JP4716020B2 - Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant - Google Patents

Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant Download PDF

Info

Publication number
JP4716020B2
JP4716020B2 JP2006063254A JP2006063254A JP4716020B2 JP 4716020 B2 JP4716020 B2 JP 4716020B2 JP 2006063254 A JP2006063254 A JP 2006063254A JP 2006063254 A JP2006063254 A JP 2006063254A JP 4716020 B2 JP4716020 B2 JP 4716020B2
Authority
JP
Japan
Prior art keywords
lubricant
rare earth
permanent magnet
mixing
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006063254A
Other languages
Japanese (ja)
Other versions
JP2006310786A (en
Inventor
力 石坂
剛一 西澤
篤司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006063254A priority Critical patent/JP4716020B2/en
Publication of JP2006310786A publication Critical patent/JP2006310786A/en
Application granted granted Critical
Publication of JP4716020B2 publication Critical patent/JP4716020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類永久磁石の製造方法に関し、高い磁気特性、特に残留磁束密度(Br)を得ることができる希土類永久磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth permanent magnet, and more particularly to a method for producing a rare earth permanent magnet capable of obtaining high magnetic properties, particularly a residual magnetic flux density (Br).

R−T−B系希土類永久磁石(Rは希土類元素の1種又は2種以上であり、TはFe、又はFe及びCo)は、磁気特性に優れていることや、主成分であるNdが資源的に豊富で比較的安価であることから、各種モータ等の電気機器に使用されている。   R-T-B rare earth permanent magnets (R is one or more rare earth elements, T is Fe, or Fe and Co) have excellent magnetic properties, and Nd as the main component is Since it is abundant in resources and relatively inexpensive, it is used in electrical equipment such as various motors.

希土類永久磁石の製造方法の一例として粉末冶金法がある。粉末冶金法は低コストでの製造が可能なことから広く用いられている。粉末冶金法では、原料合金を粗粉砕及び微粉砕し、数μmの微粉砕粉末を得る。このようにして得られた微粉砕粉末を静磁場中で磁場配向させ、磁場がかかった状態のままプレス成形を行う。このとき、成形時の粉末同士の摩擦や粉末と金型壁面との摩擦により磁気的な配向度が上がらず、磁気特性の向上を十分に図ることができない。また、金型面及び成形体表面に損傷が生じやすく、品質上及び製品歩留まり上好ましくない。そのために、潤滑剤を添加し、潤滑剤を微粉砕粉末表面へ被覆することが行われている。つまり、潤滑剤は、磁場中成形時の合金粉末の流動性を確保することにより配向度を向上し、かつ金型からの離型を容易にする、等を目的として添加されるものであり、通常、ステアリン酸亜鉛などの有機系材料が用いられる。   An example of a method for producing a rare earth permanent magnet is a powder metallurgy method. Powder metallurgy is widely used because it can be manufactured at low cost. In the powder metallurgy method, a raw material alloy is coarsely and finely pulverized to obtain a finely pulverized powder of several μm. The finely pulverized powder thus obtained is magnetically oriented in a static magnetic field, and press molding is performed while the magnetic field is applied. At this time, the degree of magnetic orientation does not increase due to friction between the powders during molding or friction between the powder and the mold wall surface, and the magnetic characteristics cannot be sufficiently improved. Further, the mold surface and the surface of the molded body are likely to be damaged, which is not preferable in terms of quality and product yield. For this purpose, a lubricant is added and the lubricant is coated on the finely pulverized powder surface. In other words, the lubricant is added for the purpose of improving the degree of orientation by ensuring the fluidity of the alloy powder during molding in a magnetic field and facilitating release from the mold, etc. Usually, an organic material such as zinc stearate is used.

前述の潤滑剤は凝集性が極めて高い。したがって、長時間撹拌した後にも凝集粒子として存在する。そして、潤滑剤は焼結により蒸発するため、潤滑剤の凝集粒子が存在していたところは、焼結後に巨大な空孔となってしまう。また、潤滑剤が凝集粒子として存在すると、所定の配向度向上効果及び離型効果を得るために、理想的な量よりも多量の潤滑剤を添加しなければならず、焼結後の残留炭素の影響で希土類永久磁石の保磁力低下を招くといった問題がある。   The aforementioned lubricant is extremely cohesive. Therefore, it exists as agglomerated particles even after stirring for a long time. Since the lubricant evaporates by sintering, the place where the aggregated particles of the lubricant existed becomes huge pores after sintering. In addition, if the lubricant is present as aggregated particles, a larger amount of lubricant than the ideal amount must be added in order to obtain a predetermined degree of orientation improvement effect and mold release effect, and residual carbon after sintering This causes a problem that the coercive force of the rare earth permanent magnet is reduced.

このような問題を解決するために、潤滑剤の分散性を上げるために潤滑剤を添加するタイミングを工夫している。例えば、特許文献1では、粗粉砕後かつ微粉砕前に潤滑剤を添加している。   In order to solve such problems, the timing of adding the lubricant is devised in order to improve the dispersibility of the lubricant. For example, in Patent Document 1, a lubricant is added after coarse pulverization and before fine pulverization.

特許第2915560号公報Japanese Patent No. 2915560

しかしながら、上記特許文献1においては、潤滑剤による潤滑性が十分発揮できる量を添加した場合には、粉砕機の配管などの損耗が激しくなってしまうという問題が生じる。
そこで本発明者等は、潤滑剤添加による配向度の向上等の効果を享受しつつ、粉砕機器の損耗を低減する手法として、特許文献2及び特許文献3において、比較的少量の固体状の潤滑剤を微粉砕前に添加し、液体状の潤滑剤又は潤滑剤を溶解する溶剤を微粉砕後に添加することにより、少ない潤滑剤で潤滑効果を得ることができることを開示している。
However, in Patent Document 1, when an amount capable of sufficiently exhibiting lubricity by a lubricant is added, there arises a problem that wear of piping of a pulverizer becomes severe.
Therefore, the inventors have disclosed a relatively small amount of solid-state lubrication in Patent Document 2 and Patent Document 3 as a technique for reducing the wear of the pulverizing equipment while enjoying the effect of improving the degree of orientation by adding a lubricant. It is disclosed that a lubricating effect can be obtained with a small amount of lubricant by adding an agent before pulverization and adding a liquid lubricant or a solvent for dissolving the lubricant after pulverization.

特開2004−6761号公報JP 2004-6761 A 特開2003−68551号公報JP 2003-68551 A

特許文献2及び特許文献3では、微粉砕後に液体状の潤滑剤又は潤滑剤を溶解する溶剤を添加することにより、潤滑剤添加による配向性の向上等の効果を享受しつつ、粉砕機器の損耗を低減することができる。しかし、例えば特許文献2において、微粉砕前に脂肪酸アミドを0.3wt%添加し、さらに微粉砕後に脂肪酸エステルを0.2wt%添加しているように、最終的に添加される潤滑剤の量を低減するまでには至っていない。希土類永久磁石の磁気特性を考えると、全体として添加される潤滑剤の量は少ないほど好ましい。
本発明は、このような技術的課題に基づいてなされたもので、より少ない量の潤滑剤の添加であっても潤滑剤としての効果を十分に発揮できる希土類永久磁石の製造方法を提供することを目的とする。また、本発明は、より少ない量の潤滑剤の添加であっても潤滑剤としての効果を十分に発揮できる、微粉砕粉末と潤滑剤の混合方法を提供することを目的とする。
In Patent Document 2 and Patent Document 3, by adding a liquid lubricant after fine pulverization or a solvent that dissolves the lubricant, the effect of improving the orientation by adding the lubricant is obtained, and the wear of the pulverizer is lost. Can be reduced. However, for example, in Patent Document 2, 0.3 wt% of fatty acid amide is added before fine pulverization, and 0.2 wt% of fatty acid ester is further added after fine pulverization. It has not yet been reduced. Considering the magnetic properties of the rare earth permanent magnet, the smaller the amount of lubricant added, the better.
The present invention has been made based on such a technical problem, and provides a method for producing a rare earth permanent magnet that can sufficiently exhibit the effect as a lubricant even when a smaller amount of lubricant is added. With the goal. Another object of the present invention is to provide a method for mixing finely pulverized powder and a lubricant that can sufficiently exert the effect as a lubricant even when a smaller amount of lubricant is added.

微粉砕後の状態における潤滑剤の分散性を確保するためには、特許文献1にも示されるように粗粉砕後に潤滑剤を添加して微粉砕を行うことが好ましい。しかし、この微粉砕のみでは、微粉砕粉末における潤滑剤の分散性は未だ十分とはいえない。そこで本発明者等は、微粉砕粉末における潤滑剤の分散性を極限まで高めるべく微粉砕後の微粉砕粉末と潤滑剤の混合物をさらに撹拌して混合処理する検討を行った。その結果、詳しくは後述するが、ある種の混合機を用いて処理したところ、非処理物の温度が上昇、具体的には30℃以上の温度となり、このようにして得られた微粉砕粉末を用いて作製された希土類永久磁石は残留磁束密度(Br)が向上した。   In order to ensure the dispersibility of the lubricant in the state after fine pulverization, it is preferable to perform fine pulverization by adding a lubricant after coarse pulverization as disclosed in Patent Document 1. However, this fine pulverization alone still does not provide sufficient dispersibility of the lubricant in the fine pulverized powder. Therefore, the present inventors studied to further agitate and mix the finely pulverized powder and lubricant mixture after the fine pulverization in order to enhance the dispersibility of the lubricant in the finely pulverized powder. As a result, as will be described in detail later, when processed using a certain type of mixer, the temperature of the untreated product rises, specifically, a temperature of 30 ° C. or higher, and the finely pulverized powder thus obtained The residual magnetic flux density (Br) was improved in the rare earth permanent magnets manufactured using

以上の検討結果に基づいてなされた本発明は、R−T−B(R:希土類元素の1種又は2種以上、T:Fe、又はFe及びCo、B:ホウ素)系希土類永久磁石の製造方法であって、原料合金を粗粉砕する粗粉砕工程と、粗粉砕工程で得られる粗粉砕粉末に潤滑剤を添加する工程と、潤滑剤が添加された粗粉砕粉末を微粉砕する微粉砕工程と、微粉砕工程で得られた微粉砕粉末と潤滑剤との混合物を、30℃以上潤滑剤の融点未満の温度域で撹拌する混合工程と、混合工程を経た微粉砕粉末を磁場中で成形する成形工程と、成形工程で得られた成形体を焼結する焼結工程と、を備え、混合工程において、堆積状態にある微粉砕粉末同士の摩擦により微粉砕粉末が加熱されることを特徴とする。つまり、本発明では、潤滑剤が添加された微粉砕粉末を上記温度域に加熱する手法として、撹拌により微粉砕粉末を自発的に発熱させる手法を採用する。外部の加熱手段により微粉砕粉末を加熱する方法に比べて、自発的な発熱を利用する方が、エネルギー消費の観点から好ましい。なお、本発明で必要となる温度域に加熱するために好適な撹拌手法については後述する。
本発明の希土類永久磁石の製造方法において、混合工程は、混合物を35〜70℃の温度域で撹拌することが高い残留磁束密度(Br)を得るために好ましい。
The present invention made on the basis of the above examination results is the production of R-T-B (R: one or more rare earth elements, T: Fe, or Fe and Co, B: boron) -based rare earth permanent magnets. A coarse pulverization step of coarsely pulverizing a raw material alloy, a step of adding a lubricant to the coarsely pulverized powder obtained in the coarse pulverization step, and a fine pulverization step of finely pulverizing the coarsely pulverized powder to which the lubricant has been added. And a mixing step of stirring the mixture of the finely pulverized powder and the lubricant obtained in the pulverizing step in a temperature range of 30 ° C. or higher and lower than the melting point of the lubricant, and forming the finely pulverized powder after the mixing step in a magnetic field And a sintering step for sintering the molded body obtained in the molding step, and in the mixing step, the finely pulverized powder is heated by friction between the finely pulverized powders in a deposited state. And That is, in the present invention, as a method of heating the finely pulverized powder to which the lubricant is added to the above temperature range, a method of spontaneously generating heat by the stirring is adopted. Compared to the method of heating the finely pulverized powder by an external heating means, it is preferable from the viewpoint of energy consumption to use spontaneous heat generation. In addition, the suitable stirring method for heating to the temperature range required by this invention is mentioned later.
In the method for producing a rare earth permanent magnet of the present invention, in the mixing step, it is preferable to stir the mixture in a temperature range of 35 to 70 ° C. in order to obtain a high residual magnetic flux density (Br).

本発明の希土類永久磁石の製造方法は、潤滑剤の添加量が、0.01〜0.2wt%と少ない量で高い配向度を得ることを可能にし、ひいては高い残留磁束密度(Br)を有する希土類永久磁石を得ることができる。また、本発明によれば、固体状の潤滑剤のみを用いて、以上のような少ない量で高い残留磁束密度(Br)を得ることができるという利点がある。
なお、本発明において、添加すべき潤滑剤の一部を微粉砕後に添加してから混合工程を行うこともできる。微粉砕時の粉砕機器の損耗の防止に有効である。
The method for producing a rare earth permanent magnet of the present invention makes it possible to obtain a high degree of orientation with a small amount of addition of a lubricant of 0.01 to 0.2 wt%, and thus has a high residual magnetic flux density (Br). A rare earth permanent magnet can be obtained. In addition, according to the present invention, there is an advantage that a high residual magnetic flux density (Br) can be obtained in a small amount as described above by using only a solid lubricant.
In the present invention, a part of the lubricant to be added can be added after pulverization before the mixing step. This is effective for preventing wear of the grinding equipment during fine grinding.

本発明は以上のように潤滑剤が添加された微粉砕粉末を混合する際の温度域を特定するものであるが、この温度域に微粉砕粉末を加熱するために、撹拌による微粉砕粉末同士の摩擦を利用することが好ましい。すなわち、本発明は、R−T−B(R:希土類元素の1種又は2種以上、T:Fe、又はFe及びCo、B:ホウ素)系希土類永久磁石の製造に用いる原料粉末と固体状態の潤滑剤を撹拌して混合する方法であって、原料粉末と潤滑剤とを含む混合物を所定の容器に堆積状態で収容し、堆積状態にある混合物の一部の領域に、回転体による回転力を作用させることで混合物を撹拌しつつ、微粉砕粉末同士の摩擦により混合物を加熱することを特徴とする。   The present invention specifies the temperature range when mixing the finely pulverized powder to which the lubricant has been added as described above. In order to heat the finely pulverized powder to this temperature range, It is preferable to use the friction of That is, the present invention relates to a raw material powder and a solid state used for the production of RTB (R: one or more of rare earth elements, T: Fe, or Fe and Co, B: boron) based rare earth permanent magnets. In which a mixture containing raw material powder and a lubricant is stored in a predetermined container in a deposited state, and is rotated by a rotating body in a partial region of the deposited mixture. While stirring the mixture by applying force, the mixture is heated by friction between finely pulverized powders.

本発明において、潤滑剤は、混合の過程において、固体状態を維持することが好ましい。潤滑剤が溶融してしまうと、凝固過程で微粉砕粉末を凝集させるおそれがあるからである。
また本発明において、混合は、酸素量が100ppm以下の低酸素雰囲気下で行われることが好ましい。微粉砕粉末同士の摩擦による発熱によって、微粉砕粉末は酸化しやすい状態となっているためである。
In the present invention, the lubricant is preferably maintained in a solid state during the mixing process. This is because if the lubricant is melted, the finely pulverized powder may be aggregated during the solidification process.
In the present invention, the mixing is preferably performed in a low oxygen atmosphere having an oxygen content of 100 ppm or less. This is because the finely pulverized powder is easily oxidized due to heat generated by friction between the finely pulverized powders.

以上説明したように、本発明によれば、より少ない量の潤滑剤の添加であっても潤滑剤としての効果を十分に発揮して、高い残留磁束密度(Br)の希土類永久磁石を製造することができる。しかも、本発明によれば、潤滑剤の添加量を抑制できるから、微粉砕における粉砕機の損耗を防止することもできる。   As described above, according to the present invention, a rare earth permanent magnet having a high residual magnetic flux density (Br) can be produced by sufficiently exerting the effect as a lubricant even when a smaller amount of lubricant is added. be able to. In addition, according to the present invention, since the amount of lubricant added can be suppressed, wear of the pulverizer during fine pulverization can be prevented.

本実施の形態は、粉末冶金法を用いた希土類永久磁石の製造方法であり、微粉砕前に固体の潤滑剤を添加し、かつ微粉砕後に潤滑剤と微粉砕粉末を所定温度域において撹拌、混合することを特徴とする。以下、本発明による製造方法を詳述する。
図1に示すように、本実施の形態による希土類永久磁石の製造方法は、原料合金作製工程、粗粉砕工程、潤滑剤添加工程、混合工程、微粉砕工程、加熱撹拌・混合工程、磁場中成形工程、焼結工程及び時効熱処理工程とを含む。
<原料合金作製工程>
原料合金は、真空又は不活性ガス、望ましくはアルゴン雰囲気中でストリップキャスト法、その他公知の溶解法により作製することができる。ストリップキャスト法は、原料金属をアルゴンガス雰囲気などの非酸化雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板又は薄片(鱗片)状に急冷凝固される。原料合金は、ストリップキャスト法に限らず、高周波誘導溶解等の他の溶解法によって得ることもできる。また、還元拡散法によって得られた合金を原料合金として用いることもできる。
R−T−B系希土類永久磁石を得る場合、R14B結晶粒を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いる所謂混合法を本発明に適用することもできる。
This embodiment is a method for producing a rare earth permanent magnet using a powder metallurgy method, adding a solid lubricant before pulverization, and stirring the lubricant and pulverized powder in a predetermined temperature range after pulverization, It is characterized by mixing. Hereafter, the manufacturing method by this invention is explained in full detail.
As shown in FIG. 1, the method of manufacturing a rare earth permanent magnet according to the present embodiment includes a raw material alloy production process, a coarse pulverization process, a lubricant addition process, a mixing process, a fine pulverization process, a heating agitation / mixing process, and a magnetic field molding. Process, sintering process and aging heat treatment process.
<Raw material alloy production process>
The raw material alloy can be produced by a strip casting method or other known melting methods in a vacuum or an inert gas, preferably an argon atmosphere. In the strip casting method, a molten metal obtained by melting a raw metal in a non-oxidizing atmosphere such as an argon gas atmosphere is jetted onto the surface of a rotating roll. The melt rapidly cooled by the roll is rapidly solidified in the form of a thin plate or flakes (scales). The raw material alloy can be obtained not only by the strip casting method but also by other melting methods such as high frequency induction melting. An alloy obtained by the reduction diffusion method can also be used as a raw material alloy.
When an R-T-B rare earth permanent magnet is obtained, an alloy mainly composed of R 2 T 14 B crystal grains (low R alloy) and an alloy containing more R than low R alloys (high R alloy) are used. A mixing method can also be applied to the present invention.

<粗粉砕工程>
粗粉砕工程では、原料合金を、粒径数百μm程度になるまで粗粉砕し、粗粉砕粉末を得る。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。粗粉砕に先立って、原料合金に水素を吸蔵させた後に放出させることにより粉砕を行うことが効果的である。水素放出処理は、希土類永久磁石として不純物となる水素を減少させることを目的として行われる。水素吸蔵は室温から200℃で30分以上、好ましくは1時間以上行い、脱水素処理は、真空中又はアルゴンガスフローにて、350〜650℃で行う。なお、水素吸蔵処理、脱水素処理は必須の処理ではない。この水素粉砕を粗粉砕と位置付けて、機械的な粗粉砕を省略することもできる。
<Coarse grinding process>
In the coarse pulverization step, the raw material alloy is coarsely pulverized to a particle size of about several hundred μm to obtain a coarsely pulverized powder. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Prior to coarse pulverization, it is effective to perform pulverization by allowing hydrogen to be stored in the raw material alloy and then releasing it. The hydrogen releasing treatment is performed for the purpose of reducing hydrogen as an impurity as a rare earth permanent magnet. Hydrogen storage is performed at room temperature to 200 ° C. for 30 minutes or longer, preferably 1 hour or longer, and dehydrogenation is performed at 350 to 650 ° C. in a vacuum or with an argon gas flow. Note that the hydrogen storage process and the dehydrogenation process are not essential processes. This hydrogen pulverization can be regarded as coarse pulverization, and mechanical coarse pulverization can be omitted.

<潤滑剤添加工程>
粗粉砕工程で得られた粗粉砕粉末に潤滑剤を添加する。本発明における潤滑剤の種類は問わないが、入手容易性等の観点から、脂肪酸系化合物を用いることが好ましい。脂肪酸系化合物としては、ステアリン酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸の金属セッケン、脂肪酸アミドなどが好ましく、その中でも脂肪酸アミドが特に好ましい。脂肪酸アミドの中でも、特にカプリル酸アミド、カプリン酸アミド、ラウリン酸アミド、ステアリン酸アミド、オレイン酸アミド、ベヘン酸アミドの1種又は2種以上を用いることが好ましい。潤滑剤としてショウノウ又はパラフィンを用いることも可能である。
添加する潤滑剤の形態は特に制約はないが、効率よく均一な分散を行うためには粉末状の潤滑剤が好ましい。また、添加する際の潤滑剤の粒径についても特に制約はないが、粗粉砕粉末と同等以下の粒径を有していることが好ましい。
<Lubricant addition process>
A lubricant is added to the coarsely pulverized powder obtained in the coarsely pulverized step. Although the kind of lubricant in this invention is not ask | required, it is preferable to use a fatty-acid type compound from viewpoints, such as availability. As the fatty acid compounds, fatty acids such as stearic acid, metal soaps of fatty acids such as zinc stearate and calcium stearate, fatty acid amides and the like are preferable, and among these, fatty acid amides are particularly preferable. Among fatty acid amides, it is particularly preferable to use one or more of caprylic acid amide, capric acid amide, lauric acid amide, stearic acid amide, oleic acid amide, and behenic acid amide. It is also possible to use camphor or paraffin as the lubricant.
The form of the lubricant to be added is not particularly limited, but a powdery lubricant is preferable for efficient and uniform dispersion. The particle size of the lubricant at the time of addition is not particularly limited, but preferably has a particle size equal to or smaller than that of the coarsely pulverized powder.

潤滑剤の添加量は、粉砕性を向上させるという点からすれば、なるべく多くするのが好ましいが、磁気特性及び成形体の強度の観点からすれば、なるべく少なくするのが好ましい。したがって、0.01〜1wt%の範囲で潤滑剤を添加することができる。特に、本発明では少ない量の潤滑剤であっても、配向度向上という効果を最大限発揮させることができるので、潤滑剤の添加量は、0.01〜0.2wt%とすることができ、さらには0.01〜0.15wt%とすることができる。
<混合工程>
潤滑剤添加後の混合工程は必須のものではないが、潤滑剤を添加後に、粗粉砕粉末と潤滑剤とを混合することが好ましい。後述する微粉砕の際に粗粉砕粉末に対する潤滑剤の分散性を向上する効果が期待される。この混合は、スクリュ式の混合装置(例えば、ホソカワミクロン(株)製のナウタミキサ)等により5〜30分間ほど行なう程度でよい。
The addition amount of the lubricant is preferably as much as possible from the viewpoint of improving the grindability, but is preferably as small as possible from the viewpoint of the magnetic properties and the strength of the molded body. Therefore, the lubricant can be added in the range of 0.01 to 1 wt%. In particular, in the present invention, even with a small amount of lubricant, the effect of improving the degree of orientation can be maximized, so the amount of lubricant added can be 0.01-0.2 wt%. Furthermore, it can be 0.01-0.15 wt%.
<Mixing process>
The mixing step after the addition of the lubricant is not essential, but it is preferable to mix the coarsely pulverized powder and the lubricant after the addition of the lubricant. The effect of improving the dispersibility of the lubricant with respect to the coarsely pulverized powder during fine pulverization described later is expected. This mixing may be performed for about 5 to 30 minutes using a screw type mixing device (for example, Nauta mixer manufactured by Hosokawa Micron Corporation).

<微粉砕工程>
さて、潤滑剤が添加された粗粉砕粉末の微粉砕には主にジェットミル(気流式粉砕機)を用い、平均粒径2.5〜6μm、望ましくは3〜5μmの微粉砕粉末(粉砕粉)を得る。ジェットミルは、高圧の不活性ガスを狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。この微粉砕工程において、粗粉砕粉末のみならず、固体状態の潤滑剤も粉砕される。さらに、得られる微粉砕粉末と潤滑剤との混合物において、微粉砕粉末に対する潤滑剤の分散状態は、微粉砕前に比べて格段に向上する。しかし、より少ない量の潤滑剤で高い配向度を得るためには、微粉砕粉末に対する潤滑剤の分散状態をさらに上げるのが本発明の趣旨である。
<Fine grinding process>
A finely pulverized powder (crushed powder) having an average particle size of 2.5 to 6 μm, preferably 3 to 5 μm is mainly used for finely pulverizing the coarsely pulverized powder to which a lubricant is added. ) The jet mill releases a high-pressure inert gas from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder with this high-speed gas flow, collides with the coarsely pulverized powder, and collides with the target or the container wall. It is a method of generating a collision and crushing. In this fine pulverization step, not only the coarsely pulverized powder but also the solid state lubricant is pulverized. Furthermore, in the obtained mixture of finely pulverized powder and lubricant, the dispersion state of the lubricant with respect to the finely pulverized powder is remarkably improved as compared with that before pulverization. However, the purpose of the present invention is to further increase the dispersion state of the lubricant with respect to the finely pulverized powder in order to obtain a high degree of orientation with a smaller amount of lubricant.

<加熱撹拌・混合工程>
本発明は、微粉砕粉末と潤滑剤の混合物を撹拌する。微粉砕粉末に対する潤滑剤の分散状態を上げるためである。本発明では、この撹拌を30℃以上の温度域で行う。後述する実施例に示すように、30℃以上の温度域で撹拌を行うことにより、高い残留磁束密度(Br)を得ることができる。ただし、撹拌の温度が高すぎて潤滑剤が溶融すると、その凝固過程で潤滑剤同士又は微粉砕粉末を凝集させてしまうので好ましくない。したがって、この工程における温度は、潤滑剤の溶融温度未満とする。撹拌のさらに好ましい温度域は35〜70℃、さらに好ましい温度域は40〜60℃である。なお、いくつかの潤滑剤の融点を以下に示しておく。
ステアリン酸:72℃
ステアリン酸亜鉛:140℃
カプリル酸アミド:110℃
カプリン酸アミド:100℃
ラウリン酸アミド:110℃
ステアリン酸アミド:108℃
オレイン酸アミド:75℃
ベヘン酸アミド:111℃
ベヘン酸:81℃
<Heating and mixing process>
In the present invention, a mixture of finely pulverized powder and a lubricant is stirred. This is for increasing the dispersion state of the lubricant with respect to the finely pulverized powder. In the present invention, this stirring is performed in a temperature range of 30 ° C. or higher. As shown in the Example mentioned later, a high residual magnetic flux density (Br) can be obtained by stirring in the temperature range of 30 degreeC or more. However, if the temperature of stirring is too high and the lubricant is melted, the lubricants or finely pulverized powders are agglomerated in the solidification process, which is not preferable. Therefore, the temperature in this step is less than the melting temperature of the lubricant. The more preferable temperature range of stirring is 35-70 degreeC, and a more preferable temperature range is 40-60 degreeC. The melting points of some lubricants are shown below.
Stearic acid: 72 ° C
Zinc stearate: 140 ° C
Caprylic acid amide: 110 ° C
Capric acid amide: 100 ° C
Lauric acid amide: 110 ° C
Stearamide: 108 ° C
Oleamide: 75 ° C
Behenamide: 111 ° C
Behenic acid: 81 ° C

撹拌を以上の温度域で行うために、本発明では撹拌による微粉砕粉末同士の摩擦熱を利用することができる。このように摩擦を利用して加熱するための装置の構成概要を図2に示す。この撹拌装置10は、微粉砕粉末Pを収容する容器1と、微粉砕粉末Pを撹拌する撹拌翼2と、撹拌翼2を回転駆動するモータ3とを備えている。所定量の微粉砕粉末Pを容器1に堆積状態で収容し、堆積状態にある微粉砕粉末Pの一部の領域に、撹拌翼2による回転力を作用させる。微粉砕粉末Pの一部の領域に、撹拌翼2による回転力を作用させると、堆積されている微粉砕粉末Pの一部の領域及び他の領域は流動状態となり、微粉砕粉末P同士に摩擦が生じて、微粉砕粉末Pは外部からの加熱を行うことなく、自発的に発熱する。この撹拌による混合は、高速流動型混合方式と称することができる。粉末の流動状態が維持される範囲であれば、この撹拌翼2の回転数が速ければ速いほど摩擦による加熱を迅速に行える。撹拌翼2の回転数は、処理する微粉砕粉末Pの量によって変わるが、数百〜数千rpm程度とすれば数分で本発明が要求する温度に微粉砕粉末Pを加熱することができる。なお、本発明者等の検討によれば、公知の混合あるいは粉砕方法の中で、ボールミル、スクリュ式の混合装置では、相当長時間処理しなければ、微粉砕粉末Pの自己発熱によって30℃以上の温度に加熱することは困難であった。   In order to perform stirring in the above temperature range, in the present invention, frictional heat between finely pulverized powders by stirring can be used. An outline of the configuration of the apparatus for heating by using friction in this way is shown in FIG. The stirring device 10 includes a container 1 that stores finely pulverized powder P, an agitating blade 2 that agitates the finely pulverized powder P, and a motor 3 that rotationally drives the agitating blade 2. A predetermined amount of finely pulverized powder P is stored in the container 1 in a deposited state, and a rotational force by the stirring blade 2 is applied to a partial region of the finely pulverized powder P in the deposited state. When the rotational force of the stirring blade 2 is applied to some areas of the finely pulverized powder P, some areas of the finely pulverized powder P and other areas are in a fluid state, and the finely pulverized powders P are in contact with each other. Friction occurs and the finely pulverized powder P spontaneously generates heat without being heated from the outside. This mixing by stirring can be referred to as a high-speed fluid mixing method. As long as the flow state of the powder is maintained, the higher the rotational speed of the stirring blade 2, the faster the heating by friction. The number of rotations of the stirring blade 2 varies depending on the amount of the finely pulverized powder P to be processed, but if it is about several hundred to several thousand rpm, the finely pulverized powder P can be heated to the temperature required by the present invention in several minutes. . According to the study by the present inventors, in a known mixing or pulverizing method, in a ball mill or screw type mixing apparatus, if the treatment is not performed for a considerable time, self-heating of the finely pulverized powder P causes 30 ° C. or higher. It was difficult to heat to this temperature.

撹拌を上記温度域で行うためには、微粉砕粉末同士の摩擦による自己発熱を利用する以外に、加熱手段を用いることもできることはいうまでもない。例えば、上記温度範囲に加熱された雰囲気中で微粉砕粉末と潤滑剤の混合物を撹拌してもよい。
また、本発明の撹拌による混合工程は、低酸素雰囲気で行うことが好ましい。微粉砕粉末を構成するR及びFeは酸化しやすい元素であり、加熱により酸化は助長される。したがって、加熱を伴う撹拌による混合工程は、酸素量が100ppm以下、さらに好ましくは50ppm以下の雰囲気下で行うことが好ましい。なお、この工程に限らず、高い磁気特性の希土類永久磁石を得るためには、他の工程、つまり粗粉砕工程から焼結工程に至るまで、酸素量が100ppm以下の低酸素雰囲気とすることが好ましい。このような低酸素雰囲気で各工程を実施することにより、酸素量が2000ppm以下のR−T−B系希土類永久磁石を得ることができる。
Needless to say, in order to perform the stirring in the above temperature range, a heating means can be used in addition to utilizing self-heating due to friction between finely pulverized powders. For example, the mixture of finely pulverized powder and lubricant may be stirred in an atmosphere heated to the above temperature range.
Moreover, it is preferable to perform the mixing process by stirring of this invention in a low oxygen atmosphere. R and Fe constituting the finely pulverized powder are easily oxidizable elements, and oxidation is promoted by heating. Therefore, the mixing step by stirring with heating is preferably performed in an atmosphere having an oxygen content of 100 ppm or less, more preferably 50 ppm or less. In addition to this process, in order to obtain a rare earth permanent magnet with high magnetic properties, it is necessary to create a low oxygen atmosphere with an oxygen content of 100 ppm or less from other processes, that is, from the coarse pulverization process to the sintering process. preferable. By carrying out each step in such a low oxygen atmosphere, an RTB-based rare earth permanent magnet having an oxygen content of 2000 ppm or less can be obtained.

本発明は、微粉砕前に潤滑剤を添加することを前提としているが、添加する潤滑剤の全量を微粉砕前に添加することを必須とするものではない。例えば、添加すべき潤滑剤の50%を微粉砕前に添加し、残りの50%を微粉砕後に行われる加熱撹拌・混合工程の際に添加してもよい。この場合、微粉砕前に添加する潤滑剤と微粉砕後に添加する潤滑剤の種類を変えることもできる。これは、微粉砕前に固体状態の潤滑剤を添加し、微粉砕後に液体状の潤滑剤を添加することを包含する。液体状の潤滑剤としては、脂肪酸エステルが好ましく、その中ではカプリル酸エチル、ラウリン酸エチル、ラウリン酸ブチル、オレイン酸メチル、オレイン酸エチル、オレイン酸ブチルを用いるのが好ましい。微粉砕前に固体状態の潤滑剤を添加し、微粉砕後にも固体状の潤滑剤を添加することももちろん可能である。   The present invention is based on the premise that a lubricant is added before pulverization, but it is not essential to add the entire amount of lubricant to be added before pulverization. For example, 50% of the lubricant to be added may be added before pulverization, and the remaining 50% may be added during the heating and stirring / mixing step performed after pulverization. In this case, the type of lubricant added before pulverization and the type of lubricant added after pulverization can be changed. This includes adding a solid state lubricant before pulverization and adding a liquid lubricant after pulverization. As the liquid lubricant, fatty acid esters are preferable. Among them, ethyl caprylate, ethyl laurate, butyl laurate, methyl oleate, ethyl oleate, and butyl oleate are preferably used. It is of course possible to add a solid lubricant before pulverization and to add a solid lubricant after pulverization.

<磁場中成形工程>
以上のようにして得られた微粉砕粉末は、金型キャビティに充填され、磁場中成形に供される。磁場中成形における成形圧力は0.3〜3ton/cmの範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増又は漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向度は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
また、印加する磁場は、12〜20kOe程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
<Molding process in magnetic field>
The finely pulverized powder obtained as described above is filled in a mold cavity and subjected to molding in a magnetic field. What is necessary is just to let the shaping | molding pressure in shaping | molding in a magnetic field be the range of 0.3-3 ton / cm < 2 >. The molding pressure may be constant from the start to the end of molding, may increase or decrease gradually, or may vary irregularly. The lower the molding pressure, the better the degree of orientation. However, if the molding pressure is too low, the strength of the molded body becomes insufficient and handling problems occur. Therefore, the molding pressure is selected from the above range in consideration of this point. The final relative density of the molded body obtained by molding in a magnetic field is usually 50 to 60%.
The applied magnetic field may be about 12 to 20 kOe. Further, the applied magnetic field is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

本発明は、磁場中成形に先立つ加熱撹拌・混合工程において、潤滑剤が微粉砕粉末中に十分に分散しているため、潤滑剤の添加量が少量であっても、磁場中成形で高い配向度を得ることができる。高い配向度は、希土類永久磁石としての残留磁束密度(Br)の値から判断できる。また、潤滑剤が微粉砕粉末中に十分に分散しているため、成形体が金型壁面に付着したりするおそれもなく、安定した磁場中成形を実施することができる。   Since the lubricant is sufficiently dispersed in the finely pulverized powder in the heating and stirring / mixing step prior to molding in a magnetic field, the present invention is highly oriented in molding in a magnetic field even if the amount of lubricant added is small. You can get a degree. A high degree of orientation can be judged from the value of residual magnetic flux density (Br) as a rare earth permanent magnet. Further, since the lubricant is sufficiently dispersed in the finely pulverized powder, there is no risk that the molded body will adhere to the mold wall surface, and stable molding in a magnetic field can be performed.

<焼結工程>
磁場中成形により得られた成形体には、潤滑剤除去処理が施される。炭素残留による磁気特性低下を防止するためである。潤滑剤除去処理は、真空中あるいは水素雰囲気中で、所定の熱処理条件で行うのが好ましい。潤滑剤除去処理は、焼結の昇温過程で行うことが効率的である。
潤滑剤除去処理後、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、真空中で、1000〜1200℃で1〜10時間程度焼結すればよい。
<Sintering process>
The molded product obtained by molding in a magnetic field is subjected to lubricant removal treatment. This is to prevent a decrease in magnetic properties due to carbon residue. The lubricant removal treatment is preferably performed under a predetermined heat treatment condition in a vacuum or in a hydrogen atmosphere. It is efficient to carry out the lubricant removal process during the heating process of sintering.
After the lubricant removal treatment, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of an average particle diameter, and a particle size distribution, what is necessary is just to sinter at 1000-1200 degreeC in vacuum for about 1 to 10 hours.

<時効熱処理工程>
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力(HcJ)を制御する重要な工程であり、不活性ガス雰囲気中あるいは真空中で時効処理を施すことが好ましい。この時効処理としては、2段時効処理が好ましい。1段目の時効処理工程では、700〜900℃の範囲内に1〜3時間保持する。次いで、室温〜200℃の範囲内にまで急冷する第1急冷工程を設ける。2段目の時効処理工程では、500〜700℃の範囲内に1〜3時間保持する。次いで、室温まで急冷する第2急冷工程を設ける。600℃近傍の熱処理で保磁力(HcJ)が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。
<Aging heat treatment process>
After sintering, the obtained sintered body can be subjected to an aging treatment. This step is an important step for controlling the coercive force (HcJ), and it is preferable to perform an aging treatment in an inert gas atmosphere or in a vacuum. As this aging treatment, a two-stage aging treatment is preferable. In the first stage aging treatment step, the temperature is maintained within a range of 700 to 900 ° C. for 1 to 3 hours. Next, a first quenching step is provided for quenching to room temperature to 200 ° C. In the second stage aging treatment step, the temperature is maintained within a range of 500 to 700 ° C. for 1 to 3 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force (HcJ) is greatly increased by heat treatment near 600 ° C., when aging treatment is performed in one stage, it is preferable to perform aging treatment near 600 ° C.

<磁石組成>
本発明は、例えば、希土類永久磁石、特にR−T−B系希土類永久磁石に適用することができる。
このR−T−B系希土類永久磁石は、希土類元素(R)を25〜37wt%含有する。ここで、本発明におけるRはYを含む概念を有しており、したがってY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの1種又は2種以上から選択される。Rの量が25wt%未満であると、R−T−B系希土類永久磁石の主相となるR14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが37wt%を超えると主相であるR14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜37wt%とする。望ましいRの量は28〜35wt%、さらに望ましいRの量は28.5〜33wt%である。
<Magnet composition>
The present invention can be applied to, for example, a rare earth permanent magnet, particularly an R-T-B rare earth permanent magnet.
This RTB-based rare earth permanent magnet contains 25 to 37 wt% of rare earth element (R). Here, R in the present invention has a concept including Y, and therefore 1 of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is selected from species or two or more species. If the amount of R is less than 25 wt%, the R 2 T 14 B phase, which is the main phase of the R—T—B system rare earth permanent magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 37 wt%, the volume ratio of the R 2 T 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases, leading to a decrease in coercive force. Therefore, the amount of R is set to 25 to 37 wt%. A desirable amount of R is 28 to 35 wt%, and a more desirable amount of R is 28.5 to 33 wt%.

また、このR−T−B系希土類永久磁石は、ホウ素(B)を0.5〜4.5wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。一方で、Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、Bの上限を4.5wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。
このR−T−B系希土類永久磁石は、Coを3wt%以下(0を含まず)、望ましくは0.1〜2wt%、さらに望ましくは、0.3〜1.5wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
The RTB-based rare earth permanent magnet contains 0.5 to 4.5 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. On the other hand, when B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of B is set to 4.5 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.
This R-T-B rare earth permanent magnet can contain Co of 3 wt% or less (not including 0), preferably 0.1 to 2 wt%, and more preferably 0.3 to 1.5 wt%. . Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.

また、このR−T−B系希土類永久磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。
さらに、このR−T−B系希土類永久磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。特に、低酸素量のR−T−B系希土類永久磁石を作製する場合には、結晶粒の粗大化防止のために、Zr、Ti、Nb及びTaの1種又は2種以上を添加することが好ましい。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を2000ppm以下、さらには1500ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。また、本発明では、潤滑剤の添加量を低減することができるので、炭素量を1500ppm以下、さらには1000ppm以下に規制することができる。
Moreover, this R-T-B type rare earth permanent magnet can contain 1 type or 2 types of Al and Cu in the range of 0.02-0.5 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, the corrosion resistance, and the temperature characteristics of the obtained permanent magnet. In the case of adding Al, the desirable amount of Al is 0.03 to 0.3 wt%, and the more desirable amount of Al is 0.05 to 0.25 wt%. Further, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.12 wt%.
Furthermore, this RTB-based rare earth permanent magnet allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. In particular, when producing an RTB-based rare earth permanent magnet having a low oxygen content, one or more of Zr, Ti, Nb, and Ta should be added to prevent crystal grain coarsening. Is preferred. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is preferably 2000 ppm or less, more preferably 1500 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. Moreover, in this invention, since the addition amount of a lubrication agent can be reduced, carbon content can be controlled to 1500 ppm or less, Furthermore, 1000 ppm or less.

ストリップキャスト法により、28.1wt%Nd−0.06wt%Cu−0.12wt%Al−0.2wt%Zr−1.1wt%B−Fe.balの組成を有する低R合金と、35wt%Nd−0.5wt%Cu−0.1wt%Al−10wt%Co−Fe.balの組成を有する高R合金を作製した。
次いで、低R合金及び高R合金を90:10の重量比で配合した後に、室温にて水素を吸蔵させた。その後、Ar雰囲気中で600℃×1時間保持する脱水素処理を行った。脱水素処理により低R合金及び高R合金は数百μm程度に粗粉砕された。なお、この水素粉砕処理の工程から後述する焼結の工程までは、酸素量が100ppm以下の雰囲気下で各工程が実施された。もちろん、各工程間の雰囲気も酸素量が100ppm以下に規制されている。
28.1 wt% Nd-0.06 wt% Cu-0.12 wt% Al-0.2 wt% Zr-1.1 wt% B-Fe. a low R alloy having a composition of bal, 35 wt% Nd-0.5 wt% Cu-0.1 wt% Al-10 wt% Co-Fe. A high R alloy having a bal composition was prepared.
Next, after blending the low R alloy and the high R alloy in a weight ratio of 90:10, hydrogen was occluded at room temperature. Thereafter, dehydrogenation treatment was performed in an Ar atmosphere at 600 ° C. for 1 hour. By the dehydrogenation treatment, the low R alloy and the high R alloy were roughly pulverized to about several hundred μm. In addition, each process was implemented in the atmosphere whose oxygen amount is 100 ppm or less from the process of this hydrogen crushing process to the sintering process mentioned later. Of course, the amount of oxygen in each process is also regulated to 100 ppm or less.

水素粉砕処理で得られた粗粉砕粉末に潤滑剤としてオレイン酸アミドを0.1wt%添加した。なお、オレイン酸アミドの融点は75℃である。オレイン酸アミドが添加された粗粉砕粉末をジェットミルにて平均粒径が3.5〜4μmになるまで微粉砕した。   0.1 wt% oleic acid amide was added as a lubricant to the coarsely pulverized powder obtained by the hydrogen pulverization treatment. The melting point of oleic amide is 75 ° C. The coarsely pulverized powder to which oleic acid amide was added was finely pulverized with a jet mill until the average particle size became 3.5 to 4 μm.

ジェットミルにより得られた潤滑剤を含む微粉砕粉末を、図2に示す高速流動型の撹拌装置10を用いて混合処理した。なお、回転翼2の回転数を10000rpm(実施例A)と4000rpm(実施例B)の2種類とした。また、前述したスクリュ式の混合機を用いてジェットミルにより得られた潤滑剤を含む微粉砕粉末を撹拌・混合処理した(比較例A)。なお、種々の時間で処理を終了した。   The finely pulverized powder containing the lubricant obtained by the jet mill was mixed using a high-speed fluid type agitator 10 shown in FIG. In addition, the rotation speed of the rotary blade 2 was made into two types, 10000 rpm (Example A) and 4000 rpm (Example B). Further, a finely pulverized powder containing a lubricant obtained by a jet mill was stirred and mixed using the screw type mixer described above (Comparative Example A). Note that the processing was completed at various times.

以上の処理を施して十分に時間が経過した後に、微粉砕粉末を磁場中成形した。なお、磁場中成形は、成形圧力:1.4ton/cm、印加磁場:17kOeの条件で行った。
磁場中成形で得られた成形体を焼結した。焼結は、真空中、1090℃で4時間保持する条件とした。次いで得られた焼結体に800℃×1時間と540℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。
After sufficient time had passed after the above treatment, the finely pulverized powder was molded in a magnetic field. In addition, shaping | molding in a magnetic field was performed on the conditions of shaping | molding pressure: 1.4ton / cm < 2 >, and applied magnetic field: 17kOe.
The molded body obtained by molding in a magnetic field was sintered. Sintering was carried out under conditions of holding at 1090 ° C. for 4 hours in a vacuum. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 540 ° C. × 1 hour (both in an Ar atmosphere).

得られたR−T−B系希土類永久磁石の組成分析を行ったところ、以下の通りであった。
28.7wt%Nd−0.1wt%Cu−0.12wt%Al−0.18wt%Zr−1wt%B−1wt%Co−Fe.bal
また、これらR−T−B系希土類永久磁石の酸素量、窒素量及び炭素量は以下の通りであった。
酸素量:890〜1020ppm
窒素量:320〜380ppm
炭素量:680〜820ppm
When the composition analysis of the obtained RTB-based rare earth permanent magnet was performed, it was as follows.
28.7 wt% Nd-0.1 wt% Cu-0.12 wt% Al-0.18 wt% Zr-1 wt% B-1 wt% Co-Fe. bal
Moreover, the oxygen content, nitrogen content, and carbon content of these R-T-B rare earth permanent magnets were as follows.
Oxygen content: 890-1020ppm
Nitrogen content: 320-380 ppm
Carbon content: 680-820 ppm

得られたR−T−B系希土類永久磁石の磁気特性を測定した。微粉砕後の撹拌による混合の処理時間と磁気特性の関係を図3(残留磁束密度(Br))及び図4(保磁力(HcJ))に示す。図3及び図4に示すように、混合時間によって残留磁束密度(Br)が変動することがわかった。ただし、保磁力(HcJ)は、混合時間によって、また混合の方式によって変動していない。これは、水素粉砕処理以降の各工程を100ppm以下の酸素量の雰囲気で行うことにより、酸化を抑制できたからである。   The magnetic properties of the obtained RTB-based rare earth permanent magnet were measured. FIG. 3 (residual magnetic flux density (Br)) and FIG. 4 (coercive force (HcJ)) show the relationship between the processing time of mixing by stirring after pulverization and the magnetic characteristics. As shown in FIGS. 3 and 4, it was found that the residual magnetic flux density (Br) varies depending on the mixing time. However, the coercive force (HcJ) does not vary depending on the mixing time and the mixing method. This is because oxidation can be suppressed by performing each step after the hydrogen pulverization treatment in an atmosphere having an oxygen amount of 100 ppm or less.

本発明者等は、磁気特性が混合処理時間によって変動する理由を確認すべく、撹拌処理時間毎の微粉砕粉末の温度を測定した。その結果を図5に示す。図5に示すように、混合処理時間が長くなるにつれて微粉砕粉末の温度が上昇することがわかる。特に、10000rpmの高速流動型の混合機を用いた場合の温度上昇が顕著である。   The present inventors measured the temperature of the finely pulverized powder every stirring processing time in order to confirm the reason why the magnetic characteristics fluctuate depending on the mixing processing time. The result is shown in FIG. As shown in FIG. 5, it can be seen that the temperature of the finely pulverized powder increases as the mixing treatment time increases. In particular, the temperature rise is remarkable when a high-speed fluid mixer of 10,000 rpm is used.

以上の結果に基づき、混合処理時の到達温度と希土類永久磁石の磁気特性の関係を図6及び図7に示した。図6及び図7に示すように、保磁力(HcJ)は温度によって変動しないが、残留磁束密度(Br)は混合処理における到達温度によって変動する。本実施例で用いたオレイン酸アミドの場合、混合処理における温度が30〜75℃の範囲で100〜200Gも残留磁束密度(Br)が向上することがわかる。   Based on the above results, the relationship between the ultimate temperature during the mixing process and the magnetic properties of the rare earth permanent magnet is shown in FIGS. As shown in FIGS. 6 and 7, the coercive force (HcJ) does not vary with temperature, but the residual magnetic flux density (Br) varies with the ultimate temperature in the mixing process. In the case of oleic amide used in this example, it can be seen that the residual magnetic flux density (Br) is improved by 100 to 200 G when the temperature in the mixing process is in the range of 30 to 75 ° C.

潤滑剤としてラウリン酸アミド(融点:110℃)を用いる以外は実施例1と同様にしてジェットミルにより微粉砕粉末を得た。なお、ラウリン酸アミドの添加量を種々変えた。
ジェットミルにより得られた潤滑剤を含む微粉砕粉末を、図2に示す高速流動型の撹拌装置10を用いて700sec混合処理(到達温度:60℃)した。なお、回転翼2の回転数を4000rpm(実施例C)とした。
A finely pulverized powder was obtained by a jet mill in the same manner as in Example 1 except that lauric acid amide (melting point: 110 ° C.) was used as the lubricant. Various addition amounts of lauric acid amide were changed.
The finely pulverized powder containing the lubricant obtained by the jet mill was mixed for 700 sec (attainment temperature: 60 ° C.) using the high-speed fluid type stirring device 10 shown in FIG. The rotational speed of the rotary blade 2 was 4000 rpm (Example C).

以上の処理を施して十分に時間が経過した後に、実施例1と同様にして磁場中成形、焼結を行ってR−T−B系希土類永久磁石を得た。
得られたR−T−B系希土類永久磁石の磁気特性を測定した。なお、高速流動型の撹拌装置10を用いた混合処理を行わない以外は実施例Cと同様にして得られたR−T−B系希土類永久磁石(比較例C)についても磁気特性を測定した。
After sufficient time had passed after the above treatment, molding in an magnetic field and sintering were performed in the same manner as in Example 1 to obtain an RTB-based rare earth permanent magnet.
The magnetic properties of the obtained RTB-based rare earth permanent magnet were measured. In addition, the magnetic characteristics of the RTB-based rare earth permanent magnet (Comparative Example C) obtained in the same manner as in Example C were measured except that the mixing process using the high-speed flow type stirring device 10 was not performed. .

潤滑剤の添加量と磁気特性の関係を図8(残留磁束密度(Br))及び図9(保磁力(HcJ))に示す。図8に示すように、撹拌装置10を用いた混合処理を行った実施例Cの方が当該処理を行わない比較例Cよりも高い残留磁束密度(Br)が得られることがわかる。また、図8及び図9より、潤滑剤の添加量が少ないと高い保磁力(HcJ)が得られ、逆に潤滑剤の添加量が多いほど高い残留磁束密度(Br)が得られることがわかる。これは、潤滑剤に起因するCの残留量に起因するものと解される。
なお、得られたR−T−B系希土類永久磁石の組成を確認したところ、実施例1と同様であった。
またR−T−B系希土類永久磁石の酸素量、窒素量及び炭素量についても実施例1と同様であった。
FIG. 8 (residual magnetic flux density (Br)) and FIG. 9 (coercive force (HcJ)) show the relationship between the amount of lubricant added and the magnetic properties. As shown in FIG. 8, it can be seen that the residual magnetic flux density (Br) obtained in Example C in which the mixing process using the stirring device 10 is performed is higher than that in Comparative Example C in which the process is not performed. 8 and 9, it can be seen that a high coercive force (HcJ) is obtained when the amount of lubricant added is small, and that a higher residual magnetic flux density (Br) is obtained when the amount of lubricant added is large. . This is understood to be caused by the residual amount of C caused by the lubricant.
In addition, when the composition of the obtained RTB system rare earth permanent magnet was confirmed, it was the same as that of Example 1.
The oxygen content, nitrogen content, and carbon content of the R-T-B rare earth permanent magnet were the same as in Example 1.

実施例1と同様にしてジェットミルにより微粉砕粉末を得た。得られた微粉砕粉末を実施例1の比較例Aで用いたスクリュ式混合機を用いて撹拌・混合処理した。ただし、スクリュ式混合機の容器の外周に熱媒体(加熱された油)を循環させることにより、処理されている微粉砕粉末を加熱した。なお、種々の時間で処理を終了した。
以上の処理を施して十分に時間が経過した後に、実施例1と同様にして磁場中成形、焼結を行ってR−T−B系希土類永久磁石を得た。得られたR−T−B系希土類永久磁石の磁気特性を測定した。
In the same manner as in Example 1, finely pulverized powder was obtained by a jet mill. The obtained finely pulverized powder was stirred and mixed using the screw mixer used in Comparative Example A of Example 1. However, the pulverized powder being treated was heated by circulating a heat medium (heated oil) around the outer periphery of the container of the screw mixer. Note that the processing was completed at various times.
After sufficient time had passed after the above treatment, molding in an magnetic field and sintering were performed in the same manner as in Example 1 to obtain an RTB-based rare earth permanent magnet. The magnetic properties of the obtained RTB-based rare earth permanent magnet were measured.

撹拌・混合処理の過程で微粉砕粉末が加熱された温度と磁気特性の関係を図10(残留磁束密度(Br))及び図11(保磁力(HcJ))に示す。なお、図10及び図11には、前述した実施例1の結果を併せて示している。図10及び図11に示すように、専ら外部から加熱を加えつつ撹拌・混合処理した場合にも、残留磁束密度(Br)の向上効果が得られる。   FIG. 10 (residual magnetic flux density (Br)) and FIG. 11 (coercive force (HcJ)) show the relationship between the temperature at which the finely pulverized powder is heated during the stirring / mixing process and the magnetic properties. 10 and 11 also show the results of Example 1 described above. As shown in FIGS. 10 and 11, the effect of improving the residual magnetic flux density (Br) can be obtained even when the stirring / mixing process is performed exclusively while heating from the outside.

第1の潤滑剤としてオレイン酸アミド(融点:75℃)を用い、実施例1と同様にしてジェットミルにより微粉砕粉末を得た。ジェットミルにより得られた第1の潤滑剤を含む微粉砕粉末に、第2の潤滑剤としてステアリン酸(融点:72℃)を添加し、図2に示す高速流動型の撹拌装置10を用い、700sec混合処理(到達温度:60℃)を行った。その際、回転翼2の回転数を4000rpmとした。なお、オレイン酸アミドの添加量を0.1wt%に固定したが、ステアリン酸の添加量は表1に示すように種々変えた。   Using oleic acid amide (melting point: 75 ° C.) as the first lubricant, finely pulverized powder was obtained by a jet mill in the same manner as in Example 1. To the finely pulverized powder containing the first lubricant obtained by the jet mill, stearic acid (melting point: 72 ° C.) is added as the second lubricant, and the high-speed fluid type stirring device 10 shown in FIG. A 700 sec mixing process (attainment temperature: 60 ° C.) was performed. At that time, the rotational speed of the rotary blade 2 was set to 4000 rpm. Although the addition amount of oleic amide was fixed at 0.1 wt%, the addition amount of stearic acid was variously changed as shown in Table 1.

以上の処理を施して十分に時間が経過した後に、実施例1と同様にして磁場中成形、焼結を行ってR−T−B系希土類永久磁石(試料No.1〜3)を得た。
得られたR−T−B系希土類永久磁石の磁気特性を測定した。なお、第2の潤滑剤を添加しない以外は上記と同様にして得られたR−T−B系希土類永久磁石(試料No.4)についても磁気特性を測定した。また、オレイン酸アミドの添加量を0.125wt%、0.15wt%、0.175wt%と変動させた以外は試料No.4と同様に作製したR−T−B系希土類永久磁石(試料No.5〜7)についても磁気特性を測定した。これらの結果を表1に示す。また、試料No.1〜4について、潤滑剤の合計添加量(第1の潤滑剤及び第2の潤滑剤との合計添加量)と磁気特性の関係を図12(残留磁束密度(Br))及び図13(保磁力(HcJ))に示す。
After a sufficient amount of time had passed after the above treatment, R-T-B rare earth permanent magnets (Sample Nos. 1 to 3) were obtained by performing molding and sintering in a magnetic field in the same manner as in Example 1. .
The magnetic properties of the obtained RTB-based rare earth permanent magnet were measured. The magnetic properties of the R-T-B rare earth permanent magnet (sample No. 4) obtained in the same manner as described above except that the second lubricant was not added were also measured. Further, Sample No. was changed except that the amount of oleic amide added was changed to 0.125 wt%, 0.15 wt%, and 0.175 wt%. The magnetic properties of the RTB-based rare earth permanent magnets (sample Nos. 5 to 7) produced in the same manner as in Example 4 were also measured. These results are shown in Table 1. Sample No. 1 to 4, the relationship between the total addition amount of the lubricant (total addition amount of the first lubricant and the second lubricant) and the magnetic characteristics is shown in FIG. 12 (residual magnetic flux density (Br)) and FIG. Magnetic force (HcJ)).

Figure 0004716020
Figure 0004716020

図12及び図13より、実施例3と同様の傾向が確認できた。つまり、第2の潤滑剤を微粉砕後に添加した場合にも、潤滑剤の合計添加量が少ないと高い保磁力(HcJ)が得られ、逆に潤滑剤の合計添加量が多いほど高い残留磁束密度(Br)が得られた。但し、潤滑剤の合計添加量が0.15wt%の場合と0.175wt%の場合とでは、残留磁束密度(Br)が同等であることから、潤滑剤添加による残留磁束密度(Br)向上という効果を享受するためには適切な添加量があるといえる。   From FIG. 12 and FIG. 13, the same tendency as in Example 3 was confirmed. That is, even when the second lubricant is added after pulverization, a high coercive force (HcJ) can be obtained if the total amount of lubricant added is small, and conversely, the higher the total amount of lubricant added, the higher the residual magnetic flux. Density (Br) was obtained. However, since the residual magnetic flux density (Br) is equal between the case where the total amount of the lubricant is 0.15 wt% and the case where the total amount is 0.175 wt%, the residual magnetic flux density (Br) is improved by the addition of the lubricant. It can be said that there is an appropriate addition amount in order to enjoy the effect.

次に、試料No.1〜7をそれぞれ所定数作製した後の粉砕機の磨耗状態を調べた。その結果を表1に併せて示す。粉砕機の磨耗状態の調査にあたっては、粉砕機配管内において最も磨耗が生じやすい屈曲部を観察した。表1の「粉砕機の磨耗状態」の欄において、「○」、「×」の基準は以下の通りである。   Next, sample No. The abrasion state of the grinder after producing a predetermined number of 1 to 7 was examined. The results are also shown in Table 1. In investigating the wear state of the pulverizer, the bending portion where the wear was most likely to occur in the pulverizer piping was observed. In the column of “Wearing state of pulverizer” in Table 1, the criteria for “◯” and “x” are as follows.

○(粉砕機の磨耗が軽微):500kgの原料を粉砕した際に粉砕機配管内の屈曲部の肉厚の磨耗が3%未満である。
×(粉砕機の磨耗が著しい):500kgの原料を粉砕した際に粉砕機配管内の屈曲部の肉厚の磨耗が3%以上減少している。
○ (Wear of pulverizer is slight): When 500 kg of raw material is pulverized, the thickness of the bent portion in the pulverizer pipe is less than 3%.
X (Wear of pulverizer is remarkable): When 500 kg of raw material is pulverized, the wear of the thickness of the bent portion in the pulverizer pipe is reduced by 3% or more.

表1に示すように、微粉砕前ならびに微粉砕後の2回に分けて潤滑剤を添加した試料No.1〜3の場合、いずれも粉砕機の磨耗が軽微であった。これに対し、潤滑剤を微粉砕前にまとめて添加した試料No.4〜7の場合、試料No.4(潤滑剤添加量:0.1wt%)および試料No.5(潤滑剤添加量:0.125wt%)については粉砕機の磨耗が軽微であったが、潤滑剤の合計添加量がそれぞれ0.15wt%、0.175wt%である試料No.6、7については粉砕機の磨耗が著しかった。
また潤滑剤の合計添加量が同じである試料No.2と試料No.6とを比較すると、前者は粉砕機の磨耗が軽微であるのに対し、後者では粉砕機の磨耗が著しかった。同様に、試料No.3と試料No.7とを比較すると、やはり前者は粉砕機の磨耗が軽微であるのに対し、後者では粉砕機の磨耗が著しかった。
以上の結果から、添加すべき潤滑剤の一部を微粉砕後の混合工程にて添加することは微粉砕時の粉砕機の磨耗の防止に有効であるといえる。また、潤滑剤の添加量が0.15wt%以上の場合には、潤滑剤の一部を微粉砕後に添加した方がよいことがわかった。
なお、得られたR−T−B系希土類永久磁石の組成を確認したところ、実施例1と同様であった。またR−T−B系希土類永久磁石の酸素量、窒素量及び炭素量についても実施例1と同様であった。
As shown in Table 1, sample No. 1 to which a lubricant was added in two portions before pulverization and after pulverization was divided. In the cases of 1 to 3, the wear of the pulverizer was slight. In contrast, Sample No. in which the lubricant was collectively added before pulverization. In the case of 4-7, sample no. 4 (lubricant addition amount: 0.1 wt%) and Sample No. No. 5 (lubricant addition amount: 0.125 wt%), although the wear of the pulverizer was slight, sample No. 5 in which the total addition amount of the lubricant was 0.15 wt% and 0.175 wt%, respectively. For 6 and 7, the wear of the pulverizer was significant.
In addition, Sample No. with the same total amount of lubricant added. 2 and sample no. Compared with 6, the former showed slight wear of the pulverizer, while the latter showed significant wear of the pulverizer. Similarly, sample no. 3 and sample no. Compared to 7, the former was slightly worn by the grinder, whereas the latter was significantly worn by the latter.
From the above results, it can be said that adding a part of the lubricant to be added in the mixing step after fine pulverization is effective in preventing wear of the pulverizer during fine pulverization. Further, it was found that when the amount of the lubricant added is 0.15 wt% or more, it is better to add a part of the lubricant after pulverization.
In addition, when the composition of the obtained RTB system rare earth permanent magnet was confirmed, it was the same as that of Example 1. The oxygen content, nitrogen content, and carbon content of the R-T-B rare earth permanent magnet were the same as in Example 1.

本発明によるR−T−B系希土類永久磁石の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the RTB system rare earth permanent magnet by this invention. 本発明に適用できる撹拌装置の構成概要を示す断面図である。It is sectional drawing which shows the structure outline | summary of the stirring apparatus which can be applied to this invention. 実施例1における混合処理時間と磁気特性(残留磁束密度(Br))の関係を示すグラフである。6 is a graph showing the relationship between mixing processing time and magnetic characteristics (residual magnetic flux density (Br)) in Example 1. 実施例1における混合処理時間と磁気特性(保磁力(HcJ))の関係を示すグラフである。3 is a graph showing the relationship between mixing processing time and magnetic characteristics (coercivity (HcJ)) in Example 1. 実施例1における混合処理時間と微粉砕粉末の温度の関係を示すグラフである。4 is a graph showing the relationship between the mixing processing time and the temperature of finely pulverized powder in Example 1. 実施例1における混合処理時の到達温度と磁気特性(残留磁束密度(Br))の関係を示すグラフである。6 is a graph showing the relationship between the ultimate temperature and magnetic characteristics (residual magnetic flux density (Br)) during mixing processing in Example 1. 実施例1における混合処理時の到達温度と磁気特性(保磁力(HcJ))の関係を示すグラフである。6 is a graph showing the relationship between the ultimate temperature and magnetic characteristics (coercive force (HcJ)) during mixing processing in Example 1. 実施例2における潤滑剤添加量と磁気特性(残留磁束密度(Br))の関係を示すグラフである。It is a graph which shows the relationship between the lubricant addition amount in Example 2, and a magnetic characteristic (residual magnetic flux density (Br)). 実施例2における潤滑剤添加量と磁気特性(保磁力(HcJ))の関係を示すグラフである。It is a graph which shows the relationship between the lubricant addition amount in Example 2, and a magnetic characteristic (coercive force (HcJ)). 実施例3における混合処理時の到達温度と磁気特性(残留磁束密度(Br))の関係を示すグラフである。It is a graph which shows the relationship between the ultimate temperature at the time of the mixing process in Example 3, and a magnetic characteristic (residual magnetic flux density (Br)). 実施例3における混合処理時の到達温度と磁気特性(保磁力(HcJ))の関係を示すグラフである。It is a graph which shows the relationship between the ultimate temperature at the time of the mixing process in Example 3, and a magnetic characteristic (coercive force (HcJ)). 実施例4における潤滑剤の合計添加量と磁気特性(残留磁束密度(Br))の関係を示すグラフである。It is a graph which shows the relationship between the total addition amount of the lubricant in Example 4, and a magnetic characteristic (residual magnetic flux density (Br)). 実施例4における潤滑剤の合計添加量と磁気特性(保磁力(HcJ))の関係を示すグラフである。It is a graph which shows the relationship between the total addition amount of the lubricant in Example 4, and a magnetic characteristic (coercive force (HcJ)).

符号の説明Explanation of symbols

1…容器、2…撹拌翼、3…モータ、10…撹拌装置、P…微粉砕粉末   DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Stirrer blade, 3 ... Motor, 10 ... Stirrer, P ... Finely pulverized powder

Claims (8)

R−T−B(R:希土類元素の1種又は2種以上、T:Fe、又はFe及びCo、B:ホウ素)系希土類永久磁石の製造方法であって、
原料合金を粗粉砕する粗粉砕工程と、
前記粗粉砕工程で得られた粗粉砕粉末に潤滑剤を添加する工程と、
前記潤滑剤が添加された前記粗粉砕粉末を微粉砕する微粉砕工程と、
前記微粉砕工程で得られた微粉砕粉末と前記潤滑剤との混合物を、30℃以上前記潤滑剤の融点未満の温度域で撹拌する混合工程と、
前記混合工程を経た前記微粉砕粉末を磁場中で成形する成形工程と、
前記成形工程で得られた成形体を焼結する焼結工程と、
を備え
前記混合工程において、堆積状態にある前記微粉砕粉末同士の摩擦により前記微粉砕粉末が加熱されることを特徴とする希土類永久磁石の製造方法。
R-T-B (R: one or more of rare earth elements, T: Fe, or Fe and Co, B: boron), a method for producing a rare earth permanent magnet,
A coarse pulverization step for coarsely pulverizing the raw material alloy;
Adding a lubricant to the coarsely pulverized powder obtained in the coarsely pulverized step;
A finely pulverizing step of finely pulverizing the coarsely pulverized powder to which the lubricant is added;
A mixing step of stirring the mixture of the finely pulverized powder obtained in the fine pulverization step and the lubricant in a temperature range of 30 ° C. or higher and lower than the melting point of the lubricant;
A molding step of molding the finely pulverized powder that has undergone the mixing step in a magnetic field;
A sintering step of sintering the molded body obtained in the molding step;
Equipped with a,
In the mixing step, the finely pulverized powder is heated by friction between the finely pulverized powders in a deposited state .
前記混合工程は、前記混合物を35〜70℃の温度域で撹拌することを特徴とする請求項1に記載の希土類永久磁石の製造方法。   2. The method for producing a rare earth permanent magnet according to claim 1, wherein in the mixing step, the mixture is stirred in a temperature range of 35 to 70 ° C. 3. 前記潤滑剤の添加量が、0.01〜0.2wt%であることを特徴とする請求項1又は2に記載の希土類永久磁石の製造方法。 The method for producing a rare earth permanent magnet according to claim 1 or 2 , wherein the addition amount of the lubricant is 0.01 to 0.2 wt%. 前記潤滑剤は、固体状の潤滑剤であることを特徴とする請求項1〜のいずれか1項に記載の希土類永久磁石の製造方法。 The lubricant, method for preparing a rare earth permanent magnet according to any one of claims 1 to 3, characterized in that a solid lubricant. 前記混合工程において、前記潤滑剤を所定量添加することを特徴とする請求項1〜のいずれか1項に記載の希土類永久磁石の製造方法。 In the mixing step, method for preparing a rare earth permanent magnet according to any one of claims 1-4, characterized by adding a predetermined amount of the lubricant. R−T−B(R:希土類元素の1種又は2種以上、T:Fe、又はFe及びCo、B:ホウ素)系希土類永久磁石の製造に用いる原料粉末と固体状態の潤滑剤を撹拌して混合する方法であって、
前記原料粉末と前記潤滑剤とを含む混合物を所定の容器に堆積状態で収容し、
堆積状態にある前記混合物の一部の領域に、回転体による回転力を作用させることで前記混合物を撹拌しつつ、前記原料粉末同士の摩擦により前記混合物を加熱することを特徴とする原料粉末と潤滑剤の混合方法。
R-T-B (R: one or more of rare earth elements, T: Fe, or Fe and Co, B: boron) The raw material powder used for the production of the rare earth permanent magnet and the solid state lubricant are stirred. Mixing method,
Containing a mixture containing the raw material powder and the lubricant in a predetermined state in a predetermined container;
A raw material powder characterized by heating the mixture by friction between the raw material powders while stirring the mixture by applying a rotational force by a rotating body to a partial region of the mixture in a deposited state; Lubricant mixing method.
前記潤滑剤は、前記混合の過程において、固体状態を維持することを特徴とする請求項に記載の原料粉末と潤滑剤の混合方法。 The method according to claim 6 , wherein the lubricant maintains a solid state in the mixing process. 前記混合が、酸素量が100ppm以下の低酸素雰囲気下で行われることを特徴とする請求項又はに記載の原料粉末と潤滑剤の混合方法。 The method of mixing raw material powder and lubricant according to claim 6 or 7 , wherein the mixing is performed in a low oxygen atmosphere having an oxygen content of 100 ppm or less.
JP2006063254A 2005-03-28 2006-03-08 Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant Active JP4716020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063254A JP4716020B2 (en) 2005-03-28 2006-03-08 Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005091785 2005-03-28
JP2005091785 2005-03-28
JP2006063254A JP4716020B2 (en) 2005-03-28 2006-03-08 Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant

Publications (2)

Publication Number Publication Date
JP2006310786A JP2006310786A (en) 2006-11-09
JP4716020B2 true JP4716020B2 (en) 2011-07-06

Family

ID=37477256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063254A Active JP4716020B2 (en) 2005-03-28 2006-03-08 Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant

Country Status (1)

Country Link
JP (1) JP4716020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199845A (en) * 2013-03-29 2014-10-23 Tdk株式会社 Method of manufacturing composition for metal powder containing resin molded body, preforming body, method of manufacturing metal sintered body, and rare earth sintered magnet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398107A (en) * 1986-10-15 1988-04-28 Tdk Corp Manufacture of rare earth permanent magnet
JPH03291303A (en) * 1990-04-06 1991-12-20 Kawasaki Steel Corp Manufacture of iron series powder mixture for powder metallurgy
JPH047804A (en) * 1990-04-25 1992-01-13 Tdk Corp Permanent magnet fabrication method and permanent magnet
JPH0456702A (en) * 1990-06-26 1992-02-24 Toshiba Corp Raw material powder for powder metallurgy and manufacture thereof
JPH0917677A (en) * 1995-06-30 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JP2004111481A (en) * 2002-09-13 2004-04-08 Sumitomo Special Metals Co Ltd Rare earth sintered magnet and its manufacturing method
WO2004029998A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation Method for producing r-t-b based rare earth element permanent magnet
JP2004346380A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Method for manufacturing granulated grain

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398107A (en) * 1986-10-15 1988-04-28 Tdk Corp Manufacture of rare earth permanent magnet
JPH03291303A (en) * 1990-04-06 1991-12-20 Kawasaki Steel Corp Manufacture of iron series powder mixture for powder metallurgy
JPH047804A (en) * 1990-04-25 1992-01-13 Tdk Corp Permanent magnet fabrication method and permanent magnet
JPH0456702A (en) * 1990-06-26 1992-02-24 Toshiba Corp Raw material powder for powder metallurgy and manufacture thereof
JPH0917677A (en) * 1995-06-30 1997-01-17 Sumitomo Special Metals Co Ltd Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JP2004111481A (en) * 2002-09-13 2004-04-08 Sumitomo Special Metals Co Ltd Rare earth sintered magnet and its manufacturing method
WO2004029998A1 (en) * 2002-09-30 2004-04-08 Tdk Corporation Method for producing r-t-b based rare earth element permanent magnet
JP2004346380A (en) * 2003-05-22 2004-12-09 Seiko Epson Corp Method for manufacturing granulated grain

Also Published As

Publication number Publication date
JP2006310786A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
CN108417334B (en) R-T-B sintered magnet
JP6409867B2 (en) Rare earth permanent magnet
JP5464289B1 (en) R-T-B sintered magnet
JP2016154219A (en) Rare earth based permanent magnet
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
WO2004029995A1 (en) R-t-b rare earth permanent magnet
JP2006270087A (en) Method of producing rare-earth sintered magnet
JP2015207662A (en) R-t-b-based permanent magnet and rotary machine
JP4353402B2 (en) Rare earth permanent magnet manufacturing method
JP6468435B2 (en) R-T-B sintered magnet
JP4716020B2 (en) Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP4662009B2 (en) Rare earth permanent magnet manufacturing method
JP4716022B2 (en) Rare earth permanent magnet manufacturing method
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP4753044B2 (en) Powder molding lubricant, molding composition, and method for producing RTB-based sintered magnet
JP4609644B2 (en) Manufacturing method of rare earth sintered magnet
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JP4282017B2 (en) Manufacturing method of rare earth sintered magnet
JP2007266037A (en) Manufacturing method of rare-earth permanent magnet
JP2004149851A (en) Permanent magnet alloy
JPH08316016A (en) Manufacture of rare earth element-iron-boron sintered permanent magnet and sintering raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4716020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3