5 atomic%, Sn less than 1.5 atomic%, Zr less than 3.3 atomic%, 6.0 atomic % Ni or less, 5.0 atom% or less Si, 1.1 atom% or less Zn, and 3.3 atom% or less Hf, at least one kind is added, but when two or more kinds are contained, the maximum content is By containing at most atomic% of the additive element having the maximum value,
It is possible to increase the coercive force of the permanent magnet. The upper limit of the amount of addition is set to a range that satisfies the condition because (Br) must be at least 9 kG or more in order to set (BH) max of the magnetic material to 20 MGOe or more.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石をを
作製するのに不可欠である。
The main phase of the crystal phase is tetragonal, which is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石材料は、磁場中プレス成型す
ることにより磁気的異方性磁石が得られ、また、無磁界
中でプレス成型することにより、磁気的等方性磁石を得
ることができる。
In addition, the permanent magnet material of the present invention can be magnetically anisotropic magnet by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field. .

この発明による永久磁石材料は、 保磁力iHc≧5kOe、残留磁束密度Br>9kG、を示
し、最大エネルギー積(BH)maxは、20MGOe以上を示
し、好ましい組成範囲では、最大値は30MGOe以上に
達する。
The permanent magnet material according to the present invention exhibits a coercive force iHc ≧ 5 kOe and a residual magnetic flux density Br> 9 kG, a maximum energy product (BH) max of 20 MGOe or more, and in a preferable composition range, the maximum value reaches 30 MGOe or more. .

また、この発明の永久磁石材料用原料粉末のRの主成分
がその50%以上をNd及びPrを主とする軽希土類金属が
占める場合で、R12原子%〜15原子%、B6原子%〜9
原子%、Fe78原子%〜81原子%、Coの置換量が20原子
%以下の組成範囲のとき、(BH)max 35MGOe以上の
すぐれた磁気特性を示し、特に軽希土類金属がNdの場
合には、その最大値が45MGOe以上に達する。
Further, when the main component of R of the raw material powder for a permanent magnet material of the present invention is 50% or more of the light rare earth metal mainly composed of Nd and Pr, R12 atom% to 15 atom%, B6 atom% to 9
In the composition range of atomic%, Fe of 78 atomic% to 81 atomic%, and the amount of substitution of Co of 20 atomic% or less, excellent magnetic properties of (BH) max 35 MGOe or more are exhibited, especially when the light rare earth metal is Nd. , Its maximum value reaches 45 MGOe or more.

実 施 例 実施例1 Nd23粉末 174.3g Dy23粉末 17.3g、 Fe粉末 216.9g フェロボロン粉末 21.9g (19.5B-Fe合金粉末) 金属Ca粉末 162.9g (還元に要する化学論必要量の2.4倍) CaCl2粉末 6.7g (希土類酸化物原料の3.5wt%) 以上の原料粉末総量600gを用い、 30.5Nd−3.6Dy-1.15B-64.75Fe(wt%)、 14.1Nd−1.5Dy−7.1B−77.3Fe(at%)を目標に、V
型混合機を使用し、Arガス雰囲気中で、混合した。
Examples Example 1 Nd 2 O 3 powder 174.3 g Dy 2 O 3 powder 17.3 g, Fe powder 216.9 g Ferroboron powder 21.9 g (19.5 B-Fe alloy powder) Metal Ca powder 162.9 g (chemically necessary amount for reduction) 2.4 times more) 6.7 g of CaCl 2 powder (3.5 wt% of rare earth oxide raw material) Using 600 g of the total raw material powder, 30.5 Nd-3.6 Dy-1.15 B-64.75 Fe (wt%), 14.1 Nd-1.5 Dy- Targeting 7.1B-77.3Fe (at%), V
Mixing was performed in an Ar gas atmosphere using a mold mixer.

ついで、上記の混合粉末を、還元炉のArガス流気雰囲
気中で、1050℃、2.0時間、の条件で、還元拡散反応を
促進させたのち、室温まで炉冷した。
Then, the mixed powder was accelerated in the reducing gas diffusion atmosphere in an Ar gas flowing atmosphere of a reducing furnace at 1050 ° C. for 2.0 hours, and then cooled to room temperature.

得られた還元反応生成物600gを、7℃に冷却したイオ
ン交換水に投入し、スラリー化した後、さらに、スラリ
ー状合金粉末を、7℃に冷却したイオン交換水で数回洗
浄し、さらに、真空乾燥し、この発明による合金粉末を
得た。
600 g of the obtained reduction reaction product was put into ion-exchanged water cooled to 7 ° C. to form a slurry, and then the slurry-like alloy powder was washed several times with ion-exchanged water cooled to 7 ° C. After vacuum drying, an alloy powder according to the present invention was obtained.

得られた合金粉末は、成分組成が、 Nd 30.6wt%、Dy 3.5wt%、 B 1.11wt%、Fe 62.5wt%、 O2 2000ppm、C 480pm、Ca 500ppm、 粒度は、10〜300μmであった。Alloy powder obtained, component composition, N d 30.6wt%, Dy 3.5wt %, B 1.11wt%, Fe 62.5wt%, O2 2000ppm, C 480pm, Ca 500ppm, particle size was 10~300μm .

この粗粉砕粉を、第1図のジェットミルを使用し、 不活性ガス;N2ガス、 ガス圧;7kg/cm2 ガス速度;マッハ2.5 含有O2 ;5000ppm N2ガス消費量;2m3/min の条件にて、ジェット粉砕し、 粉砕粒度 ;3.1μm 粉末O2含有量;5500ppm の性状を有する微粉砕を得た。Using the jet mill shown in FIG. 1, this coarsely pulverized powder is inert gas; N 2 gas, gas pressure; 7 kg / cm 2 gas velocity; Mach 2.5-containing O 2 ; 5000 ppm N 2 gas consumption; 2 m 3 / Jet pulverization was carried out under the condition of min to obtain fine pulverization having a pulverization particle size; 3.1 μm powder O 2 content; 5500 ppm.

この微粉末をプレス装置の金型に装入し、12kOeの磁界
中で配向し、磁界に水平方向に、2.5t/cm2の圧力で成形
して、 20mm×15mm×15mm寸法の成型体を得た。
This fine powder is loaded into a die of a press machine, oriented in a magnetic field of 12 kOe, and shaped horizontally in the magnetic field at a pressure of 2.5 t / cm 2 to obtain a molded body of 20 mm × 15 mm × 15 mm dimensions. Obtained.

得られた成形体を、1100℃,1時間,Ar雰囲気中、の条件
で焼結し、さらに、Ar雰囲気中で、570℃,1時間の時効
処理した。
The obtained molded body was sintered under the conditions of 1100 ° C. for 1 hour in Ar atmosphere, and further, aged at 570 ° C. for 1 hour in Ar atmosphere.

得られた永久磁石材料の磁石特性を測定し、その結果を
プレス能率と共に第1表に示す。
The magnetic properties of the obtained permanent magnet material were measured, and the results are shown in Table 1 together with the press efficiency.

なお、第1表の比較例1は、湿式アトライター粉砕法によ
り得られた、同一平均粒度の微粉末を、前記のこの発明
条件にて、所要寸法,形状に磁場中成形後、焼結,時効処
理を施した永久磁石材料の磁石特性である。
Incidentally, Comparative Example 1 in Table 1, obtained by a wet attritor pulverization method, a fine powder of the same average particle size, under the conditions of the present invention, the required size, after molding in a magnetic field into a shape, sintering, It is the magnetic characteristics of the permanent magnet material that has been aged.

また、比較例2は、ジェットミル粉砕時に、O2を含有し
ないN2ガスにてジェット粉砕した以外は、この発明の
実施例と同一条件にて作製した永久磁石の磁石特性とプ
レス能率を示す。
Further, Comparative Example 2 shows the magnet characteristics and press efficiency of the permanent magnet manufactured under the same conditions as those of the examples of the present invention, except that jet milling was performed with N 2 gas containing no O 2 during jet milling. .

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に用いるジェットミルの縦断説明図で
ある。 1…粗粉砕粉、2…原料ホッパ、3…O2供給管、4…
不活性ガス供給本管、5…ガス導入管、6…粉砕室、7
…サイクロン、8…排出管、9…切出ホッパ。
FIG. 1 is a vertical cross sectional view of a jet mill used in the present invention. 1 ... Coarse crushed powder, 2 ... Raw material hopper, 3 ... O 2 supply pipe, 4 ...
Inert gas supply main pipe, 5 ... Gas introduction pipe, 6 ... Grinding chamber, 7
… Cyclone, 8… Discharge pipe, 9… Cutout hopper.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho,Tbのうち少なく
とも1種あるいはさらに、La,Ce,Sm,Gd,Er,EuT
m,Yb,Lu,Yのうち少なくとも1種からなる) 12原子%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%、 を主成分とする希土類磁石用合金粉末の製造方法におい
て、 Ca還元法にて得た平均粒度500μm〜10μmの粗粉砕粉
を、 O2を50ppm〜60000ppm含有した超音速不活性ガス気流粉
砕用粉砕室内に噴射し、 平均粒度1.5μm〜5μmの微粉末に微粉砕することを特
徴とする永久磁石材料用原料粉末の製造方法。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er and EuT.
of at least one of m, Yb, Lu and Y) 12 atom% to 20 atom%, B4 atom% to 20 atom%, Fe65 atom% to 81 atom% of the alloy powder for rare earth magnets In the manufacturing method, coarse pulverized powder having an average particle size of 500 μm to 10 μm obtained by the Ca reduction method is injected into a pulverizing chamber for supersonic inert gas gas flow pulverization containing O 2 in an amount of 50 ppm to 60,000 ppm to obtain an average particle size of 1.5 μm to 5 μm. The method for producing a raw material powder for a permanent magnet material, comprising:
JP61174329A 1986-07-24 1986-07-24 Method for producing raw material powder for permanent magnet material Expired - Lifetime JPH066727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174329A JPH066727B2 (en) 1986-07-24 1986-07-24 Method for producing raw material powder for permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174329A JPH066727B2 (en) 1986-07-24 1986-07-24 Method for producing raw material powder for permanent magnet material

Publications (2)

Publication Number Publication Date
JPS6333506A JPS6333506A (en) 1988-02-13
JPH066727B2 true JPH066727B2 (en) 1994-01-26

Family

ID=15976736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174329A Expired - Lifetime JPH066727B2 (en) 1986-07-24 1986-07-24 Method for producing raw material powder for permanent magnet material

Country Status (1)

Country Link
JP (1) JPH066727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473175B2 (en) 2017-11-28 2022-10-18 Lg Chem, Ltd. Method for producing magnetic powder and magnetic powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889096B1 (en) * 1997-07-04 2002-09-11 Hitachi Chemical Company, Ltd. Modified cyanate ester group curable resin composition, and varnish, prepreg, metal clad laminated board, film, printed circuit board, and multilayered circuit board using the same
TWI279420B (en) 2000-03-21 2007-04-21 Hitachi Chemical Co Ltd Resin composition with excellent dielectric characteristics, process for producing resin composition, varnish prepared from the same, process for producing the same, prepreg made with these, and metal-clad laminate
JP2011216720A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp Permanent magnet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473175B2 (en) 2017-11-28 2022-10-18 Lg Chem, Ltd. Method for producing magnetic powder and magnetic powder

Also Published As

Publication number Publication date
JPS6333506A (en) 1988-02-13

Similar Documents

Publication Publication Date Title
US4770702A (en) Process for producing the rare earth alloy powders
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPH0340082B2 (en)
JPH0424401B2 (en)
JPS61263201A (en) Manufacture of generator
JPH064885B2 (en) Production method of alloy powder for rare earth / boron / iron-based permanent magnet
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0524975B2 (en)
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
JPH064884B2 (en) Manufacturing method of rare earth alloy powder
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0526858B2 (en)
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS61270313A (en) Production of rare earth alloy powder
JPH0653909B2 (en) Method of manufacturing permanent magnet material
JPH04214803A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH06200307A (en) Production of raw material alloy for rare earth magnet
JPH0735521B2 (en) Raw material powder for R-Fe-B permanent magnets

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term